2017考研高数:中值定理之泰勒中值定理

2017考研高数:中值定理之泰勒中值定理
2017考研高数:中值定理之泰勒中值定理

2017考研高数:中值定理之泰勒中值定理

中值定理这部分的考点主要包含五大定理:费马引理、罗尔中值定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理,它们在考研中主要是以证明题的形式考查大家。今天我们主要讨论泰勒中值定理,泰勒中值定理在高等数学中的应用是非常多的。它的应用不仅仅局限在证明题中,它还可以用到极限的计算中、幂级数的展开和求和等,对于2016年的考生而言,现在还处于复习的基础阶段,这个阶段不需要掌握泰勒中值定理的全部应用,只需要掌握它的基本内容即可。泰勒中值定理的内容是复杂的,为了帮助大家很好的理解,下面我们来推导一下泰勒中值定理。

对于基础阶段而言,大家掌握上面的基本内容就可以了,具体每个定理是怎么用的,是下个阶段大家要攻克的问题。

高等数学-中值定理证明

第三章中值定理证明

1.闭区间上连续函数定理① ② ③ ④ 2.微分中值定理 ① ② ③ ④ 3.积分中值定理 ① ② 不等式证明思路 ①构造函数(利用极值) ②拉格朗日中值定理 ③函数凹凸性定义

1.若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0 f f ξλξ'+=2.设,0a b >,证明:(,)a b ξ?∈,使得(1)() b a ae be e a b ξξ-=--3.设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1)内至少存在一点ξ,使得:()0 F ξ''=4.设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+.

5.若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<

考研数学高数定理证明的知识点

考研数学高数定理证明的知识点考研数学高数定理证明的知识点 这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求 会证。 费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推 举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想 必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导” 和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得 函数在该点的导数为0。 前面提过费马引理的条件有两个——“可导”和“取极值”,“可导”不难判断是成立的,那么“取极值”呢?似乎不能由条件直 接得到。那么我们看看哪个条件可能和极值产生联系。注意到罗尔 定理的第一个条件是函数在闭区间上连续。我们知道闭区间上的连 续函数有很好的性质,哪条性质和极值有联系呢?不难想到最值定理。 那么最值和极值是什么关系?这个点需要想清楚,因为直接影响 下面推理的走向。结论是:若最值取在区间内部,则最值为极值;若 最值均取在区间端点,则最值不为极值。那么接下来,分两种情况 讨论即可:若最值取在区间内部,此种情况下费马引理条件完全成立,不难得出结论;若最值均取在区间端点,注意到已知条件第三条 告诉我们端点函数值相等,由此推出函数在整个闭区间上的最大值 和最小值相等,这意味着函数在整个区间的表达式恒为常数,那在 开区间上任取一点都能使结论成立。 拉格朗日定理和柯西定理是用罗尔定理证出来的。掌握这两个定理的证明有一箭双雕的效果:真题中直接考过拉格朗日定理的证明,

若再考这些原定理,那自然驾轻就熟;此外,这两个的定理的证明过 程中体现出来的基本思路,适用于证其它结论。 以拉格朗日定理的证明为例,既然用罗尔定理证,那我们对比一下两个定理的结论。罗尔定理的结论等号右侧为零。我们可以考虑 在草稿纸上对拉格朗日定理的结论作变形,变成罗尔定理结论的形式,移项即可。接下来,要从变形后的式子读出是对哪个函数用罗 尔定理的结果。这就是构造辅助函数的过程——看等号左侧的式子 是哪个函数求导后,把x换成中值的结果。这个过程有点像犯罪现 场调查:根据这个犯罪现场,反推嫌疑人是谁。当然,构造辅助函 数远比破案要简单,简单的题目直接观察;复杂一些的,可以把中值 换成x,再对得到的函数求不定积分。 2015年真题考了一个证明题:证明两个函数乘积的导数公式。 几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的.较为 陌生。实际上,从授课的角度,这种在2015年前从未考过的基本公 式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急 功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可 能从未认真思考过该公式的证明过程,进而在考场上变得很被动。 这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中 未考过的重要结论的证明,有可能考到,不要放过。 当然,该公式的证明并不难。先考虑f(x)*g(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写 出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则, 因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。 利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有” 的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了 f(x)*g(x)在任意点的导数公式。 类似可考虑f(x)+g(x),f(x)-g(x),f(x)/g(x)的导数公式的证明。 该定理条件是定积分的被积函数在积分区间(闭区间)上连续,结论可以形式地记成该定积分等于把被积函数拎到积分号外面,并把

