超级电容器需要做的电化学测试

超级电容器需要做的电化学测试
超级电容器需要做的电化学测试

1.循环伏安测试:

系统默认是从高电位扫向低电位,例如在-0.4V~ 0.6V的电压范围内,正向扫描:高电位设为0.6V(相对参比电极),低电位设为-0.4V(相对参比电极),反向扫描,高电位设为-0.4V(相对参比电极),低电位设为0.6V(相对参比电极)。扫描速率可以根据需要设置,注意扫描速率和采样频率的设置是对应的,若是扫描速率较高(100mV/s),则采样频率也应较高(100Hz),以保证较小的电位间隔(1mV)。在电容性能测试中,在进行第一圈扫描时,可能电极表面没有达到平衡,因而CV曲线可能不能完全闭合,因此有必要多循环几次以便选取最佳的循环。

2.交流阻抗测试(测试循环前后比较,经过1000次循环后,PPy/TSA

电极在低频区的直线比循环前的直线偏离纵轴更远,即循环后PPy/TSA电极的赝电容下降):

交流阻抗测试施加的交流幅值一般为5mV,测试频率范围为10-2~105,阻抗测量时“分析器设置”:欧姆补偿:信号去偏√,输出衰减:*0.01。交流阻抗的结果可以Zview软件中处理,构建一个等效电路,通过全频段进行拟合,即可计算出与电容充放电相关的电化学参数。

交流阻抗法是指小幅度对称正弦波交流阻抗法。就是控制电极交流电位(或控制电极的交流电流)按小幅度(一般小于10mV)正弦波规律变化,然后测量电极的交流阻抗,进而计算电极的电化学参数。由于使用小幅度对称交流电对电极极化,当频率足够高时,以致没半周期所持续的时间很短,不致引起严重的浓差极化及表面变化。而且在电极上交替地出现阳极过程和阴极过程,即使长时间测量,也不会导致极化现象阶段的积累性发展。此法适于研究快速电极过程,双电层结构及吸附等,在金属腐蚀和电结晶等电化学研究中也得到广泛应用。

3.恒电流充放电测试

充电电流:系统默认的是充电电流为负,放电电流为正,因此在设置的时候注意充电电流和放电电流是一对相反数。充放电的时间也是一样的,只要将充放

电时间设置的大于实际的充放电时间就行。电位反转,强调一下是反转,若是在-0.4V~0.6V进行电化学测试,电容器充电的时候电压下降,当电压下降到-0.4V 时,电位反向;放电的时候电压增大,当增大到0.6V的时候电位发生反转,因此在设定的时候根据你所选取的电位范围,设置充电电位小于较负的值,放电电位大于较正的值。

超级电容器的组装及性能测试实验指导书 (1)汇总

超级电容器的组装及性能测试指导书 实验名称:超级电容器的组装及性能测试 课程名称:电化学原理与方法 一、实验目的 1.掌握超级电容器的基本原理及特点; 2.掌握电极片的制备及电容器的组装; 3.掌握电容器的测试方法及充放电过程特点。 二、实验原理 1.电容器的分类 电容器是一种电荷存储器件,按其储存电荷的原理可分为三种:传统静电电容器,双电层电容器和法拉第准电容器。 传统静电电容器主要是通过电介质的极化来储存电荷,它的载流子为电子。 双电层电容器和法拉第准电容储存电荷主要是通过电解质离子在电极/溶液界面的聚集或发生氧化还原反应,它们具有比传统静电电容器大得多的比电容量,载流子为电子和离子,因此它们两者都被称为超级电容器,也称为电化学电容器。 2.双电层电容器 双电层理论由19世纪末Helmhotz等提出。Helmhotz模型认为金属表面上的净电荷将从溶液中吸收部分不规则的分配离子,使它们在电极/溶液界面的溶液一侧,离电极一定距离排成一排,形成一个电荷数量与电极表面剩余电荷数量相等而符号相反的界面层。于是,在电极上和溶液中就形成了两个电荷层,即双电层。 双电层电容器的基本构成如图1,它是由一对可极化电极和电解液组成。 双电层由一对理想极化电极组成,即在所施加的电位范围内并不产生法拉第反应,所有聚集的电荷均用来在电极的溶液界面建立双电层。 这里极化过程包括两种: (1)电荷传递极化(2)欧姆电阻极化。 当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。当将两极与外电路连通时,电极上的电荷迁移而在外电路中产生电流,溶液中的离子迁移到溶液中成电中性,这便是双电层电容的充放电原理。

电子负载—超级电容测试方法

超级电容测试方法 超级电容:采用物理、化学或者混合方式实现超大容量双层电容器。主要用来“削峰填谷”,比如:主电源和备用电源切换时的续电(基站及服务器,网络机房,通讯等行业);快速充放电短时储存环境(比如动车的启动与刹车时充放电时省电,并且减小对启动电源的要求,地铁车辆,电动车,太阳能发电等);在快充快放环境是替代一些蓄电池和动力电池(电动工具行业,电动大巴等)。 超级电容特点:快充快放、循环寿命长、放电电流大、功率密度较高、安全、稳定及温度特性好、单节电压较低。 费思负载在测试超级电容时的特点, 精确度:负载就有0.05%的电压回读精确度,保证测试的精确度 集成功能:集成了超级电容的内阻和容量测试功能。测试方法简单。 完善的接口:RS232,USB,GPIB口并且配备相应软件,数据,图像报告,循环测试一键完成。 配件及软件:可监控电容组的每分电容的电压一致性和电压值,同时监控温度, 测试内容:内阻、容量、单节一致性、充放电曲线。 测试仪器:电源(电压高于电容组的最高开路电压,电流适当)、电容器、负载仪(功率及电压适当)、示波器(长存储最好)、万用表(选用,使用费思负载,可不使用本仪器)。 充电方式: 恒流转恒压充电。 接线方式,测试之前请确认电容的正负极。请确认连接电路。 超级电容充电测试

