移动荷载下三维半空间动力安定性下限分析

移动荷载下三维半空间动力安定性下限分析
移动荷载下三维半空间动力安定性下限分析

结构动力稳定性的分析方法与进展_何金龙

结构动力稳定性的分析方法与进展 何金龙1,法永生2 (1.卓特建筑设计有限公司,广东佛山528322;2.上海大学土木工程系,上海200074) 【摘 要】 就目前结构动力稳定性问题这一研究领域的若干基本问题,常用的处理方法,判别准则与实验研究方法以及目前取得的主要成果作了简要总结和综述,并且对结构动力稳定性分析与研究今后的发展方向进行了展望。 【关键词】 结构; 动力稳定性; 处理方法; 判别准则; 实验研究 【中图分类号】 T U311.2 【文献标识码】 A 根据结构承受荷载形式的不同,可以将结构稳定问题分为静力稳定和动力稳定两大类。动力载荷作用下结构的稳定性问题是一个动态问题,由于时间参数的引入,使问题变得极为复杂。对于结构动力稳定性的定义一直难以确切给出,这是因为结构自身动力特性具有复杂性使得其在数学意义上的定义很难予以准确表达[1]。长期以来,力学工作者致力于结构稳定性问题的研究,在发展了经典稳定性理论的同时也极大地推动了动力稳定理论研究的前进。如稳定性判定准则的建立、临界载荷的确定、初缺陷的影响或后分叉分析等。理论分析和实验研究逐渐增多,使得这门学科不仅在理论上形成了一个庞大而复杂的体系,而且具有重要的实用价值。可以说,现在的结构动力稳定性研究分析已经是结构动力学、有限元法、数值计算方法及程序设计等诸多学科相互交叉、有机结合的产物,属于现代工程结构研究领域中的一个重要分支。 1 结构动力稳定性的分类及主要的研究问题 结构动力稳定性就其承载的动力形式大致可以分为三类。 (1)结构在周期性荷载作用下的动力稳定性。在简谐荷载等周期性荷载作用下,当结构的自振频率与外载荷的强迫振动频率非常接近时,结构将产生强烈的共振现象;当结构的横向固有振动频率与外荷载的扰动频率之间的比值形成某种特定的关系时,结构将产生强烈的横向振动,即参数振动。对于这类问题,前苏联学者符华·鲍络金(Bolito n)在其著作《弹性体系的动力稳定》中给出了较全面的分析和论述。他们导出的区分稳定区和不稳定区的临界状态方程是一个周期性方程,即M athieu-Hill方程。在周期相同的解之间存在着不稳定区域,便把问题归结为确定微分方程具有周期解的条件,从而解决了稳定的判别问题。但是对于大变形的几何非线形结构,结构的刚度矩阵需要经过迭代,微分方程非常复杂,这些理论将难以成立。 (2)结构在冲击荷载作用下的动力稳定性。在这种情况下,结构的动力稳定性与冲击类型密切相关,而且首要问题在于合理、实用的判别准则,它不仅要在逻辑上站得住脚,又要在实际上可行,遗憾的是这个问题至今未能形成一致的看法。目前对结构承受瞬态冲击作用下的冲击稳定性的试验和理论研究主要集中在理想脉冲以及阶跃荷载下的动力稳定性。在脉冲荷载作用下发生的动力屈曲称为脉冲屈曲,已有的研究表明[2][3][4],脉冲屈曲是一类响应式屈曲或者动力发展型屈曲。阶跃荷载是一类具有恒定幅值和无限长持续时间的载荷形式。在试验或者实际当中,固体与固体之间的冲击引起的屈曲就可看作脉冲冲击。 (3)结构在随动荷载作用下的动力稳定性。所谓随动荷载是指随着时间的变化荷载的幅值保持不变而方向发生变化的作用力,它是非保守力。它的分析将极其复杂,目前还难以见到可借鉴的动力稳定性分析文献。因此,许多学者通常采用结构动力学响应分析常用的手段,将这类荷载作为确定性荷载进行分析。通过对结构的动力平衡路径全过程进行跟踪,根据结构的各参数在动力平衡路径中的变化特性,对结构的动力稳定性进行有效的判定[5]。 综上所述,目前国内外动力稳定性研究的现状大致为:对周期荷载下的参数动力稳定性问题、在冲击荷载作用下的冲击动力稳定性问题和阶跃荷载下的参数阶跃动力稳定性问题研究较多,并取得了满意的效果[6][7][8]。恒幅阶跃载荷及矩形脉冲载荷或其它冲击载荷作用下杆的动力稳定问题也有很多研究,并从不同的角度建立了一些稳定性判定准则。但冲击载荷作用下板的动力稳定问题还没有获得广泛和深入的研究。对于较为复杂的冲击荷载作用下结构的动力稳定性问题,目前的研究主要集中于理想脉冲载荷和阶跃载荷作用下结构的动力稳定问题。在这类问题的分析中,最常采用的屈曲准则有B-R准则、Simitses总势能原理和放大函数法。对非周期激振、参数激振和强迫激振耦合引起的动力稳定问题研究较少;对弹性基本构件和简单模型研究较多(如周期激励下的柱子、梁、拱及壳等已得到了成功的分析),对复杂工程结构研究较少。对于在地震、风荷载等任意动力荷载作用下的具有较强的几何非线性的结构的动力稳定性问题,国内外这方面的文献资料虽然最近几年也有一些,但距离真正地合理解决这类动力稳定性问题还有许多工作要做。 [收稿日期]2006-06-12 [作者简介]何金龙(1962~),男,工学学士,一级注册结构工程师,主要从事工业与民用建筑设计工作。 155  ·工程结构·  四川建筑 第27卷2期 2007.04