泰勒公式的证明及其应用

泰勒公式的证明及其应用 数学与应用数学专业胡心愿 [摘要]泰勒公式的相关理论是函数逼近论的基础。本文主要探索的是泰勒公式的一些证明方法,并对不同的证明方法进行相应的比较分析,在此基础上讨论泰勒公式在证明不等式、求函数极限、求近似值、求行列式的值、讨论了函数的凹凸性,判别拐点,判断级数敛散性等方面的应用.本文还针对多元函数的泰勒公式的推导和应用做了简单的论述. [关键词]泰勒公式;不等式;应用; Proof of Taylor's Formula and Its Application Mathematics and Appliced Mathematics Major HU Xin-yuan Abstract: The theory about Taylor's Formula is the basic content of Approximation Theory . What this paper explores is some methods that proof the Taylor's Formula, and the paper analyse and compare them. On that basis, the paper discuss the application of Taylor's Formula in some respects,such as Inequality proof, functional limit, approximate value, determinant value, convexity-concavity of function, the decision of inflection point, divergence of the series.The paper explore the derivation of Taylor's Formula of the function of many variables and its application. Key words:Taylor's Formula;inequality;application

考研数学中值定理五大注意事项

考研数学中值定理五大注意事项 来源:文都图书 中值定理是考研数学得分较低的一块,可以说是考生的“灾难区”,看到一个题目怎么思考处理是个问题,下面,就给大家就这一部分讲解一下事项。 1. 所有定理中只有介值定理和积分中值定理中的ξ所属区间是闭区间。 2. 拉格朗日中值定理是函数f(x)与导函数f'(x)之间的桥梁。 3. 积分中值定理是定积分与函数之间的桥梁。 4. 罗尔定理和拉格朗日中值定理处理的对象是一个函数,而柯西中值定理处理的对象是两个函数,如果结论中有两个函数,形式与柯西中值定理的形式类似,这时就要想到我们的柯西中值定理。 5. 积分中值定理的加强版若在定理证明中应用,必须先证明。 其次对于中值定理证明一般分为两大类题型:第一应用罗尔定理证明,也可又分为两小类:证明结论简单型和复杂型,简单型一般有证明f'(ξ)=0,f'(ξ)=k (k为任意常数),f'(ξ1)=g'(ξ2),f''(ξ)=0,f''(ξ)=g''(ξ),像这样的结论一般只需要找罗尔定理的条件就可以了,一般罗尔定理的前两个条件题目均告知,只是要需找两个不同点的函数值相等,需找此条件一般会运用闭区间连续函数的性质、积分中值定理、拉格朗日中值定理、极限的性质、导数的定义等知识点。复杂型就是结论比较复杂,需要建立辅助函数,再使辅助函数满足罗尔定理的条件。辅助函数的建立一般借助于解微分方程的思想。第二就是存在两个点使之满足某表达式。这样的题

目一般利用拉格朗日中值定理和柯西中值定理,处理思想把结论中相同字母放到等是一侧首先处理。 上述就是值定理需要注意的事项。希望大家在做题的过程中多加注意,可以配套着汤家凤的《2016考研数学绝对考场最后八套题》来进行对应的训练,掌握好上述的知识点。

泰勒中值定理在一类极限计算中的应用

2008年第10卷第6期 总第93期 巢湖学院学报 JournalofChaohuCollege No.6.,V01.10.2008 GeneralSerialNo.93 泰勒中值定理在一类极限计算中的应用 龚东山-刘岳巍t牛富俊2 (1兰州大学数学与统计学院,甘肃兰州730000) (2中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室,甘肃兰州730000) 摘要:运用洛必塔法则和等价无穷小替换是计算未定武0/0值的两种常用方法,但在实际 问题的处理中,常常遇到不能直接使用洛必塔法则和等价无穷小需要选择的情形。可运用泰 勒中值定理,找到最佳替换的等价无穷小,从而弥补了上述两种常用方法的不足,并从理论 上给与了解释。 关键词:泰勒中值定理;极限;等价无穷小;最佳替换 中图分类号:0172.1文献标识码:A文章编号:1672—2868(2008)06-0148—04 1引言、 高等数学是以函数为对象,以微分和积分及其应用为内容,以极限为手段的一门学科,换句话说,高等数学是用极限来研究函数的微分和积分的理论【l】。由于极限贯穿于整个高等数学,故极限的计算就显得尤为重要。具体计算方法包括:定义证明法、极限运算法则、利用两个重要极限法、利用判定极限存在的两个准则法、利用等价无穷小替换法、利用函数的连续性法、利用导数求极限法一洛必塔法则、利用Tayer中值定理法、利用定积分定义法等[21。在具体的计算过程中,往往还需要先观察函数的结构,能化简时尽量先化简.再利用其中的一种方法或结合几种方法,使运算简捷。 对于一类未定式昙的计算,即使极限存在,也不能用“商的极限等于极限的商”的极限运算法则闭。 U 最常用的方法是运用洛必塔法则。洛必塔法则是指在一定的条件下通过分子分母分别求导再求极限来 确定未定式值的方法。一般情况下,洛必塔法则是求未定式芸的一种有效方法,但在实际问题的处理 U 中,有时会出现分子或分母的导数形式比求导前更复杂,以致于洛必塔法则不能直接使用的情形,如一£ 2 lim竺牛。 棚茗 对于这类问题。可采用等价无穷小替换法来解决。但问题是一个无穷小可有多个等价的无穷小,替换时选用不同的等价无穷小会得到不同的结果,这与极限的唯一性矛盾。如lim竺孚,显然sinx。x, 收稿日期:2008-08—20 基金项目:国家自然科学基金对外交流与合作项目(40640420072). 作者简介:龚东山(1969一),男,湖北监利人。兰州大学数学与统计学院讲师,博士,研究方向:应用数学。 148.

