量子力学讲义第七章讲义

量子力学讲义第七章讲义
量子力学讲义第七章讲义

第七章量子力学的矩阵形式与表象变换

§1 态的表象

一、什么叫表象——量子力学中态和力学量的具体表示方式

二、研究表象的意义

根据不同问题选择不同表象,还可以进行表象变换。

§7.1 量子态的不同表象

一、坐标表象波函数(x,t)

1、(x,t)

2、——表示体系处在(x,t)所描述的态中,在xx+d x范围内找到粒子的几率,也就是说,当体系处在(x,t)所描述的态中,测量坐标x这个力学量所得值在xx+d x这个范围内的几率。

3、

4、动量为的自由粒子的本征函数

5、x在坐标表象中对应于本征值的本征函数,

即,

二、动量表象波函数

动量本征函数:组成完备系,任一状态可按其展开

(1)

展开系数

(2)

(x,t)与c(p,t)互为Fourier(付里叶)变换,一一对应关系,所不同的是变量不同。认为c(p,t)和(x,t)描述同一个状态。(x,t)是这个状态在坐标表象中的波函数,c(p,t)是同一个状态在动量表象中的波函数。

1、 ——状态波函数

2、表示体系处在c(p,t)所描述的态中测量动量这个力学量p所得结果

为pp+d p范围内的几率。

3、

命题:假设(x,t)是归一化波函数,则c(p,t)也是归一。(在第一章中已经证明)

4、的本征函数(具有确定动量的自由粒子的态)

若(x,t)描写的态是具有确定动量p'的自由粒子态,即:

则相应动量表象中的波函数:

所以,在动量表象中,具有确定动量p' 的粒子的波函数是以动量p为变量的函数。换言之,动量本征函数在自身表象中是一个函数。

三、力学量表象

问题:那末,在任一力学量F表象中,(x,t)所描写的态又如何表示呢?

1、分立谱的情况

设算符的本征值为:F1, F 2, ..., F n,...,

相应本征函数为:1(x), 2(x),..., n(x),...。

将(x,t)按的本征函数展开:

若(x,t), u n(x)都是归一化的,则a n(t)也是归一化的。(在第三章中已经证明)

由此可知,| a n| 2表示在(x,t)所描述的状态中测量F得F n的几率。

展开系数组成的数列与(x,t)是一一对应关系, {a n(t)}与(x,t)描述体系的同一个态,(x,t)是这一状态在坐标表象中的表示,而数列{a n(t)}是这同一状态在F表象中的表示。我们可以把数列{a n(t)}写成列矩阵的形式,用F标记:

(1)、体系态列矩阵为(x,t)所描写的态在F表象中的表示

并把矩阵F称为(x,t)所描写的状态在F表象中的波函数。

的共轭矩阵是一个行矩阵,用+F标记

F

(2)、| a n| 2表示在(x,t)所描述的状态中测量F得F n的几率。

(3)、若(x,t)已归一化,则有。若用矩阵表示

(4)、本征值为的本征函数。

(第为1,其余为零)

2、连续谱的情况f

连续矩阵(一般用表示即可)

(1)

(2) 在所描述的态中,测量力学量f,所得结果为ff+d f的几率

(3)

综上所述,量子力学中体系的同一状态可以用不同力学量表象中的波函数来描写。所取表象不同,波函数的形式也不同。我们可以根据处理问题的需要选用适当的表象以方便求解。下面举个例子说明。

例:分别在坐标表象、动量表象、能量表象中写出一维无限深势阱中基态粒子的波函数。

四、Hilbert(希耳伯特)空间:态矢量所在的无限维空间

同一个态在不同表象中有不同的表述方式

量子力学中,态的表象这一概念与几何学中选取不同的坐标系来表示同一矢量的概念十分相似。在量子力学中,我们可以建立一个n维(n 可以是无穷大)空间,把波函数看成是这个空间中的一个矢量,称为态矢量。选取一个特定力学量F表象,相当于选取特定的坐标系。该坐标系是以力学量F的本征函数系为基矢,态矢量在各基矢上的分量则为展开系数,在F表象中态矢量可用这组分量来表示。

F表象的基矢有无限多个,所以态矢量所在的空间是一个无限维的抽象的函数空间,称为Hilbert空间。

§7.2 力学量(算符)的矩阵表示

一、矩阵简介

1、定义

方阵:行数与列数相等的矩阵。

2、两矩阵相等(行列数相等)

3、两矩阵相加(行列数相等)

4、两矩阵相乘(一个l列的矩阵A与一个l行的矩阵B相乘)

A B C

(1) 称A、B矩阵相互不对易;

称A、B矩阵相互对易

(2)

(3)

(4) ,但B=C不一定成立

(5) AB=0,但A=0,B=0不一定成立

(6) A2=0,但A=0不一定成立

5、对角矩阵除对角元外其余为零

6、单位矩阵即

单位矩阵与任何矩阵A的乘积仍为A:IA=A,并且与任何矩阵都是可对易的:IA=AI

7、转置矩阵:把矩阵A的行和列互相调换,所得出的新矩阵称为A的转置矩阵。

m列n行n列m行

共轭矩阵: m列n行n列m行转成共轭复数

8、厄密矩阵:

如果,则称A矩阵为厄密矩阵(如果一个矩阵A和它的共轭矩阵相等)

例如,,则

二、F表象中的算符表示

设量子态经过算符运算后变成另一个态

A、分立谱的情况

在以力学量完全集F的本征态k为基矢的表象(F表象)中,上式表成

(1)

以左乘上式两边并对x积分,积分范围是x变化的整个区域得

(2)

式中

将(2)表成矩阵的形式则为

(3)

式(3)即式(1)在F表象中的矩阵表示,左边的一列矩阵和右边的一列矩阵分别是波函数和波函数在F表象中的矩阵表示,而矩阵即算符在F表象中的表示。它的第n列元素

用表示这个矩阵,表示左边的一列矩阵,表示右边的列矩阵,则(3)为

讨论:F表象中力学量算符的性质

1、力学量算符在自身表象中的形式

若,则

结论:算符在自身表象中是一对角矩阵,对角元素就是算符的本征值。(要会证明)

2、力学量算符用厄密矩阵表示

即L矩阵的第m列第n行的矩阵元等于第n列第m行矩阵元的共轭复数,这就是厄密矩阵。用L+表示矩阵L的共轭矩阵

——其对角矩阵元为实数。

所以厄米算符的的矩阵表示是一厄米矩阵。

B、连续谱的情况

(1)只有连续本征值

如果F只有连续本征值f,上面的讨论仍然适用,只需将u, a, b的角标从可数的n, m换成连续变化的f,求和换成积分,见下表。

分立谱连续谱

u n*u m u f*u,f

a n

b m a f b f

算符L在F表象仍是一个矩阵,矩阵元由下式确定:

