LC4128-Lattice ispMACH4000设计指南及常见问题解答

LC4128-Lattice ispMACH4000设计指南及常见问题解答
LC4128-Lattice ispMACH4000设计指南及常见问题解答

Lattice ispMACH TM 4000V/B/C/Z 设计指南及常见问题解答

目录

1介绍 (4)

1.1特征 (4)

1.2产品系列和器件选择手册 (4)

1.3性能分析 (5)

1.3.1超快性能 (5)

1.3.2最低功耗 (6)

2体系结构概述 (7)

2.1ISP MACH4000体系结构 (7)

2.2结构特征 (9)

2.2.1逻辑分配器和3种速度路径 (9)

2.2.2带可编程延时的输入寄存器 (10)

2.2.3灵活的时钟和时钟使能 (10)

2.2.4初始化控制 (11)

2.2.5ORP BYPASS多路复用器 (11)

2.2.6I/O 单元 (12)

2.2.7OE 控制 (12)

3设计实现 (13)

3.1全局约束 (13)

3.1.1Fitter 选项 (13)

3.1.2利用率选项 (14)

3.2约束编辑器 (15)

3.2.1设备设置表 (15)

3.2.2封装察看/引脚编辑规划 (15)

3.2.3引脚/节点位置分配 (16)

3.2.4组分配 (16)

3.2.5I/O类型设置 (16)

3.2.6资源预留 (17)

3.2.7缺省设置 (17)

3.3资源约束 (17)

3.3.1使用源约束注意事项 (17)

3.3.2源约束语法 (18)

3.4优化设计方法 (21)

3.4.1ispLEVEL 约束选项控制 (21)

3.4.2HDL 源文件约束控制 (22)

4器件应用要点 (22)

4.14K系列器件VCC和VCCO的作用和连接 (22)

4.24K系列器件各电源上电时间及要求 (22)

4.34K系列器件的全局复位 (22)

4.4关于4K系列器件时钟的用法 (22)

4.5全局输出使能信号 (23)

4.6CPLD的I/O口作为双向口使用时应注意的问题 (23)

4.7关于设计中使用宽多路复用器的问题 (24)

4.8未使用引脚的处理 (25)

4.9I/O5V兼容问题 (25)

4.10I/O口的电平设置 (25)

4.114K系列器件引脚上、下拉电阻,OD,慢摆率特性的设定 (25)

4.12关于引脚的缺省值和更改 (27)

4.134K系列器件功耗的计算 (27)

4.144K系列器件节点温度的计算 (27)

4.154K器件的热插拔 (28)

4.16ISP JTAG编程/测试信号 (28)

4.17CPU加载的频率 (28)

4.184K系列器件可承受的加载次数 (28)

4.19加载过程中I/O口的状态 (29)

4.20综合工具的选择 (29)

4.21关于约束文件 (29)

4.22用嵌入的M ODEL S IM 仿真 (29)

4.23M ODEL S IM应用点滴 (30)

4.244K器件上电电压阀值 (31)

4.25ISP LEVER中的版本控制功能 (31)

4.26ISP LEVER中C ONSTRAINT E DITOR的G LOBAL C ONSTRAINTS设置 (33)

4.27ISP LEVER中的时序分析 (33)

5ISPLEVER优化参数快速指南 (34)

5.1ISP LEVER常用约束优化参数的含义与推荐设置 (34)

5.2ISP LEVER推荐的优化参数设置 (36)

6ISPLEVER安装说明 (37)

6.1ISP LEVER安装说明 (37)

6.2ISP VM S YSTEM安装说明 (38)

7相关资料 (38)

8附录:LATTICE器件深圳中兴支持联系方法 .....................错误!未定义书签。

1介绍

ispMACH4000 器件包括3.3V、2.5V和1.8V三个系列。4000C是世界上第一款1.8V 在系统可编程CPLD 系列。ispMACH 4000 系列器件集业界领先的速度性能和最低动态功耗于一身,其支持的 I/O 电压标准为:3.3V、2.5V、1.8V。

1.1特征

?器件使用 0.18μm E2CMOS技术, 有3.3V(4000V),2.5V (4000B),1.8V (4000C/ZC)三个系列?高性能: f MAX = 400MHz, t PD = 2.5ns

?芯片的结构由通用逻辑块GLB,全局布线区GRP和I/O单元组成

?每个GLB块由16个宏单元组成,每个GLB块有36 个输入和83个输出乘积项

?全局输出使能引脚(4个:GOE0,GOE1,GOE2,GOE3), 全局时钟引脚(4个:CLK0,CLK1,CLK2,CLK3)

?增强功能宏单元: 单独的时钟, 复位, 置位 , 时钟使能控制

?每个I/O 口都有单独的输出使能控制

?I/O标准支持: LVTTL, LVCMOS3.3/2.5/1.8 和PCI,且I/O为LVTTL,LVCOMS 3.3 和 PCI时容忍5V输入

?支持集电极开路输出(用于不同电平的匹配,例如,5V,9V,12V…TTL电平等),总线保持功能(也称为友好总线,用于防止三态总线噪声),内部提供上拉电阻,下拉电阻

?可设置输出电压摆率

?热插拔支持 (上下电时输入漏电流小于150uA)

?支持多种温度范围,Commercial(0-90℃Junction ),Industrial(-40-105℃Junction),Automotive(-40-130℃ Junction)

?兼容IEEE 1149.1边界扫描标准

?兼容IEEE 1532 在系统编程标准

?可加载至少1000次,数据保持20年不丢失

?低的静态和动态功耗,静态电流10μA(4032ZC),1.8 mA(4000C)

1.2产品系列和器件选择手册

,器件结构确保设计迁移的成功率。

Note2 : 4000Z,4000C 和4000B 系列支持commercial, industry 应用,4000V系列支持commercial, industrial, automotive应用。

Note3 : 4000V/B/C 系列为dual mark 芯片,例如LC4128C-5T100C,在此芯片上同时也被标注为-75I.也就是说此芯片可作为5ns commercial 芯片用,也可作7.5ns industrial 芯片用。

1.3性能分析

1.3.1超快性能

? 2.5 ns tPD 引脚到引脚延时

?400 MHz 系统性能

ispMACH4000 系列是世界最快的 CPLD. 图 1显示 ispMACH4000B 同 Altera MAX7000B和 Xilinx XC9500XV的比较

ispMACH4000器件支持 3 种速度路径. 例如, ispMACH4256 器件能提供以下路径

1) 5-PT fast bypass path = 3.0 ns 2) 20-PT SpeedLocking path = 4.0 ns 3) Up to 80-PT Wide path

= 5.0 ns

Figure 2. 显示当乘积项增加时ispMACH4256同 Altera MAX7256B 的比较. 在相同的Tpd 延时情况下,ispMACH4256 能提供给每个宏单元的乘积项是MAX7256B 的16倍

图2.

ispMACH4000 vs. MAX7256B tPD

1.3.2 最低功耗

由于使用高级电可擦除低功耗单元和非灵敏放大器方案 , ispMACH4000 器件提供 低 静、 动态功

耗。

? 静态 Icc 电流: 4000Z (1.8V)

为 20-30μA,4000C (1.8V )系列为1 – 3mA ,4000V/B 系列为 9 –

15mA (2.5V) ?

对 256个宏单元器件,频率为 100MHz 时,其动态电流Icc : 39.2mA

图3、图4所示为ispMAC4256V/B/C 和ispMACH4000Z 与其他厂商同类器件的功耗比较。

32 64 128 256 384 512 Macrocells ispMACH 4000 最快!

f M A X (M H z ) 5 20 40 60 80

Product Lattice

ispMACH 4256 - FASTEST!

D e l a y -

Dynamic power/mc

(mw/mc) Figure4.