考研数学中值定理总结

中值定理一向是经济类数学考试的重点(当然理工类也常会考到),咪咪结合老陈的书和一些自己的想法做了以下这个总结,希望能对各位研友有所帮助。 1、所证式仅与ξ相关 ①观察法与凑方法 ②原函数法 ③一阶线性齐次方程解法的变形法 2、所证式中出现两端点 ①凑拉格朗日 ②柯西定理 ③k值法 ④泰勒公式法 老陈常说的一句话,管它是什么,先泰勒展开再说。当定理感觉都起不上作用时,泰勒法往往是可行的,而且对于有些题目,泰勒法反而会更简单。 3、所证试同时出现ξ和η ①两次中值定理 ②柯西定理(与之前所举例类似) 有时遇到ξ和η同时出现的时候还需要多方考虑,可能会用到柯西定理与拉氏定理的结合使用,在老陈书的习题里就出现过类似的题。 一、高数解题的四种思维定势 1、在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。 2、在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分

中值定理对该积分式处理一下再说。 3、在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。 4、对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。 二、线性代数解题的八种思维定势 1、题设条件与代数余子式A ij 或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E 。 2、若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。 3、若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出因子aA+bE再说。 4、若要证明一组向量a 1,a 2 ,…,a s 线性无关,先考虑用定义再说。 5、若已知AB=0,则将B的每列作为Ax=0的解来处理再说。 6、若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。 7、若已知A的特征向量ζ 0,则先用定义Aζ =λ ζ 处理一下再说。 8、若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。

高数中值定理

第三章中值定理与导数 的应用

中值定理与导数的应用的结构 洛必达法则 Rolle 定理 Lagrange 中值定理 常用的泰勒公式 型 0,1,0∞∞型 21∞-∞型 ∞?0型00型∞ ∞Cauchy 中值定理 Taylor 中值定理 x x F =)() ()(b f a f =0 =n g f g f 1= ?2 11 2 21111∞∞∞-∞=∞-∞取对数 令g f y =单调性,极值与最值,凹凸性,拐点,函数图形的描绘;曲率;求根方法. 导数的应用

第三章中值定理与导数的应用 1. 中值定理 2. 常用麦克劳林公式 3. 洛必达法则 4. 函数的单调性、凹凸性、极值与拐点 5. 函数图形性质的讨论 6. 判定极值的充分条件 7. 最值问题 8. 典型例题

1. 中值定理 泰勒中值定理 设f (x )在含0x 的某开区间(a ,b )内具有(n +1)阶 导数, 则当),(b a x ∈时,在 x 与0x 之间存在 ξ ,使 (柯西中值公式) ) () ()()()()('' ξξg f b g a g b f a f =--(拉氏中值公式) )()()(ξf b f a f '=-柯西中值定理 设f (x ), g (x )在闭区间[a ,b ]上连续,在开区间 (a ,b )内可导且g '(x )≠0, 那末),(b a ∈?ξ,使 罗尔中值定理 设f (x )在闭区间[a ,b ]上连续,在开区间(a ,b )内 可导且f (a )= f (b ), 那末),(b a ∈?ξ,使f '(ξ )=0 1 0)1(0 00)() ()!1()()(!)()(++=-++-=∑n n n k n n x x n f x x n x f x f ξ拉氏中值定理 设f (x )在闭区间[a ,b ]上连续,在开区间(a ,b )内 可导, 那末),(b a ∈?ξ,使

考研数学公式大全(考研同学必备)

