混凝土简支梁斜截面抗剪强度

混凝土简支梁斜截面抗剪强度
混凝土简支梁斜截面抗剪强度

混凝土简支梁斜截面抗剪强度

1 影响混凝土抗剪强度V

c

的主要参数的分析

1.1 混凝土强度的影响

试验表明,混凝土梁抗剪强度的增长与混凝土抗压强度f

cu

并非直线关系,

而是按抛物线变化。图1表示前苏联学者无箍筋梁抗剪强度与混凝土强度f

cu

关系,梁混凝土立方体强度f

cu 从20kg/cm2到1000kg/cm2变化,曲线为采用f

ct

为参数的V

c 表达式,V

c

=Kf

ct

bh2

/a=Kf

ct

bh

/m,m=a/h

为剪跨比;直线表示采用f

c

为参数的波氏公式,V

c =0.15f

c

bh2

/c=0.15f

c

bh

/m。从图可明显地看出,采用f

ct

为混凝土强度影响参数与试验结果比较相符合,而如果采用f

cu 或f

c

为参数时,

混凝土强度低时,试验值高于计算值;中等强度时,两者相接近;高强度时,试验值大大低于计算值,这是很不安全的。因此,苏联规范对波氏抗剪强度公式进

行了修改,将混凝土强度从f

c 改为f

ct

。CEB/FIP规范对无抗剪钢筋构件V

c

计算

式实际是采用f

ct 为参数。西南交大抗剪试验[2,3]表明,把混凝土抗拉强度f

ct

为混凝土强度对V

c

影响参变量是合适的。考虑到铁路桥梁多使用高强度混凝土,

而采用f

ct

为参数,能更明确地反映问题的实质,并可避免单位变换时引起不同

系数的因次带来的麻烦。因此,选取f

ct

为混凝土强度的影响参数。

图1 苏联无箍筋梁抗剪强度V

c 与混凝土f

ct

的关系

1.2 剪跨比m的影响

大量试验表明,剪跨比m是影响混凝土抗剪强度的主要参数之一。

V c 随m的增大而减小,当m>3~4,V

c

基本上就不受m的影响,其变化较

小。各规范在V

c

表达式中,对m影响的处理上有所不同。CEB/FIP,BS5400

和《苏联СНИПⅡ-21-75》等规范,其V

c

取较低值,考虑小剪距比时,乘一个2/m(m<2)的提高系数。我国铁路、公路桥规直接取1/m,文中分析时选取1/m为参数。

1.3 预应力度的影响[2,3,5]

PPC简支T梁试验结果证明,预应力大小对无箍、有箍PPC简支梁

的混凝土抗剪强度V

c

有提高作用。这主要是因为预压应力推迟了斜裂缝的出现和发展,增加了梁混凝土剪压区的高度,从而提高了混凝土剪压区的抗剪能力。试验分析时,曾采用了两个与预应力度λ相关的提高系

数β或β′来表达预应力对V

c

的提高作用。

式中:λ为预应力度;M

为梁的消压弯矩;M为梁的使用荷载作用下的

弯矩;M

u 为梁的破坏弯矩;考虑到同一配筋的试验梁,M不确定,而M

u

较为固定,试验分析时用M

0/M

u

反映预应力度的影响较为确定。

图2示出16片3种不同预应力度PPC T型试验梁V s

c /f

ct

bh

与β′

的关系[5],它说明V

c

随β′值的增大而提高,基本呈线性关系。对铁路

PPC梁而言,可令M

u

=2M,采用β或β′为预应力提高系数都是合适的。而统计分析结果表明,采用β作为预应力提高系数,有利于把混凝土矩形和T形梁的抗剪强度表达式统一起来。因此,表达式选用β为提高系数的参数。

图2 PPC T梁V s

c /f

ct

bh

与β′的关系

1.4 纵向配筋率的影响(p=100μ)

纵向钢筋对斜截面抗剪起梢栓作用外,还对斜裂缝向下翼缘扩展起约束作用,间接地影响混凝土的抗剪强度。现行《铁路桥规》的抗剪强度公式对纵向配筋率的影响(p=100μ)采用(2+p)线性增加的关系式。根据收集的试验资料,对剪跨比1.33~3.0的RC无箍筋矩形梁试验数据,

按照V s

c /f

ct

bh

与(k+p)关系进行回归分析,结果表明,41片m=3试验数

据求得k=2.07,而m=1.33~3.0五组试验数据求得k平均值为2.6,k 值为2.0~2.6左右。西南交大专题分析时仍取(2+p)为参数。

1.5 截面形状的影响

试验表明[2],PPC无箍筋T梁抗剪强度比PPC矩形梁的要高,应考虑受压区翼缘的有利作用。在对PPC T梁混凝土抗剪强度分析时,建议

采用α=1+kh′

f 2/bh

系数考虑T梁压区翼缘对抗剪的有利作用。k值根据

PPC T梁与矩形梁资料分析求得k=1,因此分析时取α=1+h

f 2/bh

≯1.2。

2 影响箍筋抗剪能力V s主要参数的分析

试验表明[3],梁斜裂缝出现前,箍筋的应力几乎为零,它对斜裂缝出现时的剪力没有多大影响。当斜裂缝一旦出现,其应力便突然增大,箍筋才发挥作用,除承担部分剪力外,还对斜裂缝的宽度和扩展起约束作用。大多试验表明,有箍筋梁剪力破坏时与主斜裂缝相交的箍筋大都

可达到屈服强度f v

st ,ρ

sv

f v

st

和斜裂缝水平投影长度C是影响V

s

的主要因

素。图3表示将西南交大完成的20片PPC T梁(m=3)试验结果,按预应力提高系数β′值分为4组,每组又包括4种不同配箍率(ρ

sv

=0,0.34%,

0.44%,0.59%)的试验梁剪力破坏值点绘于以V s

u /f

ct

(2+p)bh

为纵坐标,

以ρ

sv f v

st

/f

ct

(2+p)为横坐标的图上。从图可见,预应力度不同的4条直

线大致平行,V s

u 随ρ

sv

f v

st

的增加而线性增大,随β′值增大直线向上提

高,这充分说明ρ

sv f v

st

对V

s

的提高作用,又说明预应力对V

c

的提高作用。

为了使C值具有代表性,现根据收集到的200多片PPC,PC T梁和矩形

梁剪力破坏时的实测值,按C S

P /h

=A+Bm线性公式回归统计,求得A=0.35,

B=0.4。

(1)

图3 PPC T梁V s

u /f

ct

(2+p)bh

与β′和ρ

sv

f v

st

的关系

图4表示与《铁路桥规》、文献[3]和文献[7]计算式比较情况,说明式(1)居中更为合理。按上述分析,建议V

s

计算式如下

(2)

图4 C

p /h

与m的关系

3 混凝土梁斜截面抗剪强度表达式的选定

现收集到国内外结构混凝土简支梁抗剪强度可利用的试验数据有:(1) RC矩形梁526片;(2) PPC矩形梁133片;(3) PPC T梁212片。其中有西南交大专题组后张PPC T形截面试验梁44片,并包括4片具有弯起预筋的PPC T梁4片;铁研院、北方交大的先张PPC T形试验梁19片以及重庆交通学院PPCT形试验梁50余片[9]。PPC T梁试验数据既有较多的后张PPC梁,也有先张PPC梁,多数为直线预筋T梁,也含有弯起预筋的T梁,具有良好的代表性,为《铁路桥规》修改提供了较全面的试验依据。