矩阵元中的第一个角标f表示矩阵的行数,第二个角标表示矩阵的列数。但是,由于本征值和f可连续取值,所以由组成的矩阵是行列不再可数的连续矩阵,可以标记为

三、举例

例1、求一维线性谐振子的坐标算符、动量算符及哈密顿算符在能量表象中的矩阵表示

§7.3 量子力学公式的矩阵表示

一、Schr?dinger方程

(1)

在F表象中,(t)表示为

(2)

按力学量算符F的本征函数展开。

把式(2)代入式(1),得

左乘j,(取标积),得——左乘j*对x整个空间积分或表示为

此即F表象中的Schr?dinger方程。

二、平均值公式

在量子态下,力学量L的平均值为

此即平均值的矩阵形式。

特例:若,则(对角矩阵),则在态下,

假定已归一化,即,则表示在态下测量L得到L k值的概率。

三、本征值方程

算符的本征方程为

用代入,

左乘j,(取标积),得——左乘j*对x整个空间积分

(3)

此即的本征方程在F表象中的矩阵形式。

它是a k(k=0,1,2,)满足的线性齐次方程组,有非平庸解的条件为(此方程组有非零解的条件是其系数行列式等于零,即)

明显写出,

(4)

(4)式称为久期方程。设表象空间维数为N,则上式是的N次幂代数方程。对于可观测量,L jk为厄米矩阵,可以证明,上列方程必有N个实根,记为,(j=0,1,2,,N)。分别用代入式(3),可求出相应的解

(k=0,1,2,,N),表成列矢

它就是与本征值相应的本征态在F表象中的表示。

给定算符如何求本征值与本征函数 ——(1)先求用矩阵表示的本征方程;(2)代入久期方程求得本征值的解;(3)本征值代入本征方程求本征函数。

4、 举例:

例1、已知体系的哈密顿算符?与某一力学量算符在能量表象中的矩阵形式为:

其中和b为实常数,问

(1)、H和B是否是厄密矩阵;

(2)、H和B是否对易;

(3)、求算符的本征值及相应的本征函数;

(4)、算符的本征函数是否也是?的本征函数。

§4 Dirac符号

量子力学可以不涉及具体表象来讨论粒子的状态和运动规律。这种抽象的描述方法是由Dirac首先引用的,所以该方法所使用的符号称为Dirac符号。

1、右矢空间

量子体系的一切可能状态构成一个Hilbert空间。空间中的一个矢量(方向)一般为复量,用以标记一个量子态。在抽象表象中Dirac用右矢空间的一个矢量| >与量子状态相对应,该矢量称为右矢。若要标志某个特殊的态,则在右矢内标上某种记号。

因为力学量本征态构成完备系,所以本征函数所对应的右矢空间中的右矢也组成该空间的完备右矢(或基组),即右矢空间中的完备的基本矢量(简称基矢)。右矢空间的任一矢量|> 可按该空间的某一完备基矢展开。例如:

2、左矢空间

右矢空间中的每一个右矢量在左矢空间都有一个相对应的左矢量,记为< |。左矢< |表示共轭空间中与| >相应的一个抽象态矢。例如:是的共轭态矢,是的共轭态矢等。

3、标积

态矢与的标积记为,

而记为

若,则称与正交;若,则称为归一化态矢。

设力学量完全集F的本征态(离散)记为|k>,它们的正交归一性表

示为

连续谱的本征态的正交“归一性”,则表成函数形式。

例如动量本征态,,坐标本征态,等。

在一个具体表象中如何计算标积,需要用到态矢在具体表象中的表示。

4、态矢在具体表象中的表示

在F表象中(基矢记为|k>),态矢|>可用|k>展开,即

(1)

展开系数记为

(2)

是态矢|>在基矢|k>上的投影(分量)。当所有a k都给定时,就确定了一个态。所以这一组数就是态|>在F表象中的表示,常写成列矢形式

把式(2)代入式(1),得

(3)

式中是一个投影算符,

P k对任何态矢|>运算后,就得到态矢|>在基矢|k>方向上的分量矢量,

或者说P k的作用是把任何态矢在|k>方向的分量挑选出来。

式(3)中|>是任意的,因此

(单位算符) (4)

这正是这一组基矢|k>的完备性的表现。本征矢|k>的封闭性。

在连续谱的情况,

(5)

左乘,

代入式(5),得

(6)

式(6)中是任意的,因此

式(4)中求和应换为积分。

例如,对于和分别有

这就是连续本征值的本征矢的封闭性。

由于,,,

所以它们也称为单位算符,在运算中可插入(乘到)公式任何地方而不改变原公式的正确性。

例如:在左侧插入算符

同理

即得态矢按各种力学量本征矢的展开式

在F表象中,两个态矢与的标积可如下计算。因为

所以

5、算符在具体表象中的表示

设态矢经算符运算后变成态矢,即

(7)

这里尚未涉及具体表象。在F表象中,的矩阵表示为,式(7)左乘,得

,分别是态矢|>和|>在F表象中的表示。

力学量L的本征方程

在F表象中表示为

即 (8)

是|>在F表象中的基矢|j>方向的投影。式(8)即的本征方程在F表象中的表述形式。

量子力学讲义第二章讲义

第二章 一维势场中的粒子 §2.2 方 势 一、一维运动 当粒子在势场V (x ,y ,z )中运动时,其 Schrodinger 方程为: 22 [(,,)](,,)(,,)2V x y z x y z E x y z m ψψ-?+= 若势可写成: V (x ,y ,z ) = V 1(x ) + V 2(y ) + V 3(z ) 形式, 2212 [()]()()2x d V x X x E X x m dx -+= 2222 [()]()()2y d V y Y y E Y y m dy -+= 2232 [()]()()2z d V z Z z E Z z m dz -+= ψ(x ,y ,z ) = X (x ) Y (y ) Z (z ) ψ1(x ) x y z E E E E =++ 二、一维无限深势阱 0(0)()(0,) x a V x x x a ?<?? 这是定态问题 一维无限深势阱(0~a )的求解 解:(1)列出各势域的 S — 方程 22 2 [()]()()2d V x x E x m dx ψψ-+= 20222 2 2202 22()0202()0I I II II III III d m V E dx d mE dx d m V E dx ψψψψψψ?--=???+=???--=?? 00E V << 0()V →∞ ,令k = )(0>k ,β=方程可简化为:22 2 222 222 000I I II II III III d dx d k dx d dx ψβψψψψβψ?-=????+=???-=??