负载设置:远端采样打开,电池(电容)恒压功能打开, Shift+0打开电容测试功能。设定截止电压,电容计算电压的上下限。设定充电电流。按on/off键,开始测试,屏幕显示测试结果。一键完成测试。 本测量测试,充电时间,充电内阻,充电电量,电容容量。充电曲线,漏电流等测试。充电曲线,请链接上位机软件。 以上设置,请参看相关说明书。 放电方式: 接线方式:请确定电容正负极及确定连接方式。 超级电容放电测试 负载设置:远端采样打开,电池(电容)恒压功能打开, Shift+0打开电容测试功能。设定截止电压,电容计算电压的上下限。设定放电电流。按on/off键,开始测试,屏幕显示测试结果。一键完成测试。 本测量测试,放电时间,放电内阻,放电电量,电容容量。放电曲线。 放电曲线,请链接上位机软件。 以上设置,请参看相关说明书。 配件及配件功能和软件 配件及配件说明: 接线端子:配件每组具有6个端子,分别接负载、电容和电源。 通讯接口:具有RS232接口接电脑,连接软件。 电压采样:具有32路电压测量端子,测量各个分电容的电压曲线。 温度采样:具有8路温度测量端子,测量电容组在充放电循环时的发热及分布。

电化学工作站测试超级电容器

电化学工作站测试超级电容器 郑州世瑞思仪器科技有限公司 RST5200E电化学工作站提供了许多适合于超级电容器研究的电化学测试方法,如:“恒流限压快速循环充放电”、“微分电容-频率”、“线性扫描循环伏安法“交流阻抗谱”等,可对超级电容器进行深入的研究。 以前,人们大多用“电池循环充放电仪”对超级电容器进行充放电研究。随着超级电容器应用领域的不断扩展,特别是对快速充放电要求的提高,使得用电池测试仪器 研究超级电容器显得力不从心。对超级电容器实施快速循环充放电,需要设立一个限 压换流模块,属于反馈控制。就是当采集单元检测到超级电容器两端的电压超越限定 值后,立即通知驱动单元改变电流方向。 限压换流的过程必须快速,否则就控制不住了。在 RST5200E 电化学工作站中, 限压换流功能由硬件实现,从而确保该反馈控制过程小于1mS。下表列出了一些电化学测试仪器的指标: 下面对RST5200E 电化学工作站中的“恒流限压快速循环充放电”方法进行简单介绍。 1. 超级电容器的连接 工作电极引线夹(绿蓝)接超级电容器正极。 参比电极引线夹(白黄)接超级电容器负极;辅助电极引线夹(红)接超级电容器 负极。 运行中,请勿断开超级电容器。

2 .软件功能 2.1 界面布局 左上部为文本框,用于显示运行参数和测量数据。 左下部为操作面板,用于接受操作者的选择。 右边为图形框,用于显示被选中的循环,这些循环属于该曲线的一部分。 2.2 定位显示 本方法将测量获得的曲线以充放电循环作为单元显示于图形框中。通过操作面板, 可调 整显示参数:起始循环、循环数量。 2.3 数据计算 软件自动对显示于图形框中的循环进行统计计算,其结果显示于文本框中,有:充电电量、放电电量、充电能量、放电能量、电容量、等效串联电阻等。 2.4 删除多余的循环 在菜单<数据处理>中,设有三个子菜单。 2.4.1 <删除最初一个循环>:通常,由于电容器测试前的初始储能状态不确定,使得 第一个循环的充放电不完整,通过该菜单可以删除这个循环。再次操作该菜单,可再 删除一个循环。 2.4.2 <删除最后一个循环>:如果手动停止实验,最后一个循环的充放电可能不完整,通过 该菜单可以删除这个循环。再次操作该菜单,可再删除一个循环。 2.4.3 <删除未显示的循环>:如果只对显示于图形框中的那些循环感兴趣,可用该菜 单删除显示区域之外的循环。 3. 设定参数 3.1 充电电流 充电过程中的恒定电流。其最大值Im可由下式估算:Im =(充电限制电压 - 放电限制电压)/ 等效串联电阻。如果所设的充电电流超过 Im,则电压曲线立即越过 充电限制电压线,无法对超级电容器实施充电。充电电流一般应设在Im / 2以下。

超级电容的充放电实验曲线测试(含答案)

超级电容器的充放电实验曲线测试 一、实验目的 了解超级电容器结构组成以及工作原理,理解超级电容器等效电路模型,学会绘制超级电容器充放电曲线。 二、超级电容器结构以及工作原理 超级电容器通常包含双电极、电解质、集流体、隔膜四个部件。超级电容器电极由多孔材料在金属薄膜(常用铝)上沉积而成,而活性炭则是常用的多孔材料。充电时,电荷存储于多孔材料和电解质之间的界面上。电解质的选择往往是电容器单体电压和离子导电性之间妥协的结果,追求离子导电性的最大化可能会导致所选择的电解质分解电压低至1V 。隔膜通常是纸,起绝缘作用,可以防止电极之间任何的导电接触。必须能够浸泡在电解质中,并且不影响电解质的离子导电性。 超级电容器是利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V 以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,

为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷相应减少。 三、实验线路图 四、实验步骤 1、充电实验 按照实验线路图连接电路,将开关接到K端,使电源接入电路中,实现超级电容的充电过程,通过串口命令记录电流和电压。 2、放电实验 在超级电容器充电完成后,将开关接到另一端,将电源断开,实现超级电容的放电过程,通过串口命令记录电流和电压。 五、注意事项 1、超级电容器具有固定的极性。在使用前,应确认极性。 2、超级电容器应在标称电压下使用。当电容器电压超过标称电压时,将会导致电解液分解,同时电容器会发热,容量下降,而且内阻增加,寿命缩短,在某些情况下,可导致电容器性能崩溃。 3、超级电容器不可应用于高频率充放电的电路中,高频率的快速充放电会导致电容器内部发热,容量衰减,内阻增加,在某些情况下会导致电容器性能崩溃。 4、外界环境温度对于超级电容器的寿命有着重要的影响。电容器应尽量远离热源。 5、安装超级电容器后,不可强行倾斜或扭动电容器,这样会导致电容器引线松动,导致性能劣化。