图4. ispMAC4000Z 与其他厂商同类器件的功耗比较

2 体系结构概述

2.1 ispMACH4000 体系结构

ispMACH4000 系列器件由布线池(GRP ),通用逻辑块(GLB),输出布线池(ORP)及

I/O 块组成。它可提供从2个GLB 的ispMACH4032 到 32个 GLB 的 ispMACH4512多种器件。

100 150 200 250

300 350 400 0 I c c

)

0.5

(MHz)

1.5

2.0

图5.ispMACH4000 功能块框图

每个GLB由可编程与阵列(从GRP来的36个输入和 83个输出乘积项), 逻辑分配器, 16 个宏单元和 GLB时钟发生器组成。

图6.GLB 结构框图

每个与阵列有36个输入,83个乘积项输出。

图7.And array

图8.Macrocell 结构图2.2结构特征

2.2.1逻辑分配器和3种速度路径

ispMACH4000 逻辑分配器能提供3种速度路径的高性能: 5-PT Fast Bypass path

?20-PT SpeedLocking path

?Up to 80-PT Wide path

下图显示了宏单元片段。在一个GLB中有16个这样的片段。

当开发软件将所需实现的功能适配到GLB中时,软件自动识别设计有效性,并分配乘积项簇。在整个体系结构中灵活多样的乘积项共享方案使设计时获得多种益处。用户在设计过程中必须意识

到3种不同路径的存在,并使用合适的约束条件,来协调器件的性能和利用率。

图9.逻辑分配器

2.2.2带可编程延时的输入寄存器

ispMACH4000宏单元有一条从I/O口来的直接连线, 这就允许设计者使用宏单元寄存器来构造高速输入寄存器。一个可编程延时单元允许设计者在最快可能的建立时间和零保持时间之间协调。

2.2.3灵活的时钟和时钟使能

A 8:1时钟选择使用多路复用结构。八个时钟源是:

?Block CLK0

?Block CLK1

?Block CLK2

?Block CLK3

?PT Clock

?PT Clock Inverted

?Shared PT Clock

?Ground

Note 1:除了独立的 PT clock, 所有其它的 GLB clocks (CLK0~3) 和共享 PT 时钟也有极性选择. 图 5显示了共享PT时钟的产生 (PT80),,下图显示了 GLB时钟产生器。

图10.Shared Product Term Clock

图11.GLB Clock Generator

Note2:每个ispMACH4000 器件有4个全局时钟输入引脚 (CLK0~3),这些引脚可以配置为CLK功能或作为GRP的输入。这些时钟引脚驱动每个GLB的时钟发生器, 在正沿和负沿的多种组合后提供4个GLB全局时钟。

每个宏单元有一个 4:1时钟使能多路复用器。这就允许从下面4个源中选择时钟使能信号 :

?PT Initialization/CE

?PT Initialization/CE Inverted

?Shared PT Clock

?Logic High

2.2.4初始化控制

isMACH4000 系列器件提供块级和宏单元级置位和复位能力。每个GLB 有一个块级初始化项(PT81), 而在宏单元级,两个乘积项可以用于每个宏单元的置位/复位功能。

在每个宏单元中,一个复位/置位交换开关允许在复位和置位中选择,提供一个灵活的选择。

注意: reset/preset开关同样影响上电复位。如果宏单元配置为块级置位,那么在器件上电时,宏单元被置位。

2.2.5ORP BYPASS多路复用器

ORP (输出布线池) bypass 和快速路径输出多路复用器 (见图7) 允许5-PT快速路径绕过ORP直接连到引脚(直接或反相)输出。对寄存器输出而言,通过绕过ORP也可获得较快的 t CO。

图12.ORP Bypass Multiplexer

2.2.6I/O 单元

图13.I/O 单元

ispMACH4000 I/O 单元被划分为两个大块。每个大块有独立的V CCO和GND。I/O标准支持:?LVTTL

?LVCMOS 3.3

?LVCMOS 2.5

?LVCMOS 1.8

? 3.3V PCI Compatible (no high voltage clamp)

N ote1: 输出标准依赖于大块I/O的V CCO,而输入标准独立于V CC或 V CCO.

所有的 I/O和专用输入可提供总线保持,上拉电阻,下拉电阻,或都不提供。

Note 2: 这个选择是一个全局选择。在硬件和软件中的缺省设置是:当设备被擦除时或用户没有指定时,I/O缺省配置为上拉.

每个ispMACH4000 设备I/O 有独立的可编程输出慢摆率控制。输出也能被配置为漏级开路。

2.2.7OE 控制

ispMACH4000器件有4位宽的全局输出使能总线,总线源自4位宽的内部全局OE PT总线 (对4032设备是2位宽)和2个全局OE引脚。块级共享 PTOE (PT82) 驱动内部全局OE PT总线。

除了全局 OE, IspMACH4000器件也能为单独的I/O 单元提供本地输出使能控制.

3设计实现

目前设计软件ispLEVER已升级到5.1版本,其支持Window2000、XP和UNIX操作系统,而不再支持Windows98操作系统。新版本软件修改了原ispLever3.x系列的软件bug,提供了优化性能,所以Lattice厂方强烈建议使用ispLever新版软件。

下面的章节主要讲述全局约束(fitter options)、约束编辑器(Constraint Editor)和源约束器( Source Constraints)。对于使用ispLEVER软件的细节,请参考用户参考手册或在线帮助。

3.1全局约束

在 ispLEVER4.1以上版本中通过选择工程右侧的“Optimization Constraints”和“Constraints Editor”调整fitting与优化参数。如图所示:

图14.调整优化参数

3.1.1Fitter 选项

Pack Design:

-为最大资源利用率和速度,连续分配设计到每个块中

-同选择Advanced Options OFF效果一样

Spread Design:

-通过分割逻辑到所有的块中扩展设计

-通过扩展资源到整个器件来增强升级能力

-同选择Advanced Options ON效果一样

Advanced Options:

- Balance Partitioning(平衡分割)

-设计平均地分割到所有的块中

- Spread Placement(扩展放置)

-扩展设计到块的宏单元中,允许小的改变

-将未使用的宏单元放在块的后面

Fitter Effort(优化能力)(Low/Medium/High):

-越高的优化能力, 就需要越长的运行时间和更大的内存

-越高的优化能力,通常有好的结果 ,但不能确保

-缺省为Low

Boolean Logic Reduction(布尔逻辑精简):

-从每个等式中精简冗余的乘积项,缺省为使能

D/T Synthesis(D/T综合):

-当使能时, 优化器使用带最少乘积项的D型或T型触发器综合寄存器信号

-当非使能时,不指定寄存器类型,缺省为非使能

XOR Synthesis(XOR综合):

-如果设计需要的话,优化器使用XOR表达式

Node Collapsing:

-允许对方程式进行控制。如果用户指定网络或节点为―keep‖, 这些网络或节点将不被优化掉

-Speed: 优化掉每一个可能的节点以加快速度

-Area:为获得最好的资源利用率,优化掉所有可能达到最大乘积项限制的节点

-Fmax:设置在寄存器间,逻辑级数的目标

Product Term(乘积项):

-Collapsing Max. Product Term: 优化器将仅仅优化掉方程式中达到最大限制的乘积项该选项与选项Splitting Max. PT相反

-Collapsing Max. Input: 优化器将仅仅优化掉输入达到最大限制的方程式

-Splitting Max. Product Term: 仅当方程式的乘积项超出Maximum Product Term限制设置时,优化器才将该方程式分割到多个宏单元中

3.1.2利用率选项

该选项能指定宏单元和块的利用率限制性. 这些限制是―软约束‖的

Maximum % of Macrocells per block used(每块的最大宏单元百分比):

-控制在每个块中多少个宏单元被使用. 该选项对保留下足够的空间以备将来使用有很大的好处

Maximum % of Blocks Inputs used(块输入的使用百分比):

-控制每个块使用多少个输入,对保留空间有帮助.

3.2约束编辑器

-约束编辑器让你指定引脚和节点分配,组分配,引脚保留,I/O类型设置,输出慢摆率等。

-所有的约束选项(包括来自约束编辑器或源文件的约束)被存储在项目目录下的约束文件中(*.lct).

-对约束文件的修改可经过功能对话框或直接在表中修改。对于细节使用,参考用户参考手册或在线帮助文档 .

-约束编辑器完成简单的错误检测来确保用户分配或约束应用到选择的设备,并且没有分配冲突。如果存在冲突,约束将显示为红色。

-在ispLever软件中,支持以下统一的约束,他们能在约束编辑器中或源文件中指定。对于源文件约束语法,参考以下章节。

-Pin/Node Assignment

-Group Assignment

-Node Preservation

-Resource Reservation

-Slew Rate Assignment

-Pull Assignment

-Open Drain Assignment

-IO Type Configuration

-PLL Configuration

3.2.1设备设置表

对ispMACH4000器件约束编辑器有3个不同的表来显示所有的设计约束。他们允许你直接在表中更改,删除或增加分配。

-Pin Attribute Tab

-Global Constraint Tab

-Resource Reservation Tab

3.2.2封装察看/引脚编辑规划

引脚分配也能在带Drag-and-drop功能的封装察看器中设置。在约束编辑器中,选择―Device -> Package View‖ 来启动封装察看器窗口。图8. 显示约束编辑器的图形用户接口。

图15.引 Figure 14. Constraint Editor – Package View

3.2.3引脚/节点位置分配

-锁定引脚到特定的引脚或GLB

-当打开位置分配对话框,你能够

1.点击工具栏中位置分配按纽 (Loc), 或

2.从菜单中选择引脚属性 ->位置分配( Location Assignment)