量子力学讲义I.波函数与Schrodinger方程

I.波函数与Schrodinger方程 1. 经典波有波函数吗?量子波函数与经典波函数有什么异同? 答:波函数就其本义而言不是量子力学特有的概念.任何波都有相应的波图执只是习惯上这一术语通常专用于描 述量子态而不常用于经典波.经典波例如沿轴方向传播的平面单色波,波动动量对和的函数——波函数可写为 ,其复指数形式为,波函数给出了传播方向上时刻在点处的振动 状态。经典波的波函数通常称之为:波的表达式或波运动方程.量子力学中,把德布罗意关系 p =k 及 E =ω代入 上式就得到自由粒子的波函数 ( 自由粒子的波的表达式 ). 经典波与概率狡的唯一共性是叠加相干性。但概率波函数是态函数,而态的叠加与经典波的叠加有着本质的差别.经典波函数描述的是经典波动量对时空变量的函数关系.量子力学中的概率波函数其意义不同于经典物理中的任何物理量.概率波函数虽是态函执但本身不是力学量.态函数给出的也不是物理量间的关系.概率波函数的意义是:由波函效描述微观体系各种力学量的概率分朽.作为一种约定的处理方法,经典波可表为复指数函数形式但只有它的实部才有物理意义.而概率波函数一般应为复函数.非相对论量子力学中,粒子不产生出不泯灭.粒子一定在全空间中出现,导致了概率被函数归一化问题,而经典波则不存征这个问题.概率波函数乘上一常数后,粒子在空间各点出现的相对概率不变.因而,仍描述原来的状态.而经 典波中不同的波幅的波表不同的波动状态,振幅为零的态表示静止态.而量子力学中,振幅处处为零的态表示不存在粒子.另外经典波函数与量子被函数满足各自的、特征不同的波方程. 2 .波函数的物理意义——微观粒子的状态完全由其被函数描述,这里“完全'的含义是什么?波函数归一化的含义又是什么 ? 答:按照波函数的统计解释波函数统计地描述了体系的量子态.如已知单粒子 ( 不考虑自旋 ) 波函数为, 则不仅可确定粒子的位置概率分布,而且如动员等粒子其他力学且的概率分布也均可通过而完全确定.出于量子理论与经典理论不同,它一般只能预言测量的统计结果.而只要已知体系波函数,便可由它获得该体系的一切可能物理信息.从这个意义上着,有关体系的全部信息显然都已包含在波函数中,所以我们此微现粒子的状态完全由其波函数描述,并把波函数称为态函数.非相对论量子力学中粒子不产生、不泯灭.根据波函数的统计解释,在任何时刻,粒子一定在空间出现,所以,在整个空 间中发现粒子是必然事件.概率论中认为必然事件的概率等于 1 .因而,粒子在整个空间中出现的概率即概率密度对 整个空间积分应等于1 .式中积分号下的无限大符号表示对整个空间积分.这个条件称为归一化条件.满足归一化条件的波函数称为归一化波函数.显然,平方可积波函数才可以归一化. 3 .证明从单粒子薛定谔方程得出的粒子速度场是非旋的,即求证,其中,为几率密度,为几率流

量子力学第五章习题

第五章 微扰理论 5.1 如果类氢原子的核不是点电荷,而是半径为0r ,电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。 解: 这种分布只对0r r <的区域有影响, 对0r r ≥的区域无影响. 根据题意知 ()()0 ?H U r U r '=- 其中()0U r 是不考虑这种效应的势能分布, 即 ()2004ze U r r πε=- ()U r 为考虑这种效应后的势能分布, 在0r r ≥的区域为 ()2 04ze U r r πε=- 在0r r <的区域, ()U r 可由下式 ()r U r e Edr ∞ =-? 其中电场为 () () 3023300000201 4,443434Ze Ze r r r r r r r E Ze r r r ππεπεππε?=≤?? =? ?>? ? 则有: ()()()() 2 2 3 2 000 22222 2200 033000000 1443848r r r r r r U r e Edr e Edr Ze Ze rdr dr r r Ze Ze Ze r r r r r r r r r πεπεπεπεπε∞ ∞ =--=- - =---=--≤??? ? 因此有微扰哈密顿量为 ()()()() 222 200300 031?220s s Ze r Ze r r r r r H U r U r r r ???--+ ≤? ?'=-=????>? 其中s e =类氢原子基态的一级波函数为 ()( 32 10010000032 02exp 2Zr a R Y Z a Zr a Z e a ψ-==-?=?? 按定态微扰论公式,基态的一级能量修正值为 ()()()0 0*0011 11 100100 3 2222222000000?1 31sin 4422Zr r a s s E H H d Z e Ze Z r d d e r dr a r r r ππψψτ?θθπ -''==??????=--+?? ? ????????? ? ???

第一章量子力学基础和原子轨道报告

第一章 量子力学基础与原子结构 一、单项选择题(每小题1分) 1.一维势箱解的量子化由来( ) ① 人为假定 ② 求解微分方程的结果 ③ 由势能函数决定的 ④ 由微分方程的边界条件决定的。 2.下列算符哪个是线性算符( ) ① exp ② ▽2 ③ sin ④ 3.指出下列哪个是合格的波函数(粒子的运动空间为 0+)( ) ① sinx ② e -x ③ 1/(x-1) ④ f(x) = e x ( 0 x 1); f(x) = 1 ( x 1) 4.基态氢原子径向分布函数D(r) ~ r 图表示( ) ① 几率随r 的变化 ② 几率密度随r 的变化 ③ 单位厚度球壳内电子出现的几率随r 的变化 ④ 表示在给定方向角度上,波函数随r 的变化 5.首先提出微观粒子的运动满足测不准原理的科学家是( ) ①薛定谔 ② 狄拉克 ③ 海森堡 ③波恩 6.立方势箱中22 810m a h E <时有多少种状态( ) ① 11 ② 3 ③ 7 ④ 2 7.立方势箱在22 812m a h E ≤的能量范围内,能级数和状态数为( ) ①5,20 ② 6,6 ③ 5,11 ④ 6,17 8.下列函数哪个是22 dx d 的本征函数( ) ① mx e ② sin 2x ③ x 2+y 2 ④ (a-x)e -x 9.立方势箱中22 87m a h E <时有多少种状态( ) ① 11 ② 3 ③ 4 ④ 2 10.立方势箱中22 89m a h E <时有多少种状态( ) ① 11 ② 3 ③ 4 ④ 2 11.已知x e 2是算符x P ?的本征函数,相应的本征值为( ) ① i h 2 ② i h 4 ③ 4ih ④ πi h

清华大学量子力学讲义Lecture14[1]