考研数学公式(全) ·平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边,

·三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A

考研数学专题训练:中值定理

1 中值定理 【本章定位】 本部分内容属于考研数学中的难点内容,而且经常被考生所忽略,往往受到课本中的误导,低估了其难度和重要性,事实证明,在历年考研中,虽不是年年必考,但是出现的几率很大,且一般作为区分题加大了试卷的难度,如 201年的真题中“证明拉格朗日中值定理”的题目,让人无从下手,有人将此归结为看书不仔细,实际上是对本该好好研究学习的内容没有认真把握和总结,没有掌握中值定理的方法和技巧。所以,请考生务必重视! 1、 所证式仅与ξ相关 ①观察法与凑方法 1 ()[0,1](0)(1)(0)0 2() (,)()1 ()()2()0(1) ()() [()]()f x f f f f a b f x f x xf x f x f x xf x xf x xf x '==='ζ''ζ∈ζ=-ζ '''''ζ--='''''''= 例设在上二阶可导,试证至少存在一点使得分析:把要证的式子中的换成,整理得由这个式可知要构造的函数中必含有,从找突破口 因为()(1) ()()[()()]0()()[()]0 ()(1)()() f x f x f x xf x f x f x f x xf x F x x f x f x '+'''''''''''--+=?--='=--,那么把式变一下: 这时要构造的函数就看出来了②原函数法 ?-?-? ===?=?+=?='ζζζ=ζ'∈ζ?==?dx x g dx x g dx x g e x f x F C C e x f Ce x f C dx x g x f x g x f x f x g f f g f b a b a x g b f a f b a b a x f )()()()()( )( )(ln )()(ln )() ()( ) ()()(),( ],[)()()( ),(],[)( 2 很明显了 ,于是要构造的函数就现在设换成把有关的放另一边,同样有关的放一边,与现在把与方法 造的函数,于是换一种是凑都不容易找出要构分析:这时不论观察还使得求证:上连续在,又内可导,上连续,在在设例两边积分00

微积分基础知识总结以及泰勒公式

§3.3 泰勒公式 常用近似公式 ,将复杂函数用简单的一 次多项式函数近似地表示,这是一个进步。当然这种近似表示式还较粗糙(尤其当 较大时),从下图可看出。 上述近似表达式至少可在下述两个方面进行改进: 1、提高近似程度,其可能的途径是提高多项式的次数。 2、任何一种近似,应告诉它的误差,否则,使用者“ 心中不安”。 将上述两个想法作进一步地数学化: 对复杂函数 ,想找多项式来近似表示它。自然地,我们希望 尽可能多地反映出函数 所具有的性态 —— 如:在某点处的值与导 数值;我们还关心 的形式如何确定; 近似 所产生的误差 。 【问题一】 设 在含的开区间内具有直到阶的导数,能否找出一个关于 的 次多项式 近似 ? e x x x x x ≈+≈1,sin ()充分小 x f x ()p x n ()p x n () f x ()p x n () p x n () f x ()R x f x p x n n ()()() =-f x ()x 0n +1() x x -0n ) ,,1,0()()() 1()()()()(0)(0) (0202010n k x f x p x x a x x a x x a a x p k k n n n n ==-++-+-+=且f x ()

【问题二】 若问题一的解存在,其误差 的表达式是什么? 一、【求解问题一】 问题一的求解就是确定多项式的系数 。 …………… 上述工整且有规律的求系数过程,不难归纳出: R x f x p x n n ()()() =-a a a n 01,,, p x a a x x a x x a x x n n n ()()()()=+-+-++-0102020 ∴=a p x n 00() '=+-+-++--p x a a x x a x x na x x n n n ()()()()1203020123 ∴ ='a p x n 10() ''=??+???-+???-++?-??--p x a a x x a x x n n a x x n n n ()()()()()213243123040202 ∴ ??=''2120a p x n () '''=???+????-+????-++?-?-??--p x a a x x a x x n n n a x x n n n ()()()()()()3214325431234050203 ∴???='''32130a p x n ()

高等数学常见中值定理证明及应用

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

2016考研数学中值定理证明思路总结

2016考研数学中值定理证明思路总结中值定理这块一直都是很多考生的“灾难区”,一直没有弄清楚看到一个题目到底怎么思考处理,因此也是考研得分比较低的一块内容,如果考生能把中值定理的证明题拿下,那么我们就会比其他没做上的同学要高一个台阶,也可以说这是一套“拉仇恨”的题目。下面小编就和大家来一起分析一下这块内容。 1.具体考点分析 首先我们必须弄清楚这块证明需要的理论基础是什么,相当于我们的工具,那需要哪些工具呢? 第一:闭区间连续函数的性质。 最值定理:闭区间连续函数的必有最大值和最小值。 推论:有界性(闭区间连续函数必有界)。 介值定理:闭区间连续函数在最大值和最小值之间中任意一个数,都可以在区间上找到一点,使得这一点的函数值与之相对应。 零点定理:闭区间连续函数,区间端点函数值符号相异,则区间内必有一点函数值为零。 第二:微分中值定理(一个引理,三个定理)