3.2.4组分配

-选择的信号能组成一个组并被安排到指定的GLB,或没有物理安排的一个组(逻辑组)-打开组分配对话框

1.在工具栏中点击组分配按钮(Grp) ,或

2.从菜单中选择Pin Attribute -> Group Assignment

-建立组的分配

1.从有效的信号框选择你想组成一个组的信号

2.点击右箭头按纽移动这些信号到被选择信号框架

3.在组名域输入一个组名

4.选择你想分配的GLB,或对逻辑组选择ANY

5.点击Add 来更改当前的组分配列表

3.2.5I/O类型设置

-配置 I/O类型来指定 I/O 标准和约束输出摆率

-打开I/O类型设置对话框

1.在工具栏中点击 I/O类型设置按纽(IO) ,或

2.从菜单中选择Pin Attribute -> I/O Type Setting

3.2.6资源预留

-预留特定的引脚或GLB作为输入,输出或双向引脚

-注意:资源保留约束是“软约束”.如果设计适配失败, fitter将放弃约束

-打开资源保留对话框

1.在工具栏点击资源保留按钮 (Res) 或

2.从菜单中选择Pin Attribute -> Resource Reservation

3.2.7缺省设置

-打开缺省设置对话框

1.在工具栏点击缺省按钮(Def) 或

2.从菜单中选择Pin Attribute -> Default Setting

-图 9显示了 ispMACH4000器件的缺省设置

图16.Default Setting dialog box

3.3资源约束

你可以从约束编辑器中或在源文件中指定来在设计中加入约束。

ispLEVER 软件缺省时自动在源文件中检测约束条件。你可以从Import Source Constraint Option对话框中导入源约束选项目.从菜单中选择―Tools -> Import Source Constraint Option…‖ 打开对话框,可以看到3个有效选项:

?自动导入源约束(Auto Import Source Constraints)

?总是导入源约束(Always Import Source Constraints)

?不导入源约束(Do not Import Source Constraints)

当选择缺省Auto Import Source Constraints, 一个确认将提示你是否覆盖当前的约束。

在以下例子目录中你能找到源文件的举例:

:\isptools\ispcpld\examples\cpld\constraint

下面的章节将讨论如何在源文件中加入约束。

3.3.1使用源约束注意事项

在ABLE源文件中使用Lattice 库

为支持大量的约束需求, Lattice 准备了一个专用的名叫?lattice‘的宏库. 在约束加入下面的例子之前,该库必须被声明。

“library declaration

library ‘lattice’;

“pin declaration

in0, in1 pin;

out1 pin istype ‘com’;

“source constraints

LAT_PIN(in0, 3);

LAT_PIN(out1, 4);

在Verilog中使用 Synplicity和Exemplar注意事项

-由于 Verilog不象VHDL一样支持属性特征,所以在Verilog中约束是在注释中加入的-Synplicity 中约束条件同数据声明在一起,在分号的前面

-对照起来看, Exemplar 允许约束可以作为单独的注释行,并且不需要在每个声明后加分号Examples

Exemplar

Input inA3;

//exemplar attribute inA3 LOC PA3

Synplicity

input inA3 /* synthesis LOC= "PA3" */;

3.3.2源约束语法

高层建筑结构设计常见问题探讨

高层建筑结构设计常见问题探讨 摘要:近年来,建筑高度的不断增加, 风格的变化多样,给高层结构设计提出了新的课题和挑战。本文就结构设计中特别要注意的几个问题进行了分析。 关键词:高层建筑; 结构设计;常见问题 一、高层建筑结构设计特点 1 高层建筑结构设计的特点 1.1 水平荷载成为决定因素。一方面,因为楼房自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与楼房高度的一次方成正比;而水平荷载对结构产生的倾覆力矩,以及由此在竖向构件中引起的轴力,是与楼房高度的两次方成正比;另一方面,对某一定高度楼房来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随结构动力特性的不同而有较大幅度的变化。 1.2 轴向变形不容忽视。高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响造成连续梁中问支座处的负弯矩值减小,跨中正弯矩和端支座负弯矩值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安全的结果。 1.3 侧移成为控制指标。与较低楼房不同,结构侧移已成为高层建筑结构设计中的关键因素。随着楼房高度的增加,水平荷载下

结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。 1.4 结构延性是重要设计指标。相对于较低楼房而言,高层建筑结构更柔一些,在地震作用下的变形更大一些。为了使结构在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌,特别需要在构造上采取恰当的措施,来保证结构具有足够的延性。 二、根据不同类型高层建筑,选择合理的结构体系 2.1结构的规则性问题 新旧规范在这方面的内容出现了较大的变动,新规范在这方面增添了相当多的限制条件,例如:平面规则性信息、嵌固端上下层刚度比信息等,而且,新规范采用强制性条文明确规定“建筑不应采用严重不规则的设计方案”。因此,结构工程师在遵循新规范的这些限制条件上必须严格注意,以避免后期施工图设计阶段工作的被动。 2.2结构的超高问题 在抗震规范与高规中,对结构的总高度都有严格的限制,尤其是新规范中针对以前的超高问题,除了将原来的限制高度设定为a 级高度的建筑外,增加了 b级高度的建筑,因此,必须对结构的该项控制因素严格注意,一旦结构为 b级高度建筑甚或超过了b 级高度,其设计方法和处理措施将有较大的变化。在实际工程设计中,出现过由于结构类型的变更而忽略该问题,导致施工图审查时未予通过,必须重新进行设计或需要开专家会议进行论证

结构设计常见问题解答

结构设计常见问题解答

1.梁裂缝控制与粱端弯矩调幅矛盾的解答 2.次梁对整体刚度贡献与点铰接问题 3.位移比与周期比对扭转控制有什么区别 4.质疑:周期折减系数 5.为什么不用pkpm自动梁配筋,而是要对SATWE信息手动配筋 6.大小偏心柱与单双偏压问题 1、板厚一般怎么取,与跨度有什么关系? 2、布置梁的时候,一般梁与梁之间的间距多少经济?(包括次梁的) 3、住宅楼的梁高一般怎么取? 4、框架结构柱距多少较为经济? 5、纯框架结构适合的高度和层数? 6、框架柱的混凝土等级一般怎么取? 7、框架结构的变形特性? 8、混凝土中,温度收缩怎么处理? 9、剪力墙高宽比多少为宜? 10、剪力墙混凝土等级一般取多少? 11、合理的剪力墙数量? 12、框架结构合理的重量范围? 13、怎么估算柱子截面? 14、轴压比超了怎么调? 15、位移比不满足怎么调?

16、周期比不满足怎么调? 17、位移角不满足怎么调? 18、PKPM建模中怎么降板? 19、PKPM中板厚为零和房间开洞的区别? 20、PKPM中虚梁怎么建? 21、什么情况下点铰? 22、超筋了怎么处理? 23、基础设计时,什么情况下要输入详细的地质资料? 24、基础底标高怎么考虑? 25、活荷载折减在PKPM中折减怎么实现? 1. 梁裂缝控制与粱端弯矩调幅矛盾的解答 a支座弯矩调幅与截面裂缝宽度验算是一对矛盾,对支座调幅处理的目的是为适当减小支座弯矩,而对支座截面进行裂缝宽度计算往往又需要加大截面的配筋,从而又加大了支座截面的弯矩。支座不调幅时支座弯矩大,截面配筋大,裂缝宽度不能满足规范要求,及多配

多层混凝土框架结构设计文献综述

多层混凝土框架结构设计 1.前言 随着社会的发展,钢筋混凝土框架结构的建筑物越来越普遍.由于钢筋混凝土结构与砌体结构相比较具有承载力大、结构自重轻、抗震性能好、建造的工业化程度高等优点;与钢结构相比又具有造价低、材料来源广泛、耐火性好、结构刚度大、使用维修费用低等优点。因此,在我国钢筋混凝土结构是多层框架最常用的结构型式。近年来,世界各地的钢筋混凝土多层框架结构的发展很快,应用很多。 一般框架结构是由楼板、梁、柱及基础4种承重构件组成的,由主梁、柱与基础构成平面框架,各平面框架再由连续梁连接起来而形成的空间结构体系。文献[1]认为,在合理的高度和层数的情况下,框架结构能够提供较大的建筑空间,其平面布置比较的灵活,可适合多种工艺与使用功能的要求。 多层钢筋混凝土框架结构设计可以分为四个阶段:一是方案设计,二是结构分析,三是构件设计,四是绘施工图。结构分析和构件设计是结构设计中的计算阶段,在现代,已由电子计算机承担这一工作,常采用PKPM建模计算。但是,结构的计算并不能代替结构的设计。文献[2]中认为:良好的结构设计的重要前提,应该是合理组织与综合解决结构的传力系统、传力方式,良好的结构方案是良好结构设计的重要前提。2.关于框架结构设计文献回顾 2.1框架结构的优缺点 框架结构体系是由横梁与柱子连接而成.梁柱连接处(称为节点)一般为刚性连接,有时为便于施工和其他构造要求,也可以将部分节点做成铰接或者半铰接.柱支座一般为固定支座,必要时也可以设计成铰支座.框架结构可以分为现浇整体式,装配式,现浇装配式. 文献[3]中提到:框架结构的布置灵活,容易满足建筑功能和生工艺的多种要求.同时,经过合理设计,框架结构可以具有较好的延性和抗震性能.但是,框架结构承受水平力(如风荷载和水平地震作用)的能力较小.当层树较多或水平力较大时,水平位移较大,在强烈地震作用下往往由于变形过大而引起非结构构件(如填充墙)的破坏.因此,为了满足承载力和侧向刚度的要求,柱子的截面往往较大,既耗费建筑材料,又减少使用面积.这就使框架结构的建筑高度受到一定的限制.目前,框架结构一般用于多层建筑和不考虑抗震设防,层数较少的的高层建筑(比如,层数为10层或高度为30米以下) 2.3框架结构的布置 多层框架结构的平面布置形式非常的灵活,文献[4]中将框架结构按照承重方式的不同分为以下三类:(1)横向框架承重方案,以框架横梁作为楼盖的主梁,楼面荷载主要由横向框架承担.由于横向框架数往往较少,主梁沿横向布置有利于增强房屋的横向刚度.同时,主梁沿横向布置还有利于建筑物的通风和采光.但由于主梁截面尺寸较大,当房屋需要大空间时,净空较小,且不利于布置纵向管道. (2)纵向框架承重方案以框架纵梁作为楼盖的主梁,楼面荷载由框架纵梁承担.由于横梁截面尺寸较小,有