根据上述对影响混凝土梁抗剪强度主要因素的分析,在对所做试验的结果及所收集到的国内外试验数据进行综合分析研究时,对混凝土简支梁斜截面抗剪强度推荐采用统一的表达式

(3)

(4)

式中:C为待定系数,对大量试验数据统计回归求得,并根据验算可靠

度指标来最后选定;m 为计算截面处的剪跨比,m=M

V /V

m

h

或m=a/h

,当

m>3时,取m=3;m<1时,取m=1;p=100ρ,ρ为斜截面处受拉纵向主

筋的配筋率,ρ=(A

p +A

pb

+A

s

)/bh

,当p>3时,取p=3;β为考虑预应力

影响的提高系数,β=1+M

/M=1+λ≤2;α为考虑T形截面受压区翼缘有

利作用系数,α=1+h2

f /bh

≯1.2;V

s

为斜截面上箍筋承担的抗剪能力,

采用式(2),则有

(5)

现采用推荐的表达式(4)和式(5),分别为RC矩形梁、PPC矩形梁和

PPC T 梁3组试验数据,并按无箍筋梁、有箍筋梁、无箍+有箍梁综合等3种情况进行回归统计分析,求出相应的C 值。同时求出V s c /v j c 的平均值c 、标准差σc 和变异系数c vc ,又按V j u =V c +V s ,求出V s u /V j u 的平均值

u

、标准差σu ,及变异系数c uc 。对所有试验数据按剪跨比m>3取m=3

限制条件进行回归统计,结果列于表1。

从表可知,C=0.42~0.44,3组梁C值基本相当。

如果以无箍+有箍梁综合等情况为准,混凝土梁混凝土抗剪强度回归统一表达式和具有95%保证率表达式为

(6)

(7)

按照建议的回归公式及其统计参数,应用可靠性理论的分位值法对

铁路RC和PC标准设计梁(RC梁L

p =8 m,12 m,16 m;PC梁L

p

=16 m,

20 m,24 m,32 m)抗剪强度可靠指标进行了校准[9],其危险截面的可靠指标β值,RC梁β=2.84~3.91,=3.47,PC梁β=3.25~3.59,=3.44。计算结果表明,采用回归式可靠指标低于新《铁路桥规》目标可

靠指标β

mon =5.2的要求。因此,建议采用具有95%保证率的V

c0.05

公式,

基本可以满足目标可靠指标的要求。

4 新《铁路桥规》混凝土简支梁抗剪强度建议式

西南交大与铁研院、北方交大两专题组分别提出了斜截面抗剪强度建议式,表达式虽不同,而在选取影响抗剪强度的主要参数上基本一致。两专题组通过讨论研究认为,抗剪强度计算表达式应是对混凝土梁均能适用的统一表达式为好,参数形式宜简单些。

以西南交大所推荐的统一表达式为基础,V

c

表达式中宜适当降低配筋率p的影响,对通常配筋情况建议将(2+p)改为(2+0.7p),西南交大专题组根据试验结果以及收集的国内外数据,重新回归分析,并为新《铁路桥规》抗剪强度计算提出建议公式。

建议的混凝土梁斜截面抗剪强度表达式可写为

(8)

V

s

仍采用式(2),则

(9)

现按照建议式(8)和式(9),根据试验结果和所收集的国内外数据重新分析计算。仍分别对RC矩形梁、PPC矩形梁和PPC T梁的试验数据,按无箍筋、有箍筋和无箍+有箍综合等种情况进行回归统计,求得相应

C值,同时求出V s

c /V j

c

平均值

c

,标准差σ

c

和变异系数c

vc

及V s

u

/V j

u

的平

均值

u ,标准差σ

u

和变异系数c

vu

,所得结果也列于表1。

从表1可知,C值回归计算求得结果为C=0.50~0.55,3组梁C值

也基本相同,可取C=0.5。对全部试验数据,综合回归统计

c

=1.042,σc=0.247,c vc=0.235。则斜截面抗剪强度建议公式回归表达式和具有95%保证率的公式可写为

(10)

(11)

现将全部试验数据点绘在以剪跨比m为x轴,V s

c /(2+0.7p)f

ct

bh

βα

为y轴的坐标图上(图5),同时将回归式(式10)和具有95%保证率表达式(式11)也绘于图上。从图可知,具有95%保证率表达式基本接近该试验点下限值。

图5 试验梁V s

c /(2+0.7p)f

ct

bh

βα与m的关系

根据可靠指标的要求,V

c

应采用具有95%保证率的公式,新《铁路桥规》混凝土简支梁抗剪强度建议计算公式则为下式

(12)

上述建议公式已被正式纳入新的《铁路桥涵规范(上册)》送审稿中。

5 结论

表达式统一

(1) 通过回归计算与分析,并考虑要把混凝土矩形、T形梁V

c

选用(4)与式(8)为表达式。

起来,推荐V

c

(2) 文中通过200多片PPC和PC T梁资料分析,提出了箍筋抗剪能力V

s 的计算公式(式2)。

(3) 通过对专题组试验结果和国内外871片梁试验数据回归统计和综合分析,提出了混凝土简支梁抗剪强度统一表达式(式(9)),为《铁路桥规》修改提供了依据。

考虑到铁路混凝土梁可靠指标的要求,提出了混凝土简支梁抗剪强度建议公式(式(12))。并被纳入新的《铁路桥涵设计规范(上册)》(送审稿)中。

混凝土强度等级对照表

混凝土强度等级对照表 混凝土的抗压强度是通过试验得出的,我国最新标准C60强度以下的采用边长为150mm的立方体试件作为混凝土抗压强度的标准尺寸试件。按照《普通混凝土力学性能试验方法标准》GB/T50081-2002,制作边长为150mm的立方体在标准养护(温度20±2℃、相对湿度在95%以上)条件下,养护至28d龄期,用标准试验方法测得的极限抗压强度,称为混凝土标准立方体抗压强度,以fcu表示。按照GB50010-2010《混凝土结构设计规范》规定,在立方体极限抗压强度总体分布中,具有95%强度保证率的立方体试件抗压强度,称为混凝土立方体抗压强度标准值(以MPa计),用fcu 表示。 依照标准实验方法测得的具有95%保证率的抗压强度作为混凝土强度等级。 按照GB50010-2010《混凝土结构设计规范》规定,普通混凝土划分为十四个等级,即:C15,C20,C25,C30,C35,C40,C45,C50,C55,C60,C65,C70,C75,C80。例如,强度等级为C30的混凝土是指30M Pa≤fcu<35MPa 影响混凝土强度等级的因素主要与水泥等级和水灰比、骨料、龄期、