3. 系综与密度算符 1)纯系综和混合系综 相同的物理体系构成系综,例如由具有自旋的粒子构成的系综。 一个自旋为1/2的粒子的自旋态(方位角,αβ) /2/2(,)(,)(,)cos sin 22i i c c e e ααβ β χαβαβχαβχχχ-++--+-=+=+, 其中,χχ+-是?z s 的本征态, cos(/2)sin(/2) i c c e αββ+-=。 如果所有粒子的自旋都取相同方向,则称体系是极化系统,构成的系综是纯系综。 如果粒子的自旋不在同一方向,则构成的系综叫混合系综。例如自旋向上的粒子数占70%,自旋向下的粒子数占30%,体系是部分极化。一个自旋方向完全随机的系综,其自旋向上,向下的几率各有50%,整的表现是相互抵销,自旋为零,完全没极化。 2)系综平均与态密度算符 系统的力学量平均值 ?A A ααα=, 这里态α是固定的,是量子平均。进入任意表象B , ,' ?''b b A b b A b b ααα=∑, 对表象的维数求和。 系综平均 [ ]A w A ααα=∑ , 这里w α是体系处于态α的几率,显然满足归一化条件 1w αα =∑, 是统计平均,求和指标不是对表象的维数,而是对态。例如自旋1/2的粒子构成的系综,自旋表象的维数为2,但不同粒子的自旋态可以有很多取向,求和就是对不同的取向。

[],,','??''''b b b b A w b b A b w b b b A b αααααααα??== ??? ∑∑∑。 定义态密度算符 ?w αα ρ αα=∑, 它在表象B 的矩阵元 '?''bb b w b b αα ρρ αα==∑, []() ,'??????''b b b A b b b A b b A b tr A ρ ρρ==≡∑∑。 这是量子统计力学的基本公式。注意:表象变换不改变矩阵的求迹,上式不依赖于表象的选取。 在连续表象,例如坐标表象,密度算符的矩阵元 *'?''()(')xx x x w x x w x x αααααα ρρααψψ===∑∑ , 系综平均 []() 3????A tr A d x x A x ρρ==? 。 密度矩阵满足归一化条件 ,,? 1 b b tr w b b w b b w w αααααααα ρ ααα α=====∑∑∑∑完备性条件 态的量子归一化条件 态的统计归一化条件 这里用到了归一化条件1α=和表象的完备性条件1b b b =∑。 设密度算符?ρ的本征态为θ, 22 ?,??ρ θθθρθρθθθθ=== 对于纯系综,所有系统都取同一个态n ,

量子力学讲义第三章讲义

第三章 力学量用算符表达 §3.1 算符的运算规则 一、算符的定义: 算符代表对波函数进行某种运算或变换的符号。 ?Au v = 表示?把函数u 变成 v , ?就是这种变换的算符。 为强调算符的特点,常常在算符的符号上方加一个“^”号。但在不会引起误解的地方,也常把“^”略去。 二、算符的一般特性 1、线性算符 满足如下运算规律的算符?,称为线性算符 11221122 ???()A c c c A c A ψψψψ+=+ 其中c 1, c 2是任意复常数,ψ1, ψ2是任意两个波函数。 例如:动量算符?p i =-? , 单位算符I 是线性算符。 2、算符相等 若两个算符?、?B 对体系的任何波函数ψ的运算结果都相同,即??A B ψψ=,则算符?和算符?B 相等记为??A B =。 3、算符之和 若两个算符?、?B 对体系的任何波函数ψ有:?????()A B A B C ψψψψ+=+=,则???A B C +=称为算符之和。 ????A B B A +=+,??????()()A B C A B C ++=++ 4、算符之积 算符?与?B 之积,记为??AB ,定义为 ????()()AB A B ψψ=?C ψ= ψ是任意波函数。一般来说算符之积不满足交换律,即????AB BA ≠。 5、对易关系 若????AB BA ≠,则称?与?B 不对易。 若A B B A ????=,则称?与?B 对易。 若算符满足????AB BA =-, 则称?A 和?B 反对易。 例如:算符x , ?x p i x ? =-? 不对易

证明:(1) ?()x xp x i x ψψ?=-? i x x ψ? =-? (2) ?()x p x i x x ψψ?=-? i i x x ψψ?=--? 显然二者结果不相等,所以: ??x x xp p x ≠ ??()x x xp p x i ψψ-= 因为ψ是体系的任意波函数,所以 ??x x xp p x i -= 对易关系 同理可证其它坐标算符与共轭动量满足 ??y y yp p y i -= ,??z z zp p z i -= 但是坐标算符与其非共轭动量对易,各动量之间相互对易。 ??0??0y y z z xp p x xp p x -=??-=?,??0??0x x z z yp p y yp p y -=??-=?,??0??0x x y y zp p z zp p z -=???-=?? ????0x y y x p p p p -=,????0y z z y p p p p -=,????0z x x z p p p p -= ????0xy yx -=,????0y z z y p p p p -=,????0z x x z p p p p -= 写成通式(概括起来): ??x p p x i αββααβδ-= (1) ????0x x x x αββα-= ????0p p p p αββα-= 其中,,,x y z αβ=或1,2,3 量子力学中最基本的对易关系。 注意:当?与?B 对易,?B 与?对易,不能推知?与?对易与否。 6、对易括号(对易式) 为了表述简洁,运算便利和研究量子力学与经典力学的关系,人们定义了对易括号: ??????[,]A B AB BA ≡- 这样一来,坐标和动量的对易关系可改写成如下形式: ?[,]x p i αβαβδ= 不难证明对易括号满足下列代数恒等式: 1) ????[,][,]A B B A =- 2) ???????[,][,][,]A B C A B A C +=+ 3) ?????????[,][,][,]A BC B A C A B C =+ ,?????????[,][,][,]AB C A B C A C B =+,]?,?[]?,?[B A k B k A = 4) ?????????[,[,]][,[,]][,[,]]0A B C B C A C A B ++= ——称为 Jacobi 恒等式。