超级电容器的三种测试方法详解(终审稿)

超级电容器的三种测试 方法详解 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

超级电容器电极材料性能测试的三种常用电化学方法,欢迎大家一起交流 ★★★★★★★★★★ 关于超级电容器电极材料性能测试常用的三种电化学手段,大家一起交流交流自己的经验。我先说说自己的蠢蠢的不成熟的经验。不正确或者不妥的地方欢迎大家指正批评,共同交流。希望大家都把自己的小经验,测试过程中遇到的问题后面如何解决的写出来,共同学习才能共同进步。也希望大家可以真正的做到利用电化学板块解决自己遇到的电化学问题。 循环伏安cyclic voltammetry (CV) 由CV曲线,可以直观的知道大致一下三个方面的信息 Voltage window(水系电解液的电位窗口大致在1V左右,有机电解液的电位窗口会在左右)关于很多虫虫问,电位窗口应该从具体的哪个电位到哪个电位,这个应该和你的参比电极和测试体系有关。工作站所测试的电位都应该是相对于参比电极的,所以不要纠结于为什么别人的是0-1V,而你测试的是,这个与参比电极的本身电位(相对于氢标的电位)以及测试的体系本身有很大关系。 Specific capacitance (比电容,这个是超级电容器重要的参数之一,可以利用三种测试手段来计算,我一般都是利用恒电流充放电曲线来计算) Cycle life (超级电容器电极材料好坏的另一个比较重要的参数,因为一个很棒的电极材料应该是要做到既要有比较高的比电容又要有比较好的循环稳定性) 测试的时候比较重要的测试参数:扫描速度和电位扫描范围。电位的扫描范围,一般会在一个比较宽的范围扫描一次然后选择电容性能还比较好的区间再进行线性扫描,扫描速度会影响比电容,相同的电极材料相同测试体系扫速越大计算出的比电容会越小。恒电流充放电galvanostatic charge–discharge (GCD) 由GCD测试曲线,一般可以得到以下几方面的信息: ?the change of specific capacitance(比电容的变化可以从有限多次的恒电流充放电中体现,直观的就是每次充放电曲线的放电时间的变化) ?degree of reversibility(由充放电曲线的对称也可以中看出电极材料充放电的可逆性) ?Cycle life(循环寿命,换句话也就是随着充放电次数的增多,电极材料比电容的保持率) 恒电流充放电测试过程中比较重要的测试参数有电流密度,还有充放电反转的电位值。电流密度可以设置为电流/电极面积,也可以设置为电流/活性物质质量。我在测试的过程中一般依据活性物质的质量设置为XXmA/mg。充放电反转的电位值可以依据循环伏安的电位窗口,可以设置为该区间或者小于该区间。 交流阻抗electrochemical impedance spectroscopy (EIS)

电化学超级电容器

姓名:严臣凤学号:10121570125 班级:应化(1)班 电化学超级电容器 电化学超级电容器(electrochemical supercapacitor)亦称超大容量电容器,是一种介于电池和静电电容之间的新型储能器件。超级电容器具有功率密度比电池高、能量密度比静电电容高、充放电速度快、循环寿命长、对环境无污染等优点,成为本世纪的一种新型绿色能源。利用超级电容和电池组成混合动力系统能够很好地满足电动汽车启动、爬坡、加速等高功率密度输出场合的需要,并保护蓄电池系统。另外超级电容器可以用于电路元件、小型电器电源、直流开关电源等,还可以用于燃料电池的启动动力,移动通讯和计算机的电力支持等。 1.1 电化学超级电容器类型 电化学超级电容器依据其储能原理可以分为双电层电容器、法拉第准电容器、混合型电容器和锂离子电容器,电极材料主要有碳材料、金属氧化物和导电聚合物等。 (1)双电层电容器双电层电容器是建立在 双电层理论基础之上的.双电层理论由l9世纪末 Helmhotz等提出.Helmhotz模型认为电极表面的 静电荷从溶液中吸附离子,它们在电极/溶液界 面的溶液一侧离电极一定距离排成一排,形成一 个电荷数量与电极表面剩余电荷数量相等而符号 相反的界面层.由于界面上存在位垒,两层电荷 都不能越过边界彼此中和,因而形成了双电层电 容.为形成稳定的双电层,必须采用不和电解液 发生反应且导电性能良好的电极材料,还应施加 直流电压,促使电极和电解液界面发生“极化”. (2)法拉第准电容器法拉第准电容器 (Faradic capacitor)是在电极材料表面和近表面或体相中的二维或准二维空间上,电活性物质进行欠电位沉积,发生高度可逆的化学吸附/脱附和氧化还原反应,产生与电极充电电位有关的电容。对于法拉第准电容器,其储能过程不仅包括双电层存储电荷,而且包括电解液离子与电极活性物质发生的氧化还原反应。当电解液中的离子(如H+、OH、Li+等)在外加电场的作用下由溶液中扩散到电极/溶液界面时,会通过界面上的氧化还原反应而进入到电极表面活性氧化物的体相中,从而使得大量的电荷被存储在电极中。放电时,这些进入氧化物中的离子又会通过以上氧化还原反应的逆反应重新返回到电解液中,同时所存储的电荷通过外电路而释放出来,这就是法拉第准电容器的充放电机理。 (3)混合型电容器混合型电容器(hybrid capacitor)一般由双电层电容过程和法拉第准电容过程共同来构成,一部分是由碳电极形成双电层电容,另一部分是由导电聚合物或金属氧化物电极进行氧化还原反应或锂离子嵌入反应形成法拉第准电容。在水溶液电解质体系中,可以形成碳/氧化镍、碳/二氧化锰等混合电容器;在有机电解质体系中,可以形成双电层碳/锂离子嵌入型碳的锂离子型混合电容器。 (4)锂离子电容器锂离子电容器(1ithium—ion capacitor)是一种特殊的混合型电容器,它是将锂离子充电电池的负极与双电层电容器的正极组合在一起构造,是一种正负极充放电原理不同的非对称电容,因而同时具备双电层电容和锂离子电池的电化学储电性能。