养护温度和湿度等有关。 混凝土质量的主要指标之一是抗压强度,从混凝土强度表达式不难看出,混凝土抗压强度与混凝土用水泥的强度成正比,按公式计算,当水灰比相等时,高标号水泥比低标号水泥配制出的混凝土抗压强度高许多。一般来说,水灰比与混凝土强度成反比,水灰比不变时,用增加水泥用量来提高混凝土强度是错误的,此时只能增大混凝土和易性,增大混凝土的收缩和变形。 所以说,影响混凝土抗压强度的主要因素是水泥强度和水灰比,要控制好混凝土质量,最重要的是控制好水泥质量和混凝土的水灰比两个主要环节。此外,影响混凝土强度还有其它不可忽视的因素。 粗骨料对混凝土强度也有一定影响,所以,工程开工时,首先由技术负责人现场确定粗骨料,当石质强度相等时,碎石表面比卵石表面粗糙,它与水泥砂浆的粘结性比卵石强,当水灰比相等或配合比相同时,两种材料配制的混凝土,碎石的混凝土强度比卵石高。 因此我们一般对混凝土的粗骨料粒径控制与不同的工程部位相适应;细骨料品种对混凝土强度影响程度比粗骨料小,但砂的质量对混凝土质量也有一定的影响,施工中,严格控制砂的含泥量在3%以内,因此,砂石质量必须符合混凝土各标号用砂石质量标准的要求。

同济大学混凝土试验 梁剪压破坏实验报告

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊《混凝土结构基本原理》试验课程作业 L ENGINEERING 梁受剪试验(剪压破坏)试验报告 试验名称梁受剪试验(剪压破坏) 试验课教师林峰 姓名 学号 手机号 任课教师 日期2014年11月25日

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊1. 试验目的 通过试验学习认识混凝土梁的受剪性能(剪压破坏),掌握混凝土梁的受剪性能试验的测试方法,巩固课堂知识,加深对于斜截面破坏的理解。 2. 试件设计 2.1 材料和试件尺寸 试件尺寸(矩形截面):b×h×l=120×200×1800mm; 混凝土强度等级:C20; 纵向受拉钢筋的种类:HRB335; 箍筋的种类:HPB235; 2.2 试件设计 (1)试件设计依据 根据剪跨比l和弯剪区箍筋配筋量的调整,可将试件设计为剪压、斜压和斜拉破坏,剪压破坏的l满足1≤l≤3。进行试件设计时,应保证梁受弯极限荷载的预估值比剪极限荷载预估值大。 (2)试件参数如表1 表1 试件参数 试件尺寸(矩形截面)120×200×1800mm 下部纵筋②218 上部纵筋③210 箍筋①φ6@150(2) 纵向钢筋混凝土保护层厚度15mm 配筋图见图1 加载位置距离支座400mm 12 3 图1 试件配筋图 (3)试件加载估算 ①受弯极限荷载 ) ( / 2 1 2 ' - ' ' = ' - = ' ' = s s y u s s s y y s s a h A f M A A A f f A A

┊ ┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ M u u P 2.0 M= uM P=105.25kN ②受剪极限承载力 sv u tk0yk0 1.75 1 A V f bh f h s l =+ + uQ u 2 P V = 其中,当 1.5 l<时,取 1.5 l=,当3 l>时,取3 l=。 uQ P=65.98kN 可以发现 uQ P< uM P,所以试件会先发生受剪破坏。具体计算过程见附录一。 2.3 试件的制作 根据《普通混凝土力学性能试验方法标准》GB/T 50081-2002规定,成型前,试模内表面应涂一薄层矿物油或其他不与混凝土发生反应的脱模剂。 取样或拌制好的混凝土拌合物,至少用铁锨再来回拌合三次。 将混凝土拌合物一次装入试模,装料时应用抹刀沿各试模壁插捣,并使混凝土拌合物高出试模口。 采用标准养护的试件,应在温度为20±5℃的环境中静置一昼夜至二昼夜,然后编号、拆模。拆模后应立即放入温度为20±2℃,相对湿度为95%以上的标准养护室中养护,或在温度为20±2℃的不流动的氢氧化钙饱和溶液中养护。标准养护龄期为28d(从搅拌加水开始计时)。 3.材性试验 3.1 混凝土材性试验 凝土强度实测结果 试块留设时间: 2014年9月25日 试块试验时间: 2014年12月8日 试块养护条件:与试件同条件养护 1 2 1 1 1 1 ) 5.0 1( u u u c u s y c M M M bh f M A f bh f +' = - = = ξ ξ α ξ α

混凝土立方体抗压强度的标准差

混凝土立方体抗压强度的标准差 Sfcu=[(∑ fcu?i2-n?mfcu2)/(n-1)]1/2 公式表述显示不明,用语言表述下,即公式中的2和1/2都应为上角表,分别表示平方和根号(开平方)。语言表述如下: fcu.i的平方求和再减去 n 乘以fcu平均值的平方,用他们的差再除以(n-1)这样得出的除数开方;也可以是fcu.i-fcu平均值差的平方求和得出的数再除以(n-1)这样得出的除数开方。 当Sfcu<0.06fcu,k时,取Sfcu=0.06fcu,k 具体参数表述如下: fcu,k一混凝土立方体抗压强度标准值 fcu为设计强度标准值 mfcu为平均值 n为试块组数 Sfcu为n组试块的强度值标准差 fcu.i : 第i组试块的立方体抗压强度值 我想这个公式已经够清楚了,不需要用实例演示了,你自己可以试一下,还有,我觉得你可以不加括号里话,多些人回答,即便有一些回答不是你想要的也没有多大关系,不是吗?希望你对这个回答满意。补充回答:2和1/2为上角标,写错了,补充下。 补充回答:我想了想,不知道你是否是学这个专业的,还是再好好写下好,fcu,k一混凝土立方体抗压强度标准值,即C30的混凝土,这个值就是30,C40的混凝土,这个值就是40。

拿两组试块举个例子,太多了计算麻烦,如我的混凝土是C40的:1、实测2组试块是46,42,则平均值44,(46的平方+42的平方-2X44的平方)/(2-1)=8,8开平方约等于2.83,则这2组试块的强度值标准差为2.832 2、实测2组试块是46,44,则平均值45,(46的平方+44的平方-2X45的平方)/(2-1)=2,2开平方约等于1.41<0.06fcu=0.06X40=2.4,则这2组试块的强度值标准差为2.4 这次应该没有什么疑问了吧?如果是做资料,我觉得现在都是直接用资料软件,你把标准值及实测值一输入,则各种需要的值都出来了,结论也有了,不用计算这么麻烦,学习的过程中,自己用手练下还可以。

