概率论与数理统计教案-大数定律及中心极限定理

概率论与数理统计教案-大数定律及中心极限定理
概率论与数理统计教案-大数定律及中心极限定理

中心极限定理

中心极限定理 中心极限定理(Central Limit Theorems) 什么是中心极限定理 大数定律揭示了大量随机变量的平均结果,但没有涉及到随机变量的分布的问题。而中心极限定理说明的是在一定条件下,大量独立随机变量的平均数是以正态分布为极限的。 中心极限定理是概率论中最著名的结果之一。它提出,大量的独立随机变量之和具有近似于正态的分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释为什么有很多自然群体的经验频率呈现出钟形(即正态)曲线这一事实,因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使正态分布有了广泛的应用。 中心极限定理的表现形式 中心极限定理也有若干个表现形式,这里仅介绍其中四个常用定理: (一)辛钦中心极限定理 设随机变量相互独立,服从同一分布且有有限的数学期望a和方差σ2,则 随机变量,在n无限增大时,服从参数为a和的正态分布即n→∞时, 将该定理应用到抽样调查,就有这样一个结论:如果抽样总体的数学期望a和方差σ2是有限的,无论总体服从什么分布,从中抽取容量为n的样本时,只要n足够大,其样本平均数的分布就趋于数学期望为a,方差为σ2 / n的正态分布。 (二)德莫佛——拉普拉斯中心极限定理 设μ n是n次独立试验中事件A发生的次数,事件A在每次试验中发生的概率为P,则当n 无限大时,频率设μ n / n趋于服从参数为的正态分布。即:

该定理是辛钦中心极限定理的特例。在抽样调查中,不论总体服从什么分布,只要n充分大,那么频率就近似服从正态分布。 (三)李亚普洛夫中心极限定理 设是一个相互独立的随机变量序列,它们具有有限的数学期望和方 差:。 记,如果能选择这一个正数δ>0,使当n→∞时, ,则对任意的x有: 该定理的含义是:如果一个量是由大量相互独立的随机因素影响所造成的,而每一个别因素在总影响中所起的作用不很大,则这个量服从或近似服从正态分布。 (四)林德贝尔格定理 设是一个相对独立的随机变量序列,它们具有有限的数学期望和方差满足林德贝尔格条件,则当n→∞时,对任意的x,有 。 中心极限定理案例分析 案例一:中心极限定理在商业管理中的应用 水房拥挤问题:假设西安邮电学院新校区有学生5000人,只有一个开水房,由于每天傍晚打开水的人较多,经常出现同学排长队的现象,为此校学生会特向后勤集团提议增设水龙头。假

中心极限定理及其应用论文

青岛农业大学本科生课程论文 题目:中心极限定理及其应用姓名: 学院: 专业: 班级: 学号: 指导教师: 2012 年06 月27 日

青岛农业大学课程论文任务书 论文题目中心极限定理及其应用 要求完成时间 2012年 07 月 02 日 论文内容(需明确列出研究的问题):研究中心极限定理的目的就是为了更深入的了解中心极限定理,更好的了解中心极限定理的作用,更好地使用它解决现实生活中的问题。 资料、数据、技术水平等方面的要求论文要符合一般学术论文的写作规范,具备学术性、科学性和一定的创造性。文字要流畅、语言要准确、论点要清楚、论据要准确、论证要完整、严密,有独立的观点和见解。内容要理论联系实际,计算数据要求准确,涉及到他人的观点、统计数据或计算公式等要标明出处,结论要写的概括简短。参考文献的书写按论文中引用的先后顺序连续编码。 指导教师签名:年月日

中心极限定理及其应用 信息与计算科学专业(学生姓名) 指导教师(老师姓名) 摘要:中心极限定理在概率论与数理统计中占有重要地位,本文阐述了中心极限定理的内容并简单介绍了它在实际中的应用。 关键词:中心极限定理;正态分布;随机变量

Central limit theorem and its application Student majoring in Information and Computing Science Specialty (学生英文名) Tutor (老师英文名) Abstract:The central limit theorem in probability theory and mathematical statistics plays an important role,this paper expounds the content of the central limit theorem and briefly introduces its application in practice. Key words: Central limit theorem Normal distribution Random variable

实验十三 二项分布的计算与中心极限定.

