正余弦定理的综合运用

正余弦定理的综合运用
正余弦定理的综合运用

正余弦定理的综合运用

一、教材分析

1.教学内容:必修5第11.节正弦定理和余弦定理,根据课标要求本书该节共3课时,这是第3课时,其主要内容是正余弦定理的综合运用。

2.地位作用:①高考考纲要求:掌握正余弦定理,并能够运用正余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。②高考考查趋势:斜三角形的边角关系以选择题或填空题给出一小题或难度较小的解答题。二、学生学习情况分析

学生在学习本节之前已经分别学习过正弦定理和余弦定理,但学生只是停留在对正弦定理和余弦定理的初步认知阶段,对什么情况下用正弦定理、什么情况下用正弦定理未作进一步的研究,对三角形的边角互换未作进一步的探索。另外高二学生经过了一年半的高中学习之后,已初步具有了发现和探究问题的能力,这为本节学习奠定了一定的基础。

三、教学过程

(一)课前预习导学

1.学习目标

(1)、进一步熟悉正余弦定理内容,并能运用定理解决一些简单的实际问题。

(2)、通过正余弦定理综合运用的学习,提高解决实际问题的能力,进一步体会转化化归的数学思想。

(3)、通过一题多解、一题多变的训练,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功。

2.教学重点和难点:

(1)教学重点:利用正余弦定理进行边角互换。

(2)教学难点:

利用正余弦定理进行边角互换时的转化方向。

3.教学方法:探析归纳,讲练结合 4.自主预习

(1)知识梳理:

正弦定理:

2sin sin sin a b c

R A B C

===(R 为ABC ?的外接圆半经) 正弦定理常见变形公式:

①边化角:2sin ,2sin ,2sin a R A b R B c R C === ②角化边:sin ,sin ,sin 222a b c

A B C R R R

=

==

③比例:::sin :sin :sin a b c A B C = 余弦定理:2222cos a b c bc A =+-

2222cos b c a ca B =+- 2222cos c a b ab A =+-

余弦定理常见变形公式:

222cos 2b c a A bc +-=,222cos 2c a b B ca +-=,222

cos 2a b c C ab

+-=

求角、判别角、边角互化

(2)预习检测:

1.在△ABC 中,已知30,120c B C ===,则______b =

2.

【2012陕西文】在ABC ?中,角A,B,C 所对应的长分别为,,a b c ,若2a = ,

6

B π

=

,c =,则________b =

3.在ABC ?中,若7a =,3b =,5c =,则_________A = 4.在△ABC 中,cos cos b A a B =,则三角形为( )

A 、直角三角形

B 、锐角三角形

C 、等腰三角形

D 、等边三角形

(二)预习检测反缋

1.在△ABC 中,已知30,120c B C ===,则______b =

解:由正弦定理

sin sin =

b c

B C

sin sin 301sin sin120

c b B C =

=?= 小结:已知两角及其中一个角的对边,选用正弦定理.

变式1:在△ABC 中,已知1,30c b B ===,则_________A =

解:由正弦定理

sin sin =

b c

B C

得 3

sin sin 30===

c C B b

∵>c b , ∴>C B ,∴ =C 60或120=C . ∴90=A 或30=A .

小结:已知两边和一边对角,用正弦定理求另一个角,但需要进行讨论,有两解的可能。 2.

【2012陕西文】在ABC ?中,角A,B,C 所对应的长分别为,,a b c ,若2a = ,6

B π

=,

c =,则________b =

解:由余弦定理得2222cos b c a ca B =+-

22222cos

46

π

=+-??=

∴2b =

小结:已知两边和它们的夹角,用余弦定理求第三边。

变式2:在ABC ?中,角A,B,C 所对应的长分别为,,a b c ,若2a = ,6

A π

=

,c =,

则________b =

解法一:由余弦定理得2

2

2

2cos a b c bc A =+-

∴222

22cos 6

b b π

=+-?

即2

680b b -+= 解得2b =或4b =

小结:已知两边和一边的对角,用余弦定理求第三边,但要注意选用余弦定理时要选能

用已知角的公式。

解法二:由正弦定理得

sin sin a c

A C =

即2sin sin 6

C π= 解得sin 2C = ∵c a >, ∴C A >,∴3

C π

=或

23π ∴2B π=或6

π

当2

B π

=时,b =4= 当6

B π=

时,∵6

B A π

==

∴2b a ==

综上,2b =或4b =

小结:已知两边和一边的对角,用正弦定理求已知的另一边的对角,从而得第三个角,

再用余弦定理求第三边。

3.在ABC ?中,若7a =,3b =,5c =,则____________A =

解:由余弦定理得2222223571

cos 22352

b c a A bc +-+-=

==-?? ∵0A π<< ∴23

A π=

小结:已知三边,,a b c ,用余弦定理求角.

变式3:在ABC ?中,若3a =,4b =,c =则这个三角形中最大角为_______23

π 解:∵c a b >= ∴C 为最大内角

由余弦定理得2221

cos 22

a b c C ab +-=

==- ∵0C π<< ∴最大内角为23

C π

=

4.在△ABC 中,cos cos b A a B =,则三角形为( )

A 、直角三角形

B 、锐角三角形

C 、等腰三角形

D 、等边三角形

解法一:由已知及正弦定理得

sin cos cos sin 0B A B A -=

∴sin()0B A -=

∵,(0,)A B π∈ ∴B A = ∴选()C

小结:运用正弦定理可以把边角关系转化为单一的角关系. 解法二:由已知及余弦定理得

22222222b c a c a b b a bc ca

+-+-?=?

整理得,2

2

2

2

b a a b -=- ∴2

2a b =从而a b = ∴选()C

小结:运用余弦定理可以把边角关系转化为单一的边长关系. 变式4:在△ABC 中,sin 2cos sin A B C =,那么△ABC 是( )

A 、直角三角形

B 锐角三角形

C 、等腰三角形

D 、等边三角形

解法一:由已知及正弦定理、余弦定理得

222

22c a b a c ca

+-=??

整理得,2

2

2

2

a c a

b =+- ∴2

2

c b =从而c b =∴选()C 小结:运用正弦定理、余弦定理都可以把角转化为边.