浅谈梁沿斜截面受剪的主要破坏形态

浅谈梁沿斜截面受剪的主要破坏形态 一、无腹筋梁 大量试验结果表明:无腹筋梁斜截面受剪破坏的形态取决于剪跨比λ的大小,大致有斜拉破坏、剪压破坏和斜压破坏三种主要破坏形态。图1画出了两个对称荷载作用下,λ=2、1、 21时的主拉应力迹线(虚线)和主压应力迹线(实线)。由图可见,当λ=2 1时,在集中荷载与支座反力间形成比较陡的主压应力迹线,又由于这时主压应力值比较大,所以破坏主要是由于主压应力产生,称为斜压破坏。当λ=1~2时,主压应力迹线与梁纵轴线的交角接近或小于45°,并且主压应力值与主拉应力值两者相差不很大,因此,破坏形态也就不同。试验研究表明,无腹筋梁斜截面受剪破坏形态主要有以下三种: 1、斜拉破坏:当剪跨比λ>3时,发生斜拉破坏,如图2(a )所示。其破坏特征是:斜裂缝一旦出现就迅速延伸到集中荷载作用点处,使梁沿斜向拉裂成两部分而突然破坏,破坏面整齐、无压碎痕迹,破坏荷载等于或略高于出现斜裂缝时的荷载。斜拉破坏时由于拉应变达到混凝土极限拉应变而产生的,破坏很突然,属于脆性破坏类型。 2、剪压破坏:当剪跨比1≤λ≤3时,发生剪压破坏,如图2(b )所示。其破坏特征是;弯剪斜裂缝出现后,荷载仍可以有较大的增长。随荷载的增大,陆续出现其它弯剪斜裂缝,其中将形成一条主要的些裂缝,称为临界斜裂缝。随着荷载的继续增加,临界斜裂缝上端剩余截面逐渐缩小,最后临界斜裂缝上端集中于荷载作用点附近,混凝土被压碎而造成破坏。剪压破坏主要是由于剩余截面上的混凝土在剪应力、水平压应力以及集中荷载作用点处竖向局部压应力的共同作用而产生,虽然破坏时没有像斜拉破坏时那样突然,但也属于脆性破坏类型。与斜拉破坏相比,剪压破坏的承载力要高。 3、斜压破坏:当剪跨比λ很小(一般λ≤1)时,发生斜压破坏,如图2(c )所示。其破坏特征是:在荷载作用点与支座间的梁腹部出现若干条大致平行的腹剪斜裂缝,随荷载增加,梁腹部被这些斜裂缝分割成若干斜向受压的“短柱体”,最后它们沿斜向受压破坏,破坏时斜裂缝多而密。斜压破坏也很突然,属于脆性破坏类型,其承载力要比剪压破坏高。 二、有腹筋梁 配置箍筋的有腹筋梁,它的斜截面受剪破坏形态与无腹筋梁一样也有斜拉破坏、剪压破坏和斜压破坏三种。这时,除了剪跨比对斜截面破坏形态有很大影响以外,箍筋的配置数量对破坏形态也有很大影响。 当λ>3,且箍筋配置数量过少时,斜裂缝一旦出现,与斜裂缝相交的箍筋承受不了原来由混凝土所负担的拉力,箍筋立即屈服而不能限制斜裂缝的开展,与无腹筋梁相似,发生斜拉破坏。如果λ>3,箍筋配置数量合适的话,则可避免斜拉破坏。而转为剪压破坏。这时因为斜裂缝产生后,与斜裂缝相交的箍筋不会立即屈服,箍筋的受力限制了斜裂缝的开展,使荷载仍能有较大的增长。随着荷载增大,箍筋拉力增大,当箍筋屈服后,便不能再限制斜裂缝的开展,使斜截面上端剩余截面缩小,剪压区混凝土在剪压作用下达到极限强度,发生剪压破坏。 如果箍筋配置数量过多,箍筋应力增加缓慢,在箍筋尚未达到屈服时,梁腹混凝土即达到抗压强度而发生斜压破坏。在薄腹梁中,即使剪跨比较大,也会发生斜压破坏。 对有腹筋梁来说,只要截面尺寸合适,箍筋配置数量适当,剪压破坏时斜截面受剪破坏中最常见的一种形态。 表1列出了梁沿斜截面受剪破坏的三个主要破坏形态的要点。

水泥混凝土立方体抗压强度

水泥混凝土立方体看抗压强度试验 (JTG E30 T0553-2005) 一、目的、适用范围 本方法规定了测定水泥混凝土抗压极限强度的方法和步骤。本方法可用于确定水泥混凝土的强度等级,作为评定水泥混凝土品质的主要指标。 本方法适用于各类水泥混凝土立方体试件的极限抗压强度试验。 二、仪器设备 1、压力机或万能试验机:上下压板平整并有足够刚度,可以均匀、连续地加荷卸荷,可以保持固定荷载,能够满足试件破型吨位要求。 2、球座: 刚质坚硬,转型灵活.球座最好放置在试件顶面(特别是棱柱试件),并凸面朝上,当试件均匀受力后,一般不宜敲动球座. 3、试摸:由铸铁或钢制成,试件尺寸见表。 抗压强度试件尺寸 集料公称最大粒径 (mm)试件尺寸 (mm) 集料公称最大粒径 (mm) 试件尺寸 (mm) 31.5150×150×15053200×200×200 26.5100×100×100 混凝土等级大于等于C60时,试验机上、下压板之间应各垫一钢

垫板,平面尺寸应不小于试件的承压面,其厚度至少为25mm。钢垫板应机械加工,其平面度允许偏差±0.04mm;表面硬度大于等于55HRC;硬化层厚度约5mm 三、试验方法与步骤 1、试验准备 混凝土抗压强度试件以边长150mm的正方体为标准试件,其集料公称最大粒径为31.5mm。混凝土抗压强度试件同龄期者为一组,每组为3个同条件制作和养护的混泥土试块。 2、试验步骤 取出试件,先检查其尺寸及形状,相对两面应平行,表面倾斜差不得超过0.5mm。量出棱边长度,精确至1mm。试件受力截面积按其与压力机上下接触面的平均值计算。在破行前,保持试件原有湿度,在试验时擦干试件。 以成型时的侧面为上下受压面,试件要放在球座上,球座置于压力机中心,几何对中。强度等级小于C30的混凝土取0.3~0.5MPa/s的加荷速度;强度等级大于C30且小于C60时,则取0.5~0.8MPa/s的加荷速度;强度等级大于C60时,则取0.8~1.0MPa/s的加荷速度。当试件接近破坏而开始迅速变形时,应停止调整试验机油门,直至试件破坏,记下破坏极限荷载F(N)。

钢筋混凝土深梁之抗剪强度评估.

11 鋼筋混凝土深梁之抗剪強度評估 呂文堯1 黃世建2 關鍵詞: 鋼筋混凝土、深梁、抗壓軟化理論、壓桿與拉桿、抗剪強度。 摘 要 本文建立了一個針對鋼筋混凝土深梁剪壓強度的評估方法。所建議的軟化壓拉桿模型係根據壓拉桿觀念推導,其可同時滿足力平衡要求、材料組成律和應變諧和條件。分析模型經與試驗結果比較得知,本文所建議的軟化壓拉桿模型,可以合理的預測鋼筋混凝土深梁的抗剪強度。本文亦將軟化壓拉桿模型與ACI 318-95規範方法詳加比較,並對ACI 318-95規範方法提出修正建議。 PREDICTION OF SHEAR STRENGTH OF REINFORCED CONCRETE DEEP BEAMS Wen-Yao Lu Shyh-Jiann Hwang Department of Civil Engineering Department of Construction Engineering Chung Kuo Institute of Technology and Commerce National Taiwan Univ. of Science and Technology Taipei, Taiwan 117, R.O.C. Taipei, Taiwan 10672, R.O.C. Key Words: compressive softened theory, deep beam, reinforced concrete, shear strength, strut-and-tie. ABSTRACT A method for determining the shear strength of reinforced concrete deep beams under shear-compression failure is proposed in this paper. The proposed method, also termed as the softened strut-and-tie model, is based on the strut-and-tie concept and derived to satisfy the equilibrium, compatibility, and constitutive laws of cracked reinforced concrete. By comparing the proposed softened strut-and-tie model with the test results available from the literature, it was found that the proposed method is capable of predicting the shear strength of reinforced concrete deep beams with sufficient accuracy. The provisions on the deep beams of the ACI 318-95 Code were studied, with possible revisions suggested. 一、前 言 深梁係指梁之剪力跨度與其有效深度之比值 (a /d ) 小於2.5者 [1]。深梁之設計常以強度為主要的考慮,其於台 灣本土亦有廣泛的應用,通常見諸高樓建築的地梁。深梁 為剪力主控的桿件,故預測深梁之抗剪強度即為一重要之課題。 深梁在對角斜裂縫產生後,其剪力傳遞即為所謂之繫拱效應,而伴隨而來的破壞模式就區分為剪壓破壞 (shear-compression failure) 或是剪拉破壞 (shear-tension 1中國工商專校土木科講師 2 國立台灣科技大學營建工程技術系教授 中國土木水利工程學刊 第十二卷 第一期 (民國八十九年) Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol. 12, No. 1, pp. 11–20, 2000