2018年结构设计常见问题汇总

2018年结构设计常见问题汇总 工程设计中存在的问题和隐患应引起每位设计人员的足够重视,应对“施工图审查报告总结”认真学习,引以为鉴。特别强调的是列入结构方案中的问题,审核、审定人员应严格把关。 一、送审资料的完整性 1、计算书封面相关责任人未签字,未加盖注册工程师印章。 2、未提供剪力墙轴压比计算简图,缺墙柱内力简图。 3、未提供桩基承载力计算书。缺基础筏板配筋简图。 4、缺筏板冲切承载力验算,缺地下室外墙计算书,缺筏板反力计算书。 5、未提供复合地基承载力计算书。未提供地基基础沉降计算书。缺CFG桩承载力、桩身强度验算计算书。 6、补充柱双偏压验算结果,补充梁变形计算结果,补充柱底标准组合下轴力计算结果,补充独立基础计算书。 7、荷载平面图未显示楼板自重。缺超筋超限信息。 8、未提供楼梯计算书。 二、结构方案 1、高度不大于24m的丙类建筑不宜采用单跨框架结构。详见《抗规》第6.1.5条规定。其条文说明中针对一、二层的连廊采用单跨框架时,需要注意加强。建议提高单跨框架的抗震等级。 三、设计总说明 1、总说明中应注明本建筑防火分类及耐火等级。详见施工图审查要点第3.2.4条、国标图集12SG121-1页6。 2、补充车库顶板覆土厚度不得超过设计值。 3、结构设计总说明第8.2条,填充墙长度超过8m应改为5m,详见《砌体结构设计规范》GB 50003-2011第6.3.4条2款3项规定。 四、结构计算 1、某高层住宅楼,阳台和卫生间活荷载取2.0kN/m2,应为2.5kN/m2;电梯机房活荷载取2.0kN/m2,应为7.0kN/m2。 2、正负零处的楼板宜考虑施工荷载,建议活荷载取值5.0kN/m2。

楼梯设计常见问题探讨(一)

21 We learn we go 张 伟,李 斌,黄 杰/0 前言 楼梯间的功能是解决建筑物竖向交通,对多层和高层建筑而言,都是不可或缺的重要组成部分。当遇到紧急情况(如火灾、地震等)时,楼梯间是紧急疏散人群的重要交通通道,其重要性更突出。在对工业与民用建筑工程项目进行设计时,楼梯间是最能体现建筑师和结构工程师密切配合的劳动成果。在满足楼梯间建筑功能正常使用的前提下,做到安全经济,是结构工程师最基本的职责。但是,若欠缺有关的设计经验,不但会影响到楼梯间正常使用和建筑功能的要求,而且有时会遗留安全隐患。楼梯间设计正确与否的问题涉及到与建筑专业的配合深度,而且针对结构专业自身也存在一些需要注意的常见问题,故基于在实际工程中大量工程案例有关楼梯设计问题的归类和总结,通过一些常见问题的剖析,提出解决问题的思路和方法,供同行在实际工程设计中借鉴。 1 影响建筑功能的问题 1.1 净高不足 (1)存在问题 楼梯间净高不足是楼梯设计中常见问题之一,出现此类问题的原因主要有以下两点:1)建筑师对相关建筑规范中有关楼梯设计的规定尚未熟练掌握或对组成楼梯结构构件的空间关系缺乏必要了解;2)结构工程师对楼梯净高概念的要求未能融会贯通、灵活应用,对影响到净高结构构件的空间关系缺乏足够认识。 (2)应对措施 1)掌握有关楼梯净高概念的相关规定,《民用建筑设[1]第6.7.5条规定:楼梯平台上部及下部过道处的净高不应小于2m ,梯段净高不宜小于2.2m 。其中,对梯段净高的概念解释为:自踏步前缘(包括最低和最高一级踏步前缘线以外0.3m 范围内)量至上方突出物下缘间的垂直高度。上述解释的理由是基于一般应满足人在楼梯上伸至手臂向上旋升时手指刚触及上方突出物下缘一点为限,为保证人在行进时不碰头和不产生压抑感,故按照常用楼梯坡度,梯段净高不宜小于2.2m 。2)对遇到梯段净高余量较小的区域,上层踏步起跑位置的梯梁位置应仔细计算分析,遇到净高不足的情况,有两个途径可以选择:即取消起跑位置梯梁或将梯梁内退平移。前者适用于梯段和休息平台跨度之和较小的情况,此时该梯段转化为折线型楼梯,应重新复核计算,其梯板板厚和配筋均会有所变化。后者应特别注意,梯梁内退平移距离应将建筑面层厚度计算在内,以免余量太小,有可能仍旧不满足对梯段净高的要求。遇到休息平台下方净高余 各项因素,将上层位置的梯梁内退0.35m ,可有效解决该问题(图1)。 图1 梯段净高不足实例一 (4)工程实例2 某工程楼梯间,首层入户门和半层位置均存在净高不足的问题,针对此问题,采取的具体措施为:入户门上方梯梁设计为反梁可使得净高大于2m 。半层位置梯段休息平台和起跑位置净高余量均较小,除将梯梁内退0.35m 外,尚要求梯梁梁高控制在0.3m 以内,方能满足最小净高的要求(图2)。 1.2 净宽不足 (1)存在问题

结构设计常见问题问答

结构设计常见问题问答 1、住宅工程中顶层为坡屋顶,屋顶是否需设水平楼板?顶层为坡屋顶时层高有无限制?总高度应如何计算? 住宅工程中的坡屋顶,如不利用时檐口标高处不一定设水平楼板。关于顶层为坡屋顶时层高的计算问题新规范未做具体规定,结构设计时由设计人员根据实际情况而定,取质点的计算高度仍不超过4m.檐口标高处不设水平楼板时,按抗震规范,总高度可以算至檐口(此处檐口指结构外墙体和屋面结构板交界处的屋面结构板顶)。檐口标高附近有水平楼板,且坡屋顶不是轻型装饰屋顶时,上面三角形部分为阁楼,此阁楼在结构计算上应做为一层考虑,高度可取至山尖墙的一半处,即对带阁楼的坡屋面应算至山尖墙的二分之一高度处。 2、砖墙基础埋深较大,构造柱是否应伸至基础底部?较大洞口两侧要设构造柱加强,一般多大的洞口算较大洞口? 新规范,但应伸入室外地面下500mm,或锚入浅于500mm的基础圈梁内,两条满足其中的一条即可。但需注意此处的基础圈梁是指位于基础内的,不是一般位于相对标高±0.0m 的墙体圈梁。构造柱的钢筋伸入基础圈梁内应满足锚固长度的要求。 X&Qs$对于底层框架砖房的砖房部分,一般允许将砖房部分的构造柱锚固于底部的框架柱或钢筋混凝土抗震墙内(上层与下层的侧移刚度比应满足要求)。:新规范表,内纵墙和横墙的较大洞口,指2000mm 以上的洞口;外纵墙的较大洞口,则由设计人员根据开间和门窗洞尺寸的具体情况确定。 3、填充墙的构造柱与多层砌体房屋的构造柱有何不同? 填充墙设构造柱,属于非结构构件的连接,与多层砌体房屋设置的钢筋混凝土构造柱有一定差异,应结合具体情况分析确定。如挑梁端部设置填充墙构造柱,挑梁在计算时应考虑构造柱传递来的荷载。 4、抗震新规范 新规范,主要指不要在墙体厚度内开洞,烟道等应设在墙外,成为附墙烟道等,以免墙体应力集中。 5、底层框架结构的计算高度如何取?若取到基础顶,抗震墙厚度取1/20层高,是否过大? 计算高度的取值应根据实际情况而定,主要是看地坪的嵌固情况而定,若嵌固得好,如作刚性地坪或有连续的地基梁,可以从嵌固处取,否则从基础顶;抗震墙厚取1/20层高,这里的层高与计算高度的概念不同,是指从一层地坪到一层楼板顶的高度。 6、多层砌体房屋和底部框架、内框架房屋室内外高差大于0.6m时,房屋总高度允许比表,但不应多于1m,那么此时是否仍可将小数点后第一位数四舍五入吗? 多层砌体房屋和底部框架、内框架房屋,若室内外高差大于0.6m时,房屋总高度允许比新规范,但不应多于1m.因已将总高度值适当增加,故此时不应再将小数点后第一位数四舍五入,即增加值不大于1m.