第8-1章 移动荷载列作用下的桥梁动力分析

第三章 简支梁在移动荷载作用下动力响应分析 3.1 简支梁在匀速移动力作用下的位移响应 简支梁在移动力作用下的振动分析:如果移动荷载的质量与梁的质量相比小得多,就可以不考虑荷载的质量惯性力而简化成为图3-1所示的分析模型,相当于仅考虑移动荷载的重力作用,用一个移动的力P(t)来表示。 图3-1 移动力P (t )作用下的简支梁模型 假设简支梁为等截面(EI 为常数),恒载质量均匀分布(单位长度梁的质量m 为常数),阻尼为粘滞阻尼(即阻尼力与结构的振动速度成正比),阻尼效应和质量及刚度性质成正比,荷载P (t )以匀速V 在梁上通过,梁的运动满足小变形理论并在弹性范围内,按照图3-1所示的坐标系,梁的强迫振动微分方程可表示为: ()()2424 ,,(,)()(y x t y x t y x t m c EI x Vt t t x δ???++=????)p t (3-1) 对于简支梁,边界条件为:(0,)0,(,)0y t y L t ==。上式中c 为阻尼系数。 对式(3-1)的求解,其方法与之前求解偏微分方程的方法相同,即用振型分解法(数学上称分离变量法 )。这一变换的表达式如(2-38)所示,为。 式中为广义振型坐标,是时间t 的函数;1(,)()()i i i y x t x q t φ∞ ==∑()i q t ()i x φ为主振型函数。这个式子说明:结构的任一合理位移都可以由此结构具有相应振幅的各个振型的叠加表示。 结构任一变形的振型分量均可由振型的正交特性得到。对于本章讨论的具有均匀截

面特性的梁,为了计算第n 阶振型对位移的贡献,把(2-38)式的两端都乘以()n x φ并进行积分,结果为 1 ()(,)()()()L L n i n n i x y x t dx q t x x dx φφ∞ ==∑∫ ∫φi (3-2) 由于振型的正交性,当时,等式的右边的积分为0,最终,无穷级数就只剩下一项。于是得到剩下的第n 项的振幅表达式为 n ≠ 2 ()(,)()()L n n L n x y x t dx q t x dx φφ=∫∫ (3-3) 按上述原理对简支梁的振动方程进行分解。将(2-38)式代入(3-1)式,得 2424 111 ()()() ()()()()()n n n n n n n n n d q t dq t d x m x c x EI q t x Vt p dt dt dx φφφδ∞ ∞∞ ===++=?∑∑∑t (3-4) 将上式的每一项都乘以第i 个振型函数()i x φ,并沿梁的全长积分,并考虑振型的正交性(根据前面的假定,结构的质量、刚度和阻尼均满足正交条件),第i 个振型的广义坐标运动方程为 2422240000 ()()() ()()()() ()()()L L L i n i i i i L i d q t dq t d x m x dx c x dx EIq t x dt dt dx x Vt p t x dx φφφφδφ++=?∫∫∫∫i (3-5) 对于等截面简支梁,振型函数可假定为三角函数,由于式中的下标均表示任意阶, 为方便叙述,用n 替代(3-5)中的i 表示,这时 ()sin n n x x L πφ= (3-6) 由于2 0sin 2 L n x L dx L π=∫ 0 ()()sin ()sin L n x n Vt x Vt p t dx P t L L ππδ?=∫ 则将(3-6)式代入(3-5)式,并积分,得到 24424 ()()()()sin 222n n n d q t dq t mL cL L n n Vt EIq t P t dt dt L L ππ++= (3-7)