解法二:∵A B C π++= ∴sin sin[()]sin()A B C B C π=-+=+

∴由已知得sin()2cos sin B C B C += ∴sin cos cos sin 2cos sin B C B C B C += ∴sin()0B C -=

∵,(0,)B C π∈ ∴B C = ∴选()C

小结:运用三角形内角和定理可以把三个角化为二个角,达到消元的目的.

(三)课堂拓展探究

探究:已知,,a b c 分别是ABC ?的三个内角,,A B C 的对边,

2cos cos b c C

a A

-=

. (1)求角A 的大小;

(2)求函数sin()6

y B C π

=+-

的值域.

解法一:(I )由已知及正弦定理,得:

2sin sin cos sin cos B C C

A A

-=

即2sin cos sin cos sin cos B A A C C A =+ 故2sin cos sin()sin B A A C B =+= ∵ 0B π<< ∴sin 0B ≠ ∴1cos 2A =

又∵0A π<< ∴3

A π

= 解法二:(I )由已知得(2)cos cos b c A a C -=

由余弦定理得222222

(2)22b c a a b c b c a bc ab

+-+--?=?

∴2

2

2

2

2

2

(2)()()b c b c a c a b c -+-=+- 整理得3

2

2

2

0b bc ab b c ---= ∵0b ≠,∴2

2

2

b c a bc +-=-

∴由余弦定理得2221

cos 22

b c a A bc +-=

=- 又∵0A π<< ∴3

A π

=

小结:①第(I )小题既可以用正弦定理,又可以用余弦定理, 应优先考虑用正弦定理,

因为用正弦定理一般情况下较简便。

②要注意解题规范,两边除以sin B 时,要说明sin 0B ≠;由1

cos 2

A =

,得3

A π

=

,要先说明A 的范围. (II )∵ 3A π

=

∴23B C π+=

且2(0,)3

B π∈

∴sin()6

y B C π

=+-

sin()2

B B π

=+-

cos B B =+

2sin()6B π

=+

∵2(0,)3B π∈ ∴5(,)666

B πππ

+∈

∴1sin()(,1]62

B π

+

所以所求函数值域为(1,2]

小结:运用三角形内角和定理可以把二个角化为一个角,达到消元的目的.

(四)当堂检测

1.(2013上海文)已知△ABC 的内角A , B , C 所对的边分别是a ,b ,c ,若222

0a ab b c ++-=,

则角C 的大小是 . 解:由已知及得2

2

2

a b c ab +-=-

由余弦定理得2221

cos 222

a b c ab C ab ab +--=

==- ∵0C π<< ∴角C 的大小是

π3

2

2.ABC ?中,2a =,b =45B =,则角A 等于( )

A .60

B .60或120

C .30

D .30或150

解:由已知及正弦定理得sin 1

sin

2a B A b =

== ∵a b < ∴A B < ∴30A =,故选 ( C )

3.(2013陕西文理)设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若

cos cos sin b C c B a A +=, 则△ABC 的形状为( )

(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定 解法一:由已知及正弦定理得2

sin cos cos sin sin B C B C A +=

∴2

sin()sin B C A += ∴2sin()sin A A π-= 即2

sin sin A A =

∵0A π<< ∴sin A ≠0

∴sin 1A = ∴ 2

A π

=

故选(B)

解法二:由已知及余弦定理得222222

sin 22a b c c a b b c a A ab ca

+-+-?

+?= ∴

222222

sin 22a b c c a b a A a a

+-+-+= 整理得sin a a A =

∵0a ≠ ∴sin 1A = 又∵0A π<<∴ 2

A π

=

故选(B)

4.如图,隔河看两目标A 、B ,但不能到达, 在岸边选取相距3千米的C 、D 两点,并 测得75ACB ∠=,45ADB BCD ∠=∠=,

30ADC ∠=,(A 、B 、C 、D 在同一平面),

则两目标AB 之间的距离为________。

解:由已知得180********CAD ∠=---=ADC =∠

∴3AC CD ==

由已知得180********CBD ∠=---= 在BCD ?中,由正弦定理得sin sin CD

BD BCD CBD

=

∠∠

3

sin 45sin 60

=

2=

在ACD ?中,由余弦定理得2

2

2

2cos AD AC CD AC CD ACD =+-∠

22(3)(3)233cos120=+-??9=

∴3AD =

在ADB ?中,由余弦定理得2

2

2

2cos AB AD BD AD BD ADB =+-∠

223(2)232cos 45=+-???5=

∴两目标AB 之间的距离为5千米

(五)小结与反馈:

1.正弦定理和余弦定理的每一个等式中都包含三角形的四个元素,如果其中三个元素是已知的(其中至少有一边),那么这个三角形一定可解。

2.正弦定理和余弦定理的特殊功能是边角互换,它是三角形边角转化的桥梁,充分体现了转化化归的数学思想,即利用它们可以把边的关系转化为角的关系,也可以把角的关系转化为边的关系,从而使许多问题得以解决。

2.根据条件选用定理可使解题简便,如果一道题即可以用正弦定理,又可以用余弦定理,应优先考虑用正弦定理,因为用正弦定理一般情况下较简便。

3.运用三角形内角和定理可以把三个角化为二个角或二个角化为一个角,达到消元的目的. 4.要注意解题规范:①两边除以一个数时,要说明这个数不等于零;②由三角函数值求角,要先说明角的范围.

(六)课后拓展提升

1.在△ABC 中,222sin sin sin sin sin A B B C C =++,则A 等于( )

A 、30

B 、60

C 、120

D 、150

解:由已知及正弦定理得2

2

2

b c a bc +-=-

由余弦定理得2221

cos 222

b c a bc A bc bc +--=

==- ∵0A π<< ∴120

A =,故选(C )

2.在△ABC 中,已知cos cos a A b B =,那么△ABC 是( D )

A 、直角三角形

B 、等腰三角形

C 、等边三角形

D 、等腰三角形或直角三角形 解法一:由已知及正弦定理得sin cos sin cos A A B B =

∴sin 2sin 2A B =

∵A 、(0,)B π∈ ∴22A B =或22A B π+=

即A B =或2

A B π

+=

∴△ABC 是等腰三角形或直角三角形, 故选(D )

解法二:由已知及余弦定理得222222

22b c a c a b a b bc ca

+-+-?=?