混凝土结构设计中的常见问题及解决方法

混凝土结构设计中的常见问题及解决方法 摘要在如今的建筑工程中,设计复杂、时间短、任务大等原因使得混凝土结构设计经常会出现诸多的问题。笔者针对混凝土结构设计中存在的常见问题进行讨论,并提出几点对策。 关键词混凝土;结构设计;问题;方法 1 基础设计 1.1 在设计时缺少工程实地勘察报告或者临近建筑的勘察报告 对于基础设计来说,基础设计必须按照勘察—设计—施工的流程来进行,要坚决杜绝出现缺少地质勘察报告而进行设计的情况出现。而如果出现地质勘查不够全面,或者内容模糊的情况时,设计单位必须告知建设单位并要求勘察单位重新勘察或者进行补勘。 而目前在我国,仍存在很多基础设计缺少实地勘察报告或者缺少临近建筑勘察报告的现象出现,而这样的设计对于整体工程来说,无法做到经济、科学,甚至会存在一定的安全问题。 1.2 未进行地基变形的验算或者验算的结构不符合要求 目前很多设计都未对处理后的地基进行变形验算,或者出现验算不符合要求的情况。而根据我国的有关规定,当设计等级为甲、乙级时,按照地基变形设计;而为丙级时,如果采取了地基处理,处理之前按照《建筑地基基础设计规范》(简称《规范》)的规定;而对地基处理后的情况,应进行变形验算。 1.3 下卧层验算中的问题 计算下卧层顶地基承载力的时候,只能进行深度修正,而修正的系数应该根据土层来决定。也就是说当扩散角所取数值满足《规范》中的规定时就可以直接采用,不满足时根据附录中的平均应力系数来进行计算。针对复合地基来说,因选取承载力较高的土层来当做持力层,而当出现软弱下卧层时,应对其承载力进行验算;如果是软弱下卧层控制其承载力,那么就代表持力层的选择需要进行调整。 1.4 独立基础的最小配筋问题 一般来说,独立基础的厚度应由受剪切或者受冲切承载力来决定,并不是由受弯承载能力来决定,从而忽略基础钢筋的最小配筋率。根据《规范》中的规定,扩展基础底板的受力钢筋的直径最小为10 mm为佳,间距尽量控制在100 mm~200 mm之间,且同时要满足最小配筋率。

对建筑结构设计常见问题探讨

对建筑结构设计常见问题探讨 发表时间:2018-11-09T17:57:33.430Z 来源:《建筑学研究前沿》2018年第19期作者:秦浩 [导读] 设计工作需要由多工种多专业合作共同完成,因此结构设计工作不是孤立的。 山东建大工程鉴定加固研究院山东济南 250000 摘要:结构设计简而言之就是用结构语言来表达建筑师及其它专业工程师所要表达的东西。用基础,墙,柱,梁,板,楼梯,大样细部等结构元素来构成建筑物的结构体系,包括竖向和水平的承重及抗力体系。把各种情况产生的荷载以最简洁的方式传递至基础。 关键词:房屋建筑;结构设计;常见问题 设计工作需要由多工种多专业合作共同完成,因此结构设计工作不是孤立的。在设计方面,就需要与建筑设计或工艺设计、设备设计及建筑经济等工种紧密配合;在设计以外,它又跟很多专业,如结构材料、施工技术、分析理论和计算工具、检测手段等密切相关,因此,要提高结构设计水平,除做好自身工作以外,不管是正常的设计工作或者科学研究,都要取得这些工种与专业的支持。不要把结构设计工作自闭起来,应该认识到它的成果或者提高是与其他工种和专业的支持分不开的。 1.地基与基础方面 1.1对于独栋或单体数量较少的住宅,建设单位能委托地质勘察单位进行详细的地质勘察,能为工程设计提供较为详细的勘察技术资料,而成片的多层房屋建筑往往因为地勘费用的问题,地勘单位的探点不能严格按照有关技术要求布置,多栋建筑单体参考一个探点,使得实际的地质情况与地勘报告相差较大。地基与基础设计要做到合理、安全适用,设计人员必须依据详细、真实的地质勘察资料。 1.2软弱地基处理一般采用级配砂石换填,仅仅简单提出换填深度和最终地基承载力的要求,在技术上只是草草写上严格执行《地基处理规范》,而没有针对具体的建筑物画出详细的开挖边线,如轴线变化处,突出凹进墙体部分的开挖边线等,也没有明确砂石换填的应力扩散角具体数值。因此很多工程在地基基础施工中,不能切实有效地做好地基处理。 1.3在基础设计中,对于混凝土独立基础、筏板基础、条形基础,节点设计、构造设计中往往不明确应采用的具体技术参数,如锚固长度搭接长度是采用抗震的还是非抗震的,造成具体实施阶段的扯皮现象 1.4在高层混凝土结构的主体结构设计中,往往梁柱混凝土的等级差别较大,那么在梁柱节点处混凝土怎么进行处理,在设计图中往往不作清楚地技术交底。梁柱节点本身就是个受力复杂的节点,而由于设计缺陷,造成此部位成为一个薄弱点。 2楼板设计常见问题 2.1设计时为了计算方便或因对板的受力状态认识不足,简单地将双向板作用按单向板进行计算。使计算假定与实际受力状态不符,导致一个方向配筋过大,而另一方向配筋不足,致使板出现裂缝。 2.2楼板承受线荷载时弯矩计算问题。在民用建筑中,常在楼板上布置一些非承重隔墙,故楼板设计中,通常将该部分的线荷载换算成等效的均布荷载后,进行楼板的配筋计算。有些设计人员图省事,错误地将隔墙的总荷载附以该板块的总面积。这样会造成非承重隔墙分布宽度内配筋量不足,而此板块其它部分配筋过大,这样隔墙处楼板会出现裂缝。 2.3双向板有效高度取值偏大。双向板在两个方向均产生弯矩,由此双向板跨中正弯矩钢筋是纵横叠放,短跨方向的跨中钢筋应放在下面,长跨方向的跨中钢筋置于短跨钢筋的上面,计算时应用两个方向的各自的有效高度。一般长向的有效高度比短向的有效高度小 d(d 为短向钢筋的直径)有的设计者为图省事或对板受力认识不足,而取两上方向的有效高度一致进行配筋计算,致使长跨有效高度偏大,配筋降低,致使结构构件存在的质量隐患,甚至出现开明缝的现象。 3楼层平面刚度的问题 一些设计在缺乏基本的结构观念或结构布置、缺乏必要措施时,采用楼板变形的计算程序。结构设计存在着结构不安全或者某些部位或构件安全储备过大等现象。为了使程序的计算结果基本上能反映结构的真实受力状况,而不致于出现根本性的误差,设计时应尽可能将楼层设计成刚性楼面。要做到这一点,首先,应在建筑设计方案阶段就避免采用楼面有变形的平面,比如楼层大开洞、外伸翼块太长、块体之间成“缩颈”连接、凹槽缺口太深等。其次,要从结构布置和配筋构造上给予保证,对于使用功能确实必需的,或者建筑效果十分优越的建筑设计,如果其平面无法完全符合刚性楼板的假定,那么在结构设计时,可以通过增设连系梁板、洞口边加设暗梁边梁、提高连系梁板或暗梁边梁的配筋量、采用斜向配筋或双层配筋形式等方法,尽量满足刚性楼板的基本假设,或者弥补由于不是绝对的刚性楼板假定而产生的计算“误差”。 4砖混结构房屋中构造柱兼作承重柱用 在砖混结构中,构造不但能够提高墙体的抗剪能力,而且构造柱与固梁联结在一起,形成对砌体的约束,这对于限制墙体裂缝的开展,维持竖向承载力,提高结构的抗震性能有着重要的作用在当前结构设计中,构造柱经常被作为承重柱使用,这种作法将引起以下几个问题。 4.1构造柱作为承重柱使用后,使得构造柱提前受力,这不但会降低构造柱对彻底的拉结和约束作和,而且结构一旦遭遇地震作用时,在构造柱位置必然形成应力集中,首先破坏这样构造柱不但起不到其应有的作用,反而成为房屋结构中的一个薄弱的部位。 4.2构造柱一般生根于地圈梁中,没有另设基础,构造柱兼作承重柱使用后,柱底基础的抗冲切、抗弯部及局部承压强度必然不能满足要求。柱底基础一旦发生冲切或局部承压被出现裂缝。本文建议承重大梁下的柱子应按承重柱设计。若梁上荷载和跨度都比较小时,构造柱也可布置于梁下,但此时必须按不考虑构造柱作用来验算下墙体的局部承压和抗弯强度。经验算满足,方可在粱下布置构造柱。 5承重柱截面高度设计过小 这种情况多发生于六度抗震设防区。一些结构设计人员误认为六度设防就是不设防,为受力分析方便,他们故意把柱子的截面高度设计得过小,使梁柱的线刚度比加大。把梁简化为铰支梁,梁柱按轴心受压计算。这种做法虽然易于进行结构受力分析,但却给房屋结构埋下了隐患。因为,这样做忽略了梁柱间的刚结作用,加之柱截面的配筋都较小,结构一旦受力后,柱顶抗弯刚度必然不足,从而柱子在梁底附近将会出现一条或多条水平裂缝,形成塑性饺。这样在正常使用情况下,柱子已开始带铰工作。这不但影响了房屋的耐久性,而且也常常引起用户的恐惧心理。更为严重的是,这样的结构一旦遭遇地震作用,将会倒塌,这违背了现行抗震规范中“强柱弱梁”的设计原则。