混凝土强度换算表

测区混凝土强度换算表 平均回弹值Rm 测区混凝土强度换算值 平均碳化深度值dm (mm) 0 0..5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 ≥6 20.0 10.3 10.1 20.2 10.5 10.3 10.0 20.4 10.7 10.5 10.2 20.6 11.0 10.8 10.4 10.1 20.8 11.2 11.0 10.6 10.3 21.0 11.4 11.2 10.8 10.5 10.0 21.2 11.6 11.4 11.0 10.7 10.2 21.4 11.8 11.6 11.2 10.9 10.4 10.0 21.6 12.0 11.8 11.4 11.0 10.6 10.2 21.8 12.3 12.1 11.7 11.3 10.8 10.5 10.1 22.0 12.5 12.2 11.9 11.5 11.0 10.6 10.2 22.2 12.7 12.4 12.1 11.7 11.2 10.8 10.4 10.0 22.4 13.0 12.7 12.4 12.0 11.4 11.0 10.7 10.3 10.0 22.6 13.2 12.9 12.5 12.1 11.6 11.2 10.8 10.4 10.2 22.8 13.4 13.1 12.7 12.3 11.8 11.4 11.0 11.6 10.3 23.0 13.7 13.4 13.0 12.6 12.1 11.6 11.2 10.8 10.5 10.1 23.2 13.9 13.6 13.2 12.8 12.2 11.8 11.4 11.0 10.7 10.6 10.0 23.4 14.1 13.8 13.4 13.0 12.4 12.0 11.6 11.2 10.9 10.4 10.2 23.6 14.4 14.1 13.7 13.2 12.7 12.2 11.8 11.4 11.1 10.7 10.4 10.1 23.8 14.6 14.3 13.9 13.4 12.8 12.4 12.0 11.5 11.2 10.8 10.5 10.2

report_混凝土梁斜截面抗剪实验_20161010061

钢筋混凝土梁斜截面受剪试验 试验报告 院系:班级:姓名:学 号: 指导老师: 二〇年月土木工程系农水20162班 唐渊20161010061老师01,廖欢 181210

一、实验目的要求 1、通过观察混凝土梁抗剪破坏的全过程,研究认识混凝梁斜拉的受弯性能。 2、理解和掌握钢筋混凝土梁受弯构件的实验方法和实验结果,通过实践掌握试件 的设计、实验结果整理的方法。 二、材性数据 1.混凝土: 立方抗压强度实测值f cu=19N/mm2强度等级:C25 弯曲抗压强度标准值f cmk=18.9Nmm2 弯曲抗压强度设计值f cm=13.5n/mm2 抗拉强度标准值:f tk= 1.78N/mm2 抗拉强度设计值:f t= 1.27N/mm2 弹性模量:E c=2.8x104N/mm2 2.钢筋:HRB400 实测直径:d=mm等级 屈服点(抗拉强度标准值):f yk=400N/mm2 抗拉强度设计值:f y=360N/mm2 弹性模量:E s=2x105N/mm2 三、试件实测尺寸 高度:h=200mm宽度:b=140mm 钢筋保护层厚度:C=20mm a s=29mm 四、试件配筋图 五、量测仪表布置图

六、加载装置图 七、试验荷载值的计算1.计算简图

九、试验结果 1.实验数据 2.开裂荷载计算 因为试验试件的钢筋用量很少,只考虑混凝土对抗剪强度的贡献。而混凝土抗剪破坏的体现就是混凝土开裂,所以混凝土开裂的荷载即为下面计算的承载力极限荷载。 3.承载力极限荷载计算 加载点a (mm) ho (mm) bλλ取值破坏模式αcv ft (MPa) Vcs (kN) 600171140 3.5087723斜拉0.4375 1.2713.30 八、加载程序设计 1.试验准备就绪后,进行预加载。预加载为预估极限荷载的10%,观察所有仪器是否 工作正常,之后卸载至零。 2.进入正式加载阶段,采用荷载分级加载方式,每级荷载不超过预估极限荷载的20%; 每级荷载持荷时间不少于5分钟,使试件变形趋于稳定后,再仔细测读仪表读数, 待校核无误,方可进行下一级加荷。当荷载加至预估极限荷载时如果荷载仍然没有 下降,则持续施加荷载,此时的每级荷载为预估荷载的10%,每级持荷时间为5分 钟;当发现荷载出现下降,则将此时的荷载记录为实际极限荷载。 3.采用位移控制的加载方式。每级位移施加量为极限荷载对应的位移值的10%;持荷 时间为2分钟;当荷载下降至极限荷载的50%时,认为构件不适合继续承载;卸载 至零,结束试验。 级别荷载F(kN)位移计钢筋应变混凝土表面应变 位移1位移2位移3钢筋应变1钢筋应变2钢筋应变3混凝土表面 应变1混凝土表面 应变2 10.0000.0000.0000.0000.0000.0000.0000.0000.000 2 3.0000.258-0.008-0.00541.00057.25038.500 6.600 1.200 3 4.0000.515-0.015-0.01082.000114.50077.0009.900 1.800 4 6.0000.773-0.023-0.015123.000171.750115.50012.000 2.100 510.000 1.030-0.030-0.020164.000229.000154.00024.300 2.400 612.000 1.242-0.036-0.026221.400283.000220.80049.200 5.400 714.000 1.454-0.042-0.032278.800337.000287.60069.600 6.300 816.000 1.666-0.048-0.038336.200391.000354.400127.200 6.600

钢筋混凝土简支梁实验

钢筋混凝土简支梁实验 一、学习要求 学习要求及需要掌握的重点内容如下: 1、掌握实验的目的; 2、掌握实验主要的仪器和设备; 3、掌握实验的整个实验步骤; 4、掌握实验数据的处理方法。 二、主要内容 随着混凝土结构材料和计算理论的不断发展,世界各国现代土木工程混凝土结构的应用越来越广泛。 掌握钢筋混凝土结构的受力特点并对其工作性能进行评定,在钢筋混凝土结构分析中极为关键,受弯构件是钢筋混凝土结构中重要的受力构件。钢筋混凝土结构中的受弯构件主要包括梁、板。 本次试验是钢筋混凝土简支梁的加载试验。 混凝土结构梁根据所受的内力大小可分为正截面抗弯和斜截面抗剪破坏。 本次实验的题目为《钢筋混凝土简支梁破坏实验》。 (一)本次试验的目的 1、分析梁的破坏特征,根据梁的裂缝开展判断梁的破坏形态; 2、观察裂缝开展,记录梁受力和变形过程,画出荷载挠度曲线; 3、根据每级荷载下应变片的应变值分析应变沿截面高度是否成线性;