实验十三二项分布的计算与中心极限定 [实验目的] 1.研究用Poisson逼近与正态逼近进行二项分布近似计算的条件 2.检验中心极限定理 §1 引言 二项分布在概率论中占有很重要的地位。N次Bernoulli实验中正好出现K次成功的概 率有下式给出b k;n,p C n k p k1p n k ,k=0,1,2,……..n.二项分布的 值有现成的表可查,这种表对不同的n及p给出了b(k;n.p)的数值。在实际应用中。通常可用二项的Poisson逼近与正态逼近来进行二项分布的近似计算。在本实验中,,我们来具体地研究在什么条件下,可用Poisson逼近与正态逼近来进行二项分布的近似计算。 在概率论中,中心极限定理是一个很重要的内容,在本实验中,我们用随即模拟的方法来检验一个重要的中心极限定理——Liderberg-Levi中心极限定理。 §2 实验内容与练习 1.1二项分布的Poisson逼近 用Mathematica软件可以比较方便地求出二项分布的数值。例如n=20;p=0,1;Table[Binomial[n,k]*p^k*(1-p)(n-k),{k,0,20}]给出了b(k;20,0.1)(k=0,1,2,…..,20)的值。 联系 1 用Mathematica软件给出了b(k;20,0.1),b(k;20,0.3)与 b (k;20,0.5)(k=0,1,2,…..,20)的值。 我们可用Mathematica软件画出上述数据的散点图,下面的语句给出了b(k;20.0.1)的(连线)散点图(图13。1): LISTpOLT[table[Binomi al[20,k]*0.1^k*0.9^(20-k), {k,0,20}],PlotJoined->True] 图13.1 b(k;20,0.1) b k;n,p C n k p k1p n k (k=1,1,2,……,20)的散点图 练习2绘出b(l;20,0.3)与b(k;20,0.5)(k=0,1,2,…,20)的散点图 根据下面的定理,二项分布可用Poisson分布来进行近似计算。 定理13。1 在Bernoulli实验中,以P n 代表事件A在试验中出现的概率,它与试验总数有关. 如果np n→→λ,则当n→∞时,b k;n,p k k e 。 由定理13,1在n很大,p很小,而λ=np大小适中时,有 b k;n.p c k n p k1p n k k k e

大数定律在保险中的应用

论大数法则在保险业中的重要应用前言 研究背景及意义在现代生活中,风险无处不在,无时不有。因而只有加强对风险的管理,才能使人们的生活更为安定,使得社会更加和谐。而保险业就是经营风险的特殊的金融机构,它将风险从被保险人向保险人转移,从而为被保险人提供了风险保障。 当前,全球各国都非常重视保险业的发展,都在争取不断完善保险业市场体系,不断普及全民的保险观念,稳定人民的生活。在国,当前经济的高速发展,人民生活水平的提高,社会保障体制改革的深化,为中国保险业的发展提供了难得的机遇和广阔的空间。我国保险业增长迅速,保险观念日益深入人心,保险业在国民经济中的重要性日益增强。 而今,中国已经是世界上最大的潜在保险市场。但国保险公司目前在管理、经营理念、产品创新等方面与国际先进企业相比还有一定差距。要想持续健康的发展,要把巨大的潜在市场转变为现实的市场,将取决于保险公司能否提高自身的经营管理水平。所以只有具备了科学的精算理念,中国保险市场才能真正走向成熟。而“大数法则”就是精算的基础理论之一,它对保险经营理念的科学性起到了至关重要的作用。所以每个保险业界人士对于大数法则都应该有个准确认识,只有深刻了解大数法则,最佳应用,才能保证保险业的稳健经营管理。 文献综述国外关于保险业的研究,集中从保险经营各个方面做研究。其中包括对承保风险,偿付风险以及投资风险等全方面的研究。关于保险资金投资方面,从当代国际保险市场发展看,保险资金运用和保险业的发展己经融为一体。很多人认为承保业务和投资业务的并驾齐驱已成为保险业发展的一种潮流。事实上,自20世纪70年代以来,金融创新使得资本市场不断推出新的投资工具,保险业本身的竞争日趋激烈,承保利润不断下降甚至亏损,迫使保险监管机构与保险公司不断适应新的市场环境,全方位地加强保险资金运用业务,来提高利润率。摩根斯坦利所说:“投资是保险行业的核心任务,没有投资就等于没有保险行业。没有保险投资,整个保险行业的经营是不能维持下去的”。所以,对于保险业中承保环节以及保险资金投资环节、偿付环节中的风险管理已经不容忽视了! 艳辉、林江、胡炳志、王兵等在相关文献中提出了大数法则对同质风险在大量保险单之间的分摊类似于厂商理论中的规模经济性的观点。规模经济是对生产

数理统计作业二__用数学实验的方法验证大数定理和中心极限定理

验证大数定理: 1、实验原理: 证明大数定理即证明样本均值趋近于总体均值。 2、实验步骤: ①在excel中,用公式 =RAND( )*9+1 生成2000个1到10之间的随机数。 ②选择样本的前50个,前100个,前150个…前2000个,分别求出均值。 ③利用excel作出上述求出值的样本均值折线图(图一)和总体均值折线图(图二): 图一 图二 从图一和图二中可以看出样本均值最终趋于水平,即趋于总体均值,大数定理得证。