建筑结构设计常见问题

建筑结构设计中常见问题及应对策略分析摘要:随着我国建筑行业发展规模不断扩大、发展速度不断加快的同时,建筑功能、建筑结构相关问题日益突出,在建设过程中或多或少的会出现这样、那样的问题,给建筑的安全性埋下大量的隐患。因此,在新时代发展,如何不断优化房屋建筑结构设计,有效的提高房屋建筑的安全性、完善房屋建筑的功能性,成为广大人们群众普遍关注和重点研究的话题之一。 引言 近年来,我国经济快速发展,人民生活水平不断提高,人们对建筑的要求越来越高,因此,建筑业的发展速度不断加快。人们所居住的房屋逐渐由单层、小层向高层复杂化变化,房屋的建筑结构设计也由简单的砖混结构变的多种多样。建筑结构设计的好坏直接影响到人们居住的质量高低。因此,对房屋建筑进行结构设计的同时,必须及时找出设计中的常见问题并及时找好方法解决,以此来保障房屋建筑产品的安全。 一、建筑结构设计概述 由于建筑物功能不同,建筑物分类方法也多种多样。根据建筑物使用功能,可分为民用建筑、工业建筑两种;根据建筑物的结构材料,可分为砌体结构、钢结构、混凝土结构、木结构、混合结构;根据建筑物层数,可分为超高层、高层、多层、单层建筑;根据建筑物的结构形式,可分为筒体结构、剪力墙结构、框架结构、排架结构等。建筑结构是建筑物功能的基础环节,建筑结构设计是建筑设计的重要部

分,其具体过程为:方案设计、结构分析、构件设计、绘制施工图。为了保证建筑结构的安全性和可靠性,在结构设计时应注意以下内容:一是计算方面:应考虑各种结构构件的承载极限,并进行验算;二是由于建筑结构会受到多种作用力,在结构设计时应综合考虑各种作用力;三是抗震方面:我国抗震设防的烈度为 6~9 度,在建筑结构设计时应根据所在地区的房屋高度、结构类型、烈度等情况确定抗震等级。 二、房屋建筑结构设计过程中常见问题 1、结构布置不合理 建筑房屋的设计结构越规则,结构的布置才能越合理,这是建筑房屋结构设计的中心环节。一方面要注意建筑的平、立面外形尺寸大小和抗侧力物体布置的局面,满足承载力分布等各种因素的综合要求。另一方面,由于很多因素都可以造成结构的不规则,特别是针对于复杂的建筑结构,利用若干已经简单化的定量指标来划分不规则的程度并明确限定范围是几乎不可能的。 由于对规范标明的相应的设计规定不了解和对结构抗震理念的缺乏,有些房屋结构的设计人员在结构设计时不注重相关规则,导致建筑过程中出现了规则性不好、抗震性差的房屋。这主要表现在以下几点:(1)设计后的建筑平面凹凸不平,规则性差。(2)导致楼层错层。高层建筑中错层问题较严重时,会阻断楼层的楼板连续性,对建筑结构抗震十分不利。(3)在高层建筑结构中采用了两种或以上的复杂结构。例如错层结构、带转换层结构和多塔楼结构等,都属于复杂

基础设计常见问题

基础设计常见问题 1. 稳定性验算问题:建造在斜坡上或边坡附近的建筑物和构筑物,未验算其地基稳定性。当地下水埋藏较浅,建筑地下室或地下构筑物存在上浮问题时,未进行抗浮验算(地下室车道、地下水池的抗浮验算比较容易漏掉)。 2. 液化土层计算问题:场地存在液化土层时,未对桩基础的抗震承载力进行验算是经常发现的问题(目前桩基础大多通过现场静载荷试验确定单桩竖向承载力,对根据试验确定的承载力如何考虑液化土层的影响规范未作出规定,抗震验算时单桩承载力可参照桩基技术规范JGJ94-94第5.2.12条的规定扣除液化土层的侧阻力)。 3. 负摩阻力:地面堆载、大面积填土未根据具体工程情况考虑桩侧负摩阻力对基桩承载力的影响 4. 布桩计算问题:桩基础设计中,仅按竖向荷载作用进行布桩,未验算弯矩作用下承台底部边桩的反力。尤其是大跨度结构、框剪结构的剪力墙、剪力墙结构核心筒底部弯矩和剪力对基础承载力的影响很大,不应遗漏。对于水位较高的地下室和短肢剪力墙、大跨度结构等弯矩较大的承台底部桩基尚应验算是否存在向上的抗拔力(大跨度结构如影剧院、厂房等,柱底弯矩很大,轴力很小,计算结果甚至会出现抗拔桩,这时应加大桩距,即加大反力力臂,尽量避免出现抗拔桩。小高层建筑由于布置较少的剪力墙,且墙肢长度小,墙底弯矩大,

也容易出现抗拔桩,可同样处理)。根据电算结果进行基础设计时尚应计入底层隔墙及基础梁荷重或者承台及覆土荷重。 5. 抗拔桩设计方面的问题:在地下水位较高的地下室、大跨度空旷结构、门式刚架轻型房屋钢结构厂房刚接柱脚,存在着抗拔桩受力状态,在设计中往往缺抗拔桩抗裂性验算、抗拔桩静载试验及其配筋做法等要求说明。抗拔桩设计时,桩身配筋量仅按强度要求进行计算,缺少裂缝宽度验算,按裂缝宽度控制计算结果的配筋量远大于按强度要求计算的配筋量。采用预制桩作为抗拔桩时,往往只注意桩身的抗拉强度要求,桩基与承台间连接钢筋的强度要求接桩段的裂缝宽度要求经常被忽视。 6. 抗拔桩计算问题:抗拔桩配筋计算时荷载分项系数取1.0有误(审查中发现,抗浮计算时水浮力和压重分项系数均取1.0计算,当水浮力大于压重时,抗拔桩桩身配筋按“[水浮力-压重]/ 钢筋强度”计算,严重错误)。 7. 单柱单桩、一柱两桩基础存在的问题:目前建筑工程大量采用截面尺寸较小的预应力管桩,且在多层建筑中采用单柱单桩或一柱两桩基础,柱底弯矩由基础梁和桩共同承受。单柱单桩或垂直于两桩连线方向的基础梁设计中,未考虑平衡该方向柱脚在水平风荷载或地震作用下所产生弯矩因素,基础梁两端箍筋未按框架梁抗震构造要求设置箍筋加密区(根据福建省建设厅[2003]24号文规定,单柱单桩之间或垂直于两桩连线之间的基础梁宜按框架梁要求设计),基础梁的上下主筋在桩承台内锚固长度与构造做法要求未加说明。如果桩

