PN结二极管

外加电场与内建电场方向相反空间电荷区中的电场减弱

破坏扩散与漂移运动间的

()

/00001A qV kT

n p P n P n I I e

qD n qD P I A L L =???=+??

??

晶体管PN结原理解释

PN结的定义: 在一块本征半导体中,掺以不同的杂质,使其一边成为P型,另一边成为N型,在P区和N区的交界面处就形成了一个PN结。 PN结的形成 (1)当P型半导体和N型半导体结合在一起时,由于交界面处存在载流子浓度的差异,这样电子和空穴都要从浓度高的地方向浓度低的地方扩散。但是,电子和空穴都是带电的,它们扩散的结果就使P区和N区中原来的电中性条件破坏了。P区一侧因失去空穴而留下不能移动的负离子,N区一侧因失去电子而留下不能移动的正离子。这些不能移动的带电粒子通常称为空间电荷,它们集中在P区和N区交界面附近,形成了一个很薄的空间电荷区,这就是我们所说的PN结,如图1所示。 (2)在这个区域内,多数载流子或已扩散到对方,或被对方扩散过来的多数载流子(到了本区域后即成为少数载流子了)复合掉了,即多数载流子被消耗尽了,所以又称此区域为耗 尽层,它的电阻率很高,为高电阻区。 (3)P区一侧呈现负电荷,N区一侧呈现正电荷,因此空间电荷区出现了方向由N区指向P区的电场,由于这个电场是载流子扩散运动形成的,而不是外加电压形成的,故称为内 电场,如图2所示。

(4)内电场是由多子的扩散运动引起的,伴随着它的建立将带来两种影响:一是内电场将阻碍多子的扩散,二是P区和N区的少子一旦靠近PN结,便在内电场的作用下漂移到 对方,使空间电荷区变窄。 (5)因此,扩散运动使空间电荷区加宽,内电场增强,有利于少子的漂移而不利于多子的扩散;而漂移运动使空间电荷区变窄,内电场减弱,有利于多子的扩散而不利于少子的漂移。当扩散运动和漂移运动达到动态平衡时,交界面形成稳定的空间电荷区,即PN结处于 动态平衡。PN结的宽度一般为0.5um。 PN结的单向导电性 PN结在未加外加电压时,扩散运动与漂移运动处于动态平衡,通过PN结的电流为零。 (1)外加正向电压(正偏) 当电源正极接P区,负极接N区时,称为给pN结加正向电压或正向偏置,如图3所示。由于PN结是高阻区,而P区和N区的电阻很小,所以正向电压几乎全部加在PN结两端。在PN结上产生一个外电场,其方向与内电场相反,在它的推动下,N区的电子要向左边扩散,并与原来空间电荷区的正离子中和,使空间电荷区变窄。同样,P区的空穴也要向右边扩散,并与原来空间电荷区的负离子中和,使空间电荷区变窄。结果使内电场减弱,破坏了PN结原有的动态平衡。于是扩散运动超过了漂移运动,扩散又继续进行。与此同时,电源不断向P区补充正电荷,向N区补充负电荷,结果在电路中形成了较大的正向电流IF。而 且IF随着正向电压的增大而增大。

一个PN结构成晶体二极管的原理

一个PN结构成晶体二极管的原理 一个PN结构成晶体二极管的原理 P性半导体和N型半导体----前面讲过,在纯净的半导体中加入一定类型的微量杂质,能使半导体的导电能力成百万倍的增加。加入了杂质的半导体可以分为两种类型:一种杂质加到半导体中去后,在半导体中会产生大量的带负电荷的自由电子,这种半导体叫做“N型半导体”(也叫“电子型半导体”);另一种杂质加到半导体中后,会产生大量带正电荷的“空穴”,这种半导体叫“P型半导体”(也叫“空穴型半导体”)。例如,在纯净的半导体锗中,加入微量的杂质锑,就能形成N型半导体。同样,如果在纯净的锗中,加入微量的杂质铟,就形成P型半导体。 一个PN结构成晶体二极管----设法把P型半导体(有大量的带正电荷的空穴)和N型半导体(有大量的带负电荷的自由电子)结合在一起,见图1所示。 图1 在P型半导体的N型半导体相结合的地方,就会形成一个特殊的薄层,这个特殊的薄层就叫“PN结”。晶体二极管实际上就是由一个PN结构成的(见图1)。 例如,收音机中应用的晶体二极管,其触丝(即触针)部分相当于P型半导体,N型锗片就是N型半导体,他们之间的接触面就是PN结。P端(或P端引出线)叫晶体二极管的正端(也称正极)。N端(或N端引出线)叫晶体二极管的负端(也称负极)。 如果像图2那样,把正端连接电池的正极,把负端接电池的负极,这是PN结的电阻值就小到只有几百欧姆了。因此,通过PN结的电流(I=U/R)就很大。这样的连接方法(图2a)叫“正向连接”。正向连接时,晶体管二极管(或PN结)两端承受的电压叫“正向电压”;处在正向电压下,二极管(或PN结)的电阻叫“正向电阻”,在正向电压下,通过二极管(或PN结)的电流叫“正向电流”。很明显,因为晶体二极管的正向电阻很小(几百欧姆),在一定正向电压下,正向电流(I=U/R)就会很大----这表明在正向电压下,二极管(或PN 结)具有像导体一样的导电本领。

