高三数学不等式的证明

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

证明不等式的几种方法

证明不等式的几种方法 淮安市吴承恩中学 严永飞 223200 摘要:不等式证明是中学数学的重要内容,证明方法多种多样.通常所用的公式法、放缩法只能解决一些较简单的问题,对于较难的问题则束手无策.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法,使解题容易,新颖独特. 关键词:不等式,公式法,构建模型法 前言 证明不等式是中学数学的重要内容之一,内容抽象,难懂,证明方法更是变化多端.通常所用的一些方法如公式法、放缩法只能解决一些较简单的问题,较难的问题则无法解决.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法. 这里所举的几种证明不等式的特殊方法看似巧妙,但如果认真思考,广泛联系,学以致用,一定能使问题得到很好的解决. 1 运用倒数变换证明不等式 这里所说倒数变换是根据具体的题目要求把不等式的部分进行倒数变换,通过化简后使不等式变得简单,更好更快的解决证明问题. 例1 设+∈R z y x ,,,且xyz =1 求证:)(13z y x ++)(13z x y ++)(13y x z +≥2 3 分析 如果先通分再去分母,则不等式将变得很复杂. 令A x =-1,B y =-1 ,C z =-1 ,则+∈R C B A ,,且1=ABC . 欲证不等式可化为 C B A +2+A C B +2+B A C +2≥23(*) 事实上,a 2+22b λ≥ab λ2 (+∈R b a ,,λ), 而当b >0时, a 2/b ≥b a 22λλ-. (*)式左边≥A λ2-2λ(C B +)+ B λ2-2λ(C A +)+C λ2-2λ(A B +) = λ2(λ-1)(C B A ++) ≥λ6(λ-1)3ABC = λ6(λ-1). 令λ=21时,C B A +2+A C B +2+ B A C +2 ≥6×21×(1-21)=23 得证. (这里用到二元平均不等式的变形和三元平均不等式.) 例 2 已知z y x ,,>0,n 为大于1的正整数,且n n x x +1+n n y y +1+n n z z +1=1 求证:n x x +1+n y y +1+n z z +1≤n n 12-

几个范数不等式的证明

设X为一n维赋范空间,其范数定义为, 1≤p<∞,证明以下命题: 1. ||x||2≤||x||1≤; 2. ||x||p≤||x||1; 3. ||x||q≤||x||p≤,p|≤||x||2||y||2,令x=( |x1|, |x2|,..., |x n|),y=(1,1, (1) 可得(|x1|+|x2|+…+|x n|)≤(|x1|+| x2|+…+|x n|)1/2n1/2 ||x||1≤成立。 根据Jensen不等式,令α=2,β=1可以证明。 2. 令f(x)= p=1,f(x)=1,所以只考虑p>1的情况

从上图可以看出f(x)在x=0时为1,先上升,在x=1达到最大值2p-1,然后下降,但始终≥1。所以有,即,令x=b/a,有a p+b p≤(a+b)p,同理,使用归纳法可 证明:|x1|p+|x2|p+…+|x n|p≤(|x1|+|x2|+…+|x n|)p②(|x1|p+|x2|p+…+|x n|p)1/p≤|x1|+|x2|+…+|x n| 也即||x||p≤||x||1成立。 3. 先证||x||q≤||x||p (pp)可以证明。 据说可以根据赫尔德不等式证明,但实在想不到方法证。如果你能想到,不妨发封邮件给我:james05y@https://www.360docs.net/doc/9112119470.html, 参考文献 1. 邢家省, 郭秀兰, 崔玉英. 几个幂次不等式的应用[J]. 河南科学, 2008, 26(11):1306-1309. 2. 柯西—施瓦茨不等式. https://www.360docs.net/doc/9112119470.html,/view/979424.htm. 3. Jensen不等式. https://www.360docs.net/doc/9112119470.html,/view/1427148.htm.