整理得 2

2

2

2

2

2

2

2

()()a b c a b c a b +-=+- 化简得 224224

a c a

b

c b -=- ∴4

4

22

22

()()0a b a c b c ---= ∴2

2

2

2

2

()()0a b a b c -+-= ∴a b =或2

2

2

a b c +=

∴△ABC 是等腰三角形或直角三角形, 故选(D )

3.在△ABC 中,已知4a =,5b =,53ABC S ?=,则___________c =

解:由已知得

1

45sin 532

C ???= ∴3sin C =

∵0C π<< ∴3C π=或23

C π= 当3C π

=

时,由余弦定理得2

2

2

1

45245212c =+-???

= ∴21c =

当23C π=时,由余弦定理得222

145245()612

c =+-???-= ∴61c =

综上,c =21或61

4.在四边形ABCD 中,已知AD CD ⊥,

10AD =,14AB =,3

BDA π

∠=

34

BCD π

∠=

,则_____BC = 解:在ABD ?中,由余弦定理得2222cos AB AD BD AD BD BDA =+-∠

即2

2

2

114102102

BD BD =+-??? 解得16BD =或6BD =-(舍去) ∵AD CD ⊥,3

BDA π

∠=

∴6

BDC π

∠=

在BCD ?中,由正弦定理得sin sin BD BC BDC BCD

=?∠

∠16sin 36sin 4π

π=?=5.

在锐角△ABC 中,内角,,A B C 的对边分别为,,a b c ,已知向量1

2

=(,cos )m A ,

=(sin ,n A ,且⊥m n (1)求角A 的大小;

(2)若7,8a b ==,求△ABC 的面积. 解:(1)∵⊥m n ∴0=m n

1sin 02A A = ∵02

A π

<<

∴cos 0A ≠,

则tan A =∴3

A π

=

(2)解法一:由正弦定理得

sin a b

sinA B

=

又7,8a b ==, 则84sin 607B sin =

= ∵△ABC 是锐角三角形 ∴1

cos 7

B =

∵sin sin()sin cos cos sin C A B A B

A B =+=+

11272714

=

+?= ∴1

sin 2

ABC S ab C =

=

解法二:∵7,8==a b ,3

A π

=

∴由余弦定理得2

14964282

c c =+-?? 即2

8150c c -+= 解得3c =或5c =

当3c =时,222

949640c a b +-=+-<所以cos 0B <,不合题意.

当5c =时,222

2549640c a b +-=+->所以cos 0B >,符合题意.

∴1

sin 2

ABC S bc A =

=

高考第32课正弦定理与余弦定理的综合应用.docx

第32课正弦定理与余弦定理的综合应用 【自主学习】 第32课正弦定理与余弦定理的综合应用 (本课时对应学生用书第页 ) 自主学习回归教材 1.(必修5P16练习1改编)在△ABC中,若sin A∶sin B∶sin C=7∶8∶13,则cos C=. 【答案】-1 2 【解析】由正弦定理知a∶b∶c=7∶8∶13,再由余弦定理得cos C= 222 78-13 278 + ??=- 1 2. 2.(必修5P24复习题1改编)在△ABC中,内角A,B,C的对边分别为a,b,c.若a2-b2= 3bc,sin C3sin B,则角A=. 【答案】π6 【解析】由sin C3sin B得c3b,代入a2-b23bc得a2-b2=6b2,所以a2=7b2,a7b, 所以cos A= 222 - 2 b c a bc + = 3 2,所以角A= π 6. 3.(必修5P20练习3改编)如图,一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°方向、距塔68 n mile的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度为n mile/h.

(第3题) 【答案】 176 4.(必修5P26本章测试7 改编)设△ABC的内角A,B,C的对边分别为a,b,c.若a sin A+c sin C-2a sin C=b sin B,则角B=. 【答案】45° 【解析】由正弦定理得a2+c2-2ac=b2,再由余弦定理得b2=a2+c2-2ac cos B,故cos B= 2 2,因此B=45°. 5.(必修5P19例4改编)在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c 成等比数列,则角B的取值范围为. 【答案】 π0 3?? ???, 【解析】因为a,b,c成等比数列,所以b2=ac,所以cos B= 222 - 2 a c b ac + = 22- 2 a c ac ac + ≥1 2, 因为0

正余弦定理实际应用

三角恒等变换与解三角形 学习目标: 1.三角函数的化简与求值是高考的命题热点,其中同角三角函数的基本关系、诱导公式是解决计算问题的工具,三角恒等变换是利用三角恒等式(两角和与差、二倍角的正弦、余弦、正切公式)进行变换,“角”的变换是三角恒等变换的核心,试题多为选择题或填空题. 2.利用正弦定理或余弦定理解三角形、判断三角形的形状或求值等,并经常和三角恒等变换结合进行综合考查. 重难点:利用正弦定理或余弦定理解三角形、判断三角形的形状或求值等,并经常和三角恒等变换结合进行综合考查. 真 题 感 悟 1.若tan α=2tan π5,则cos ? ??? ? α-3π10sin ? ??? ?α-π5=( ) A.1 B.2 C.3 D.4 2.(2015·广东卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π 6 ,则b =________. 3.在△ABC 中,a =4,b =5,c =6,则sin 2A sin C =________. 4.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________. 考 点 整 合 1.三角函数公式 (1)同角关系:sin 2 α+cos 2 α=1,sin α cos α =tan α. (2)诱导公式:在k π 2 +α,k ∈Z 的诱导公式中“奇变偶不变,符号看象 限”. (3)两角和与差的正弦、余弦、正切公式: sin(α±β)=sin αcos β±cos αsin β;cos(α±β)=cos αcos β?sin αsin β;tan(α±β)=tan α±tan β 1?tan αtan β . (4)二倍角公式:sin 2α=2sin αcos α,cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. 2.正、余弦定理、三角形面积公式

正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例 考点梳理 1. 用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 2. 实际问题中的常用角 (侧角和俯角 与目标线在同一铅垂平面内的水平■视线和目标视线的火角,目标视线在水平■视线白勺角叫仰角,目标视线在水平■视线下方的角叫俯角(如图①). (2) 方向角:相对丁某正方向的水平■角,如南偏东30°,北偏西45°,西偏北60等; (3) 方位角 指从正北方向顺时针转到目标方向线的水平■角,如B点的方位角为g如图②). (4) 坡度:坡面与水平■面所成的二面角的度数. 【助学微博】 解三角形应用题的一般步骤 (1) 阅读理解题意,弄活问题的实际背景,明确已知与未知,理活量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力. (2汁艮据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3汁艮据题意选择正弦定理或余弦定理求解.