原子物理讲义 第五章 多电子原子

第五章 多电子原子:泡利原理(YCS ) §5-1 氦光谱和能级 氦原子是1868年分析日全蚀光谱时发现的,30年后在地球矿物中找到.实验表明,氦及元素周期表第二族元素铍、镁、钙、锶、钡、镭、锌、镉、汞的光谱结构相仿.氦原子光谱的特点(详见P.213氦原子能级图)(氦能谱的以上4个特点分别包含着4个物理概念): 1)明显地分成两套谱线系,左边一套为单层,右边一套多为三层;两套能级间无跃迁,各自内部的跃迁产生了两套独立的光谱.每一套都象碱金属原子光谱一样含有主线系,辅线系和伯格曼系等.但两套线系的构成截然不同. 2)存在几个亚稳态,表明某种选择规则限制了这些态以自发辐射的形式发生衰变; 3)基态01 S 1与第一激发态13 S 2 间能量相差很大,为eV .7719;电离能也是所有元素中最大的,为eV .5824; 4)在三层结构那套能级中没有来自2 (1S)的能级. §5-2 电子组态和原子态 1.电子组态:原子中各电子状态的组合 描述一个电子的状态可用s l m m l n 、、、四个量子数. 考虑电子的自旋-轨道相互作用,s l m m 、不再有确定值,则电子的状态用j j m l n 、、、描述. 氢原子只有一个电子,在不考虑原子核运动时,电子状态就表示原子状态. 对于碱金属原子,理论上可证明原子实的总角动量为0且不易被激发,被激发的只是价电子,可认为价电子的状态就表示碱金属原子状态. 多电子原子则必须考虑电子间的相互作用,原子的状态是价电子运动状态的耦合. 由于轨道运动的能量只取决于量子数l n 、,所以常用nl 来标记电子状态. 例如:氢原子处于基态时,电子处于01=、= l n 的状态,记为s 1;氦原子处于基态时,两个电子都处于s 1态,则用两个电子状态的组合s 1s 1或21s 来表示;若一个原子有 3个电子,其中两个处在0,2==l n 的状态,另一个处在1,2==l n 的状态,则电子 组态为p s 222 . 在给定的电子组态中,各电子的轨道角动量大小是确定的,但其轨道角动量和自旋角动量的方向不确定.因此每一个电子组态 可耦合成若干原子态,由同一电子组态耦合成的不同原子态将且具有不同的能量,因为不同的角动量耦合产生的附加能量不同. 2.价电子间的相互作用 价电子间的相互作用除电子自身的轨道与自旋耦合外,电子间的轨道与轨道、自旋与自旋、轨道与自旋等角动量都要发生耦合作用.如两个价电子间可有6种耦合方式(如图示):),(),(),(),(),(),(126215224113212211s l G s l G s l G s l G s s G l l G 、、、、、. 这6种耦合的强弱不等,一般情况下,65G G 、较弱可不考虑.下面考虑两种极端情况. 1)S L -耦合:21G G 、较43G G 、强得多,将两个轨道角动量和两个自旋角动量分别合 成总轨道角动量L 和总自旋角动量S ,再将L 和S 合成总角动量J .(S L -耦合对于较轻元素 的低激发态成立,适用性较广) 2)j j -耦合:43G G 、较21G G 、强得多,将各个电子的轨道与自旋耦合成各个电子的总 角动量1j 和2j ,再将其耦合成原子的总角动量J .(j j -耦合则较少见,只在较重元素的激发态中出现) 对于多电子耦合的情况可记为:? ??==-==-J j j j l s l s l s j j J L S l l l s s s S L )())()((:),(),,)(,,(:323322113213211 3.S L -耦合的原子态 21l l L +=.L 的大小为: 212121,,1,,)1(l l l l l l L L L L --++=+= 21s s S +=.S 的大小为:???=±=+=0 1,)1(21s s S S S S 原子的总角动量S L J +=,量子数S L S L S L J --++=,,1, 对于具有两个价电子的原子,当L 给定时,对应于0,1==S S 的两种情况,J 的取值分别 为: 1)0=S 时,L J =,表示原子只有一个可能的角动量状态,所以是单态. 2)1=S 时,1,,1-+=L L L J ,所以原子是三重态. 由以上分析知,具有两个价电子的原子都有单态和三重态的能级结构. 例:原子有两个价电子,其角动量状态分别为 2 1 ,2;21,12211= ===s l s l ,用

量子力学讲义

量子力学的通俗讲座 一、粒子和波动 我们对粒子和波动的概念来自直接的经验。和粒子有关的经验对象:小到石子大到天上的星星等;和波动有关的经验对象:最常见的例子是水波,还有拨动的琴弦等。但这些还不是物理中所说的模型,物理中所谓粒子和波动是理想化的模型,是我们头脑中抽象的对象。 1.1 粒子的图像 在经典物理中,粒子的概念可进一步抽象为:大小可忽略不计的具有质量的对象,即所谓质点。质量在这里是新概念,我们可将其定义为包含物质量的多少,一个西瓜,比西瓜仔的质量大,因为西瓜里包含的物质的量更大。 为叙述的简介,我们现在可把粒子等同于质点。要描述一个质点的运动状态,我们需要知道其位置和质量(x,m ),这是一个抽象的数学表达。 但我们漏掉了时间,时间也是一个直观的概念,这里我们可把时间描述为一个时钟,我们会发现当指针指到不同位置时,质点的位置可能不同,于是指针的位置就定 义了时刻t 。有了时刻 t ,我们对质点的描述就变成了(x,t,m ),由此可定义速度v ,现在我们对质点运动状态的描述是(x,v,t,m )。 在日常经验中我们还有相互作用或所谓力的概念,我们在地球上拎起不同质量物体时肌肉的紧张程度是不同的,或者说弹簧秤拎起不同质量物体时弹簧的拉伸程度是不同的。 以上我们对质量、时间、力等的定义都是直观的,是可以操作的。按照以上思路进行研究,最终诞生了牛顿的经典力学。这里我们可简单地用两个公式:F=ma (牛顿第二定律) 和 2 GMm F x (万有引力公式) 来代表牛顿力学。前者是质点的运动方程,用数学的语言说是一个关于位置x 的二阶微分方程,所以只需要知道初始时刻t=0时的位置x 和速度v 即可求出以后任意时刻t 质点所处的位置,即x(t),我们称之为轨迹。 需要强调的是一旦我们知道t=0时x 和v 的精确值(没任何误差),x(t)的取值也是精确的,即我们得到是对质点未来演化的精确预测,并且这个求 解对t<0也精确成立,这意味着我们还可精确地反演质点的历史。这些结论都是由数学理论严格保证的,即轨迹是一根理想的线。 经典的多粒子系统

量子力学周世勋习题解答第五章范文

第五章习题解 5.1 如果类氢原子的核不是点电荷,而是半径为0r 、电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。 解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。据题意知 )()(?0 r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 r ze r U 02 4πε- =)( )(r U 为考虑这种效应后的势能分布,在0r r ≥区域, r Ze r U 02 4)(πε-= 在0r r <区域,)(r U 可由下式得出, ?∞ -=r Edr e r U )( ??? ????≥≤=??=)( 4 )( ,4344102 00300330420r r r Ze r r r r Ze r r Ze r E πεπεπππε ??∞ --=0 )(r r r Edr e Edr e r U ?? ∞ - - =00 20 2 3 002 144r r r dr r Ze rdr r Ze πεπε )3(84)(82 203 020*********r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤ ?? ???≥≤+--=-=')( 0 )( 4)3(8)()(?00022 2030020r r r r r Ze r r r Ze r U r U H πεπε 由于0r 很小,所以)(2??022)0(r U H H +?-=<<'μ ,可视为一种微扰,由它引起的一级修正为(基态r a Z e a Z 02/130 3) 0(1)(-=πψ)