高考数学数列不等式证明题放缩法十种方法技巧总结(供参考)

1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n 求证.2 )1(2)1(2 +<<+n S n n n 例2 已知函数bx a x f 211 )(?+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121 )()2()1(1-+ >++++n n n f f f 例3 求证),1(2 21321 N n n n C C C C n n n n n n ∈>?>++++- . 例4 已知222121n a a a +++=,222121n x x x +++=,求证:n n x a x a x a +++ 2211≤1. 2.利用有用结论 例5 求证.12)1 211()511)(311)(11(+>-++++n n 例6 已知函数 .2,,10,)1(321lg )(≥∈≤x x f x f 对任意*∈N n 且2≥n 恒成立。 例7 已知1 12111,(1).2n n n a a a n n +==+++ )(I 用数学归纳法证明2(2)n a n ≥≥; )(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828 e ≈) 例8 已知不等式21111[log ],,2232 n n N n n *+++>∈>。2[log ]n 表示不超过n 2log 的最大整数。设正数数列}{n a 满足:.2,),0(111≥+≤ >=--n a n na a b b a n n n 求证.3,][log 222≥+

证明不等式的种方法

证明不等式的13种方法 咸阳师范学院基础教育课程研究中心安振平 不等式证明无论在高考、竞赛,还是其它类型的考试里,出现频率都是比较高,证明难度也是比较大的.因此,有必要总结证明不等式的基本方法,为读者提供学习时的参考资料.笔者选题的标准是题目优美、简明,其证明方法基本并兼顾巧妙. 1.排序方法 对问题的里的变量不妨排出大小顺序,有时便于获得不等式的证明. 例1已知,,0a b c ≥,且1a b c ++=,求证: ()22229 1. a b c abc +++≥2.增量方法 在变量之间增设一个增量,通过增量换元的方法,便于问题的变形和处理.例2设,,a b c R + ∈,试证:2222 a b c a b c a b b c c a ++++≥+++.3.齐次化法 利用题设条件,或者其它变形手段,把原不等式转换为齐次不等式. 例3设,,0,1x y z x y z ≥++=,求证: 2222222221.16 x y y z z x x y z +++≤4.切线方法 通过研究函数在特殊点处的切线,利用切线段代替曲线段,来建立局部不等式.例4已知正数,,x y z 满足3x y z ++=,求证: 323235 x y +≤++.. 5.调整方法 局部固定,逐步调整,探究多元最值,便能获得不等式的证明. 例5已知,,a b c 为非负实数,且1a b c ++=,求证:13.4 ab bc ca abc ++-≤ 6.抽屉原理

在桌上有3个苹果,要把这3个苹果放到2个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放2个苹果.这一简单的现象,就是人们所说的“抽屉原理”.巧用抽屉原理,证明某些不等式,能起到比较神奇的效果. 例6(《数学通报》2010年9期1872题)证明:在任意13个实数中,一定能找到两个实数,x y ,使得0.3.10.3x y x ->+7.坐标方法 构造点坐标,应用解析几何的知识和方法证明不等式. 例7已知a b c R ∈、、,a 、b 不全为零,求证: ()()()22 22222 22.a b ac a b bc a b c a b +++++≥+++8.复数方法 构造复数,应用复数模的性质,可以快速证明一些无理不等式. 例8(数学问题1613,2006,5)设,,,0,a b c R λ+ ∈≥求证:9.向量方法 构造向量,把不等式的证明纳入到向量的知识系统当中去. 例9已知正数,,a b c 满足1a b c ++=,求证: 4 ≤. 10.放缩方法 不等式的证明,关键在于恒等变形过程中的有效放大、或者缩小技巧,放和缩应当恰到好处. 例10已知数列{}n a 中,首项132 a = ,且对任意*1,n n N >∈,均有 11n n a a +=++()211332.42 n n n a -+<