(4)#三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等. 解三角形应用题常有以下两种情形 (1) 实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2) 实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有 时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 考点自测 1. (2012江苏金陵中学)已知^ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等丁 - 解析记三角形三边长为a-4, a, a+ 4,则(a + 4)2 = (a-4)2 + a2— 2a(a-4)cos 1 120,解得a= 10,故S= 2 X 10x 6X sin 120 = 15寸3. 答案15 3 2. 若海上有A, B, C三个小岛,测得A, B两岛相距10海里,/ BAC= 60°, / ABC= 75°,则B, C问的距离是__________ 渔里. ................................ BC AB - 解析由正弦正理,知sin 60° = sin 1800-60°-75°.解侍BC= 5V6(海里)? 答案5 6

正余弦定理的综合应用

正余弦定理的综合应用教学设计 课题名称正余弦定理的综合应用 科目数学(高三)授课人耿向娜 一、教学内容分析 本节课为高三一轮复习中的解三角形部分的习题课。解三角形的知识在历年的高考中与三角函数向量等知识相结合,频繁出现在选择、填空和17题的位置,是学生们的重要得分点之一。本节课对2013年中出现的解三角形问题的分析解答,强化学生对解三角形的理解和巩固,同时消除他们对高考的畏惧感,提升其自信心。 二、教学目标 1、知识目标:熟练掌握正余弦定理、三角形面积公式、边角关系互化,同时熟练结合三角函数知识求相关函数的最值等。 2、能力目标:培养学生分析解决问题的能力,提高学生的化简计算能力 3、情感目标:让学生在直接面对高考真题的过程中,体会解决问题的快乐,提升他们的自信心,提高他们的备战能力! 三、学情分析 我所任课的班级是高三22班是文科普通班,他们的数学基础整体上很薄弱,计算能力有待提高。通过三个多月的一轮复习,越来越多的学生对数学产生了兴趣,同时也品尝到数学成绩提高带来的喜悦,具有了一定的函数知识和解决问题的能力。 四、教学重点难点 重点正余弦定理的应用 难点公式的转化和计算

五、教法分析 本节课我利用多媒体辅助教学,采用的是教师引导下的学生自主探究式学习法。 六、教学过程 教学环节教学内容设计意图 一、基 础 知 识 回 顾回顾正弦定理:k C c B b A a = = = sin sin sin ; C k c B k b A k a sin , sin , sin= = = 余弦定理: ? ? ? ? ? - + = - + = - + = C ab b a c B ac c a b A bc c b a cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 2 ? ? ? ? ? ? ? ? ? - + = - + = - + = ab c b a C ac b c a B bc a c b A 2 cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 三角形面积公式:A bc B ac C ab S sin 2 1 sin 2 1 sin 2 1 = = = 通过对公式的 回顾,为本节 课解答问题提 供工具。 二、例 题 讲 解类型一:判定三角形形状 1、设在ABC ?中,若B b A a cos cos=,判定该三角形 的形状。 该题的设置目 的在于训练学 生对边角混合 式的转化。此 题可以边化 角,也可角化 边,让学生体 会正余弦定理 的应用和边角 转化的魅力。 形 直角三角形或等腰三角 或 法二:(角化边) 角形 为等腰三角形或直角三 , 或 ) 解析:法一:(边化角 ? = = + ? = - - + ? - = - ? - + = - + ? - + = - + ? = + = + = ? = ? = b a c b a o b a c b a c b a b a b c a b a c b a ac b c a b bc a c b a B A B A B A B A B A A 2 2 2 2 2 2 2 2 2 2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ) )( ( ) ( ) ( ) ( 2 2 . 2 2 2 2 sin 2 1 2 sin 2 1 sinBcos cos sin π π

正余弦定理的综合应用及答案

正余弦定理的综合应用 1.【河北省唐山一中2018届二练】在ABC ?中,角,,A B C 的对边分别为,,a b c ,且 ()()3,cos sin sin cos 0b A B c A A C =+-+=. (1)求角B 的大小;(2)若ABC ?的面积为 3 2 ,求sin sin A C +的值. 2.【北京市海淀区2018届高三第一学期期末】如图,在ABC ?中,点D 在AC 边上,且 3AD DC =,7AB =,3 ADB π ∠=,6 C π ∠= . (Ⅰ)求DC 的值; (Ⅱ)求tan ABC ∠的值. 【解决法宝】对解平面图形中边角问题,若在同一个三角形,直接利用正弦定理与余弦定理求解,若图形中条件与结论不在一个三角形内,思路1:要将不同的三角形中的边角关系利用中间量集中到一个三角形内列出在利用正余弦定理列出方程求解;思路2:根据图像分析条件和结论所在的三角形,分析由条件可计算出的边角和由结论需要计算的边角,逐步建立未知与已知的联系. 3.【海南省2018届二模】已知在ABC ?中,a ,b ,c 分别为内角A ,B ,C 的对边,且 3cos sin cos b A a A C +sin cos 0c A A +=. (1)求角A 的大小; (2)若3a =,12 B π = ,求ABC ?的面积. 4.【湖北省天门等三市2018届联考】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos cos cos 3sin cos C A B A B +=. (Ⅰ)求cos B 的值;(Ⅱ)若1a c +=,求b 的取值范围. 5.【山东省淄博市2018届高三3月模拟】在 中,角 对边分别为 ,已知 . (1)求角的大小;(2)若 ,求 的面积. 6.【福建省南平市2018届第一次质检】在中, 分别为角 的对边,且 . (1)若,求及; (2)若 在线段 上,且 ,求的长. 7.【山东省实验中学2017届高三第一次诊,16】在△ABC 中,a ,b ,c 分别是角A ,B , C 的对边, cos 2cos C a c B b -=,且2a c +=.