验证中心极限定理: 1、实验原理: 证明中心极限定理即证明N个独立同分布的随机变量和的极限分布为正态分布。本次实验采用独立同分布于0-1分布B(1,0.5)的随机变量序列E k,k=1,2,3······来验证中心极限定理。因为E k, k=1,2,3······之间是独立同分布,所以 )5.0, ( ~ E n 1 k k n B ∑ =。由中心极 限定理可知,当n的取值足够大时,∑ = n 1 k k E 这一随机变量的分布与正太分 布具有很好的近似,下面用MATLAB软件分别画出n取不同值时∑ = n 1 k k E 的分 布及对应的正太分布的图像,通过对比这两条曲线的相似度来验证中心极限定理。 2、实验步骤: ①当n=10时,对应正态分布为N(5,2.5)。 MATLAB结果图:

MATLAB源程序: MATLAB结果图:

MATLAB源程序: MATLAB结果图:

MATLAB源程序: MATLAB结果图:

MATLAB源程序: ⑤观察得出,当N足够大时,其密度函数服从正态分布,即满足 中心极限定理。

(完整word版)概率论与数理统计教程习题(大数定律与中心极限定理)

习题10(切比雪夫不等式) 一.填空题 1. 设随机变量X 的数学期望μ=)(X E ,方差2 )(σ=X D ,则由切比雪夫不等式,得 ≤≥-)3(σμX P . 2. 随机掷6枚骰子,用X 表示6枚骰子点数之和,则由切比雪夫不等式,得≥<<)2715(X P . 3. 若二维随机变量),(Y X 满足,2)(-=X E ,2)(=Y E ,1)(=X D ,4)(=Y D , 5.0),(-=Y X R ,则由切比雪夫不等式,得≤≥+)6(Y X P . 4. 设ΛΛ,,,,21n X X X 是相互独立、同分布的随机变量序列,且0)(=i X E ,)(i X D 一致有界),,,2,1(ΛΛn i =,则=<∑=∞ →)( lim 1 n X P n i i n . 二.选择题 1. 若随机变量X 的数学期望与方差都存在,对b a <,在以下概率中,( )可以由切比雪夫不等式进行取值大小的估计。 ①)(b X a P <<; ②))((b X E X a P <-<; ③)(a X a P <<-; ④))((a b X E X P -≥-. 2. 随机变量X 服从指数分布)(λe ,用切比雪夫不等式估计≤≥ -)1 (λ λX P ( ). ①λ; ②2 λ③4 λ; ④ λ 1 . 三.解答题 1. 已知正常男性成年人的血液里,每毫升中白细胞含量X 是一个随机变量,若7300)(=X E , 2700)(=X D ,利用切比雪夫不等式估计每毫升血液中白细胞含量在5200至9400之间的概率。 2. 如果n X X X ,,,21Λ是相互独立、同分布的随机变量序列,μ=)(i X E ,

(完整版)大数定律及中心极限定理

第五章大数定律及中心极限定理 【基本要求】1、了解切比雪夫不等式; 2、了解切比雪夫大数定律,Bernoulli大数定律和辛钦大数定律成立的条件及结论; 3、了解独立同分布的中心极限定理(列维—林德伯格定理)和德莫佛—拉普拉斯 中心极限定理(二项分布以正态分布为极限分布)的应用条件和结论,并会用 相关定理近似计算有关随机事件的概率。 【本章重点】切比雪夫不等式,切比雪夫大数定理及Bernoulli大数定理。 【本章难点】对切比雪夫大数定理及独立同分布的中心极限定理的理解。 【学时分配】2学时 【授课内容】 §5.1 大数定律 0.前言 在第一章我们提到过事件发生的频率具有稳定性,即随着试验次数的增加,事件发生的频率逐渐稳定于某个常数,这一事实显示了可以用一个数来表征事件发生的可能性大小,这使人们认识到概率是客观存在的,进而由频率的三条性质的启发和抽象给出了概率的定义,而频率的稳定性是概率定义的客观基础。在实践中人们还认识到大量测量值的算术平均值也具有稳定性,而这种稳定性就是本节所要讨论的大数定律的客观背景,而这些理论正是概率论的理论基础。 下面介绍三个定理,它们分别反映了算术平均值及频率的稳定性。 一、切比雪夫大数定律 1