费马引理:函数f(x)在点ξ的某邻域U(ξ)内有定义,并且在ξ处可导,如果对于任意的x∈U(ξ),都有f(x)≤f(ξ) (或f(x)≥f(ξ) ),那么f'(ξ)=0。 罗尔定理:如果函数f(x)满足: (1)在闭区间[a,b]上连续 (2)在开区间(a,b)内可导 在区间端点处的函数值相等,即f(a)=f(b), 那么在(a,b)内至少有一点ξ(a<ξ 柯西中值定理:如果函数f(x)及F(x)满足 (1)在闭区间[a,b]上连续 (2)在开区间(a,b)内可导 (3)对任一x∈(a,b),F'(x)≠0 那么在(a,b) 内至少有一点ξ,使等式[f(b)-f(a)]/[F(b)-F(a)]=f'(ξ)/F'(ξ)成立。 第三:积分中值定理: 如果函数f(x) 在积分区间[a, b]上连续,则在[a, b]上至少存在一个点ξ,使下式成立

泰勒公式及其应用典型例题

泰勒公式及其应用 常用近似公式,将复杂函数用简单的一次多项式函数近似地表示,这是一个进步。当然这种近似表示式还较粗糙(尤其当较大时),从下图可看出。 上述近似表达式至少可在下述两个方面进行改进: 1、提高近似程度,其可能的途径是提高多项式的次数。 2、任何一种近似,应告诉它的误差,否则,使用者“心中不安”。 将上述两个想法作进一步地数学化: 对复杂函数,想找多项式来近似表示它。自然地,我们希望尽可能多地反映出函数所具有的性态——如:在某点处的值与导数值;我们还关心的形式如何确定;近似所产生的误差。 【问题一】 设在含的开区间内具有直到阶的导数,能否找出一个关于的次多项式

近似? 【问题二】 若问题一的解存在,其误差的表达式是什么? 一、【求解问题一】 问题一的求解就是确定多项式的系数。 …………… 上述工整且有规律的求系数过程,不难归纳出:

于是,所求的多项式为: (2) 二、【解决问题二】 泰勒(Tayler)中值定理 若函数在含有的某个开区间内具有直到阶导数,则当时,可以表示成 这里是与之间的某个值。 先用倒推分析法探索证明泰勒中值定理的思路:

这表明: 只要对函数及在与之间反复使用次柯西中值定理就有可能完成该定理的证明工作。 【证明】 以与为端点的区间或记为,。 函数在上具有直至阶的导数, 且 函数在上有直至阶的非零导数, 且 于是,对函数及在上反复使用次柯西中值定理,有

三、几个概念 1、 此式称为函数按的幂次展开到阶的泰勒公式; 或者称之为函数在点处的阶泰勒展开式。 当时,泰勒公式变为 这正是拉格朗日中值定理的形式。因此,我们也称泰勒公式中的余项。 为拉格朗日余项。 2、对固定的,若 有

文科高等数学(4.中值定理)

第四章 中值定理与导数的应用 §4. 1 中值定理 一、罗尔定理 费马引理 设函数f (x )在点x 0的某邻域U (x 0)内有定义, 并且在x 0处可导, 如果对任意x ∈U (x 0), 有 f (x )≤f (x 0) (或f (x )≥f (x 0)), 那么f '(x 0)=0. 罗尔定理 如果函数y =f (x )在闭区间[a , b ]上连续, 在开区间(a , b )内可导, 且有f (a )=f (b ), 那么在(a , b )内至少在一点ξ , 使得f '(ξ)=0. 简要证明: (1)如果f (x )是常函数, 则f '(x )≡0, 定理的结论显然成立. (2)如果f (x )不是常函数, 则f (x )在(a , b )内至少有一个最大值点或最小值点, 不妨设有一最大值点ξ∈(a , b ). 于是 0) ()(lim )()(≥--='='- →-ξξξξξ x f x f f f x , 0)()(lim )()(≤--='='+ →+ξ ξξξξ x f x f f f x , 所以f '(x )=0. 罗尔定理的几何意义: 二、拉格朗日中值定理 拉格朗日中值定理 如果函数f (x )在闭区间[a , b ]上连续, 在开区间(a , b )内可导, 那么在(a , b )内至少有一点ξ(a <ξ