正余弦定理练习题(答案)

正弦定理 1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) A. 6 B. 2 C. 3 D .2 6 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.32 3 3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135° B.135° C.45° D.以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5 D .不确定 解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6. 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 B.12 C .2 D.1 4 6.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( ) A.32 B.34 C.32或 3 D.34或32 8.△ABC 的角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) A. 6 B .2 C. 3 D. 2 9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π 3,则A =________. 10.在△ABC 中,已知a =43 3 ,b =4,A =30°,则sin B =________. 11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________. 13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +c sin A +sin B +sin C =________,c =________. 14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C =________. 15.在△ABC 中,已知a =32,cos C =1 3,S △ABC =43,则b =________. 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解. 17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为 110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少? 18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A 2 ,求A 、B 及b 、c . 19.(2009年高考卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =3 5, sin B = 10 10 .(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值.

正弦定理与余弦定理地综合应用

正弦定理与余弦定理的综合应用 (本课时对应学生用书第页 ) 自主学习回归教材 1.(必修5P16练习1改编)在△ABC中,若sin A∶sin B∶sin C=7∶8∶13,则cos C=. 【答案】-1 2 【解析】由正弦定理知a∶b∶c=7∶8∶13,再由余弦定理得cos C= 222 78-13 278 + ??=- 1 2. 2.(必修5P24复习题1改编)在△ABC中,角A,B,C的对边分别为a,b,c.若a2-b23bc,sin C3B,则角A=. 【答案】π6 【解析】由sin C 3B得c3b,代入a2-b23得a2-b2=6b2,所以a2=7b2,a7b, 所以cos A= 222 - 2 b c a bc + = 3 ,所以角A= π 6.

3.(必修5P20练习3改编)如图,一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°方向、距塔68 n mile的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度 为n mile/h. (第3题) 【答案】 176 4.(必修5P26本章测试7改编)设△ABC的角A,B,C的对边分别为a,b,c.若a sin A+c sin C2sin C=b sin B,则角B=. 【答案】45° 【解析】由正弦定理得a2+c22ac=b2,再由余弦定理得b2=a2+c2-2ac cos B,故cos B=2 , 因此B=45°. 5.(必修5P19例4改编)在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等比数列,则角B的取值围为. 【答案】 π0 3?? ???,

正余弦定理的应用举例

正余弦定理的应用举例 正、余弦定理的应用举例 知识梳理 一、解斜三角形应用题的一般步骤: 分析:理解题意,分清已知与未知,画出示意图 建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解 检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解 二.测量的主要内容是求角和距离,教学中要注意让学生分清仰角、俯角、张角、视角和方位角及坡度、经纬度等概念,将实际问题转化为解三角形问题. 三.解决有关测量、航海等问题时,首先要搞清题中有关术语的准确含义,再用数学语言表示已知条件、未知条件及其关系,最后用正弦定理、余弦定理予以解决. 典例剖析 题型一距离问题 例1.如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲

船的北偏西方向的处,此时两船相距海里,当甲船航行分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里? 解:如图,连结,由已知, 又,是等边三角形, 由已知,,, 在中,由余弦定理,.. 因此,乙船的速度的大小为.答:乙船每小时航行海里.题型二高度问题 例2、在某点B处测得建筑物AE的顶端A的仰角为,沿BE方向前进30,至点c处测得顶端A的仰角为2,再继续前进10至D点,测得顶端A的仰角为4,求的大小和建筑物AE的高。 解法一:由已知可得在AcD中, Ac=Bc=30,AD=Dc=10,ADc=180-4, =。sin4=2sin2cos2 cos2=,得2=30=15,在RtADE中,AE=ADsin60=15 答:所求角为15,建筑物高度为15 解法二:设DE=x,AE=h 在RtAcE中,+h=30在RtADE中,x+h= 两式相减,得x=5,h=15在RtAcE中,tan2== =30,=15

正余弦定理题型归类

高二数学《正余弦定理》知识与题型总结 1、 正弦定理:_________=_________=_________=2R (R 为____________) 变形:________a =;________b =;________c = sinA :sinB:sinC ______________ = 2、 余弦定理:2 ______________a =;2 ______________b =;2 ______________c = 变形:cos ________________A =;cosB ________________=;cosC ________________= 3、 三角形面积公式: (1)12S a h =g (2)1 sin _________________________2S ab C === (3)1 ()2 S r a b c =++(r 为内切圆半径) 4、常用公式及结论: (1)倍角公式:sin 2__________α=; cos 2_______________________________________α=== tan 2____________α= 降幂公式:2 sin ____________α=;2 cos ____________α= (2)在ABC ?中,sin()sinC A B +=;cos()cosC A B +=-;tan()tanC A B +=-; (3)在ABC ?中,最小角的范围为0, 3π?? ?? ? ;最大角的范围为,3ππ???? ?? ; (4)在ABC ?中,A B C sinA sinB sinC >>?>>; (5)sin sin sin sin sin sin sin sin sin sin sin sin a b c a b c b a c A B C A B C B A C a b c A B C +++===== +++++= ++。 类型一:正余弦定理的综合应用 1.在△ABC 中,4a b =,= 30A ?=,则角B 等于( ). A .30° B .30°或150° C .60° D .60°或120° 2.在△ABC 中,三内角A ,B ,C 成等差数列,b =6,则△ABC 的外接圆半径为( ) 3.在ABC ?中,角,,A B C 的对边分别为,,a b c ,向量,(cos ,sin )n A A =v , 若m n ⊥u v v ,且cos cos sin a B b A c C +=,则角A ,B 的大小为( ). 4.在ABC ?中,角C B A ,,所对应的边分别为c b a ,,,B B A C 2sin 3)sin(sin =-+. ) 5.ABC ?各角的对应边分别为c b a ,,,满足 ,则角A 的范围是( ) A 6.在△ABC 中,内角A,B,C ,C B sin 3sin 2=, =( ) A 7.在△ABC 中,内角A , B , C 的对边分别为a ,b ,c.,且b a >,则∠B =( ) A 8.在△ABC 中,根据下列条件解三角形,则其中有两个解的是 A .0 75,45,10===C A b B .0 80,5,7===A b a C .0 60 ,48,60===C b a D . 45,16,14===A b a 9.已知ABC ?中,a b 、分别是角A B 、所对的边,且()0,2,a x x b A =>==60°,若三角形有两解,则 x 的取值范围是( ) A 、02x << C