浅析框架结构设计中常见的几个问题及应对措施

浅析框架结构设计中常见的几个问题及应对措施 发表时间:2017-10-26T14:46:40.807Z 来源:《建筑学研究前沿》2017年第15期作者:王德祥 [导读] 本文主要对框架结构设计中常见的几个问题进行分析,并提出相应的解决措施。 深圳市建筑科学研究院股份有限公司 518049 广东省深圳市 摘要:钢筋混凝土框架结构是一种抗震、抗风性能较好的结构形式,这种结构体系具有传力明确、结构布置灵活、抗震性和整体性好的优点,故而在工业与民用建筑中被广泛运用。目前随着建筑造型和建筑功能要求的多样化发展,这也对框架结构更合理的设计提出了更高的要求。本文主要对框架结构设计中常见的几个问题进行分析,并提出相应的解决措施。 关键词:框架结构;抗震构造;抗震等级;强柱弱梁 1、从概念设计上须注意的几个问题 (1)强柱弱梁在框架结构设计中,从结构抗震设计角度一直强调一个概念就是当结构在罕遇地震作用下,柱子不能先于梁破坏,这样结构的破坏只是局部性的构件破坏,而非柱子破坏这种可能引起整体性倒塌性的破坏。其机理就是让塑性铰出现在梁端,柱端在大震时仍处于工作状态。 强柱弱梁的幅度大小取决于梁端纵筋不可避免的构造超配筋程度的大小,以及结构在梁、柱端塑性铰逐步形成过程中的塑性内力重分布和动力特征的相应变化。因此,在满足建筑要求的情况下,尽量将柱截面尺寸做得大一些,以增加柱的刚度,使柱的线刚度大与梁的线刚度,并控制柱的轴压比以增加延性。在验算截面承载力时,将柱的弯矩设计值按规范要求进行放大,加强柱的构造配筋。同时注意根据《建筑抗震设计规范》(GB50011-2010)第6.3.4条要求,框架梁端纵向受拉钢筋的配筋率不宜大于2.5%,以免在结构进入屈服阶段时不能形成塑性铰或者塑性铰转移到柱端。 (2)强剪弱弯强剪弱弯是保证构件延性,防止脆性破坏的重要原则,在结构设计中须加大各承重构件相对于其抗弯能力的抗剪承载力,使这些构件在结构经历罕遇地震时不至出现脆性剪切破坏。在设计中对于框架结构中的梁柱应注意其抗剪验算,在满足规范规定的剪跨比和跨高比限值的基础上,其配筋也要满足相应的计算和构造要求。 (3)注意构造措施在楼梯间位置的框架柱和建筑立面为带型窗的框架柱,在设计时须注意由于经常会在层间设置框架梁,使得这些位置的框架柱容易形成短柱。根据《建筑抗震设计规范》(GB50011-2010)第6.3.9条规定,剪跨比不大于2的柱、因设置填充墙等形成的柱净高与柱截面高度之比不大于4的柱箍筋加密范围应取全高。 2、抗震等级的确定 在实际结构设计中,大多数房屋建筑按其抗震设防分类属于丙类建筑,其抗震等级可根据抗震设防烈度、结构类型和房屋高度按《建筑抗震设计规范》(GB50011-2010)表6.1.2确定;而学校、大型体育场馆、医院、商场和展览中心等,应先按照《建筑抗震设防分类标准》的规定确定其建筑类别,然后根据《建筑抗震设防分类标准》(GB50011-2010)第3.0.3条规定,甲乙类建筑应按高于本地区抗震设防烈度一度的要求加强其抗震措施,并由此确定建筑物的抗震等级。 3、结构设计参数的选取 (1)结构周期折减系数在结构计算分析时,只考虑了主要结构构件的刚度,没有考虑非承重结构构件的刚度,而框架结构由于填充墙的存在,使得结构的实际刚度大于计算刚度,计算周期大于实际周期,按这一周期计算的地震力偏小,为此考虑非承重构件对结构整体刚度的影响,对结构计算周期应予以折减。根据《高层建筑混凝土结构技术规程》JGJ3-2010第4.3.17规定,当非承重墙体为砌体墙时,高层框架结构计算周期折减系数可取0.6~0.7,对于其他非承重墙体时,可根据工程情况确定实际周期折减系数。 (2)梁刚度放大系数在结构建模分析时,梁只是以矩形截面输入,未考虑梁和楼板共同作用形成T型截面而引起的梁刚度增大,从而造成结构的计算刚度小于实际刚度,算出的地震剪力比实际偏小。根据《高层建筑混凝土结构技术规程》JGJ3-2010第5.2.2规定,楼面梁刚度增大系数可根据翼缘情况取1.3~2.0。 (3)梁扭矩折减系数在实际工程中,梁板是整体浇筑在一起的,板面与梁顶平齐,板对主次梁均有相当大的约束作用,主梁的翼缘可以承担一部分的扭矩,故楼板厚度、跨度等都会对梁所承担的扭矩产生一定的影响,因此在实际计算中需要考虑楼板对梁扭矩产生的影响。根据《高层建筑混凝土结构技术规程》JGJ3-2010第5.2.4规定,高层建筑结构楼面梁受扭计算时应考虑现浇楼盖对梁的约束作用。当计算中未考虑现浇楼盖对梁扭转的约束作用时,可对梁的计算扭矩予以折减。根据梁两侧楼板的约束情况,一般对两侧均有楼板的梁扭矩折减系数取0.4,对两侧没有楼板或者弧形梁扭矩折减系数取1.0。 (4)梁端负弯矩调幅系数在结构计算时,框架梁在竖向荷载作用下,梁端负弯矩较大,造成节点钢筋太密,施工麻烦,甚至节点钢筋间距满足不了规范规定的构造要求。这种情况下,可考虑框架梁端塑性变形内力重分布,对梁端负弯矩乘以调幅系数进行调幅,以此适当降低框架梁在竖向荷载作用下的负弯矩,并通过平衡条件相应增大梁跨中弯矩。根据《高层建筑混凝土结构技术规程》JGJ3-2010第5.2.3规定,现浇框架梁梁端负弯矩调幅系数可取0.8~0.9。 4、基础系梁的设置问题 如果基础埋深度较深时,可以用基础系梁减少底层柱的计算长度,在正负零以下设置系梁,此时系梁按一般框架梁进行设计,同时系梁以下的柱按短柱处理。 根据抗震要求,可沿两个主轴方向设置构造基础系梁,系梁截面高度可取跨度的1/10~1/15,纵向受力钢筋可取与系梁相连的柱底最大轴力设计值的1/10作为拉力或压力来计算,以此算得的结果为构造配筋时,尚应满足最小配筋率;当基础系梁上作用有填充墙或梯柱等传来的荷载时,应与所连柱子的最大轴力设计值的1/10进行叠加进行计算。 5、设计构造方面的问题 (1)框架节点核芯区箍筋配置除应满足规范规定的框架柱箍筋加密区的箍筋最小体积配箍率的要求外,还应按照《建筑抗震设计规范》(GB50011-2010)中第6.3.10规定“一、二、三级框架节点核芯区配箍特征值分别不宜小于0.12、0.10、0.08且体积配箍率分别不宜小于0.6%、0.5%、0.4%”进行复核,尤其是当框架柱轴压比较小时,这是保证节点核芯区延性的重要构造措施,需要特别注意。

多层框架结构中次梁设计论文

浅谈多层框架结构中次梁的设计 摘要:通过工程模型的对比分析,证明了多层框架结构的次梁布置对结构整体刚度的影响,进而影响结构的抗震。为框架结构尤其是平面狭长的框架结构设计提供参考。 关键词:次梁;刚度;抗震;结构布置 abstract: through the comparison of the engineering model, and prove the multilayer frame structure of the second beam layout of the influence of the whole structure stiffness, and affect the structure of earthquake. as a frame structure especially plane long and narrow frame structure provides reference for the design. keywords: second beam; stiffness; seismic; structure layout 【中国分类号】tu208.2 ;tu375 【文献标志码】a【文章编号】框架结构因为具有建筑平面布置灵活、房间空间大等优点,在工业厂房及公共建筑中有着广泛的应用。一般而言,框架结构就其承重方案一般有三种:横向承重,纵向承重和双向承重。对应的次梁布置方式分别为沿纵向布置,沿横向布置和双向布置(即十字梁或井字梁)。 当框架结构的主要结构构件框架柱、框架梁尺寸确定的情况下,次梁对结构整体抗震设计有何贡献呢?目前有不少的工程设计人