2 事件的频率稳定于概率,能否有p n lim n n =μ∞→,答案是否定的。而是用)(0}{ ∞→→ε≥-μn p n P n [依概率收敛]来刻划 (弱)。或者用{}1n n P p n →∞ μ???→=[a.e.收敛] 来刻划(强)。 1.定义:设ΛΛ,,,,21n X X X 是一个随机变量序列,a 是一个常数,若对于任意正数ε,有 ()1lim =<-∞ →εa X P n n , 则称序列ΛΛ,,,,21n X X X 依概率收敛于a .记为a X P n ?→? . 2.切比雪夫不等式 设随机变量ξ具有有限的期望与方差,则对0>?ε,有 2 ) ())((ε ξεξξD E P ≤ ≥-或2 ) (1))((ε ξεξξD E P - ≥<- 证明:我们就连续性随机变量的情况来证明。设~()p x ξ,则有 2 2 ()()(())(())()()x E x E x E P E p x dx p x dx ξ ε ξ ε ξξξεε -≥-≥--≥= ≤ ?? 22 2 1 () (())()D x E p x dx ξξεε+∞ -∞ ≤ -= ? 该不等式表明:当)(ξD 很小时,))((εξξ≥-E P 也很小,即ξ的取值偏离)(ξE 的可能性很小。这再次说明方差是描述ξ取值分散程度的一个量。 切比雪夫不等式常用来求在随机变量分布未知,只知其期望和方差的情况下,事件 {}E ξξε-≥概率的下限估计;同时,在理论上切比雪夫不等式常作为其它定理证明的工具。 3.定理1(切比雪夫大数定律) 设}{n ξ是相互独立的随机变量序列,每一随机变量都有有限的方差,且一致有界,即存在 常数C ,使Λ,2,1)(=≤i C D i ξ,则对任意的0>ε,有01111 =ε≥ξ-ξ∑∑==∞→})(E n n {P lim n i n i i i n [即

概率论中的大数定律及中心极限定理

概率论中的大数定律及中心极限定理 唐南南 摘要 概率论是从数量上研究随机现象的规律的学科,概率论的特点是先提出数学模型,然后去研究它的性质,特点和规律。它在自然科学,技术科学和社会科学等科学中有广泛的应用。而大数定律和中心极限定理的内容是概率论中极限理论极为重要的一部分内容。在这篇文章中,我们从贝努力试验中的频率出发,讨论了独立随机变量和分布的极限问题。在一定条件下,这些分布弱收敛于退化分布,这就是大数定律。在另一些条件下,这些分布弱收敛于N(0,1)分布,这一类收敛于N(0,1)分布的定理统称为中心极限定理.大数定律说明了随机现象都具有稳定性而中心极限定理是研究相互独立随机变量序列{}i x 的部分和∑== n i i n x S 1 的分布,在适当条件下向正态分布收放的问题。在这篇文章 里,我们只介绍了一些定理的提出,内容以证明以及在其他学科上的应用,而大数定律和中心极限定理还有许多更深入,更广泛的内容,限于篇幅这里就不再介绍了。掌握定理的结论是重要的,这些结论一方面使频率稳定于概率,n 次观察的算术平均值稳定于数学期望都有了明确的含义和理论依据;另一方面,又将给数理统计中大样本的统计推断等提供理论依据。 关键词 大数定律 中心极限定理 随机现象 随机变量 引言 大数定律和中心极限定理是概率论中重要的一部分内容,但对读者来说,多数人对于这部分内容感到很难掌握,这篇文章就是对这部分内容进行浅入的分析,但对其内容进行详细的说明,而且进行了归纳性的总结,指出了各定律之间的联系及其差别,希望通过本篇文章内容的介绍,能使读者对于这部分知识有一个清晰的印象,能整体地把握这部分内容。 一 、大数定律 (一)、问题的提法(大数定律的提法) 重复实验中事件的频率的稳定性,是大量随机现象的统计规律性的典型表现。人们在实践中认识到频率具有稳定性,进而由频率的稳定性预见概率的存在;由频率的性质推断概率的性质,并在实际应用中(当n

中心极限定理的内涵和应用

中心极限定理的涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ-= ∑=1 则对任意实数y ,有 {}?∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ??????=)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。于是,特征函数)(t ?有展开式 )(2 11)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??????+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 22?22t e - 而22 t e -正是N(0,1)分布的特征函数,定理得证。

(完整版)大数定律和中心极限定理

第五章 大数定律和中心极限定理 一、内容提要 (一)切贝谢夫不等式 1. 切贝谢夫不等式的内容 设随机变量X 具有有限的数学期望E (X )和方差D (X ),则对任何正数ε,下列不等式成立。 (){}() (){}() . 1, 2 2 εεεεX D X E X P X D X E X P - ≤-≤ ≥-π 2. 切贝谢夫不等式的意义 (1)只要知道随机变量X 的数学期望和方差(不须知道分布律),利用切贝谢夫不等式,就能够对事件(){} ε≥-X E X 的概率做出估计,这是它的最大优点,今后在理论推导及实际应用中都常用到切贝谢夫不等式。 (2)不足之处为要计算(){} ε≥-X E X P 的值时,切贝谢夫不等式就无能为力,只有知道分布密度或分布函数才能解决。另外,利用本不等式估值时精确性也不够。 (3)当X 的方差D (X )越小时,(){} ε≥-X E X P 的值也越小,表明X 与E (X )有较大“偏差”的可能性也较小,显示出D (X )确是刻画X 与E (X )偏差程度的一个量。 (二)依概率收敛 如果对于任何ε>0,事件{} επa X n -的概率当n →∞时,趋于1,即 {}1lim =-∞ →επa X P n n , 则称随机变量序列X 1,X 2,…,X n ,…当n →∞时依概率收敛于α。 (三)大数定律 1. 大数定律的内容 (1)大数定律的一般提法 若X 1,X 2,…,X n ,…是随机变量序列,如果存在一个常数序列α1,…,αn ,…,对任意ε>0,恒有 11lim 1=? ?? ???-∑=∞ →επn i n i n a X n P , 则称序列{X n }服从大数定律(或大数法则)。 (2)切贝谢夫大数定律 设随机变量X 1,X 2,…,X n ,…相互独立,分别有数学期望E(X i )和方差D(X i ),且它们的方差有公共上界C ,即 ()().,,,2,1,ΛΛn i C X D i =≤