正余弦定理在实际生活中的应用

正余弦定理在实际生活中的应用 正、余弦定理在测量、航海、物理、几何、天体运行等方面的应用十分广泛,解这类应用题需要我们吃透题意,对专业名词、术语要能正确理解,能将实际问题归结为数学问题. 求解此类问题的大概步骤为: (1)准确理解题意,分清已知与所求,准确理解应用题中的有关名称、术语,如仰角、俯角、视角、象限角、方位角等; (2)根据题意画出图形; (3)将要求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识建立数学模型,然后正确求解,演算过程要简练,计算要准确,最后作答. 1.测量中正、余弦定理的应用 例1 某观测站C 在目标A 南偏西25?方向,从A 出发有一条南偏东35?走向的公路,在C 处测得公路上与C 相距31千米的B 处有一人正沿此公路向A 走去,走20千米到达D ,此时测得CD 距离为21千米,求此人所在D 处距A 还有多少千米? 分析:根据已知作出示意图,分析已知及所求,解CBD ?,求角B .再解ABC ?,求出AC ,再求出AB ,从而求出AD (即为所求). 解:由图知,60CAD ∠=?. 22222231202123 cos 22312031BD BC CD B BC BD +-+-===???, 3 s i n B =. 在ABC ?中,sin 24sin BC B AC A ?= =. 由余弦定理,得222 2cos BC AC AB AC AB A =+-??. 即2223124224cos60AB AB =+-????. 整理,得2243850AB AB --=,解得35AB =或11AB =-(舍). 故15AD AB BD =-=(千米). 答:此人所在D 处距A 还有15千米. 评注:正、余弦定理的应用中,示意图起着关键的作用,“形”可为“数”指引方向,因此,只有正确作出示意图,方能合理应用正、余弦定理. 2.航海中正、余弦定理的应用 例2 在海岸A 处,发现北偏东45?方向,距A 1海里的B 处有一艘走私船,在A 处北偏西75?方向,距A 为2海里的C 处的缉私船奉命以/小时 A C D 31 21 20 35? 25? 东 北

正弦定理、余弦定理综合应用典型例题

正弦定理、余弦定理综合应用 例1.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1 sin 2 B = , 由ABC △为锐角三角形得π6B = . (Ⅱ)cos sin cos sin A C A A π?? +=+π-- ?6?? cos sin 6A A π??=++ ???1cos cos 2A A A =++ 3A π? ?=+ ???. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336 A πππ <+<, 所以1sin 23A π??+< ???. 3A π??<+< ?? ? 所以,cos sin A C +的取值范围为322?? ? ?? ?,. 例2.已知ABC △1,且sin sin A B C +=. (I )求边AB 的长; (II )若ABC △的面积为1 sin 6 C ,求角C 的度数. 解:(I )由题意及正弦定理,得1AB BC AC ++=, BC AC +=, 两式相减,得1AB =. (II )由ABC △的面积11sin sin 26BC AC C C =g g ,得1 3 BC AC =g , 由余弦定理,得222cos 2AC BC AB C AC BC +-=g 22()21 22 AC BC AC BC AB AC BC +--= =g g , 所以60C =o . 例3.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n , 且a cos B +b cos A =c sin C ,则角B = 6 π . 例4.设ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60o ,c =3b.求a c 的值; 解:由余弦定理得2222cos a b c b A =+-=2221117 ()2,3329 c c c c c +-=g g g 故3a c = 例5.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===, 则cos cos cos bc A ca B ab C ++的值为 . 61 2 例6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若() C a A c b cos cos 3=-, 则=A cos _________________. 3 例7.(2009年广东卷文)已知ABC ?中,C B A ∠∠∠,,的对边分别为,,a b c 若a c ==且 75A ∠=o ,则b = 【解析】0000000 sin sin 75sin(3045)sin 30cos 45sin 45cos30A ==+=+=

正余弦定理的应用举例教案

天津职业技术师范大学 人教A版数学必修5 1.2正弦定理余弦定理 的应用举例 理学院 数学0701 田承恩

一、教材分析 本课是人教A版数学必修5 第一章解三角形中1.2的应用举例中测量长度问题。因为在本节课前,同学们已经学习了正弦定理、余弦定理的公式及基本应用。本节课的设计,意在复习前面所学两个定理的同时,加深对其的了解,以便能达到在实际问题中熟练应用的效果。同学们在学习时可以考虑,题中为什么要给出这些已知条件,而不是其他条件?要注意的是在某种特殊的实际问题下哪些条件可以测量,哪些不能。这节课我们就跟同学们共同研究这个问题。 (一)重点 1.正弦定理、余弦定理各自的公式记忆。 2.解斜三角形问题的实际应用以及全章知识点的总结归纳。 (二)难点 1.根据已知条件如何找出最简单的解题方法。 2.用应用数学的思想解决实际问题。 (三)关键 让学生灵活运用所学正弦定理、余弦定理。并具备解决一些基本实际问题的能力。 二、学情分析 学生已经学习了高中数学大部分内容,已经有了必要的数学知识储备和一定的数学思维能力;作为高中高年级学生,也已经具有了必要的生活经验。因此,可以通过生活中的例子引入如何用正弦定理、余弦定理解决实际问题。让学生自然而然地接受一些固定解法,这样,学生既学习了知识又培养了能力。 三、学习目标 (一)知识与技能 1.熟练掌握正弦定理、余弦定理的公式 2.掌握应用正弦定理、余弦定理解题的基本分析方法和步骤 (二)过程与方法 1.通过应用举例的教学,培养学生的推理能力,优化学生的思维品