2017考研数学七大中值定理精讲

2017考研数学七大中值定理精讲 来源:文都图书 高数占据了考研数学的半壁江山,而在高等数学中七大中值定理(零点定理、介值定理、三大微分中值定理、泰勒定理与积分中值定理)是学生在学习过程中认为最难的部分。七大定理的难主要在于难 理解、难应用。在历次考试,包括研究生入学考试中,与中值有关的问题一直是考试中得分最少的题,我们应如何更好的理解与掌握定理,灵活有效的使用定理呢?我们来详细的分析一下这几大定理。 第一,七大定理的归属。 零点定理与介值定理属于闭区间上连续函数的性质。三大中值定理与泰勒定理同属于微分中值定理,并且所包含的内容递进。积分中值定理属于积分范畴,但其实也是微分中值定理的推广。 第二,对使用每个定理的体会。 学生在看到题目时,往往会知道使用某个中值定理,因为这些问题有个很明显的特征—含有某个中值。关键在于是对哪个函数在哪个区间上使用哪个中值定理。 1、使用零点定理问题的基本格式是“证明方程f(x)=0在a,b之间有一个(或者只有一个)根”。从题目中我们一目了然,应当是对函数f(x)在区间[a,b]内使用零点定理。应当注意的是零点定理只能说明零点在某个开区间内,当要求说明根在某个闭区间或者半开半闭区间内时,需要对这些端点做例外说明。 2、介值定理问题可以化为零点定理问题,也可以直接说明,如“证明在(a,b)内存在ξ,使得f(ξ)=c”,仅需要说明函数f(x)在[a,b]内连续,以及c位于f(x)在区间[a,b]的值域内。 3、用微分中值定理说明的问题中,有两个主要特征:含有某个 函数的导数(甚至是高阶导数)、含有中值(也可能有多个中值)。应用微分中值定理主要难点在于构造适当的函数。在微分中值定理证明问题时,需要注意下面几点:

考研数学中值定理题型答题技巧分析

2016考研数学中值定理题型答题技巧分析在考研数学中,有关中值定理的证明题型是一个重要考点,也是一个让很多同学感到比较困惑的考点,不少同学在读完题目后不知从何下手,不会分析证明,找不到思路,之所以会出现这样的情况,主要是因为这些同学对中值定理证明题型的特点缺乏清晰的认识,对其分析和证明方法没有完全理解和掌握,为了协助这样的同学克服这方面的困难,下面文都网校考研数学老师对这类题的特点和证明方法做些分析总结,供各位2016考研的考生参考。 一、中值定理证明题的特点 中值定理证明题主要有以下一些特点: 1.中值定理证明题常常需要作辅助函数; 2.中值定理证明题经常在一个题中需要结合运用三个知识点,分别是:连续函数在闭区间上的性质(包括最大值和最小值定理、零点定理和介质定理),微分中值定理和积分中值定理; 3.中值定理证明题可能需要在一个问题的证明中反复运用同一个微分中值定理两次甚至三次,比如罗尔中值定理或拉格朗日中值定理; 4.从历年考研数学真题变化规律来看,证明中用得最多的主要是罗尔中值定理和拉格朗日中值定理,而泰勒中值定理和柯西中值定理则用得很少。 二、中值定理证明题的常用方法

中值定理证明题有不同的类型,对不同的类型需要运用不同的方法,主要的和常用的方法包括以下几种: 1.如果题目条件中出现关于函数值的等式,而函数是连续的,则可能需要运用连续函数在闭区间上的性质进行证明;对导数是连续的情况也可以对导函数运用连续函数的性质; 2.如果题目条件中出现关于定积分的等式,则可能需要运用积分中值定理; 3.对于以下这类问题一般使用罗尔中值定理进行证明:

6、如果是要证明两函数差值比的中值等式,或证明两函数导数比的中值等式,则可能需要利用柯西中值定理进行证明。 对于上面总结介绍的各种证明方法,在实际问题中要根据具体情况灵活运用,另外,对于需要作辅助函数的证明题,常常通过还原法分析找出需要的辅助函数,对于含积分等式的证明题,常常需要作变积分限的函数作为辅助函数,这种方法也是证明积分等式或不等式的主要方法之一,这些分析总结希望对大家提高中值定理证明题的解题能力有所帮助。最后预祝各位考研成功、金榜题名!