概率论论文-浅谈中心极限定理

浅谈中心极限定理 摘要:中心极限定理的产生具有一定的客观背景,最常见的是林德伯格-莱维中心极限定理和棣莫弗-拉普拉斯中心极限定理。它们表明了当n 充分大时,方差存在的n 个独立同分布的随机变量和近似服从正态分布,在实际中的应用相当广泛。本文讨论了中心极限定理的内涵及其在生活实践中的应用。 关键词:中心极限定理;正态分布;生活中的应用。 引言:在实际问题中,常常需要考虑许多随机因素所产生的总的影响,如测量误差、炮弹 射击的落点与目标的偏差等。同时许多观察表明,若一个随机变量是由大量相关独立的随机因素的综合影响所构成的,而其中每一个随机因素的单独作用是微小的,则这样的随机变量通常是服从或近似服从正态分布。这种现象就是中心极限定理产生的客观背景。 在概率论与数理统计中,中心极限定理是非常重要的一节内容,而且是概率论与数理统计之间承前启后的一个重要纽带。王勇老师讲到中心极限定理时,曾非常激动地说这个定理一被提出便震惊了全世界,而且重复了数遍。由此足以见得中心极限定理的重要性。 目前我们研究的是独立同分布条件下的中心极限定理: 林德伯格-莱维中心极限定理:设 {}n X 是独立同分布的随机变量序列,且 )(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ -= ∑=1 则对任意实数y ,有 {}? ∞ --∞ →=Φ=≤y t n n t y y Y P .d e π21)(lim 2 2 这个中心极限定理是由林德伯格和莱维分别独立的在1920年获得的,定理告诉我们, 对于独立同分布的随机变量序列,其共同分布可以是离散分布,也可以是连续分布,可以是正态分布,也可以是非正态分布,只要其共同分布的方差存在,且不为零,就可以使用该定理的结论。只有当n 充分大时, n Y 才近似服从标准正态分布)1,0(N ,而当n 较小时,此种 近似不能保证。也就是说,在n 充分大时,可用)1,0(N 近似计算与n Y 有关事件的概率,而 n 较小时,此种计算的近似程度是得不到保障的。当 ) 1,0(~N Y n 时,则有 ) , (~),,(~2 2 1 n N X n n N X n i i σμσμ∑=。 现如今旅游、汽车等行业越来越受欢迎。在这些行业中就会用得到中心极限定理。 例如,某汽车销售点每天出售的汽车服从参数为λ=2的泊松分布,若一年365天都经

抽样技术上机实验_中心极限定理验证

均匀分布中心极限定律的实现: clc clear n=200000; %/* ???′′?êy*/ k=100; %/* ?ù±???êy*/ mu=0; u=0; sigma=1/12; population=0:0.001:1; for i=1:n y = randsample(population,k,1); mu=[mu,mean(y)]; end mu=(mu-0.5)/(sqrt(sigma)/sqrt(k)); %hist(mu(2:end),1000) [f, x1] = ksdensity(mu(2:end)); plot(x1, f) hold on plot(x1,normpdf(x1,0,1),'r') hold off %%%%%%%%%%%%%%%%%%%%%%%% 两点分布的实现: clc clear n=10000; %/* ???′′?êy*/ k=100; %/* ?ù±???êy*/ mu=0; u=0; p=0.5; sigma=p*(1-p); population=0:1; for i=1:n y = randsample(population,k,1); mu=[mu,mean(y)]; end mu=(mu-p)/(sqrt(sigma)/sqrt(k)); %hist(mu(2:end),1000) [f, x1] = ksdensity(mu(2:end)); plot(x1, f) hold on plot(x1,normpdf(x1,0,1),'r') hold off %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 两点分布1以概率0.4发生