房屋结构设计常见问题探讨

房屋结构设计常见问题探讨 由于经济高速前进,人们的生活品质得以显著的提升,建筑的结构设计也开始受到人们的关注,在具体的设计,常会面对很多的不利现象,进而干扰到建筑的品质和外形。文章重点的论述了一些不利现象。 标签:房屋;结构设计;问题 1 关于地基以及基础 对于多层的建筑来讲,只是凭借建设方的言语性的内容或者是模糊的靠着设计信息就开展设计活动的话,很明显是不合理的。对于地基和基础来讲,要确保其合理,要确保安全,设计者要结合勘察信息,全方位的分析多种要素,进行基础类型和上部结构的详细勘测方可设计,只是靠耐力的话是不综合的,同时也是不合理的,那种把耐力的许容数设置的最低的思想是错误的。 采用换土垫层进行软弱地基处理,不对其进行设计,只是按照过去的工作经验来设置。一些时候设计人员意识不到此类地基容易带来的不利现象,只是靠着过去的活动思想来进行工作,未对垫层的尺寸等分析,这样的话,不但无法确保其稳定,同时还会耗费非常多的资金。 民用建筑中柱、梁及基础的负荷未按规范乘以折减系数。当对多层的民宅开展设计的时候,在计算梁、柱和基础的负荷时未按现行设计规范采用荷载乘折减系数计算其荷载值,所以数据有失精准性。 2 在砖混结构中,构造柱具有成重特征 对于这类建筑,其构造柱不但具有提升抗震性的水平,同时还能和圈梁联系起来,此时就会对砌体产生约束力,其能够积极的应对缝隙现象,提升构造的抗震性特征。 对于现在的设计来讲,常将构造柱当成是承重柱,其必然会导致很多的不利现象。 如果将其当成是承重柱的话,此时它就会提前受到力的影响,这样不仅仅会使得其对墙体产生的约束等力下降,同时,如果受到地震的影响的话,其中会出现很多的应力,必然会受到影响。此时其不仅无法发挥应有的功效特征,反倒是会成为建筑中最弱势的区域。 它通常设置在地圈梁里面,未单独的设置基础,当将其看成是承重柱之后,它的抗冲切强度就无法合乎规定了。如果基础出现了冲切力的话,就会发生缝隙。建议承重大梁下的柱子应按承重柱设计。若梁上荷载和跨度都比较小时,构造柱也可布置于梁下,但此时必须按不考虑构造柱作用来验算墙体的局部承压和抗弯

44个结构设计常见问题解析(干货)

44个结构设计常见问题解析(干货) 1、结构类型如何选择? 解释: (1)对于高度不超过150米的多高层项目一般都选择采用钢筋混凝土结构; (2)对于高度超过150米的高层项目则可能会采用钢结构或混凝土结构类型; (3)对于落后偏远地区的民宅或小工程则可能采用砌体结构类型. 2、结构体系如何选择? 解释:对于钢筋混凝土结构,当房屋高度不超过120米时,一般均为三大常规结构体系——框架结构、剪力墙结构、框架—剪力墙结构. (1)对于学校、办公楼、会所、医院以及商场等需要较大空间的建筑, 当房屋高度不超过下表时,一般选择框架结构; 当房屋高度超过下表时,一般选择框架-剪力墙结构; (2)对于高层住宅、公寓、酒店等隔墙位置固定且空间较小的建筑项目一般选择剪力墙结构.当高层住宅、公寓、酒店项目底部一层或若干层因建筑功能要求(如大厅或商业)需要大空间时,一般采用部分框支剪力墙结构.

(3)对于高度大于100米的高层写字楼,一般采用框架-核心筒结构. 3、40米高的办公楼采用框架结构合理吗? 解释:不合理.7度区框架结构经济适用高度为30米,超过30米较多时应在合适的位置(如楼梯、电梯、辅助用房)布置剪力墙,形成框架-剪力墙结构体系.这样子剪力墙承受大部分水平力,大大减小框架部分受力,从而可以减小框架柱、框架梁的截面和配筋,使得结构整体更加经 济合理. 4、框架结构合理柱网及其尺寸? 解释: (1)柱网布置应有规律,一般为正交轴网. (2)普通建筑功能的多层框架结构除个别部位外不宜采用单跨框架,学校、医院等乙类设防建筑以及高层建 筑不应采用单跨框架. (3)仅从结构经济性考虑,低烈度区(6度、7度)且风压小(小于0.4)者宜采用用大柱网(9米左右);高烈度区(8度及以上)者宜采用中小柱网(4~6米左右). (4)一般情况下,柱网尺寸不超过12米;当超过12米时可考虑采用钢结构.

浅谈多层框架结构

浅谈多层框架结构 【摘要】在我国社会主义经济建设的良好发展形势下,我国建筑行业获取了前所未有的发展机遇与广阔前景。多层框架结构是我国近年才正式应用的结构形式之一,被广泛应用于现代建筑行业各领域中。本文主要阐述了有关多层框架结构相关的一系列问题。 【关键词】建筑,多层框架结构 1.前言 近些年来,建筑市场在我国可以说是蓬勃发展,钢筋混凝土多层框架结构的房屋结构设计有着明显的优势,已经在我国建筑领域得到广泛的使用,建筑房屋多层框架结构设计的科学性以及合理性对于建筑质量的要求以及使用有着决定性的巨大影响,针对建筑钢筋混凝土多层框架结构进行深入的研究和探讨。 2.多层框架结构的组成 框架结构由柱和梁组成。一般柱子垂直布置,梁水平布置;屋面由于排水或其他方面的要求,也可布置成斜梁;梁柱连结处一般为刚性连接;有时为便于施工或由于其他构造要求,也可将部分节点做成铰节点或半铰节点。当梁、柱之间全部为饺接时,也称为多层排架;刚性连接的梁比普通梁式结构要节约材料,结构的横向刚度较好,横梁的高度也较小,因而可增加房屋的净空,是一种比较经济的结构形式。 框架可以是等跨或不等跨,层高可以相等或不完全相等,有时因工艺要求而在某层抽柱或缺梁形成复式框架。框架结构为高次超静定结构,既承受竖向荷载,又承受侧向作用力(风荷载或地震作用等)。为利于结构受力,框架梁宜拉通、对直,框架柱宜上、下对中,梁柱轴线宜在同一竖向平面内,有时由于使用功能或建筑造型上的要求,框架结构也可做成抽梁、抽柱、内收、外挑等。 框架结构有实腹式、格构式以及横梁为格构式、柱为实腹式的混合式框架。实腹框架梁的横截面一般为矩形或梯形截面。混凝土框架柱的截面形式常为矩形或正方形,有时由于建筑上的要求,也可设计成圆形、八角形、T形等。钢框架柱的截面形式常采用H形或箱形。实腹式框架外形简捷美观,制造和施工简单,安装省工,但材料利用率低。当结构跨度较大时,可采用格构式框架。格构式框架刚度较大,用钢省,其外形与净空布置比实腹式框架灵活,但制造加工和安装较为复杂。混合式框架的目的主要是减轻横梁自重,增加结构刚度。当楼盖为现浇板时,可将楼板的一部分作为框架梁的翼缘予以考虑,即框架梁截面为T或r形;当采用预制板楼盖时,为减小楼盖结构高度,增加建筑净空,混凝土框架梁截面常为十字形或花篮形;这时也可将预制梁做成T形截面,在预制板安装就位以后,再现浇部分混凝土,使后浇混凝土与预制梁共同工作即成为叠合梁,这样一方面保证了梁的有效高度和承载力;另一方面可将梁板有效地连成整体,改善结构的抗震(振)性能。预

《结构设计常见问题探讨》的读书笔记

《结构设计常见问题探讨》的读书笔记 《结构设计常见问题探讨》一文在网络上流传甚广,本文为HiStruct的读书笔记(见正文中红字注出部分。正文如下: 结构设计中相当部分构件的设置,规范仅给出了最低限值或建议取值,实际设计 过程中各人的理解不同可能对整个设计带来相当大的区别。还有部分是属于概念设 计的范畴,尤其值得我们一起探讨。 一.关于超长结构: 混凝土结构设计规范第9.1.1条中规定钢筋混凝土框架结构伸缩缝最大间距为55 m,而7.1.2条则规定当采取后浇带分段施工,专门的预加应力措施或采取能减小混凝 土温度变化或收缩的措施且有充分依据的,伸缩缝间距可适当增大。这两条使我们在 实际设计过程中较难把握。工程实例中超过55m 就设置伸缩缝,这显然是很难保证的,但采取后浇带分段施工后究竟应控制房屋长度 多少而不至于产生裂缝等不良现象呢?笔者认为这取决于各地区的温差及混凝土不 同的收缩应力。按照苏州地区的经验,单层房屋超过55m 在70m以内时,采取设置施工后浇带及相应的构造加强措施后,不设置伸缩缝是可行的,这在笔者长期的工程实践中证明是切实可行的,多个工程均未产生严重的裂缝。 但在结构设计中必须对梁柱配筋进行概念上的调整。首先是长向板钢筋应双层设置, 并适当加强中部区域的梁板配筋,笔者认为中部区域作为一个中点必然受较大应力, 而两侧梁柱,特别是边跨的柱配筋必须加强以抵抗温度应力带来的推力,而超长结构 在角部容易产生的扭转效应也须我们在设计中对角部结构进行加强[HiStruct注:首先 中部区域恰恰相对不需要加强配筋,这是因为中部作为收缩的中和轴区域,一般应力 比较小,而约束比较强的边界区域则是需要加强的;角部区域更是严重,至于角部区域 的扭转,则有点费解]。当框架结构超过70m时,笔者认为必须采取特殊的措施才能不 设置伸缩缝,譬如说采用预加应力,掺入抗裂外加剂等等,而且作为超过70m 的结构,必须对温度及收缩裂缝采取定量的分析,并相应施加预应力,这在许多工程实 例中应用的效果也是众目共睹的。如果对超长结构,不能有效的分析清楚受力情况,

相关文档
最新文档