超级电容测试方案

10.备用电源系统测试 10.1测试工具及仪器 (1)数字万用表FLUKE 289 1台; (2)数字示波器Tektronix DPO3034 1台(含电流卡钳A622,高压隔离探头P5210);(3)数字兆欧表HIOKI 345 1台,VC60D 1台; (4)功率分析仪YOKOGAWA WT1600 1台; (5)耐压测试仪 TOS5101 1台; (6)输出可调超级电容充电机 BN-CDJ350V 1台; (7) 24V直流电源一台; (8)变桨距系统控制柜轴一柜; (9)变桨试验台SY_BJ_T_V3.1 1台; (10)调压器9KV A 1台; (11)PRODIGIT 3257电子负载; (12)滑动变阻器 BX8-27-2.5A 2台; 10.2.超级电容单体性能测试 10.2.1单体容量测试 ★测试方法: 采用恒流放电法测90V超级电容模块的总容量,由于90V超级电容模块含36个超级电容单体,将总容量乘以36即可得到超级电容单体的容量。 测试电路如图10.1所示。

图10.1. 容量测试电路图 放电电流I1及放电电压下降的电压U1和U2见下表。分级方法应根据分立标准。 ★测试步骤: (1)如图10.1进行接线,设定充电机充电电压为150V,闭合F1; (2)断开F3,闭合F2,对超级电容模块C充电。C达到额定电压后,保持充电机输出30min,以I2=1A电流充电,每15s记录一次150V超级电容模块端电压;以I2’=2A电流充电,每30s记录一次150V超级电容模块端电压; (3)将示波器电压探头接C的正负极端,将电子负载设置为恒流模式,电流值设置为I1=4A放电。断开F2并闭合F3对超级电容进行放电,每30s记录一次150V超级电容模块端电压。 (4)记录C的正负极之间电压U随时间的变化曲线(如图10.2示意);

超级电容测试系统方案

超级电容测试系统方案 超级电容:采用物理、化学或者混合方式实现超大容量双层电容器。主要用来“削 峰填谷”,比如:主电源和备用电源切换时的续电(基站及服务器,网络机房,通讯等行业);快速充放电短时储存环境(比如动车的启动与刹车时充放电时省电,并且减小对启动电源的 要求,地铁车辆,电动车,太阳能发电等);在快充快放环境是替代一些蓄电池和动力电池(电动工具行业,电动大巴等)。 超级电容特点:快充快放、循环寿命长、放电电流大、功率密度较高、安全、稳定及温度特性好、单节电压较低。 电子负载在测试超级电容时的特点, 精确度:电子负载有0.05%的电压回读精确度,保证测试的精确度 集成功能:集成了超级电容的内阻和容量测试功能。 完善的接口:RS232,USB,GPIB 口并且配备相应软件,数据,图像报告,循环测试一键完成。 配件及软件:可监控电容组的每分电容的电压一致性和电压值,同时监控温度, 测试内容:内阻、容量、单节一致性、充放电曲线。 测试仪器:电源(电压高于电容组的最高开路电压,电流适当)、电容器、负载仪(功 率及电压适当)、示波器(长存储最好)、万用表(选用)。 充电方式: 恒流转恒压充电。 接线方式,测试之前请确认电容的正负极。请确认连接电路。 超级电容放电测试 电子负载设置:远端采样打开,电池(电容)恒压功能打开, Shift+0 打开电容测试功能。设定截止电压,电容计算电压的上下限。设定充电电流。 按on/off键,开始测试,屏幕显示测试结果。一键完成测试。 本测量测试:充电时间,充电内阻,充电电量,电容容量。充电曲线,漏电流等测试。 充电曲线,请链接上位机软件。 放电方式 接线方式:请确定电容正负极及确定连接方式。

用电化学工作站测试超级电容器

用电化学工作站测试超级电容器 郑州世瑞思仪器科技有限公司 RST5200E电化学工作站提供了许多适合于超级电容器研究的电化学测试方法,如:“恒流限压快速循环充放电”、“微分电容-频率”、“线性扫描循环伏安法“交流阻抗谱”等,可对超级电容器进行深入的研究。 以前,人们大多用“电池循环充放电仪”对超级电容器进行充放电研究。随着超级电容器应用领域的不断扩展,特别是对快速充放电要求的提高,使得用电池测试仪器研究超级电容器显得力不从心。对超级电容器实施快速循环充放电,需要设立一个限压换流模块,属于反馈控制。就是当采集单元检测到超级电容器两端的电压超越限定值后,立即通知驱动单元改变电流方向。 限压换流的过程必须快速,否则就控制不住了。在 RST5200E 电化学工作站中,限压换流功能由硬件实现,从而确保该反馈控制过程小于1mS。下表列出了一些电化学测试仪器的指标: 下面对RST5200E 电化学工作站中的“恒流限压快速循环充放电”方法进行简单介绍。 1. 超级电容器的连接 工作电极引线夹(绿蓝)接超级电容器正极。 参比电极引线夹(白黄)接超级电容器负极;辅助电极引线夹(红)接超级电容器负极。 运行中,请勿断开超级电容器。 2 .软件功能 2.1 界面布局 左上部为文本框,用于显示运行参数和测量数据。 左下部为操作面板,用于接受操作者的选择。 右边为图形框,用于显示被选中的循环,这些循环属于该曲线的一部分。