中心极限定理实验仿真

中心极限定理的仿真实验 目的:模拟投掷一枚骰子出现的点数的试验,重复进行104次,统计出现的点数和,并将数据标准化处理后,画出频率直方图,通过观察比较验证数据的正态性。 所用的软件:Microsoft EXCEL 步骤如下: 1 打开excel软件,在A2格子中输入=INT(6*RAND())+1,按回车就会产生一个1-6中的某一个随机整数,并且出现1-6中每一个整数的概率是相同的。 2鼠标点击A2格子,并移动到格子的右下角,出现”+”后往下拖动鼠标直到出现A501时停下来,这样就得到了500个随机数据,都是在1-6中随机取值的。(当然你越往下拖,产生的随机整数越多,试验效果越好) 3 在第二列重复第1步和第2步,第三列,第四列……直到CZ列都和第二列同样操作,这样产生了104列随机数据。 4 在DB列分别求出每行数据的和,用的函数是“SUM”,接着依次求出500行数据的和。 5 复制DB列到DC列,注意值复制数值。 6 对DC列数据进行排序, 7对DC列数据进行标准化处理,即每个数据减去平均值再除以标准差(均值函数为average,样本方差函数为var)

8处理后的数据放在DE列。根据最大值和最小值,把数据分到20个区间,这里数据范围从-2.7到2.7,故每个区间长度为0.27,这样得到(-2.7,-2.43],……,(2.43,2.7)共20个区间(也可以分15个区间,这时区间长度为0.36)。 9统计每个区间里的数据个数,用函数countif(区域,条件),详见EXCEL文件。 10 画出频率直方图,大家可以看到,投掷104次骰子后出现的点数和数据标准化后出现标准正态分布的特征。 请大家按照以上方法,产生200列数据,每列1000个数据,按照以上步骤做好中心极限定理的仿真实验。按个步骤写出实验过程,并将计算结果或图标截图后放在每个步骤后面,完整一份实验报告。

第五章大数定律和中心极限定理

第五章大数定律和中心极限定理 我们知道,概率论与数理统计是研究随机现象统计规律性的数学分之。但是,只有对大量随机现象进行观测时,随机现象的统计规律性才会呈现出来。为了考察“大量”的随机现象,就导致了极限定理的研究。概率论中极限定理的内容是很广泛的,其中最主要的是大数定律和中心极限定理。 大数定理 在引入大数定理之前,我们先证明一个重要的定理. 切贝雪夫不等式 对于任何具有有限方差的随机变量X都有 其中是任一正数。 证设是的分布函数,则显然有 切贝雪夫不等式也可以表示成。由于切贝雪夫不等式只利用随机变量的数学期望及方差就可对X的概率分布进行估计,因此它在理论研究及实际应用中有价值。从切贝雪夫不等式还可以看出,当方差越小时,事件发生的概率也越小,从而可知,方差确实是一个描述随机变量与其期望值离散程度的一个量。

例1设电站供电网有10000盏电灯,夜晚每盏灯开灯的概率均为,假定灯的开、关是相互立的,使用切贝雪夫不等式估计夜晚同时开着的灯数在6800到7200 盏之间的概率。 解令表示在夜晚同时开着的灯数目,则服从n=10000,p=的二项分布,这时,由切贝雪夫不等式可得 事实上,这个概率的近似值表明,在10000盏灯中,开着的灯数在6800到7200的概率大于。而实际此概率的精确值可由贝努里公式求得为。由此可知,切贝雪夫不等式虽可用来估计概率,但精度不够高,它的重要意义是在理论上的应用,在大数定律的证明中,用切贝雪夫不等式可使证明非常简洁。 贝努里大定理 设是重贝奴里试验中事件出现的次数,而是事件在每次试验中出现的概率,则对任意,都有 在证明这个定理之前,先看看它的具体含义。是重贝努里试验中出现的次 数,则便是这次试验中出现的频率,上式表明,当次数很大时,事件 出现的频率与事件A出现的概率p的偏差超过任意正数的可能性很小,或者基本上说,是不可能的。也就是说,要从理论上证明:对于任意的, 有它等价于。 贝努里大数定律是研究这种极限定理的第一个定律,也是一个从理论上证明随机现象的频率具有稳定性的定律。下面我们给出由贝奴里在1713年发表的这个定律的证明。