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

分式不等式的证明与方法

分式 摘要:分式不等式的证明是高中数学中的难点之一,本文主要通过作差法,利用基本不等式法,利用非负实数的性质,利用放缩法,环元法,构造法,类比法,局部不等式法来分析与 证明分式不等式,从而对分式不等式的证明有着整体的理解。通过方法与总结克服证明分式不等式的胆怯心理。 关键词:分式不等式 证明方法 作差法 基本不等式法 构造法 二.利用基本不等式法 均 值 不 等 式 即 : 利用不等式 ∑ =n i y i x m i n 11 ≥∑=∑=n i y i n n i x i n m 1 11)1(∑=-∑=n i i m m y x n n i i 1 2 1 1)((2,1,,=∈+i R y x i i )证明一 类难度较大的分式不等式是很简捷的。 例2.若1,2)(i R =∈+ a i 且N m s n i i a ∈=∑=,1 ,则有∑+=-n i m a a i i 1 ) (1)(s n n s m n +≥ 证明:(1)当m=1时, ∵n a a n i i n i i 2 1 1 1 ≥∑∑=-=,s n a n i i 2 1 1 ≥∑=-,所以有:)1 1 (a a i n i i +∑=-=∑∑==-+n i i n i i a a 1 1 1 ≧s n 2 +s=n(n s s n +) (2)当m=2时,

)1 1 (a a i n i i +∑=-≧ n m 2 1 -n i i n i m a a ∑+=-1 )(1≧n )( n s s n m + 综上,由(1)(2)知原不等式成立。 排序不等式即,适用于对称不等式 例3.设a,b,c 是正实数,求证: 23 ≥+++++b a c a c b c b a 证明:不妨设a ≧c b ≥则b a a c c b +≥+≥+1 11 由排序不等式得: ≥+++++b a c a c b c b a b a a a c c c b b +++++ (1) ≥+++++b a c a c b c b a b a b a c a c b c +++++ (2) 由(1)+(2)得 2( b a c a c b c b a +++++)3≥,所以2 3≥+++++b a c a c b c b a 利用倒数不等式即:若a i >0,则n a a n i i n i i 2 1 1 1 ≥∑∑=-= 例4.设βα,都是锐角,求证:且βα,取什么值时成立? 证明:1cos sin 2 2=+βα,不等式左边拆项得: ββαcos sin sin cos 2 2 2 2 1 1 + = β αβααsni 2 2 2 2 2 sin cos sin cos 1 1 1 + + 又由于1sin sin cos sin cos 2 2222=++βαβαα 由倒数不等式有: ) (sin sin cos sin cos 2 2 2 2 2 βαβαα++)1 1 1 ( 2 2 2 2 2 sin cos sin cos β αβααsni + + ≥9 所以原不等式成立 当且仅当βαβααsin sin cos sin cos 2 2222==即2tan ,1tan ==αβ时等

高等数学中不等式的证明方法

高等数学中不等式的证明方法 摘要:各种不等式就是各种形式的数量和变量之间的相互比较关系或制约关系,因此, 不等式很自然地成为分析数学与离散数学诸分支学科中极为重要的工具,而且早已成为 专门的研究对象。高等数学中存在大量的不等式证明,本文主要介绍不等式证明的几种 方法,运用四种通法,利用导数研究函数的单调性,极值或最值以及积分中值定理来解 决不等式证明的问题。我们可以通过这些方法解决有关的问题,培养我们的创新精神, 创新思维,使一些较难的题目简单化、方便化。 关键词:高等数学;不等式;极值;单调性;积分中值定理 Abstract: A variety of inequality is the various forms of high-volume and variable comparison between the relationship or constraints. Therefore, Inequality is natural to be a very important tool in Analysis of discrete mathematics and various bran(https://www.360docs.net/doc/9112119470.html, 毕业论文参考网原创论文)ches of mathematics .It has been a special study.Today there are a large number of inequalities in higher mathematics .This paper introduces the following methods about Proof of Inequality ,such as the using of several general methods, researching monotone function by derivative, using extreme or the most value and Integral Mean Value Theorem . We can resolve the problems identified through these methods. It can bring up our innovative spirit and thinking and some difficult topics may be more easy and Convenient , Keyword: Higher Mathematics; Inequality; Extreme value Monotonicity; Integral Mean Value Theorem 文章来自:全刊杂志赏析网(https://www.360docs.net/doc/9112119470.html,) 原文地址: https://www.360docs.net/doc/9112119470.html,/article/16be7113-df3a-4524-a9c3-4ba707524e72.htm 【摘要】不等式证明是高等数学学习中的一个重要内容,通过解答考研数学中出现的 不等式试题,对一些常用的不等式证明方法进行总结。 【关键词】不等式;中值定理;泰勒公式;辅助函数;柯西 施瓦茨;凹凸性 在高等数学的学习过程当中,一个重点和难点就是不等式的证明,大多数学生在遇到不 等式证明问题不知到如何下手,实际上在许多不等式问题都存在一题多解,针对不等式的证 明,以考研试题为例,总结了几种证明不等式的方法,即中值定理法、辅助函数法、泰勒公