运动力学(有答案)

一选择题: 1根据人体重心和支撑点的位置关系,手倒立属于哪种支撑平衡?(B) A 上支撑平衡 B 下支撑平衡 C 混合支撑平衡 D 稳定支撑平衡 2 跳高运动员起跳时要用力摆臂摆腿,这是因为(C) A 能带动重心,超越较高的横杆 B 把动量传递到起跳腿上,带动起跳腿向上 C 改变支撑反作用力,能增加起跳腿的蹬地力量 D 上述答案都不对 3 人体平衡时的稳定角是(B) A 重心的倾斜角 B 重心垂线与重心到支撑面边缘的相应点连线的夹角 C 重心与支撑面边缘相应连线的夹角 D 重心垂线与重心到支撑面中心连线的夹角 4跟腱附着点的跟骨骨折,是由于小腿三头肌的强力收缩对跟骨产生异常大的(B)引起的。 A、剪切载荷 B、拉伸载荷 C、压缩载荷 D、复合载荷 5乒乓球静止放于球桌上,球与桌面之间存在着弹力,弹力的大小(B) A、大于球的重力 B、等于球的重力 C、小于球的重力 D、没有弹力 6人体的骨杠杆系统包括:(ABC) A 省力杠杆 B 平衡杠杆 C 速度杠杆 D 力量杠杆 7影响物体转动惯量的因素包括:(ACD) A质量 B 物体的转动速度 C质量的分布 D转动轴的位置

8水对人体的阻力包括:(ABCD) A 摩擦阻力 B 形状阻力 C 兴波阻力 D 碎破阻力 9下列方法“不属于”运动学研究方法的是:(ABC) A 三维测力 B 表面肌电测试 C 身体成分测试 D 平面图像解析 10 运动生物力学的任务是:(ABCD) A改进运动技术 B改善训练手段 C改革运动器材 D预防运动损伤、运动康复与健康促进 11撑杆跳属于(C)动作系统. A周期性 B非周期性 C混合性 D不固定 12 跳高运动员起跳时要用力摆臂摆腿,这是因为(C) A 能带动重心,超越较高的横杆 B 把动量传递到起跳腿上,带动起跳腿向上 C 改变支撑反作用力,能增加起跳腿的蹬地力量 D 上述答案都不对 13 人体平衡时的稳定角是( B ) A 重心的倾斜角 B 重心垂线与重心到支撑面边缘的相应点连线的夹角 C 重心与支撑面边缘相应连线的夹角 D 重心垂线与重心到支撑面中心连线的夹角 14转动惯量是度量物体惯性大小的物理量。( B) A、平动 B、转动 C、静止 D、扭动 15 体育运动中的动作系统大体可分为:(ABCD) A周期性动作系统