考研数学一-概率论与数理统计大数定律和中心极限定理.doc

考研数学一-概率论与数理统计大数定律和中心极限定理 (总分:48.00,做题时间:90分钟) 一、选择题(总题数:9,分数:9.00) 1.设随机变量X1,X2,…,X n,…独立同分布,EX i=μ(i=1,2,…),则根据切比雪夫大数定律,X1,X2,…,X n,…依概率收敛于μ,只要X1,X2,…,X n,… (分数:1.00) A.共同的方差存在. B.服从指数分布. C.服从离散型分布. D.服从连续型分布. 2.假设天平无系统误差.将一质量为10克的物品重复进行称量,则可以断定“当称量次数充分大时,称量结果的算术平均值以接近于1的概率近似等于10克”,其理论根据是 (分数:1.00) A.切比雪夫大数定律. B.辛钦大数定律. C.伯努利大数定律. D.中心极限定理. 3.下列命题正确的是 (分数:1.00) A.由辛钦大数定律可以得出切比雪夫大数定律. B.由切比雪夫大数定律可以得出辛钦大数定律. C.由切比雪夫大数定律可以得出伯努利大数定律. D.由伯努利大数定律可以得出切比雪夫大数定律. 4.设X1,…,X n…是相互独立的随机变量序列,X n服从参数为n的指数分布(n=1,2,…),则下列随机变量序列中不服从切比雪夫大数定律的是 (分数:1.00) __________________________________________________________________________________________ 5.假设随机变量序列X1,…,X n…独立同分布且EX n=0 1.00) A. B. C. D. 6.设X n,n≥1为相互独立的随机变量序列且都服从参数为λ的指数分布,则 1.00) __________________________________________________________________________________________

中心极限定理证明

中心极限定理证明 一、例子 高尔顿钉板试验. 图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放入小圆珠.由于钉板斜放,珠子在下落过程中碰到钉子后以的概率滚向左边,也以的概率滚向右边.如果较大,可以看到许多珠子从处滚到钉板底端的格子的情形如图所示,堆成的曲线近似于正态分布. 如果定义:当第次碰到钉子后滚向右边,令;当第次碰到钉子后滚向左边,令.则是独立的,且 那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理. 二、中心极限定理 设是独立随机变量序列,假设存在,若对于任意的,成立 称服从中心极限定理. 设服从中心极限定理,则服从中心极限定理,其中为数列. 解:服从中心极限定理,则表明 其中.由于,因此

故服从中心极限定理. 三、德莫佛-拉普拉斯中心极限定理 在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则 用频率估计概率时的误差估计. 由德莫佛—拉普拉斯极限定理, 由此即得 第一类问题是已知,求,这只需查表即可. 第二类问题是已知,要使不小于某定值,应至少做多少次试验这时利用求出最小的. 第三类问题是已知,求. 解法如下:先找,使得.那么,即.若未知,则利用,可得如下估计:. 抛掷一枚均匀的骰子,为了至少有的把握使出现六点的概率与之差不超过,问需要抛掷多少次 解:由例4中的第二类问题的结论,.即.查表得.将代入,便得.由此可见,利用比利用契比晓夫不等式要准确得多. 已知在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则服从二项分布: 的随机变量.求. 解:

中心极限定理

心极限定理(上) 骰子和生日 了解中心极限定理 马克.吐温讽刺道:有三种避免讲zhenxiang的方式:谎言,该死的谎言和统计数据。这个笑话很中肯,因为统计信息频繁地看似一个黑匣子——了 解统计定理怎样让通过数据取得结论变成可能,这是有难度的。 但因为不论是喷气发动机可靠性还是安排我们平日看的电视节目的流程,数据分析,类似的任何事情中都扮演着重要角色,所以至少获取对统 计基本理解是重要的。要了解其中一个重要概念是中心极限定理。 在这篇文章中,我们将解释中心极限定理,通过普通的例子,诸如掷骰子和美国职业棒球联赛球员生日来展示如何操作它。 定义中心极限定理 某典型课本对中心极限定理的定义如下:

当样本容量增加时,样本均值X的分布接近均值等于μ,标准差σ/√n 注: μ是总体均值 σ是总体标准差 n是样本大小 换句话说,如果我们多次采用大小为n的独立随机抽样,那么当n足够大的时,样本平均值的分布就接近正态分布。 那么多大才是足够大呢?一般来说,样本容量大于或者等于30认为是足够大,此时中心极限定理起作用。如果总体分布越要接近正态分布,那么需要更多的样本来使用该定理。对于严重不对称的或者有几个模板的总体来说,也许要求更大的样本。 为什么有关呢 从一个总体中收集所有的数据是很难操作或者不可行的,统计学就是基于这个情况产生的。换种方式来做,我们可以从总体中获取数据的子集,然后对这个样本进行统计分析,以得到总体的结论。 举例来说,我们可以从工业生产流程中收集多个随机样本,然后使用各个样本的平均值来推断整个过程的稳定性。 2个常用于解释总体的特征值分别是平均值和标准差。当数据遵循正态分布,均值表示分布的中心位置,标准差揭示分布情况。

中心极限定理的应用

毕业论文 题目中心极限定理的应用 学生姓名张世军学号1109014148 所在院(系) 数学与计算机科学学院 专业班级数学与应用数学专业(统计类)11级2班指导教师程小静 2015 年 5 月 25 日