不等式的证明方法习题精选精讲

不等式性质的应用 不等式的性质是解不等式、证明不等式的基础和依据。教材中列举了不等式的性质,由这些性质是可以继续推导出其它有关性质。教材中所列举的性质是最基本、最重要的,对此,不仅要掌握性质的内容,还要掌握性质的证明方法,理解掌握性质成立的条件,把握性质之间的关联。只有理解好,才能牢固记忆及正确运用。 1.不等式性质成立的条件 运用不等式的基本性质解答不等式问题,要注意不等式成立的条件,否则将会出现一些错误。对表达不等式性质的各不等式,要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性。 例1:若0< B .a b a 11>- C .||||b a > D .22b a > 解:∵0<->-b a 。 由b a -< -11,b a 11>,∴(A )成立。 由0<< b a ,||||b a >,∴(C )成立。 由0>->-b a ,2 2 )()(b a ->-,2 2b a >,∴(D )成立。 ∵0<->-a b a , )(11b a a --<-,b a a ->11,∴(B )不成立。 故应选B 。 例2:判断下列命题是否正确,并说明理由。 (1)若0<c ,在2 2c b c a >两边同乘以2 c ,不等式方向不变。∴b a >。 (3)错误。b a b a 1 1,成立条件是0>ab 。 (4)错误。b a >,bd ac d c >?>,当a ,b ,c ,d 均为正数时成立。 2.不等式性质在不等式等价问题中的应用 例3:下列不等式中不等价的是( ) (1)2232 >-+x x 与0432 >-+x x (2)13 8112++ >++ x x x 与82>x (3)35 7354-+>-+x x x 与74>x (4) 023 >-+x x 与0)2)(3(>-+x x A .(2) B .(3) C .(4) D .(2)(3) 解:(1)0432232 2 >-+?>-+x x x x 。 (2)482>?>x x ,44,11 3 8112>?>-≠?++>++ x x x x x x 。

均值不等式的证明方法

柯西证明均值不等式的方法 by zhangyuong (数学之家) 本文主要介绍柯西对证明均值不等式的一种方法,这种方法极其重要。 一般的均值不等式我们通常考虑的是n n G A ≥: 一些大家都知道的条件我就不写了 n n n x x x n x x x ......2121≥ +++ 我曾经在《几个重要不等式的证明》中介绍过柯西的这个方法,现在再次提出: 8444844)()(: 4422)()(abcdefgh efgh abcd h g f e d c b a abcd abcd cd ab d c b a d c b a ≥+≥+++++++=≥+≥+++=+++八维时二维已证,四维时: 这样的步骤重复n 次之后将会得到 n n n x x x x x x n 2 221221 (2) ...≥ +++ 令A n x x x x x x x x x x n n n n n n =+++= =====++......;,...,2122111 由这个不等式有 n n n n n n n n n n A x x x A x x x A n nA A 2 121 212 221)..(..2 )2(- -=≥ -+= 即得到 n n n x x x n x x x ......2121≥ +++ 这个归纳法的证明是柯西首次使用的,而且极其重要,下面给出几个竞赛题的例子: 例1: 1 1 12101(1,2,...,)11(...)n i i i n n n a i n a a a a =<<=≥ --∑ 若证明 例2:

1 1 1211(1,2,...,)1 1(...)n i i i n n n r i n r r r r =≥=≥ ++∑ 若证明 这2个例子是在量在不同范围时候得到的结果,方法正是运用柯西的归纳法: 给出例1的证明: 12121 2 212 2 123 4 211(1)2(1)(1) 11,(1)(2)2(1) 22(1)2(1)2211111111n a a a a a a p a q a q p p q p q pq q p q q q p q a a a a =+ ≥ ?- --≥----=+= ?--≥-+?-+≥?+≥+?≥+ + + ≥+ ----≥ 当时设,而这是元均值不等式因此此过程进行下去 因2 1 1 2 1221 1212221 12 2 1 1 2 11(...)...(...)112 2 (2) 1111() 111n n n n n n n n i i n n n n n n n n n i i n n i i a a a a a a a a a a G n a G G G G n a G =++-==≥ --=====+-≥ = ----≥ --∑ ∑ ∑ 此令有即 例3: 1 115,,,,1(1),,111,,11( )( ) 1 1 n n i i i i i i i i i n n n i i i i i i n n i i i i i i i i i i i n r s t u v i n R r S s n n T t U u V v n n n r s t u v R ST U V r s t u v R ST U V =>≤≤== = = = ++≥--∑∑∑∑∑∏ 已知个实数都记,求证下述不等式成立: 要证明这题,其实看样子很像上面柯西的归纳使用的形式

一个不等式的七种证明方法

一个不等式的七种证明方法 证明不等式就是证明所给不等式在给定条件下恒成立.由于不等式的形式是多种多样的,因此,不等式的证明方法也可谓是千姿百态.针对不等式证明,要具体问题具体分析,灵活选用证明方法,提高代数变形,推理论证能力,一题多解,有助于我们对辩证唯物主义观点有进一步的认识. 题目:已知a ,b ,c ,d ∈R ,求证:ac +bd ≤))((2222d c b a ++ 分析一:用分析法 证法一:(1)当ac +bd ≤0时,显然成立. (2)当ac +bd >0时,欲证原不等式成立, 只需证(ac +bd )2≤(a 2+b 2)(c 2+d 2) 即证a 2c 2+2abcd +b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2 即证2abcd ≤b 2c 2+a 2d 2 即证0≤(bc -ad )2 因为a ,b ,c ,d ∈R ,所以上式恒成立, 综合(1)、(2)可知:原不等式成立. 分析二:用综合法 证法二: (a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2 =(a 2c 2+2abcd +b 2d 2)+(b 2c 2-2abcd +a 2d 2)

=(ac +bd )2+(bc -ad )2≥(ac +bd )2 ∴))((2222d c b a ++≥|ac +bd |≥ac +bd . 故命题得证. 分析三:用比较法 证法三:∵(a 2+b 2)(c 2+d 2)-(ac +bd )2=(bc -ad )2≥0, ∴(a 2+b 2)(c 2+d 2)≥(ac +bd )2 ∴))((2222d c b a ++≥|ac +bd |≥ac +bd , 即ac +bd ≤))((2222d c b a ++. 分析四:用放缩法 证法四:为了避免讨论,由ac +bd ≤|ac +bd |, 可以试证(ac +bd )2≤(a 2+b 2)(c 2+d 2). 由证法1可知上式成立,从而有了证法四. 分析五:用三角代换法 证法五:不妨设???==???==ββ ααsin cos ,sin cos 2 211r d r c r b r a (r 1,r 2均为变量). 则ac +bd =r 1r 2cos αcos β+r 1r 2sin αsin β=r 1r 2cos (α-β) 又|r 1r 2|=|r 1|·|r 2|=))((22222222d c b a d c b a ++=+?+ 及r 1r cos (α-β)≤|r 1r 2| 所以ac +bd ≤))((2222d c b a ++. 分析六:用换元法

几个重要不等式

几个重要不等式(二)柯西不等式 ,当且仅当b i=l a i(1£i£n)时取等号 柯西不等式的几种变形形式 1.设a i?R,b i>0 (i=1,2,…,n)则,当且仅当b i=l a i(1£i£n)时取等号 2.设a i,b i同号且不为零(i=1,2,…,n),则,当且仅当b1=b2=…=b n时取等号 例1.已知a1,a2,a3,…,a n,b1,b2,…,b n为正数,求证: 证明:左边= 例2.对实数a1,a2,…,a n,求证: 证明:左边= 例3.在DABC中,设其各边长为a,b,c,外接圆半径为R,求证:

证明:左边3 例4.设a,b,c为正数,且a+b+c=1,求证:证明:左边= 3 = = 例5.若n是不小于2的正整数,试证: 证明: 所以求证式等价于 由柯西不等式有