高等数学中值定理的题型与解题方法

高等数学中值定理的题型与解题方法 高数中值定理包含:1.罗尔中值定理(rolle); 2.拉格朗日中值定理(lagrange); 3.柯西中值定理(cauchy); 还有经常用到的泰勒展开式(taylor), 其中(,)a b ξ∈,一定是开区间. 全国考研的学生都害怕中值定理,看到题目的求解过程看得懂,但是自己不会做,这里往往是在构造函数不会处理,这里给总结一下中值定理所涵盖的题型,保证拿到题目就会做。 题型一:证明:()0n f ξ= 基本思路,首先考虑的就是罗尔定理(rolle),还要考虑极值的问题。 例1. ()[,]f x C a b ∈在(,)a b 可导,()()0f a f b >>,()( )02 a b f a f +<, 证明:存在(,)a b ξ∈,使得'()0f ξ=. 分析:由()()0f a f b >>,()( )02 a b f a f +<,容易想到零点定理。 证明:()()02a b f a f +<,∴存在1(,)2 a b x a +∈,使得1()0f x =, 又()()0f a f b >>,∴(),()f a f b 同号,∴()()02 a b f b f +<, ∴存在2(,)2 a b x b +∈,使得2()0f x =, ∴12()()0f x f x ==,所以根据罗尔中值定理:存在(,)a b ξ∈,使得'()0f ξ=. 例2. ()[0,3]f x C ∈在(0,3)内可导,(0)(1)(2)3f f f ++=,(3)1f =, 证明:存在(0,3)ξ∈,使得'()0f ξ= 证明:(1) ()[0,3]f x C ∈,∴()f x 在[0,3]使得上有最大值和最小值,M m , ∴根据介值性定理(0)(1)(2) 3 f f f m M ++≤ ≤,即1m M ≤≤ ∴存在[0,3]c ∈,使得()1f c =, (2)()(3)1f c f ==,所以根据罗尔中值定理:存在(,3)(0,3)c ξ∈?, 使得'()0f ξ=. 例3. ()f x 在(0,3)三阶可导,[0,1]x ∈,(1)0f =,3()()F x x f x =

2013考研数学高数公开课-中值定理辅导讲义

公开课一:中值定理及应用 一、预备知识 1、极值点与极值—设连续))((D x x f y ∈=,其中D x ∈0。若存在0>δ,当δ<-<||00x x 时,有)()(0x f x f <,称0x x =为)(x f 的极大点;若存在0>δ,当δ<-<||00x x 时,有)()(0x f x f >,称0x x =为)(x f 的极小点,极大点和极小点称为极值点。 2、极限的保号性定理 定理 设)0(0)(lim 0 <>=→A x f x x ,则存在0>δ,当δ<-<||00x x 时,)0(0)(<>x f ,即函数极限大于零则邻域大于零;极限小于零则邻域小于零。 【证明】设0)(lim 0>=→A x f x x ,取02 0>=A ε,因为A x f x x =→)(lim 0,由极限的定义,存在0>δ,当δ<-<||00x x 时,2|)(|A A x f <-,于是02 )(>>A x f 。 3、极限保号性的应用 【例题1】设2| 1|)(lim ,0)1(1=-''='→x x f f x ,讨论1=x 是否是极值点。 【例题2】(1)设0)(>'a f ,讨论a x =是否是)(x f 的极值点; (2)设0)(<'a f ,讨论a x =是否是)(x f 的极值点。 【解答】(1)设0)(>'a f ,即0)()(lim >--→a x a f x f a x ,由极限的保号性,存在0>δ,当δ<-<||0a x 时,有0)()(>--a x a f x f 。 当),(a a x δ-∈时,)()(a f x f <;当),(δ+∈a a x 时,)()(a f x f >。 显然a x =不是)(x f 的极值点。 (2)设0)(<'a f ,即0)()(lim <--→a x a f x f a x ,由极限的保号性,存在0>δ,当δ<-<||0a x 时,有0)()(<--a x a f x f 。 当),(a a x δ-∈时,)()(a f x f >;当),(δ+∈a a x 时,)()(a f x f <。 显然a x =不是)(x f 的极值点。 【结论1】设连续函数)(x f 在a x =处取极值,则0)(='a f 或)(a f '不存在。