4、测定梁开裂荷载和破坏荷载,并与理论计算值进行比较; (二)本次试验使用的仪器、设备及试验构件 1、静力试验反力架、支墩及支座 2、500KN同步式液压千斤顶 3、30T拉压力传感器 4、荷载分配梁 5、百分表 6、电阻应变片、导线等 7、DH3815静态应变测试系统 本次试验用到的简支梁,试件截面尺寸为150mm×200mm,计算长度为 1.2,试验梁的混凝土强度等级为C30,纵向受力钢筋为HRB335。 纵向受力钢筋的混凝土保护层厚度为20mm。 梁跨中400mm区段内为纯弯段,剪弯段配有 6@100的箍筋。 梁的受压区配有两根架立筋,通过箍筋与受力筋绑扎在一起,形成骨架,保证受力钢筋处在正确的位置。 第1页共3页 (三)试验方案 试验采用竖向加栽,在加载过程中,用千斤顶通过传力梁进行两点对称加载,使简支梁跨中形成长400mm的纯弯区段;

普通混凝土立方体抗压强度实验

实验三普通混凝土主要技术性能实验 四、普通混凝土立方体抗压强度实验 实验目的: 测定混凝土立方体抗压强度,作为检查混凝土质量及确定等级的主要依据。 主要仪器及设备 (1)压力实验机:实验机的精度(示值的相对误差)至少应为±2%,其量程应能使试件的预期破坏荷载值不小于全量程的20%,也不大于全量程的80%。实验机上、下压板之间可各垫以钢垫板,钢垫板的承压面均应为机械加工。 (2)振动台:振动台频率为50±3Hz,空载振幅约为0.5mm。 (3)试模:由铸铁或钢制成,应具有足够的刚度并拆装方便。试模内表面应机械加工,其不平度应为每100mm不超过0.5mm。组装后各相邻面的不垂直度不应超过±0.5°。 (4)其他用具:捣棒、小铁铲、金属直尺、镘刀等。 试件制作: (1)立方体抗压强度试验以同时制作同样养护同一龄期三个试件为一组,按《混凝土结构工程施工质量验收规范》(GB50204—2002)的规定,试件尺寸按骨料最大粒径由试表3.1选用。 试表3.1 不同骨料最大粒径选用的试件尺寸、插捣次数及抗压强度换算系数(GB50204—2002)试件尺寸/mm骨料最大粒径/mm每层插捣次数/次抗压强度换算系数100×100×100≤31.5120.95 150×150×150≤40251 200×200×200≤6350 1.05 注:对强度等级为C60及以上的混凝土试件,其强度的尺寸换算系数可通过试验确定。 (2)每一组试件所用的混凝土拌合物应由同一次拌合物中取出。 (3)制作时,应将试模清擦干净,并在其内壁涂上一层矿物油脂或其他脱膜剂。 (4)坍落度不大于70mm的混凝土拌合物,宜用振动台振实。将拌合物一次装入试模,装料时应用抹刀沿试模内壁略加插捣并使混凝土拌合物高出试模上口。振动时应防止试模在振动台上自由跳动。振动应持续到混凝土表面出浆为止,刮除多余的混凝土,并用抹刀抹平。 坍落度大于70mm混凝土宜用捣棒人工捣实。将混凝土拌合物分两次装入试模,每层的厚度大致相等。插捣应按螺旋方向从边缘向中心均匀进行,插捣底层时,捣棒应达到试模底面;插捣上层时,捣棒应穿入下层深度为20~30mm,插捣时捣棒应保持垂直,不得倾斜。同时,还应用抹刀沿试模内壁插入数次。每层的插捣次数应根据试件的截面而定,一般每100cm2截面积不应少于12次(见试表3.1)。插捣完后,刮除多余的混凝土,并用抹刀抹平。

支梁受弯破坏试验

试验四“钢筋混凝土简支梁受弯破坏试验”实验大纲 (综合性、设计性试验) 一、试验目的 1.掌握制定结构构件试验方案的原则,设计简支梁受弯破坏试验的加荷方案和测试方案,并根据试验的设计要求选择试验测量仪器仪表。 2.观察钢筋混凝土受弯试件从开裂、受拉钢筋屈服、直至受压区混凝土被压碎这三个阶段的受力与破坏全过程,掌握适筋梁受弯破坏各个临界状态截面应力应变图形的特点。 3.能够按照国家规范要求,对使用荷载作用下受弯构件的强度、刚度以及裂缝宽度等进行正确评价。 三、试验要求

3.测试方案设计 ⑴ 根据简支梁的内力和变形特点,进行各方面的测点布置; ⑵根据量程和精度要求选择各种量测仪器仪表; 4.组织方案设计 四、试验报告 1. 简述该项试验的概况; 2. 绘制加荷方案示意图,测点布置图和加荷程序控制图。 3. 绘制在80% cr P 、y P 、u P 荷载时简支梁纯弯段某一截面混凝土应变分布图,并确定中和轴的位置。 3. 以任一应变测点记录为对象,绘制荷载-应变(P ε-)曲线,并结合试验现象加以分析。 4.绘制荷载-跨中挠度变形曲线,描述其特点,并结合试验现象及已有知识加以分析。 5. 结合试验现象,简要描述简支适筋梁受弯破坏三个阶段的主要特征。 七、思考题 1. 根据受弯构件正截面破坏试验的经验,试规划一根简支梁斜截面破坏的试验方案,包括载荷方案、测试方案及加载制度的设计。 2. 在试验过程中开裂荷载、屈服荷载及极限破坏荷载如何确定? 制 定 者:龚安礼 指导教师:龚安礼、喻磊、郭昕 审定者:张兴虎 批准者:王泽军 结构与抗震实验室 制定日期:2005年12月30日

混凝土 实验指导

混凝土 力学性能 的实验指导 一、立方体抗压强度试验 ① 本实验采用150mm 的立方体标准试件,每组3个试件。具体制作过程为: 1)先干拌砂、石、水泥,直至拌匀,然后逐渐投入水,当全部投入后,再搅拌1min 。 2)拌和物搅拌完毕后,马上进行试件的制作。小梁试件应采用卧式成型,小梁试件首先在中部装料。 3)用木槌振实时,截面尺寸为150×150mm 的试件,分作两层装料。装料时用抹刀沿试模内壁略加插捣,用木槌敲试模侧壁,每层30次,将凹凸不平的表面振平,刮去多余的拌和物,并用抹刀抹平。不允许用插棒或震动棒作内部振实,必要时可用震动棒接融试模外壁进行振动。 4)成型后用塑料和其它覆盖物覆盖试件表面,按规定养护一段时间后折模、编号。然后进行养护至所需的龄期。 5)养护7d 和28d 后,将试件从养护室里拿出,立即进行实验。 ② 实验步骤: (1) 取出试件,检查其不平度,每100mm 不大于0.05mm ,承压面与相邻面的 不垂直度不得大于1度。 (2) 用试件成型时的侧面作为承压面,安放时试件轴心对准试验机下压板中心。 开动试验机,当上压板与试件接近时,调整球铰座使接触均衡。 (3) 对试验机连续均匀加载,试件强度低于30MPa 时,载荷速度取0.3~ 0.5MPa/s ,试件强度高于或等于30MPa 时,取0.5~0.8MPa/s ,当试件快要 破坏时,变形速度增快,应停止调整试验机油门,直到试件破坏。记录最 大荷载,精确到0.1MPa 。 ③ 混凝土立方体试件的抗压强度按下式计算: A F f cu max 式中 cu f ——混凝土立方体抗压强度(MPa ); max F ——最大荷载(N ); A ——试件承压面积(mm 2 ); ④ 试验结果取三试验值的算术平均值。若最大值或最小值与中间值之差大于中间值的15%,则取中间值;若两值与中间值之差均大于中间值的15%,则试验结果无效。 二、劈裂抗拉强度 ① 试件采用边长为150mm 的立方体标准试件,每组3个试件。 ② 试验机与试件之间采用如图1所示的钢制弧形垫条。在钢制垫条与试件之间应垫以木质三合板垫板,木质三合板垫板的要求:宽15-20mm ,厚3-4mm 。两种垫条(板)的长度均应不小于试件的边长,木质垫板不得重复使用。 ③ 试验步骤 (1)检查试件外观,并测量尺寸。 (2)在成型时的顶面和底面划出劈裂面的位置。 (3)按图1所示安放试件、弧形钢制垫条及木质垫板。试件的轴心应对准试验