2.2 定位显示 本方法将测量获得的曲线以充放电循环作为单元显示于图形框中。通过操作面板,可调 整显示参数:起始循环、循环数量。 2.3 数据计算 软件自动对显示于图形框中的循环进行统计计算,其结果显示于文本框中,有:充电电量、放电电量、充电能量、放电能量、电容量、等效串联电阻等。 2.4 删除多余的循环 在菜单<数据处理>中,设有三个子菜单。 2.4.1 <删除最初一个循环>:通常,由于电容器测试前的初始储能状态不确定,使得第一个循环的充放电不完整,通过该菜单可以删除这个循环。再次操作该菜单,可再删除一个循环。 2.4.2 <删除最后一个循环>:如果手动停止实验,最后一个循环的充放电可能不完整,通过 该菜单可以删除这个循环。再次操作该菜单,可再删除一个循环。 2.4.3 <删除未显示的循环>:如果只对显示于图形框中的那些循环感兴趣,可用该菜单删除显示区域之外的循环。 3. 设定参数 3.1 充电电流 充电过程中的恒定电流。其最大值Im可由下式估算:Im =(充电限制电压- 放电限制电压)/ 等效串联电阻。如果所设的充电电流超过 Im,则电压曲线立即越过充电限制电压线,无法对超级电容器实施充电。充电电流一般应设在Im / 2以下。 3.2 放电电流 放电过程中的恒定电流。其最大值Im可由下式估算:Im =(充电限制电压 - 放电限制电压)/ 等效串联电阻。如果所设的放电电流超过 Im,则电压曲线立即越过放电限制电压线,无法对超级电容器实施放电。放电电流一般应设在Im / 2以下。 3.3 充电限制电压 应低于超级电容器的击穿电压,例如:3V。 3.4 放电限制电压 应低于充电限制电压,例如:0V。 3.5采样周期 采样周期应根据不同的测量目的来设定,一般以每个充放电循环 100 至 1000 个样点为为宜。例如:(A)测量电压阶跃值,可将采样周期设为0.01S、0.001S,以

超级电容器材料电化学电容特性测试

华南师大学实验报告 学生:蓝中舜学号:20120010027 专业:新能源材料与器件勷勤创新班年级、班级:12新能源 课程名称:化学电源实验 实验项目:超级电容器材料电化学电容特性测试 实验类型:验证设计综合实验时间:2014年5月19日-26日实验指导老师:易芬云组员:吕俊、郭金海、余启鹏 一、实验目的 1、了解超级电容器的原理; 2、了解超级电容器的比电容的测试原理及方法; 3、了解超级电容器双电层储能机理的特点; 4、掌握超级电容器电极材料的制备方法; 5、掌握利用循环伏安法及恒流充放电的测定材料比电容的测试方法。 二、实验原理 1、超级电容器的原理 超级电容器是由两个电极插入电解质中构成。超级电容与电解电容相比,具有非常高的功率密度和实质的能量密度。尽管超级电容器储存电荷的能力比普通电容器高,但是超级电容与电解电容或者电池的结构非常相似。

图1 超级电容器的结构图 从图中可看出,超级电容器与电解电容或者电池的结构非常相似,主要差别是用到的电极材料不一样。在超级电容器里,电极基于碳材料技术,可提供非常大的表面面积。表面面积大且电荷间隔很小,使超级电容器具有很高的能量密度。大多数超级电容器的容量用法拉(F)标定,通常在1F到5,000F之间。 (1) 双电层超级电容器的工作原理 双电层电容是在电极/溶液界面通过电子或离子的定向排列造成电荷的对峙所产生的。对一个电极/溶液体系,会在电子导电的电极和离子导电的电解质溶液界面上形成双电层。当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。这时对某一电极而言,会在一定距离(分散层)产生与电极上的电荷等量的异性离子电荷,使其保持电中性;当将两极与外电路连通时,电极上的电荷迁移而在外电路中产生电流,溶液中的离子迁移到溶液中成电中性,这便是双电层电容的充放电原理。根据双电层理论,双电层的微分电容约为20μF/cm2,采用具有很大比表面积的碳材料可获得较大的容量。双电层电容具有响应速度快,放电倍率高的特点,但储能比电容较小。 (2) 法拉第鹰电容的工作原理 法拉第鹰电容器是在电极表面或体相中的二维或准二维空间上,电极活性物质进行欠电位沉积,发生高度可逆的化学吸附脱附或氧化还原反应,产生与电极充电电位有关的电容。对于法拉第准电容,其储存电荷的过程不仅包括双电层上的存储,而且包括电解液中离子在电极活性物质中由于氧化还原反应而将电荷储存于电极中。对于其双电层中的电荷存储与上述类似,对于化学吸脱附机理来说,一般过程为电解液中的离子一般为或在外加电场的作用下由溶液中扩散到电极溶液界面,而后通过界面的电化学反应而进入到电极表面活性氧化物的体相中若电极材料具有较大比表面积的氧化物,就会有相当多的这样的电化学反应发生,大量的电荷就被存储在电极中。放电时这些进入氧化物中的离子又会重新返回到电解液中,同时所存储的电荷通过外电路而释放出来,这就是法拉第准电容的充放电机理。法拉第鹰电容可以产生高的比电容,但因为法拉第反应的限制,倍率性能比双电层电容小。