质 2.通过教学中的不断设问,引导学生经历探索、解决问题的过程 (三)情感、态度与价值观 让同学找到学习数学的乐趣,让同学们感受到数学在现实中应用的广泛性。 四、教学手段 计算机,ppt,黑板板书。 五、教学过程(设计)

正余弦定理综合应用

正余弦定理综合应用 学校: __________ 姓_名: ________ 班_级: _________ 考_号: ____________ 一、解答题 1 . 已 知 的 内 切 圆 面 积 为 , 角 所 对 的 边 分 别 为 , 若 1)求角 ; 2)当 的值最小时,求 的面积 . 2 .设 的内角 , , 所对的边分别为 , , ,且 ( 1)求 的值; 3)若 ,求 面积的最大值 ,求 的值;

1)求; 2)若,求

4 .已知向量,,角,,为的内角,其所对的边分别为,,. 1)当取得最大值时,求角的大小; 2)在(1)成立的条件下,当时,求的取值范围 5.在△ ABC 中,角A,B,C 所对的边分别为a,b,c,且. (1)判断△ ABC 的形状; (2)若,求的取值范围.

6 .如图:在中,,点在线段上,且 .求的长; Ⅱ)若,求△ DBC 的面积最大值. 7 .在中,角的对边分别为, (1)求角的大小; 2)若的外接圆直径为2,求的取值范围

8 .在锐角三角形中,角所对的边分别为,已知 (1)求角的大小; (2)求的取值范围。 42 9.设函数 f x cos 2x 2cos2 x. 3 (1)求 f x 的最大值,并写出使 f x 取最大值时x 的集合; 3 (2)已知ABC 中,角A,B,C 的边分别为a, b, c ,若 f B C 2,b c 2,求 a 的最小

值. 2 10.在ABC 中,角A,B,C 所对的边分别为a,b,c,且ACB 3 . 3 (1)若a, b,c依次成等差数列,且公差为 2 ,求c的值; (2)若 c 3, ABC ,试用表示ABC的周长,并求周长的最大值

专题 正余弦定理的应用

正余弦定理的应用 1、【2019年高考全国Ⅱ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________. 2、【2019年高考浙江卷】在ABC △中,90ABC ∠=?,4AB =,3BC =,点D 在线段AC 上,若 45BDC ∠=?,则BD =___________,cos ABD ∠=___________. 3、【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b ,cos B =2 3 ,求c 的值; (2)若sin cos 2A B a b =,求sin()2 B π +的值. 4、【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥 AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线 段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径. 已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长; (2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由; (3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离. 5、【2019年高考全国Ⅲ卷文数】ABC △的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin 2 A C a b A +=. (1)求B ; (2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.

人教课标版高中数学必修5《正余弦定理应用举例》教学设计

第一章 解三角形 1.2 正余弦定理应用举例 一、教学目标 1.核心素养 通过学习正余弦定理应用举例,初步形成基本的数学抽象、逻辑推理与运算能力. 2.学习目标 应用正余弦定理解决三角形相应问题、解决实际问题. 3.学习重点 综合运用正余弦定理解三角形问题和实际问题. 4.学习难点 正余弦定理与三角函数知识的综合运用. 二、教学设计 (一)课前设计 1.预习任务 任务 阅读教材P11-P16. 思考:正余弦定理的内容是什么?利用正余弦定理求解实际问题的基本步骤是什么?题中为什么要给出这些已知条件,而不是其他条件? 2.预习自测 1.在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =( ) A.4 3 B.2 3 C. 3 D.32 答案:B. 2.已知ABC ?中,a 、b 、c 分别为A,B,C 的对边, 30,34,4=∠==A b a ,则B ∠等于( )

A. 30 B. 150 30或 C. 60 D. 60或 120 答案:D. 3.如图,设A、B两点在河的两岸,一测量者在A的同侧,在所在的河岸边选定一点测出AC的距离为50m,∠45 CAB=?后,就可以计算出A、B两点 ACB=?,∠105 的距离为( ) A. B. C. m D. 2 答案:A. (二)课堂设计 1.知识回顾 (1)正弦定理和余弦定理

(2)在ABC ?中,已知a 、b 和角A 时,角的情况如下: 2.问题探究 问题探究一 正弦定理与余弦定理 ●活动一 回顾正弦定理 任意三角形中,都有 sin a A =sin b B =sin c C . ●活动二 回顾正弦定理能解决的问题类型 一般地,我们把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形. 利用正弦定理可以解决一些怎样的解三角形问题? (1)已知三角形的两个角(也就知道了第三个角)与一边,求解三角形; (2)已知三角形的任意两边和其中一边的对角,求解三角形. ●活动三 余弦定理及其所能求解的问题类型 利用余弦定理可以求解如下两类解三角形的问题: (1)已知三边,求三个角; (2)已知两边和它们的夹角,求第三边和其他两个角. 问题探究二 掌握以下几个常用概念 坡度:坡度---沿坡向上的方向与水平方向的夹角. 仰角:视线方向向上时与水平线的夹角.(反之为俯角). 方位角:从指北方向顺时针转到目标方向线的水平转角.

正余弦定理的应用举例教案

1.2正弦定理余弦定理的应用举例 教材分析 本课是人教A版数学必修5 第一章解三角形中1.2的应用举例中测量长度问题。因为在本节课前,同学们已经学习了正弦定理、余弦定理的公式及基本应用。本节课的设计,意在复习前面所学两个定理的同时,加深对其的了解,以便能达到在实际问题中熟练应用的效果。同学们在学习时可以考虑,题中为什么要给出这些已知条件,而不是其他条件?要注意的是在某种特殊的实际问题下哪些条件可以测量,哪些不能。这节课我们就跟同学们共同研究这个问题。 (一)重点 1.正弦定理、余弦定理各自的公式记忆。 2.解斜三角形问题的实际应用以及全章知识点的总结归纳。 (二)难点 1.根据已知条件如何找出最简单的解题方法。 2.用应用数学的思想解决实际问题。 (三)关键 让学生灵活运用所学正弦定理、余弦定理。并具备解决一些基本实际问题的能力。 二、学情分析 学生已经学习了高中数学大部分内容,已经有了必要的数学知识储备和一定的数学思维能力;作为高中高年级学生,也已经具有了必要的生活经验。因此,可以通过生活中的例子引入如何用正弦定理、余弦定理解决实际问题。让学生自然而然地接受一些固定解法,这样,学生既学习了知识又培养了能力。 三、学习目标 (一)知识与技能 1.熟练掌握正弦定理、余弦定理的公式 2.掌握应用正弦定理、余弦定理解题的基本分析方法和步骤