高等数学微分中值定理应用举例

微分中值定理应用举例 单调性与极值 1.函数)(x f 在[]0,1上//()0f x >,比较//(1),(0),(1)(0)f f f f -的大小. 解:)(x f 在[]0,1上满足拉氏中值定理条件,存在()0,1ξ∈,使得/(1)(0)()f f f ξ-=.由于//()0f x >,所以/()f x 单调增加,而01ξ<<,所以///(0)()(1)f f f ξ<<, 即//(0)(1)(0)(1)f f f f <-<. 2.函数)(x f 在[]0,1上/////()0,(0)0f x f >=,比较//(1),(0),(1)(0)f f f f -的大小. 解:由于///()0f x >,所以//()f x 单调增加,而//(0)0f =,所以在[]0,1上//()0f x >,同上题讨论有//(0)(1)(0)(1)f f f f <-< 3.()()f x f x =--在()0,+∞内///()0,()0f x f x >>,判断在(),0-∞内///(),()f x f x 的符号. 解:()()f x f x =--,所以)(x f 在(),-∞+∞内为奇函数,/()f x 为偶函数,//()f x 为奇函数,在()0,+∞内///()0,()0f x f x >>,所以在(),0-∞内///()0,()0f x f x ><. 4.已知函数)(x f 在区间()1,1δδ-+内具有二阶导数,且/()f x 严格递增, /(1)(1)1f f ==,则:A.在()1,1δδ-+内均有()f x x <;B.在()()1,1,1,1δδ-+内均有()f x x >;C. 在()1,1δ-内均有()f x x <,在()1,1δ+内均有()f x x >; D. 在()1,1δ-内均有()f x x >,在()1,1δ+内均有()f x x <. 解:令()()F x f x x =-,则(1)(1)10F f =-=,//()()1F x f x =- 选择B.

考研数学高数有哪些中值定理的复习重点

考研数学高数有哪些中值定理的复习重点考研数学高数有哪些中值定理的复习重点 七大定理的归属。 零点定理与介值定理属于闭区间上连续函数的性质。三大中值定理与泰勒定理同属于微分中值定理,并且所包含的内容递进。积分中值定理属于积分范畴,但其实也是微分中值定理的推广。 对使用每个定理的体会 学生在看到题目时,往往会知道使用某个中值定理,因为这些问题有个很明显的特征—含有某个中值。关键在于是对哪个函数在哪个区间上使用哪个中值定理。 1、使用零点定理问题的基本格式是“证明方程f(x)=0在a,b之间有一个(或者只有一个)根”。从题目中我们一目了然,应当是对函数f(x)在区间[a,b]内使用零点定理。应当注意的是零点定理只能说明零点在某个开区间内,当要求说明根在某个闭区间或者半开半闭区间内时,需要对这些端点做例外说明。 2、介值定理问题可以化为零点定理问题,也可以直接说明,如“证明在(a,b)内存在ξ,使得f(ξ)=c”,仅需要说明函数f(x)在[a,b]内连续,以及c位于f(x)在区间[a,b]的值域内。 3、用微分中值定理说明的问题中,有两个主要特征:含有某个函数的导数(甚至是高阶导数)、含有中值(也可能有多个中值)。应用微分中值定理主要难点在于构造适当的函数。在微分中值定理证明问题时,需要注意下面几点: (1)当问题的结论中出现一个函数的一阶导数与一个中值时,肯定是对某个函数在某个区间内使用罗尔定理或者拉格朗日中值定理;

(2)当出现多个函数的一阶导数与一个中值时,使用柯西中值定理,此时找到函数是最主要的; (3)当出现高阶导数时,通常归结为两种方法,对低一阶的导函 数使用三大微分中值定理、或者使用泰勒定理说明; (4)当出现多个中值点时,应当使用多次中值定理,在更多情况下,由于要求中值点不一样,需要注意区间的选择,两次使用中值 定理的区间应当不同; (5)使用微分中值定理的难点在于如何构造函数,如何选择区间。对此我的体会是应当从需要证明的结论入手,对结论进行分析。我 们总感觉证明题无从下手,我认为证明题其实不难,因为证明题的 结论其实是对你的提示,只要从证明结论入手,逐步分析,必然会 找到证明方法。 4、积分中值定理其实是微分中值定理的推广,对变上限函数使 用微分中值定理或者泰勒定理就可以得到积分中值定理甚至类似于 泰勒定理的形式。因此看到有积分形式,并且带有中值的证明题时,一定是对某个变上限积分在某点处展开为泰勒展开式或者直接使用 积分中值定理。当证明结论中仅有积分与被积函数本身时,一般使 用积分中值定理;当结论中有积分与被积函数的导数时,一般需要展 开变上限积分为泰勒展开式。 ?在文字叙述题上下功夫 考生一方面多做些题目,尤其是文字叙述的题目,逐渐提高自己分析问题的能力。另一方面花点时间准确理解概率论与数理统计中 的基本概念。考生在复习过程中可以结合一些实际问题理解概念和 公式,也可以通过做一些文字叙述题巩固概念和公式。只要针对每 一个基本概念准确的理解,公式理解的准确到位,并且多做些相关 题目,再遇到考卷中碰到类似题目时就一定能够轻易读懂和正确解答。 ?会用公式解题 ?对概率论与数理统计的考点整体把握

相关文档
最新文档