中心极限定理的应用 张世军 (陕西理工学院数学与计算机科学学院数学与应用数学专业2011级数应2班,陕西汉中 723000) 指导教师:程小静 [摘要]中心极限定理是概率论中讨论随机变量序列部分和的分布渐近于正态分布的一类重要定理。本文首先从中心极限定理的内容出发,给出几种常见的中心极限定理并对其进行了证明;其次讨论了中心极限定理在供应电力、器件价格、商场管理、烟卷制造业、社会生活、军事问题等这几个方面的实际应用;最后总结分析了中心极限定理在应用上的优缺点。 [关键词]随机变量;中心极限定理;正态分布;概率论;近似计算 Central Limit Theorem of Application Zhang Shijun (Grade11,Class02,Major Mathematics and Applied Mathematics Specialty,Mathematics and computer scienceDept.,Shaanxi University of Technology,Hanzhong 723000,Shaanxi) Tutor: Cheng Xiaojing Abstract:The central limit theorem is an important limit theorem in probability theory to discuss a set of random variables and the distribution of the normal distribution. Firstly starting from the content of the central limit theorem, given several common central limit theorems and its proofs; Second central limit theorem is discussed in the electric power supply, prices, market management, cigarette manufacturing, social life, the practical application of this a few aspects such as military questions; Summarized and analyzed the advantages and disadvantages of central limit theorem on the application. Keywords:Random variables; Central limit theorem; Normal distribution; Probability theory;Approximate calculation

中心极限定理证明

中心极限定理证明 中心极限定理证明 中心极限定理证明 一、例子 高尔顿钉板试验. 图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放入小圆珠.由于钉板斜放,珠子在下落过程中碰到钉子后以的概率滚向左边,也以的概率滚向右边.如果较大,可以看到许多珠子从处滚到钉板底端的格子的情形如图所示,堆成的曲线近似于正态分布. 如果定义:当第次碰到钉子后滚向右边,令;当第次碰到钉子后滚向左边,令.则是独立的,且 那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理. 二、中心极限定理 设是独立随机变量序列,假设存在,若对于任意的,成立 称服从中心极限定理. 设服从中心极限定理,则服从中心极限定理,其中为数列. 解:服从中心极限定理,则表明 其中.由于,因此 故服从中心极限定理.

三、德莫佛-拉普拉斯中心极限定理 在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则 用频率估计概率时的误差估计. 由德莫佛—拉普拉斯极限定理, 由此即得 第一类问题是已知,求,这只需查表即可. 第二类问题是已知,要使不小于某定值,应至少做多少次试验?这时利用求出最小的. 第三类问题是已知,求. 解法如下:先找,使得.那么,即.若未知,则利用,可得如下估计: . 抛掷一枚均匀的骰子,为了至少有0.95的把握使出现六点的概率与之差不超过0.01,问需要抛掷多少次? 解:由例4中的第二类问题的结论,.即.查表得.将代入,便得. 由此可见,利用比利用契比晓夫不等式要准确得多. 已知在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则服从二项分布: 的随机变量.求. 解: 因为很大,于是 所以 利用标准正态分布表,就可以求出的值.

第五章 大数定律与中心极限定理

第五章 大数定律与中心极限定理 §5.1 大数定律 §5.2 中心极限定理 一、填空题 1.设2(),()E X D X μσ==,则由切比雪夫不等式有{||3}P X μσ-≥≤ 1/9 ; 2.设随机变量12,,,n X X X 相互独立同分布,且()i E X μ=,()8i D X =,(1,2,,)i n = , 则由切比雪夫不等式有{} ||P X με-≥≤ 28n ε .并有估计{} ||4P X μ-<≥ 1 12n - ; 3.设随机变量n X X X ,,,21 相互独立且都服从参数为 λ 的泊松分布,则 lim n i n X n P x λ→∞?? -??? ≤=?? ???? ∑ ()x Φ ; 4.设随机变量X 和Y 的数学期望分别为2-和3,方差分别为1和4,而相关系数为0.5-,则根据切比雪夫不等式,{||6}P X Y +≥≤ ; 解:因为 ()()()22E X Y E X E Y +=+=-+= , cov(.)0.51X Y ρ==-=-, ()()()2cov(.)142(1)3D X Y D X D Y X Y +=++=++?-=, 故由切比雪夫不等式,2 31{||6}{|()0|6}612 P X Y P X Y +≥=+-≥≤ =. 5.设随机变量12,,,n X X X 相互独立,都服从参数为2的指数分布,则n →∞时,2 1 1n n i i Y X n ==∑依概 率收敛于 。 解:因为 11 (),(),(1,2,,)24 i i E X D X i n = == , 所以 22111 ()()()442 i i i E X D X E X =+=+=, 故由辛钦大数定律,对0ε?>,有{}2111lim ()lim 12n n n i n n i P Y E Y P X n εε→∞→∞=?? -<=-<=???? ∑,

相关文档
最新文档