于是: 又由柯西不等式有 < 例6.设x1,x2,…,x n都是正数(n32)且,求证: 证明:不等式左端即 (1) ∵,取,则(2) 由柯西不等式有 (3) 及 综合(1)、(2)、(3)、(4)式得:

三、排序不等式 设a1£a2£…£a n,b1£b2£…£b n;r1,r2,…,r n是1,2,…,n的任一排列,则有:a1b n+ a2b n-1+…+ a n b1£a1b r1+ a2b r2+…+ a n b rn£ a1b1+ a2b2+…+ a n b n 反序和£乱序和£同序和 例1.对a,b,c?R+,比较a3+b3+c3与a2b+b2c+c2a的大小 解:取两组数a,b,c;a2,b2,c2,则有a3+b3+c33a2b+b2c+c2a 例2.正实数a1,a2,…,a n的任一排列为a1/,a2/,…a n/,则有 证明:取两组数a1,a2,…,a n; 其反序和为,原不等式的左边为乱序和,有 例3.已知a,b,c?R+求证: 证明:不妨设a3b3c>0,则>0且a123b123c12>0 则

范数概念

一、范数的定义 若X是数域K上的线性空间,泛函║·║: X->R 满足: 1. 正定性:║x║≥0,且║x║=0 <=> x=0; 2. 正齐次性:║cx║=│c│║x║; 3. 次可加性(三角不等式):║x+y║≤║x║+║y║ 。 那么║·║称为X上的一个范数。 (注意到║x+y║≤║x║+║y║中如令y=-x,再利用║-x║=║x║可以得到 ║x║≥0,即║x║≥0在定义中不是必要的。) 如果线性空间上定义了范数,则称之为赋范线性空间。 注记:范数与内积,度量,拓扑是相互联系的。 1. 利用范数可以诱导出度量:d(x,y)=║x-y║,进而诱导出拓扑,因此赋范线性空间是度量空间。 但是反过来度量不一定可以由范数来诱导。 2. 如果赋范线性空间作为(由其范数自然诱导度量d(x,y)=║x-y║的)度量空间是完备的,即任何柯西(Cauchy)序列在其中都收敛,则称这个赋范线性空间为巴拿赫(Banach)空间。 3. 利用内积<·,·>可以诱导出范数:║x║=^{1/2}。 反过来,范数不一定可以由内积来诱导。当范数满足平行四边形公式 ║x+y║^2+║x-y║^2=2(║x║^2+║y║^2)时,这个范数一定可以由内积来诱导。 完备的内积空间称为希尔伯特(Hilbert)空间。 4. 如果去掉范数定义中的正定性,那么得到的泛函称为半范数(seminorm或者叫准范数),相应的线性空间称为赋准范线性空间。完备的赋准范线性空间称为Fréchet 空间。 对于X上的两种范数║x║α,║x║β,若存在正常数C满足 ║x║β≤C║x║α 那么称║x║β弱于║x║α。如果║x║β弱于║x║α且║x║α弱于║x║β,那么称这两种范数等价。 可以证明,有限维空间上的范数都等价,无限维空间上至少有阿列夫(实数集的基数)种不等价的范数。 二、算子范数 如果X和Y是巴拿赫空间,T是X->Y的线性算子,那么可以按下述方式定义║T║:║T║ = sup{║Tx║:║x║<=1} 根据定义容易证明║Tx║ <= ║T║║x║。 对于多个空间之间的复合算子,也有║XY║ <= ║X║║Y║。 如果一个线性算子T的范数满足║T║ < +∞,那么称T是有界线性算子,否则称T 是无界线性算子。 比如,在常用的范数下,积分算子是有界的,微分算子是无界的。 容易证明,有限维空间的所有线性算子都有界。 三、有限维空间的范数 基本性质 有限维空间上的范数具有良好的性质,主要体现在以下几个定理: 性质1:对于有限维赋范线性空间的任何一组基,范数是元素(在这组基下)的坐标

高中数学不等式的几种常见证明方法(县二等奖)