高等量子力学习题汇总

第一章 1、简述量子力学基本原理。 答:QM 原理一 描写围观体系状态的数学量是Hilbert 空间中的矢量,只相差一个复数因子的两个矢量,描写挺一个物理状态。QM 原理二 1、描写围观体系物理量的是Hillbert 空间内的厄米算符(A ?);2、物理量所能取的值是相应算符A ?的本征值;3、一个任意态 总可以用算符A ?的本征态i a 展开如下:ψψi i i i i a C a C ==∑,;而物理量A 在 ψ 中出现的几率与2 i C 成正比。原理三 一个微观粒子在直角坐标下的位置算符i x ?和相应的正则动量算符i p ?有如下对易关系:[]0?,?=j i x x ,[]0?,?=j i p p ,[] ij j i i p x δ =?,? 原理四 在薛定谔图景中,微观体系态矢量()t ψ随时间变化的规律由薛定谔方程给 ()()t H t t i ψψ?=?? 在海森堡图景中,一个厄米算符() ()t A H ?的运动规律由海森堡 方程给出: ()()()[] H A i t A dt d H H ? ,?1? = 原理五 一个包含多个全同粒子的体系,在Hillbert 空间中的态矢对于任何一对粒子的交换是对称的或反对称的。服从前者的粒子称为玻色子,服从后者的粒子称为费米子。 2、薛定谔图景的概念? 答:()()t x t ψψ|,x =<>式中态矢随时间而变而x 不含t ,结果波函数()t x ,ψ中的宗量t 来自()t ψ而x 来自x ,这叫做薛定谔图景. 3、 已知.10,01??? ? ??=???? ??=βα (1)请写出Pauli 矩阵的3个分量; (2)证明σx 的本征态).(211121|βα±=??? ? ??±>=±x S 4、已知:P 为极化矢量,P=<ψ|σ|ψ>,其中ψ=C 1α+C 2β,它的三个分量为: 求证: 答案:设:C 1=x 1+iy 1,C 2=x 2+iy 2

中国科学技术大学量子力学考研内部讲义一(01-06)

量子力学理论处理问题的思路 ① 根据体系的物理条件,写出势能函数,进而写出Schr?dinger 方程; ② 解方程,由边界条件和品优波函数条件确定归一化因子及E n ,求得ψn ; ③ 描绘ψn , ψn *ψn 等图形,讨论其分布特点; ④ 用力学量算符作用于ψn ,求各个对应状态各种力学量的数值,了解体系的性质; ⑤ 联系实际问题,应用所得结果。 有人认为量子力学的知识很零碎,知识点之间好像很孤立,彼此之间联系不是很紧凑,其实不是这样的,我们可以将量子力学分成好几个小模块来学习的,但是每个模块之间都有一定的联系,都相互支持的,比如算符和表象,表面看二者之间好像不相关,实际上在不同的表象中算符的表示是不一样的:在坐标表象中动 量算符?p 和坐标算符?x 之间的关系是?x p i x ?=-?,在动量表象中它们之间的关系为??x x i p ?=?,所以我们在解答一个题目的时候一定要明确所要解决的问题是在哪个表象下,当然一般情况下都是在坐标表象下的。 这里还有一点建议就是经典力学跟量子力学是相对应的,前者是描述宏观领域中物体的运动规律的理论而后者是反映微观粒子的运动规律的理论,所以量子学中的物理量都可以与经典力学中的物理量相对应:薛定谔方程与运动方程;算符与力学量;表象与参考系,所以我们在解答量子力学问题的时候不要单纯的把它当作一个题目来解决,而是分析一个“有趣”的物理现象! 针对中科大历年的硕士研究生入学考试,我们可以将量子力学分为六个模块来系统学习:一、薛定谔方程与波函数;二、力学量算符;三、表象;四、定态问题(一维和三维);五、微扰近似方法;六、自旋,其实前三部分是后三部分的基础,后三部分为具体的研究问题提供方法。所以在以后的学习中我们就从这几部分来学习量子力学,帮助大家将所有的知识系统起来。 第一部分 薛定谔方程与波函数 在经典力学中我们要明确一个物体的运动情况,就需要通过解运动方程得到物体的位移与时间的关系、速度与时间的关系等等,同样的道理,在量子力学中我们要解薛定谔方程,得到粒子的波函数,也就明确了粒子的运动情况,然后再通过对波函数的分析就能得到一系列与之有关的力学量和整个体系的性质。所以说薛定谔方程和波函数是学好量子力学的基础! 一.波函数(基本假设I ) 在坐标表象中,无自旋的粒子或虽有自旋但不考虑自旋运动的粒子的态,用波函数(,)r t ψ表示,2(,)r t d ψτ表示t 时刻粒子处于空间r 处d τ体积元内的几率,即2(,)r t ψ代表粒子的几率密度。 1. 根据波函数的物理意义,波函数(,)r t ψ应具有的性质为: ⑴有限性-在全空间找到粒子的几率2 (,)r t d ψτ?取有限值,即(,)r t ψ是平方可积的; 粒子在全空间出现的几率和等于1,假如2 (,)1r t d ?τ∞≠?,我们找到一个比例系数

量子力学曾谨言习题解答第五章

第五章: 对称性及守恒定律 [1]证明力学量A ?(不显含t )的平均值对时间的二次微商为: ]?],?,?[[2 22 H H A A dt d -= (H ?是哈密顿量) (解)根据力学量平均值的时间导数公式,若力学量A ? 不显含t ,有 ]?,?[1H A i dt A d = (1) 将前式对时间求导,将等号右方看成为另一力学量 ]?,?[1H A i 的平均值,则有: ]?],?,?[[1]?],?,?[1 [ 1222 H H A H H A i i dt A d -== (2) 此式遍乘2 即得待证式。 [2]证明,在不连续谱的能量本征态(束缚定态)下,不显含t 的物理量对时间t 的导数的平均值等于零。 (证明)设A ?是个不含t 的物理量,ψ是能量H ?的公立的本征态之一,求A ?在ψ态中的平均值,有: ???= τ τψψ d A A ?* 将此平均值求时间导数,可得以下式(推导见课本§5.1) ???-≡= τ τψψd A H H A i H A i dt A d )????(*1]?,?[1 (1) 今ψ代表H ?的本征态,故ψ满足本征方程式 ψψE H =? (E 为本征值) (2) 又因为H ?是厄密算符,按定义有下式(ψ需要是束缚态,这样下述积公存在) τψψτψψτ d A H d A H ??????=)? (*)?()~ (?* (3) (题中说力学量导数的平均值,与平均值的导数指同一量) (2)(3)代入(1)得:

τψψτψψd A H i d H A i dt A d )? (*)?(1)?(?*1?????? -= ??? ???-= τψψ τψψd A i E d A i E ?**?* 因*E E =,而0=dt A d [3]设粒子的哈密顿量为 )(2??2r V p H +=μ 。 (1) 证明 V r p p r dt d ??-=? μ/)(2 。 (2) 证明:对于定态 V r T ??=2 (证明)(1)z y x p z p y p x p r ??????++=? ,运用力学量平均值导数公式,以及对易算符的公配律: ]?,??[1)??(H p r i p r d t d ?=? )],,(?21,??????[]?,??[2z y x V p p z p y p x H p r z y x +++=?μ )],,()???(21,??????[2 22z y x V p p p p z p y p x z y x z y x +++++=μ )],,(,[21],??????[2 2 2z y x V zp yp xp p p p p z p y p x z y x z y x z y x +++++++=μ (2) 分动量算符仅与一个座标有关,例如x i p x ?? = ,而不同座标的算符相对易,因此(2)式 可简化成: ]?,??[21]?,??[21]?,??[21]?,??[222z z y y x x p p z p p y p p x H p r μ μμ++=? )],,(,??????[z y x V p z p y p x z y x +++ ],??[],??[],??[]?,??[21]?,??[21]?,??[2122 2 V p z V p y V p x p p z p p y p p x z y x z z y y x x ++++ + = μ μ μ (3)

量子力学导论第12章答案

第十二章 散射 12-1)对低能粒子散射,设只考虑s 波和p 波,写出散射截面的一般形式。 解: ()()()2 2 c o s s i n 121∑∞ =+= l l l i P e l k l θδθσδ 只考虑s 波和p 波,则只取1,0=l ,于是 ()()()2 11002 cos sin 3cos sin 11 θ δθδθσδδP e P e k i i += ()1cos 0=θP , (),c o s c o s 1θθ=P 代入上式,得 ()2 102 cos sin 3sin 11 θ δδθσδδi i e e k += ()2 2 12 101002 2cos sin 9cos cos cos sin 6sin 1θ δθδδδδδ+-+=k 2 2 2102 cos cos 1θ θA A A k ++= 其中 020sin δ=A ,()10101cos cos sin 6δδδδ-=A ,122sin 9δ=A 。 12-2)用波恩近似法计算如下势散射的微分截面: (a ) ()?? ?><-=. , 0;,0a r a r V r V (b ) ()2 0r e V r V α-= (c ) ()r e r V αγ κ-= (d ) ()().r r V γδ= 解:本题的势场皆为中心势场,故有 ()() ? ∞ - =0 ' '' ' 2 sin 2dr qr r V r q u f θ ,2 sin 2θ k q = (1) ()() () 2 ' ' ' ' 2 4 22sin 4? ∞ = =dr qr r V r q u f θθσ (1) (a )()()qa qa qa q V dr qr V r a cos sin sin 2 00 ' ' 0' -- =-? ()()2 6 4 2 02cos sin 4 qa qa qa q V u -= ∴ θσ (b )()? ? ∞ --∞ --= ??? ??0 ' '00 ''0' ' ' 2 '2'2sin dr e e e r i V dr qr e V r iqr iqr r r αα

量子力学主要知识点复习资料全

大学量子力学主要知识点复习资料,填空及问答部分 1能量量子化 辐射黑体中分子和原子的振动可视为线性谐振子,这些线性谐振子可以发射和吸收辐射能。这些谐振子只能处于某些分立的状态,在这些状态下,谐振子的能量不能取任意值,只能是某一最小能量 的整数倍εεεεεn ,,4,3,2,??? 对频率为 的谐振子, 最小能量为: νh =ε 2.波粒二象性 波粒二象性(wave-particle duality )是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。在经典力学中,研究对象总是被明确区分为两类:波和粒子。前者的典型例子是光,后者则组成了我们常说的“物质”。1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。 德布罗意公式h νmc E ==2 λ h m p ==v 3.波函数及其物理意义 在量子力学中,引入一个物理量:波函数 ,来描述粒子所具有的波粒二象性。波函数满足薛定格波动方程 0),()](2[),(22=-?+??t r r V m t r t i ψψ 粒子的波动性可以用波函数来表示,其 中,振幅 表示波动在空间一点(x ,y,z )上的强弱。所以, 应该表示 粒子出现在点(x,y,z )附件的概率大小的一个量。从这个意义出发,可将粒子的波函数称为概率波。 自由粒子的波函数)](exp[Et r p i A k -?=ψ=ψ 波函数的性质:可积性,归一化,单值性,连续性 4. 波函数的归一化及其物理意义 常数因子不确定性设C 是一个常数,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。 相位不定性如果常数 ,则 和 对粒子在点(x,y,z ) 2 (,,)x y z ψ(,,) c x y z ψαi e C =(,,)i e x y z αψ(,,)x y z ψ

高等量子力学

研究生课程教学大纲 高等量子力学 一、课程编码:21-070200-B01-17 课内学时: 64 学分: 4 二、适用学科专业:理学,工学 三、先修课程:数理方法,理论力学,电动力学,量子力学,热力学统计物理 四、教学目标 通过本课程的学习,使研究生掌握希尔伯特空间,量子力学基本理论框架,了解狄拉克 方程,量子力学中的对称性与守恒定律,二次量子化等理论知识,提升在微观体系中运用量 子力学的基本能力。 五、教学方式:课堂讲授 六、主要内容及学时分配 1 希尔伯特空间10学时 1.1 矢量空间 1.2 算符 1.3 本征矢量和本征值 1.4 表象理论 1.5 矢量空间的直和与直积 2 量子力学基本理论框架20学时 2.1 量子力学基本原理 2.2 位置表象和动量表象 2.3 角动量算符和角动量表象 2.4 运动方程 2.5 谐振子的相干态 2.6 密度算符 3 狄拉克方程 6学时 4 量子力学中的对称性 5学时 5 角动量理论简介 5学时 6 二次量子化方法16学时 6.1 二次量子化 6.2 费米子 6.3 玻色子 复习 2学时七、考核与成绩评定:以百分制衡量。 成绩评定依据: 平时作业成绩占30%,期末笔试成绩占70%。 八、参考书及学生必读参考资料 1. 喀兴林,《高等量子力学》,.[M]北京:高等教育出版社,2001 2. Franz Schwabl,《Advanced Quantum Mechanics》,.[M]北京:世界图书出版公司:2012 3. 曾谨言,《量子力学》,.[M]北京:科学出版社:第五版2014或第四版2007 4. https://www.360docs.net/doc/908683219.html,ndau, M.E.Lifshitz,《Quantum Mechanics (Non-reativistic Theory)》,.[M]北京:世界 图书出版公司:1999 5. 倪光炯,《高等量子力学》,. [M]上海:复旦大学出版社:2005 九、大纲撰写人:曾天海

第13章 量子力学基础..