钢筋混凝土简支梁实验指导书桥土

钢筋混凝土梁正截面破坏实验指导书 一、实验目的 1.通过对钢筋混凝土梁的承载力、挠度、钢筋应变及裂缝等参数的测定,了解钢筋混凝土梁受弯构件(适筋梁)受力破坏的一般过程; 2.通过试验验证钢筋混凝土受弯构件平均应变平截面假定的正确性。 3.通过试验加深对适筋钢筋混凝土受弯构件正截面受力特点、变形性能和裂缝开展规律的理解。 4.掌握实验数 据的分析、处理和 表达方法,提高分 析和解决问题的能 力。 二、试验内容 1.量测各级荷载作用下试验梁的截面应变。 2.估计试验梁的开裂荷载,观察裂缝的出现,实测试验梁的开裂荷载。 3.量测试验梁裂缝的宽度和间距,记录试验梁破坏时裂缝 的分布情况。 4.量测试验梁在各级荷载作用下的挠度。 5.估计试验梁的破坏荷载,观察试验梁的破坏形态,实测试验梁的破坏荷载。 三、实验设备和仪器 1.试件—钢筋混凝土简支梁1根、尺寸及配筋如图所示。 混凝土设计强度等级:C25;保护层厚度:20mm。 钢筋:纵筋3φ8,Ⅰ级(实际测得钢筋屈服强度为390MPa,极限抗拉强度为450 MPa)箍筋:φ6@120,Ⅰ级 试件尺寸: b=100mm; h=150mm; L=1050mm; 制作和养护特点:常温制作与养护 2.实验所需仪器: 手动螺旋千斤顶1个,压力传感器各1个;静态电阻应变仪一台;百分表及磁性表座各3个;刻度放大镜、钢卷尺;反力装置1套。 四、实验方案 为研究钢筋混凝土梁的受力性能,主要测定其承载力、各级荷载下的挠度和裂缝开展情况,另外就是测量控制区段的应变大小和变化,找出刚度随荷载变化的规律。

1. 加载装置 梁的实验荷载一般较大,多点加载常采用同步液压加载方法。构件实验荷载的布置应符合设计的规定,当不能相符时,应采用等效荷载的原则进行代换,使构件实验的内力图与设计的内力图相近似,并使两者的最大受力部位的内力值相等。 作用在试件上的实验设备重 量及试件自重等应作为第一级荷 载的一部分。确定试件的实际开裂 荷载和破坏荷载时,应包括试件自 重和作用在试件上的垫板,分配梁 等加荷设备重量(本实验梁的跨度 小,这些影响可忽略不计)。 2. 测试内容及测点布置 测试内容钢筋及混凝土应变、 挠度和裂缝宽度等。 本次实验测试具体项目:正截面应变;图3-2加载装置图 纵向受力钢筋应变;梁挠度;裂缝发展情况;开裂荷载;屈服荷载;破坏荷载。 纯弯区段混凝土表面布置5个电阻应变片(自行设计测点位置),实验前完成应变片粘贴工作。另外梁内受拉主筋各布有电阻应变片1片。 挠度测点三个:跨中测点1个,支座沉降点(2个)。 3. 实验步骤 实验为半开放式:实验前,学生应仔细阅读实验指导书,了解实验过程,在指导教师解答提问、讲明注意事项之后,由学生自己提具体实施方案,经指导教师同意后,分组(每组不多于10人)自行操作实验。教师给出实验所需的仪器设备并实时指导。 具体实验步骤如下: (1)考察实验场地及仪器设备,听实验介绍,写出实验预习报告。 (2)试件安装及实验装置检查。 a.安装支座、试件。要求位置准确、稳定、无偏斜。 b.贴电阻应变片(程序为:构件表面磨平处理;表面清洗;贴应变片:不作防护),要求 位置准确;粘贴牢固,无气泡等; c.安装百分表。要求垂直、对准; d.安装分配梁。分配梁支撑位于梁跨的三分点处。要求位置准确、稳定、无偏斜。 e.安装手动油压千斤顶和压力传感器。连接传感器和测力仪。要求位置准确、稳定、无偏 斜。 f.最后检查实验装置是否稳定、偏斜及位置是否准确;仪表是否正常工作。

简支梁斜截面破坏实验

钢筋混凝土简支梁静力加载试验报告 破坏类型:斜截面剪压破坏 组数:第五组 试验人员: 指导教师: 时间:2013年3月 学号:

1 试验目的和任务 ①通过学生自己设计受弯构件正截面中少筋梁,适筋梁和超筋梁构件,斜截面中斜拉破坏,剪压破坏和斜压破坏构件,并在试验中能够验证这几种破坏形态; ②通过构件设计使学生能够掌握钢筋混凝土基本构件的设计计算方法; ③通过构件设计,让学生能够练习绘制钢筋混凝土构件的施工图; ④让学生了解钢筋混凝土简支梁的安装就位技术; ⑤掌握钢筋混凝土简支梁正截面(斜截面)承载能力的评价技术; ⑥掌握受弯构件正截面和斜截面的破坏形态和工作性能; ⑦掌握结构试验报告编写方法。 2试验设计 参照《钢筋混凝土简支梁静力加载试验大纲》(第五组斜截面剪压梁破坏)。 2.1实验设计要求 确定实验方案,写出实验大纲。计划内容要求详尽、科学、合理,能够在所提供的实验仪器及场地下完成实验。 ①试验项目的内容和目的; ②试件方案设计(形状、尺寸以及局部处理); ③荷载方案的设计(加载图示和程序,加载装置以及边界条件的处理方法,标准荷载计算,加载分级); ④观测方案设计(测试项目为最大弯矩截面挠度和应变,钢筋应变,以及裂缝,绘制测点布置图以及测点编号,仪器选择及标定,设计原始记录表)。 2.2构件设计 梁长1.5米,横截面100mm×200mm,混凝土等级C20,梁纵筋为二级Q335钢筋,直径16mm两根,架立筋直径8mm两根,箍筋ф6@150mm。 2.3荷载装置与加载程序 构件配筋图:见图1; 加载图式:见图2; 加载装置:见图3;