高中数学不等式的几种常见证明方法 摘 要:不等式是中学数学的重要知识,考察学生对不等式理论熟练掌握的程度也是衡量学生数学水平的重要方面,同时,不等式也是高中数学的基础,因此,在每年的数学高考题中,有关不等式的相关题目都有所出现,本文介绍了几种不等式的证明方法,并举例进一步加强对各种不等式的理解. 关键字:不等式;数学归纳法;均值;柯西不等式 一、比较法 所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法. 例 1 设,x y R ∈,求证:224224x y x y ++≥+. 证明: 224224x y x y ++-- =2221441x x y y -++-+ =22(1)(21)x y -+- 因为 2(1)0x -≥, 2(21)0y -≥ ∴ 22(1)(21)0x y -+-≥ ∴2242240x y x y ++--≥ ∴224224x y x y ++≥+ 例 2 已知:a >b >c >0, 求证:222a b c a b c ??>b c a c b c a b c +++??. 证明:222a b c b c a c b c a b c a b c +++????=222a b c b a c c b c a b c ------?? >222a b c b a c c b c c c c ------??

=0c =1 222a b c b c a c b c a b c a b c +++??∴??>1 ∴222a b c a b c ??>b c a c b c a b c +++?? 二、分析法 分析法:从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立. 例 3 求证3< 证明: 960+>> 5456<成立∴原不等式成立运用分析法时,需积累一些解题经验,总结一些常规思路,这样可以克服无目的的乱写,从而加强针对性,较快地探明解题的途径. 三、综合法 从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式,这种证明方法叫做综合法. 例 4 已知,a b R +∈,1a b +=,求证:221125()()2 a b a b +++≥ 证明:∵ 1a b += ∴ 1=22222()22()a b a b ab a b +=++≤+ ∴ 221 2 a b +≥

不等式的常见证明方法

不等式常见的三种证明方法 渠县中学 刘业毅 一用基本不等式证明 设c b a ,,都是正数。求证:.c b a c ab b ac a bc ++≥++ 证明:.22c b ac a bc b ac a bc =?≥+ .22b c ab a bc c ab a bc =?≥+ .22a c ab b ac c ab b ac =?≥+ ).(2)(2c b a c ab b ac a bc ++≥++ .c b a c ab b ac a bc ++≥++ 点评:可用综合法分析乘积形式运用不等式可以转化为所求。 思维训练:设c b a ,,都是正数。求证: .222c b a c b a a c b ++≥++ 二 放缩法证明不等式 已知,对于任意的n 为正整数,求证: 1+221+321+K +n 21<4 7 分析:通过变形将数列{n 21 }放缩为可求数列。 解:Θ n 21=n n ?1<)1(1-n n =11-n —n 1(n ≥2) ∴1+221+321+K +n 21<1+2 21+231?+341?+K +)1(1-n n =1+ 41+(21—31+31—41+K +11-n —n 1) =45+21—n 1 =47—n 1 点评:放缩为可求和数列或公式是高考重要思想方法。 思维训练:设c b a ,,都是正数,a+b>c,求证:a a +1+b b +1>c c +1

三 构造函数法证明 证明不等式3ln 3121112ln <+++++0有不等式x x 11ln - ≥,如果令x=k k 1+,则有111ln +>+k k k ,如果令x=1+k k ,则k k k ->+11ln ,即k k k k 1ln )1ln(11<-+<+,然后叠加不等式即可。 解:设函数x x x x f ln 1)(+-=,则易证0)(≥x f ,即不等式x x 11ln -≥对于x>0恒成立, 令x=k k 1+,则有111ln +>+k k k ,令x=1+k k ,则k k k ->+11ln ,即k k k 11ln <+成立。从而有k k k k 1ln )1ln(11<-+<+。 在不等式k k k 11ln <+中,分别令,3,,2,1n n n k K ++=得到一系列不等式相加为 )13ln()2ln()2ln()1ln(312111++++-+++->+++++n n n n n n n K K 即n n n 312111+++++K >113ln ++n n 2ln 1 22ln =++≥n n 在不等式1 11ln +>+k k k 中,分别令k=n,n+1,K 3n-1,并把所得的不等式相加,得 n n n 312111+++++K <3ln 3ln 3ln )1ln()1ln(ln ==++-++-n n n n n n K 即不等式3ln 3121112ln <+++++

相关文档
最新文档