二极管的PN结介绍

二极管的PN结介绍 纯净半导体中掺入微量的杂质元素,形成的半导体称为杂质半导体。半导体根据掺入的杂质元素的不同,可以分为P 型半导体和N 型半导体。二极管有PN 结,采用不同的掺杂工艺,通过扩散作用,将P 型半导体和N 型半导体制作在同一块半导体基片上,在它们的交界处形成空间电荷区称之为PN 结,PN 结具有单向导电性。 PN 结形成 当把P 型半导体和N 型半导体制作在一起时,在它们的交界面处,由于两种半导体多数载流子的浓度差很大,因此P 区的空穴会向N 区扩散,同时,N 区的自由电子也会向P 区扩散,如图1 所示。图中虚线箭头表示P 区中空穴的移动方向,实线箭头表示N 区中自由电子的移动方向。 图1 P 区与N 区中多数载流子的扩散运动 扩散到P 区的自由电子遇到空穴会复合,扩散到N 区的空穴与自由电子也会复合,所以在交界面处多子的浓度会下降,P 区出现负离子区,N 区出现正离子区,称为空间电荷区。出现空间电荷区以后,由于正负电荷之间的相互作用,在空间电荷区会形成一个电场,电场方向由带正电的N 区指向带负电的P 区。由于这个电场是由载流子扩散运动(即内部运动)形成的,而不是外加电压 形成的,故称为内电场。随着扩散运动的进行,空间电荷区会加宽,内电场增强,其方向正好阻止了P 区中的多子空穴和N 区中的多子自由电子的扩散。 在内电场电场力的作用下,P 区的少子自由电子会向N 区漂移,N 区的少子空穴也会向P 区漂移。漂移运动的方向正好与扩散运动的方向相反。从N 区漂移到P 区的空穴补充了原来交界面上P 区失去的空穴,而从P 区漂移到N 区的自由电子补充了原来交界面上N 区所失去的自由电子,这就使得空间电荷变

二极管PN结原理.

PN结的定义:在一块本征半导体中,掺以不同的杂质,使其一边成为P型,另一边成为N型,在P区和N区的交界面处就形成了一个PN结。 PN结的形成 (1)当P型半导体和N型半导体结合在一起时,由于交界面处存在载流子浓度的差异,这样电子和空穴都要从浓度高的地方向浓度低的地方扩散。但是,电子和空穴都是带电的,它们扩散的结果就使P区和N区中原来的电中性条件破坏了。P区一侧因失去空穴而留下不能移动的负离子,N区一侧因失去电子而留下不能移动的正离子。这些不能移动的带电粒子通常称为空间电荷,它们集中在P区和N区交界面附近,形成了一个很薄的空间电荷区,这就是我们所说的PN结,如图1所示。 (2)在这个区域内,多数载流子或已扩散到对方,或被对方扩散过来的多数载流子(到了本区域后即成为少数载流子了)复合掉了,即多数载流子被消耗尽了,所以又称此区域为耗 尽层,它的电阻率很高,为高电阻区。 (3)P区一侧呈现负电荷,N区一侧呈现正电荷,因此空间电荷区出现了方向由N区指向P区的电场,由于这个电场是载流子扩散运动形成的,而不是外加电压形成的,故称为内 电场,如图2所示。

(4)内电场是由多子的扩散运动引起的,伴随着它的建立将带来两种影响:一是内电场将阻碍多子的扩散,二是P区和N区的少子一旦靠近PN结,便在内电场的作用下漂移到 对方,使空间电荷区变窄。 (5)因此,扩散运动使空间电荷区加宽,内电场增强,有利于少子的漂移而不利于多子的扩散;而漂移运动使空间电荷区变窄,内电场减弱,有利于多子的扩散而不利于少子的漂移。当扩散运动和漂移运动达到动态平衡时,交界面形成稳定的空间电荷区,即PN结处于 动态平衡。PN结的宽度一般为0.5um。 PN结的单向导电性 PN结在未加外加电压时,扩散运动与漂移运动处于动态平衡,通过PN结的电流为零。 (1)外加正向电压(正偏) 当电源正极接P区,负极接N区时,称为给pN结加正向电压或正向偏置,如图3所示。由于PN结是高阻区,而P区和N区的电阻很小,所以正向电压几乎全部加在PN结两端。在PN结上产生一个外电场,其方向与内电场相反,在它的推动下,N区的电子要向左边扩散,并与原来空间电荷区的正离子中和,使空间电荷区变窄。同样,P区的空穴也要向右边扩散,并与原来空间电荷区的负离子中和,使空间电荷区变窄。结果使内电场减弱,破坏了PN结原有的动态平衡。于是扩散运动超过了漂移运动,扩散又继续进行。与此同时,电源不断向P区补充正电荷,向N区补充负电荷,结果在电路中形成了较大的正向电流IF。而 且IF随着正向电压的增大而增大。 (2)外加反向电压(反偏) 当电源正极接N区、负极接P区时,称为给PN结加反向电压或反向偏置。反向电压产生的外加电场的方向与内电场的方向相同,使PN结内电场加强,它把P区的多子(空穴)和N区的多子(自由电子)从PN结附近拉走,使PN结进一步加宽,PN结的电阻增大,打破了PN结原来的平衡,在电场作用下的漂移运动大于扩散运动。这时通过PN结的电流,主要是少子形成的漂移电流,称为反向电流IR。由于在常温下,少数载流子的数量不多,

相关主题
相关文档
最新文档