超级电容器的三种测试方法详解

超级电容器电极材料性能测试的三种常用电化学方法,欢迎大家一起交流 ★★★★★★★★★★ 关于超级电容器电极材料性能测试常用的三种电化学手段,大家一起交流交流自己的经验。我先说说自己的蠢蠢的不成熟的经验。不正确或者不妥的地方欢迎大家指正批评,共同交流。希望大家都把自己的小经验,测试过程中遇到的问题后面如何解决的写出来,共同学习才能共同进步。也希望大家可以真正的做到利用电化学板块解决自己遇到的电化学问题。 循环伏安cyclic voltammetry (CV) 由CV曲线,可以直观的知道大致一下三个方面的信息 ? Voltage window(水系电解液的电位窗口大致在1V左右,有机电解液的电位窗口会在2.5V 左右)关于很多虫虫问,电位窗口应该从具体的哪个电位到哪个电位,这个应该和你的参比电极和测试体系有关。工作站所测试的电位都应该是相对于参比电极的,所以不要纠结于为什么别人的是0-1V,而你测试的是-0.5-0.5V,这个与参比电极的本身电位(相对于氢标的电位)以及测试的体系本身有很大关系。 ?Specific capacitance (比电容,这个是超级电容器重要的参数之一,可以利用三种测试手段来计算,我一般都是利用恒电流充放电曲线来计算) ?Cycle life (超级电容器电极材料好坏的另一个比较重要的参数,因为一个很棒的电极材料应该是要做到既要有比较高的比电容又要有比较好的循环稳定性) 测试的时候比较重要的测试参数:扫描速度和电位扫描范围。电位的扫描范围,一般会在一个比较宽的范围扫描一次然后选择电容性能还比较好的区间再进行线性扫描,扫描速度会影响比电容,相同的电极材料相同测试体系扫速越大计算出的比电容会越小。 恒电流充放电 galvanostatic charge–discharge (GCD) 由GCD测试曲线,一般可以得到以下几方面的信息: ?the change of specific capacitance(比电容的变化可以从有限多次的恒电流充放电中体现,直观的就是每次充放电曲线的放电时间的变化) ?degree of reversibility(由充放电曲线的对称也可以中看出电极材料充放电的可逆性) ?Cycle life(循环寿命,换句话也就是随着充放电次数的增多,电极材料比电容的保持率)恒电流充放电测试过程中比较重要的测试参数有电流密度,还有充放电反转的电位值。电流密度可以设置为电流/电极面积,也可以设置为电流/活性物质质量。我在测试的过程中一般依据活性物质的质量设置为XXmA/mg。充放电反转的电位值可以依据循环伏安的电位窗口,可以设置为该区间或者小于该区间。 交流阻抗 electrochemical impedance spectroscopy (EIS) 由交流阻抗曲线可以看出体系随着频率改变的变化趋势,得出测试体系某个状态下的包括溶液电阻、扩散阻抗的情况,可以通过测试交流阻抗对测试的未知体系进行电化学元件模拟。

缩减讲稿超级电容器电极的制备及性能测试

超级电容器电极的制备及性能测试 超级电容器的主要技术指标有比容量、充放电速率、循环寿命等。 本实验采用EC500系列电化学工作站三电极法(包括循环伏安法、交流阻抗等),考察不同活化方法处理后电极的电化学性能。 1.循环伏安法 1.1电化学体系三电极介绍 电化学体系借助于电极实现电能的输入或输出,电极是实施电极反应的场所。 一般电化学体系分为二电极体系和三电极体系,循环伏安法通常采用三电极系统。相应的三个电极为工作电极(研究电极W)、参比电极(R)和辅助电极(对电极C)。 三电极组成两个回路: 研究电极和参比电极组成的回路构成一个不通或基本少通电的体系,利用参比电极电位的稳定性来测量工作电极的电极电位。 研究电极和辅助电极组成另一个回路构成一个通电的体系,用来测量工作电极通过的电流。这就是所谓的“三电极两回路”,也就是测试中常用的三电极体系。利用三电极体系,来同时研究工作电极的电位和电流的关系。 图 1 三电极系统原理图 对于三电极测试系统,之所以要有一个参比电极,是因为有些时候工作电极和辅助电极的电极电位在测试过程中都会发生变化,为了确切的知道其中某一个电极的电位(通常是工作电极的电极电位),就必须有一个在测试过程中电极电位恒定且已知的电极作为参比来进行测量,以为研究电极提供一个电位标准。 但是,仅仅使用三电极体系还不够,因为,随着电化学反应的进行,研究电极表面的反应物质的浓度不断减少,电极电位也随之发生或正或负的变化,也就是说随着电化学反应的进行,研究电极的电位会发生变化。为了使电极电位保持稳定,即将研究电极对参比电极的电位保持在设定的电位上,通常使用恒电位电解装置(恒电位仪),这样,便用了恒电位仪的三电极体系,可以为我们提供用以解释电化学反应的电流—电位曲线,这种测定电流—电位曲线的方法叫做伏安法。