(二)过程与方法 1.通过应用举例的教学,培养学生的推理能力,优化学生的思维 品质 2.通过教学中的不断设问,引导学生经历探索、解决问题的过程 (三)情感、态度与价值观 让同学找到学习数学的乐趣,让同学们感受到数学在现实中应用的广泛性。 四、教学手段 计算机,ppt,黑板板书。 五、教学过程(设计)

高中数学《正余弦定理应用举例》公开课优秀教学设计

人教版必修五《1.2应用举例》教学设计 一、教材分析 本节课是学习了正弦定理、余弦定理及三角形中的几何计算之后的一节实际应用课,可以说是为正弦定理、余弦定理的应用而设计的,因此本节课的学习具有理论联系实际的重要作用。在本节课的教学中,用方程的思想作支撑,以具体问题具体分析作指导,引领学生认识问题、分析问题并最终解决问题。 二、教学目标设置 根据本节课的教学内容以及学生的认知水平,确定了本节课的教学目标: 知识与技能:①能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解测量的方法和意义 ②会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法,搞清利用解斜三角形可解决的各类应用问题和基本图形和基本等量关系, 过程与方法:①采用启发与尝试的方法,让学生在解决实际问题中学会正确识图、画图、想图,帮助学生逐步构建知识框架。 ②通过解三角形的应用的学习,提高解决实际问题的能力;通过解三角形在实际中的应用,要求学生体会具体问题可以转化为抽象的数学问题,以及数学知识在生产、生活实际中所发挥的重要作用 情感、态度、价值观:①激发学生学习数学的兴趣,并体会数学的应用价值 ②培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力 ③进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力 三、学生学情分析 本节课的教学对象是云南师范大学实验中学高二年级的学生. 1.已有的能力:学生已经学习了正弦定理和余弦定理,能够运用解决一些三角形问题,具有了一定的基础。 2.存在的问题:学生在运用正弦定理和余弦定理解三角形的时候不能将实际问题转化成数学问题的问题,构造模型的能力有待提高。 难点: 1.实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解 2. 根据题意建立数学模型,画出示意图 突破策略:

(整理)正余弦定理综合应用

正余弦定理综合应用 学校:___________姓名:___________班级:___________考号:___________一、解答题 1.已知的内切圆面积为,角所对的边分别为,若.(1)求角; (2)当的值最小时,求的面积. 2.设的内角,,所对的边分别为,,,且. (1)求的值; (2)若,求的值; (3)若,求面积的最大值.

3.在平面四边形中,,,,. (1)求; (2)若,求. 4.已知向量,,角,,为的内角,其所对的边分别为,,. (1)当取得最大值时,求角的大小; (2)在(1)成立的条件下,当时,求的取值范围.

5.在△ABC中,角A,B,C所对的边分别为a,b,c,且.(1)判断△ABC的形状; (2)若,求的取值范围. 6.如图:在中,,点在线段上,且. (Ⅰ)若,.求的长; (Ⅱ)若,求△DBC的面积最大值.

7.在中,角的对边分别为,. (1)求角的大小; (2)若的外接圆直径为2,求的取值范围. 8.在锐角三角形中,角所对的边分别为,已知 . (1)求角的大小; (2)求的取值范围。

9.设函数()24cos 22cos 3f x x x π? ?=-+ ??? . (1)求()f x 的最大值,并写出使()f x 取最大值时x 的集合; (2)已知ABC ?中,角,,A B C 的边分别为,,a b c ,若()3,22 f B C b c +=+=,求a 的最小值. 10.在ABC ? 中,角,,A B C 所对的边分别为,,a b c ,且23 ACB π∠=. (1)若,,a b c 依次成等差数列,且公差为2,求c 的值; (2)若c ABC θ=∠=,试用θ表示ABC ?的周长,并求周长的最大值.

(完整版)正余弦定理综合习题及答案

正余弦定理综合 1.(2014天津)在ABC D 中,内角,,A B C 所对的边分别是,,a b c .已知1 4 b c a -= ,2sin 3sin B C =,则cos A 的值为_______. 2.(2014广东).在ABC ?中,角C B A ,,所对应的边分别为c b a ,,,已知 b B c C b 2cos cos =+,则 =b a . 3.已知ABC ?的内角 21)sin()sin(2sin ,+ --=+-+B A C C B A A C B A 满足,,面积 满足C B A c b a S ,,,,21分别为,记≤≤所对的边,则下列不等式成立的是( ) A.8)(>+c b bc B.)(c a ac + C.126≤≤abc D. 1224abc ≤≤ 4. (2014江苏)若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值 是 。 5.(2014新课标二)钝角三角形ABC 的面积是12,AB=1,BC=2 ,则AC=( ) A. 5 B. 5 C. 2 D. 1 6、(2014浙江)如图,某人在垂直于水平地面的墙面前的点处进行射击训 练.已知点到墙面的距离为,某目标点沿墙面的射击线 移动,此人为了准 确瞄准目标点 ,需计算由点 观察点 的仰角 的大小.若 则 的最大值 。(仰角为直线AP 与平面ABC 所成角) 7.(2011·天津)如图,在△ABC 中,D 是边AC 上的点,且AB =AD, 2AB =3BD ,BC =2BD ,则sin C 的值为 ( ) A.33 B.36 C.63 D.66 8.(2014浙江)本题满分14分)在ABC ?中,内角,,A B C 所对的边分别为,,a b c .已知,3a b c ≠=,22cos -cos 3sin cos -3sin cos .A B A A B B = (I )求角C 的大小;(II )若4 sin 5 A = ,求ABC ?的面积.

相关文档
最新文档