第13章 量子力学基础 13.1 绝对黑体和平常所说的黑色物体有什么区别? 答:绝对黑体是对照射其上的任意辐射全部吸收而不发生反射和透射的物体,而平常所说的黑色物体是只反射黑颜色的物体。 13.2 普朗克量子假设的内容是什么? 答:普朗克量子假设的内容是物体发射和吸收电磁辐射能量总是以νεh =为单位进行。 13.3 光电效应有哪些实验规律?用光的波动理论解释光电效应遇到了哪些困难? 答:光电效应的实验规律为:1)阴极K 在单位时间内所发射的光子数与照射光的强度成正比;2)存在截止频0ν;3)光电子的初动能与照射光的强度无关,而与频率成线性关系; 4)光电效应是瞬时的。 用光的波动理论解释光电效应遇到的困难在于:1)按照波动理论,光波的能量由光强决定,因而逸出光电子的初动能应由光强决定,但光电效应中光电子的初动能却与光强无关;2)若光波供给金属中“自由电子”逸出表面所需的足够能量,光电效应对各种频率的光都能发生,不应存在红限;3)光电子从光波中吸收能量应有一个积累过程,光强越弱,发射光子所需时间就越长。这都与光电效应的实验事实相矛盾。 13.4 波长λ为0.1nm 的X 射线,其光子的能量ε= J 151099.1-?;质量m = kg 321021.2-?;动量p = 1241063.6--???s m kg . 13.5 怎样理解光的波粒二象性? 答:光即具有波动性,又具有粒子性,光是粒子和波的统一,波动和粒子是光的不同侧面的反映。 13.6 氢原子光谱有哪些实验规律? 答:氢原子光谱的实验规律在于氢原子光谱都由分立的谱线组成,并且谱线分布符合组合规律 )11()()(~2 2n k R n T k T kn -=-=ν k 取 ,3,2,1,分别对应于赖曼线系,巴耳米线系,帕形线系,. 13.7 原子的核型结构模型与经典理论存在哪些矛盾? 答:原子的核型结构与经典理论存在如下矛盾:1)按经典电磁辐射理论,原子光谱应是连续的带状光谱;2)不存在稳定的原子。这些结论都与实验事实矛盾。 13.8 如果枪口的直径为5mm,子弹质量为0.01kg,用不确定关系估算子弹射出枪口时的横

量子力学讲义第五章

第五章 中心力场 §5.1 中心力场中粒子运动的一般性质 一、角动量守恒与径向方程 设质量为μ的粒子在中心力场中运动,则哈密顿量算符表示为: 2??()2p H V r μ=+ 22 ()2V r μ =-?+ , 与经典力学中一样,角动量 l r p =? 也是守恒量,即 ?0l t ?=? ??[,]0l H = 2 22221?()22l H r V r r r r r μμ????=-++ ????? 2,0z l l ??=???? ; 2?,0l H ??=???? ; ( ) 2?,,z H l l 构成力学量完全集,存在共同本征态; 定态薛定谔(能量本征方程):2 22 22 1()22l r V r E r r r r ψψμμ????????-++= ????????? 上式左边第二项称为离心势能,第一项称为径向动能算符。 取ψ为 () 2,,z H l l 共同本征态,即:()()(),,,l lm r R r Y ψθ?θ?= (),lm Y θ?是() 2 ,z l l 共同本征态:0,1,2,...l =,0,1,2,...,m l =±±± 分离变量:()()2222 2120l l l E V l l d d R R R r dr dr r μ-+?? ++-= ??? 径向方程可写为:()()2222 2()120l l l E V r l l dR d R R dr r dr r μ-+?? ++-=???? ,0,1,2,...l = (1) 为求解径向方程,引入变换:() ()l l r R r r χ= ; 径向方程简化为:()()2 222 2()10l l E V r l l d dr r μχχ-+??+-=??? ? (2) 不同的中心力场中粒子的能量本征波函数的差别仅在于径向波函数R l (r )或χl (r ),它们由中心势V (r )的性质决定。一般而言,中心力场中粒子的能级是2l +1重简并的。 在一定边条件下求解径向方程(1)或(2),即可得出能量本征值E 。对于非束缚态,E 是连续变化的。对于束缚态,则E 取离散值。在求解径向方程时,由于束缚态边条件,将出现径向量子数n r ,

量子力学讲义第4章

第四章 量子力学的表述形式 (本章对初学者来讲是难点) 表象:量子力学中态和力学量的具体表示形式。 为了便于理解本章内容,我们先进行一下类比: 矢量(欧几里德空间) 量子力学的态(希尔伯特空间) 基矢),,(321e e e ~三维 本征函数,...),...,,(21n ψψψ~无限维 任意矢展开∑=i i i e A A 任意态展开 ∑=n n n a ψψ ),,(z y x e e e ),...)(),...,(),((21x x x n ψψψ 取不同坐标系 ),,(?θe e e r 取不同表象 ),...)(),...,(),((21p C p C p C n ………. ………. 不同坐标之间可以进行变换 不同表象之间可以进行变换 由此可见,可以类似于矢量A ,将量子力学“几何化”→在矢量空间中建立它的一般形式。 为此,我们将 ① 引进量子力学的矢量空间~希尔伯特空间; ② 给出态和力学量算符在该空间的表示; ③ 建立各种不同表示之间的变换关系。 最后介绍一个典型应用(谐振子的粒子数表象)和量子力学的三种绘景。 4.1希尔伯特空间 狄拉克符号 狄拉克符号“ ”~类比: ),,(z y x A A A 欧氏空间的矢量 A →坐标系中的分量 ),,(?θA A A r ………. )(r ψ →表象下的表示 )(p C ……….

引入狄拉克符号的优点:①运算简洁;②勿需采用具体表象讨论。 一、 希尔伯特空间的矢量 定义:希尔伯特空间是定义在复数域上的、完备的、线性内积空间,并且一般 是无限维的。 1、线性:①c b a =+;②a b λ=。 2、完备性:∑=n n n a a 。 3、内积空间: 引入与右矢空间相互共轭的左矢空间 ∑ ==? +n n n a a a a * ; )(:。 定义内积:==* a b b a 复数,0≥a a 。 1=a a ~归一化;b a b a ,~0=正交; m n n m δ=~正交归一;)(x x x x '-='δ~连续谱的正交归一。 二、 量子体系的态用希尔伯特空间的矢量表示 (此属“符号问题”,仅作简要介绍,主要由学生自己通过练习来熟悉符号) 1、态矢符合线性空间的要求:?λψψψψ=+=21。 2、任意态矢可用一组完备的基矢展开: nm m n n n n f f f a δψ==∑, 。 ∑∑ =→====n n n n m mn n n m n m n f a a a f f a f a ψδψ? 。 3、态可以求内积: ??==dx x x dx x x )(,)(??ψψ ~ 以}{x 为基, 其中 ??ψψx x x x ==)()(。 取ψ的左矢:?=dx x x )(*ψψ,有内积 ????='''='''=dx x x dx x d x x x x x d x x dx x x )()()()()()(***?ψ?ψ?ψ?ψ 上式已利用了连续谱的正交归一性)(x x x x '-='δ。 三、 希尔伯特空间的算符 算符 ψ?F F =: 1、算符对左矢的作用: F b 存在,其意义(定义)为 )()(a F b a F a F ==。

相关文档
最新文档