电化学电容器的特点及应用

电化学电容器的特点及应用 随着科学技术的发展,人类生活环境的提高,对能源的要求也越来越多样化,也要求储能设备具有更高的能量密度和功率密度,来替代或者辅助当前使用的电池。对电动汽车发展的要求更促使了对新型储能设备的研制。 电化学电容器(Electrochemical Capacitor,EC)有着法拉级的超大电容量,比传统的静电电容器的能量密度高上百倍,它的功率密度较电池高近十倍,充放电效率高,不需要维护和保养,寿命长达十年以上,是一种介于传统静电电容器和化学电源之间的新型储能元件。电化学电容器现在有不同的称呼,有超电容器(Supercapacitor),超大容量电容器(Ultracapacitor),双电层电容器(Electr ic double layer capacitor,EDLC),以及金电容(Gold capacitor)等。 l 电化学电容器的原理和特点 根据电化学电容器储存电能的机理的不同,可以将它分为双电层电容器(El ectric double layercapacitor)和赝电容器(Pesudocapacitor)。 1.1双电层电容器的原理 双电层电容器的基本原理是利用电极和电解质之间形成的界面双电层来存储能量的一种新型电子元件。当电极和电解液接触时,由于库仑力、分子间力或者原子间力的作用,使固液界面出现稳定的、符号相反的两层电荷,称为界面双电层。 双电层电容器电极通常由具有高比表面积的多孔炭材料组成。炭材料具有优良的导热和导电性能,其密度低,抗化学腐蚀性能好,热膨胀系数小,可以通过不同方法制得粉末、颗粒、块状、纤维、布、毡等多种形态。目前双电层电容器的炭材料有:活性炭粉末、活性炭纤维、炭黑、碳气凝胶、碳纳米管(CNT)、玻璃碳、网络结构炭以及某些有机物的炭化产物。对炭材料的研究主要集中在活性炭,碳纳米管和碳气凝胶上。活性炭材料主要是提高其有效比表面积和可控微孔孔径(>2nm)。近年来有文献报道,通过合理控制孔径分布及表面积,在水溶液和非水溶液中活性炭电极可分别得到高达280 F/g和120 F 的比电容量。碳气凝胶由美国Lawrence Livermore NationalLaboratory开发出来,现在已经由Pow erstor公司生产出碳气凝胶超大容量电容器,具有超高容量,极低的。,宽的温度范围,但此材料的制备相对较繁琐。碳纳米管用于电化学电容器的电极材料具有独特的中孔结构,良好的导电性,比表面积大,适合电解液中离子移动的

电化学工作站研究超级电容及其应用 v1.1

电化学工作站研究超级电容及其应用 德国Zahner电化学工作站 https://www.360docs.net/doc/9012770058.html,

电化学工作站研究超级电容及其应用 1 前言 超级电容器是介于普通电容器和化学电池之间的储能器件,兼备两者的优点,如功率密度高、能量密度高、循环寿命长等,并具有瞬时大电流放电和对环境无污染等特性。双电层电容器是建立在双电层理论基础之上的。1879年,Helmholz 发现了电化学界面的双电层电容性质;1957年,Becker申请了第一个由高比表面积活性炭作为电极材料的电化学电容器方面的专利;1962年,标准石油公司生产了以活性炭为电极材料的、硫酸水溶液作为电解质的超级电容器;1979年,NEC公司使超级电容器商业化。作为一种绿色环保、性能优异的新型储能器件,超级电容器在众多领域有广泛的应用。近年来,我国的科研人员和相关部门对此也极度关注。 2 超级电容器的定义及特点 2.1 定义 超级电容器(Super capacitors),又名电化学电容器(Electrochemical Capacitors),双电层电容器(Electrical Double-Layer Capacitor)。是从上世纪七、 八十年代发展起来的通过极化电解质来储能的一种电化学元件。它不同于传统 的化学电源,是一种介于传统电容器与电池之间、具有特殊性能的电源,主要 依靠双电层和氧化还原电容电荷储存电能。但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正如此超级电容器可以反复充放电数十万次。 图1是超级电容的原理图[1],其基本原理和其它种类的双电层电容器一样,都 是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。

超级电容器材料电化学电容特性测试

华南师范大学实验报告 学生姓名:蓝中舜学号:20120010027 专业:新能源材料与器件勷勤创新班年级、班级:12新能源 课程名称:化学电源实验 实验项目:超级电容器材料电化学电容特性测试 实验类型:验证设计综合实验时间:2014年5月19日-26日实验指导老师:易芬云组员:吕俊、郭金海、余启鹏 一、实验目的 1、了解超级电容器的原理; 2、了解超级电容器的比电容的测试原理及方法; 3、了解超级电容器双电层储能机理的特点; 4、掌握超级电容器电极材料的制备方法; 5、掌握利用循环伏安法及恒流充放电的测定材料比电容的测试方法。 二、实验原理 1、超级电容器的原理 超级电容器是由两个电极插入电解质中构成。超级电容与电解电容相比,具有非常高的功率密度和实质的能量密度。尽管超级电容器储存电荷的能力比普通电容器高,但是超级电容与电解电容或者电池的结构非常相似。 图1 超级电容器的结构图 从图中可看出,超级电容器与电解电容或者电池的结构非常相似,主要差别是用到的电极材料不一样。在超级电容器里,电极基于碳材料技术,可提供非常大的表面面积。表面面积大且电荷间隔很小,使超级电容器具有很高的能量密度。大多数超级电容器的容量用法拉(F)标定,通常在1F到5,000F之间。 (1) 双电层超级电容器的工作原理 双电层电容是在电极/溶液界面通过电子或离子的定向排列造成电荷的对峙所产生的。对一个电极/溶液体系,会在电子导电的电极和离子导电的电解质溶液界面上形成双电层。当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电