两点对称加载试验装置 加载程序(荷载谱):见图4; 1 2 1 12 11-12-2 图1 构件配筋图 图2 加载图示

钢筋混凝土抗剪综述

钢筋混凝土抗剪综述 论文导读:自从美国加州大学Ngo.D和Scordelis.A.C于1967年首次发表“钢筋混凝土梁的有限元分析”一文开始。钢筋混凝土力学计算中重要的一项——抗剪 承载力的计算。现有的钢筋混凝土梁抗剪计算模型普遍采用以下几种:软化桁架模型、45°桁架模型、变角度桁架模型和修正的受压场理论模型等,后两种模型的精度还依赖于斜裂缝倾角的准确估算;而Chen等对纤维布抗剪加固的精确计算模型,其前提是已知斜裂缝的倾角值。 关键词:钢筋混凝土,抗剪承载力,抗剪计算 1.钢筋混凝土力学发展历史 自从美国加州大学Ngo.D和Scordelis.A.C于1967年首次发表“钢筋混凝土梁的有限元分析”一文开始。自此,至此后的1982年,钢筋混凝土力学处于快速发展阶段;而成1982年以后至今,钢筋混凝土力学基本处于相对稳定的发展阶段。 钢筋混凝土力学计算中重要的一项——抗剪承载力的计算。从早期的“分 离裂缝”模型到后来的“分散裂缝”模型的建立。现有的钢筋混凝土梁抗剪计算模 型普遍采用以下几种:软化桁架模型、45°桁架模型、变角度桁架模型和修正的受压场理论模型等,后两种模型的精度还依赖于斜裂缝倾角的准确估算;而Chen等对纤维布抗剪加固的精确计算模型,其前提是已知斜裂缝的倾角值。免费论文。发展到如今,结合数字计算器的高端性能,结合有限元的分析方法,计算模型和方法日趋完善。 目前世界各国学者就钢筋混凝土简支梁的剪切强度问题进行了广泛的研究,提出了多种理论。这些理论有:(1)按桁架或拱的模拟分析。这种理论指出钢筋中拉应力和斜裂缝间混凝土中压应力的存在,指出箍筋角度变化是对它的应力的影响。 但这种理论没有说明已被确认的事实,即梁的抗剪强度是由混凝土和抗剪钢筋共同

混凝土立方体抗压强度标准值1

混凝土立方体抗压强度标准值 数字表示式 混凝土立方体抗压强度标准值用fcu,k表示。 《混凝土结构设计规范》规定 GB50010《混凝土结构设计规范》规定:混凝土立方体抗压强度标准值系指按照标准方法制作养护的边长为150mm的立方体试件,在28d龄期用标准试验方法测得的具有95%保证率的抗压强度。 《混凝土强度检验评定标准》规定 GB50107《混凝土强度检验评定标准》规定:立方体抗压强度标准值系指对按标准方法制作和养护的边长为150mm的立方体试件,在28天龄期,用标准试验方法测得的抗压强度总体分布中的一个值,强度低于该值的概5%。 《混凝土结构工程施工质量验收规范》规定 GB50204《混凝土结构工程施工质量验收规范》规定:混凝土立方体抗压强度标准值当试件尺寸为100mm立方体或骨料最大粒径≤31.5mm时,应乘以强度尺寸换算系数0.95。当试件尺寸为200mm立方体或骨料最大粒径≤63mm 时,应乘以强度尺寸换算系数1.05。 《普通混凝土力学性能试验方法标准》规定 GB50081《普通混凝土力学性能试验方法标准》规定:试件的养护条件当采用标准养护的试件,应在温度在20±2℃,相对湿度为95%以上的标准养护室中养护,或在温度在20±2℃的不流动的Ca(OH)2饱和溶液中养护。 评析 综上,例如C30就表示该批混凝土立方体抗压强度标准值是以150mm边长的混凝土立方体试件在20±2℃,相对湿度为95%以上的标准养护室中养护,或在温度在20±2℃的不流动的Ca(OH)2饱和溶液中养护28天测得的混凝土抗压强度为30N/mm2或30MPa,此抗压强度具有95%概率的保证。如不是标准尺寸需要乘以相应的尺寸换算系数。 砼试块送样注意的问题 土建工程试验送样是体现展示土建工程质量优劣的一个主要途径,砼试块的送样是土建工程试验的一个重要组成部分,同时砼试块送样又存在时效性强,试验报告出来后无法更改,不能补送的特点。这样,一旦送样出现纰漏,就会对工程造成相当大的损失。《混凝土结构工程施工质量验收规范》(以下简称《规范》)和《混凝土强度检验评定标准》对混凝土试块送样过程中出现的问题进行若干阐述。[1] 1 .砼试块留样的部位和数量 在规范中7.4.1中明确规定用于检查结构构件混凝土强度的试块应该在混凝土的浇注地点随机抽取。取样和试块的留置应符合下面几个规定:1不超过100m3的同配合比的混凝土,取样不得少于一次;2每工作班搅拌的同一配合比的混凝土不足100盘时取样不得少于一次;3当一次连续浇注超过1000m3每200 m3取样一次;每一楼层、同一配合比的混凝土,取样不得少于一次;4每次取样应该至少留置一组标准养护试块,同条件养护试块的留置组数应根据实际需要确定。

混凝土标号与混凝土强度等级的换算关系

混凝土标号与混凝土强度等级的换算关系 一、《钢筋混凝土结构设计规范》(TJ10—74)的混凝土标号可按附表1.1换算为混凝土强度等级。 混凝土标号与强度等级的换算附表 1.1 二、当按TJ10—74规范设计,在施工中按本标准进行混凝土强度检验评定时,应先将设计规定的混凝土标号按附表1.1换算为混凝土强度等级,并以其相应的混凝土立方体抗压强度标准值fcuu,k(N/m㎡)按本标准第四章的规定进行混凝土强度的检验评定。混凝土的配制强度可按换算后的混凝土强度等级和强度标准差采用插值法由附表2.1确定。 附录二混凝土施工配制强度混凝土施工配制强度(N/m㎡) 附表 2.1 注:混凝土强度标准差应按本标准附录三的规定确定。 附录三混凝土生产质量水平(一)混凝土的生产质量水平,可根据统计周期内混凝土强度标准差和试件强度不低于要求强度等级的百分率,按附表3.1划分。对预拌混凝土厂和预制混凝土构件厂,其统计周期可取一个月;对在现场

集中搅拌混凝土的施工单位,其统计周期可根据实际情况确定。 混凝土生产质量水平附表 3.1 (二)在统计周期内混凝土强度标准差和不低于规定强度等级的百分率,可按下列公式计算: 式中:fcu,i——统计周期内第i组混凝土试件的立方体抗压强度值(N/m ㎡); N——统计周期内相同强度等级的混凝土试件组数,N≥25;μfcu——统计周期内N组混凝土试件立方体抗压强度的平均值; No——统计周期内试件强度不低于要求强度等级的组数。 (三)盘内混凝土强度的变异系数不宜大于5%,其值可按下列公式确定: 式中:δb——盘内混凝土强度的变异系数;σb——盘内混凝土强度的标准差(N/m㎡)。 (四)盘内混凝土强度的标准差可按下列规定确定: 1 在混凝土搅拌地点

相关文档
最新文档