层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。这时对某一电极而言,会在一定距离内(分散层)产生与电极上的电荷等量的异性离子电荷,使其保持电中性;当将两极与外电路连通时,电极上的电荷迁移而在外电路中产生电流,溶液中的离子迁移到溶液中成电中性,这便是双电层电容的充放电原理。根据双电层理论,双电层的微分电容约为20μF/cm2,采用具有很大比表面积的碳材料可获得较大的容量。双电层电容具有响应速度快,放电倍率高的特点,但储能比电容较小。 (2) 法拉第鹰电容的工作原理 法拉第鹰电容器是在电极表面或体相中的二维或准二维空间上,电极活性物质进行欠电位沉积,发生高度可逆的化学吸附脱附或氧化还原反应,产生与电极充电电位有关的电容。对于法拉第准电容,其储存电荷的过程不仅包括双电层上的存储,而且包括电解液中离子在电极活性物质中由于氧化还原反应而将电荷储存于电极中。对于其双电层中的电荷存储与上述类似,对于化学吸脱附机理来说,一般过程为电解液中的离子一般为或在外加电场的作用下由溶液中扩散到电极溶液界面,而后通过界面的电化学反应而进入到电极表面活性氧化物的体相中若电极材料具有较大比表面积的氧化物,就会有相当多的这样的电化学反应发生,大量的电荷就被存储在电极中。放电时这些进入氧化物中的离子又会重新返回到电解液中,同时所存储的电荷通过外电路而释放出来,这就是法拉第准电容的充放电机理。法拉第鹰电容可以产生高的比电容,但因为法拉第反应的限制,倍率性能比双电层电容小。 目前使用的电极材料主要有碳材料、金属氧化物材料和导电聚合物材料,其中碳材料以双电层机理储能,而后两种材料以法拉第赝电容机理储能。 2、循环伏安法(CV)测定材料的比电容 循环伏安法是电化学测量中经常使用的一种重要方法,它一方面能较快的观测到较宽电位范围内发生的电极过程,为电极过程研究提供丰富的信息;另一方面又能通过扫描曲线形状的分析、估算电极反应参数,由此来判断不同因素对电极反应的影响。 控制研究电极的电势以速率ν从起始电位Ei开始向电势负方向扫描,到电势为Em时(时间为λ),电势改变扫描方向,以相同的速率回扫至起始电势,然后再次换向,反复扫描,即采用的电势控制信号为连续三角波信号,如图2-1所示。记录i-E曲线,称为循环伏安曲线(cyclic voltammogram),如图2-2所示。这一测量方法称为循环伏安法(cyclic voltammetry)。 图2-1三角波扫描图2-2循环伏安曲线 Fig. 2-1 Triangular wave scanning Fig. 2-2 Cyclic voltammetry curve 对于一个电化学反应O+ne-===R,正向扫描(即电势负方向扫描)时发生阴极反应 O+ne-→R;反向扫描时,则发生正向扫描过程中生成的反应产物R的重新氧化的反应R→O+ ne-,这样反向扫描时也会得到峰状的i-E曲线。一次三角波扫描,完成一个还原和氧化过

实验二 超级电容器的组装及性能测试实验指导书

实验二超级电容器的组装及性能测试 实验名称:超级电容器的组装及性能测试 所涉及课程:工程化学 计划学时:4学时 一、实验目的 1.掌握超级电容器的基本原理及特点; 2.掌握电极片的制备及电容器的组装; 3.掌握电容器的测试方法及充放电过程特点。 二、实验原理 1.电容器的分类 电容器是一种电荷存储器件,按其储存电荷的原理可分为三种:传统静电电容器,双电层电容器和法拉第准电容器。 传统静电电容器主要是通过电介质的极化来储存电荷,它的载流子为电子。 双电层电容器和法拉第准电容储存电荷主要是通过电解质离子在电极/溶液界面的聚集或发生氧化还原反应,它们具有比传统静电电容器大得多的比电容量,载流子为电子和离子,因此它们两者都被称为超级电容器,也称为电化学电容器。 2.双电层电容器 双电层理论由19世纪末Helmhotz等提出。Helmhotz模型认为金属表面上的净电荷将从溶液中吸收部分不规则的分配离子,使它们在电极/溶液界面的溶液一侧,离电极一定距离排成一排,形成一个电荷数量与电极表面剩余电荷数量相等而符号相反的界面层。于是,在电极上和溶液中就形成了两个电荷层,即双电层。 双电层电容器的基本构成如图1,它是由一对可极化电极和电解液组成。 双电层由一对理想极化电极组成,即在所施加的电位范围内并不产生法拉第反应,所有聚集的电荷均用来在电极的溶液界面建立双电层。 这里极化过程包括两种: (1)电荷传递极化(2)欧姆电阻极化。 当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。当将两极与外电路连通时,电极上的电荷迁移而在外电路中产生电流,溶液中的离子迁移到溶液中成电中性,这便是双电层电容的充放电原理。

超级电容器原理介绍及实验分析

五、结果与分析 1、实验过程总结与知识点查阅 ○1超级电容器的结构:[1] 超级电容器主要由三部分组成:电极、电解液和隔膜,其中电极由集流体和电极材料组成。本实验中,集流体为泡沫镍,集流体起到降低电极内阻的作用,活性物质为三维石墨烯-Co3O4复合材料。 ○2超级电容器的分类及原理 分为双电层电容器和赝电容器 双电层电容器:充电时,电解液中的带电粒子被吸附在电极表面,形成双电层结构,从而将能量储存起来。在双电层电容器工作的过程中,电解液中的粒子只发生电迁移、扩散、传质,完全是物理过程,不会和电极发生氧化还原反应。在充电时,接正极的电极集流体和活性物质带正电,活性物质吸附电解液中的负离子从而形成双电层结构。同样的,接负极的活性物质带负电,吸引电解液中的阳离子形成双电层结构。整个超级电容器相当于两个电容器串联。循环性能好,比电容较低。 赝电容器:由于电解液中粒子与电极材料发生高度可逆的氧化还原反应,形成不稳定的产物,将能量储存起来。在充电时,活性物质与电解液中的粒子在电极表面或者电极表面及内部发生高度可逆的化学吸附;在放电时则进行解吸附的过程。循环性能差,比电容高。 ○3超级电容器的电极材料[2]: (1)炭材料:活性炭、碳纳米管、石墨烯等。主要用于双电层电容器,比容量较低,而且能量密度与功率密度也较低。 ( 2 )过渡金属氧化物和导电聚合物,主要用于赝电容器,比容量与能量密度较高,导电性能和循环稳定性相对活性炭较差。 (3)改进材料:制备碳材料与金属氧化物或导电聚合物的复合材料,同时拥有比电容高和循环性能好的优点,如本实验中的三维石墨烯-Co3O4复合材料。 ○4循环伏安法测试及其原理 循环伏安法是指在工作电极和参比电极之间施加三角波扫描电压,记录工作电极上响应电流与施加电位之间的关系曲线,即循环伏安图。从伏安图的波形、氧化还原电流的数值及

相关文档
最新文档