静动力作用下高拱坝坝肩稳定性三维分析

第27卷增1岩石力学与工程学报V ol.27 Supp.1 2008年6月Chinese Journal of Rock Mechanics and Engineering June,2008 静动力作用下高拱坝坝肩稳定性三维分析 王忠耀1,2,李明超1,2,秦朝霞1,2,梁辉2,张伯艳3 (1. 天津大学建筑工程学院,天津 300072;2. 中国水电工程顾问集团公司中南勘测设计研究院,湖南长沙 410014; 3. 中国水利水电科学研究院工程抗震研究中心,北京 100044) 摘要:按照静载设计、动载复核的设计原则,基于地质勘测资料,针对坝肩抗滑稳定问题的三维特性,采用关键块体理论来识别和描述被结构面切割的岩体,确定相应的控制性滑块,进而运用程序实现三维刚体极限平衡法,选取不同高程的试算面对某水电站300 m级高拱坝左、右岸坝肩的静动力抗滑稳定性进行计算分析。在动力分析中,将坝体、库水及其地基作为整个体系,充分考虑坝体、地基和库水三者的动力相互作用。静动综合计算分析的结果表明,拱坝左、右岸坝肩在静力作用下是安全的,且安全富裕较大;在地震作用下也是安全的,但安全裕度不大。这为该拱坝的设计和论证提供了重要的科学依据。 关键词:水利工程;坝肩稳定性;高拱坝;三维分析;水电工程 中图分类号:TV 311;TV 312 文献标识码:A 文章编号:1000–6915(2008)增1–3058–06 3D ANALYSIS OF HIGH ARCH DAM ABUTMENT STABILITY UNDER STATIC AND DYNAMIC LOADINGS WANG Zhongyao1,2,LI Mingchao1,2,QIN Zhaoxia1,2,LIANG Hui2,ZHANG Boyan3 (1. College of Civil Engineering,Tianjin University,Tianjin300072,China;2. Mid-south Design and Research Institute,China Hydropower Engineering Consulting Group Co.,Changsha,Hunan410014,China;3.Earthquake Engineering Research Center,China Institute of Water Resources and Hydropower Research,Beijing100044,China) Abstract:According to the principles of static forces for designing and dynamic forces for checking,3D critical block theory is used to identify and describe all removable blocks based on the geological exploration data. Then the corresponding dominative sliding blocks are determined. For the 3D features of the abutment stability problem,the program of 3D rigid body limit equilibrium method is developed to compute and analyze the sliding resistance stability of high arch dam abutments of a hydropower station,nearly 300 m in height,under static and dynamic loadings with several different elevation planes. In dynamic analysis method,the arch dam,reservoir water body and dam foundation are regarded as an integrated system,so that the dynamic interaction between the blocks and dam body can be effectively considered. The results obtained by the method integrating static and dynamic loadings indicate that the arch dam abutments of both sides are stable under static loading with enough margin of safe. While under the action of earthquake,the dam is safe though the factor of safety is not very high. All of these provide significant scientific bases for design and demonstration of high arch dam. Key words:hydraulic engineering;abutment stability;high arch dam;3D analysis;hydropower engineering 收稿日期:2006–11–21;修回日期:2007–02–21 基金项目:国家重点基础研究发展规划(973)项目(2007CB714101);中国博士后科学基金项目(20070420706) 作者简介:王忠耀(1960–),男,1987年毕业于武汉水利电力学院水利水电工程建筑专业,现为博士研究生、教授级高级工程师,主要从事水工建筑物设计和施工方面的研究工作。E-mail:lmc@https://www.360docs.net/doc/9217816537.html,

热力学与动力学的关系

热力学与动力学的关系 黄金金 指导教师:陶中东 摘要:反应趋势与反应速率之间的关系是化学研究中的一个十分重要的问题,本文根据物理化学的基本原理,建立了热力学判据和动力学判据相结合的普适判据,并根据普适判据,从理论上阐述了反应趋势和反应速率二者之间的内在联系,同时论述了化学热力学与化学动力学的紧密联系,有助于从物质的本性、微观结构去进一步认识化学反应的实质。 关键词:化学热力学,化学动力学,普适判据,反应进度,反应速率,活化能,活化熵,化学亲和势 The Relationship between Chemical Kinetics and Thermodynamics Abstract: According to the principle of physical chemistry, a general criterion, which includes thermodynamic criterion of reaction trend and kinetic criterion of reaction rate, has been proposed suggested in this paper. The internal relations between reaction trend and reaction rate have been elaborated based on the general criterion. Meanwhile the paper expounded the close relationship between chemical kinetics and thermodynamics it is instrumental to us in further cognizing chemical reaction essence from material nature and structure. Key words: general criterion; chemical thermodynamics; chemical kinetics; reaction extent; reaction rate; activated energy; activated entropy; chemical affinity 对于一个指定反应条件和反应物种的化学反应来说,研究者普遍关心的问题是该化学反应的趋势与速率。有许多实例表明化学反应的趋势与速率二者之间存在正相关性,即反应的趋势大且反应的速率快。“化学动力学与化学热力学是相辅相成的,动力学的研究必须以热力学的结果(肯定反应有可能发生)为前提条件,而热力学只有与动力学相结合才能全面解决化学反应的实际问题”。“我们用以控制化学过程的方法主要是改变:(1)温度,(2)压力,(3)反应物的比例,(4)催

移动性浊音阳性提示腹水量

移动性浊音(shifting dullness)为临床上检查腹腔有无积液的常用方法。原理是腹腔内积聚液体较多时(约1000ml以上),在患者取仰卧位叩诊时,液体因重力作用积聚于腹腔低处,含气的肠管漂浮其上,故叩诊腹中部呈鼓音,腹部两侧呈浊音;当患者取侧卧位时,液体积聚于下部,肠管上浮,下侧腹部转为浊音,上侧腹部则为鼓音。移动性浊音阳性说明有腹腔积液。 由于不同体位下其浊音都为阳性,那么就可以初步判断女性体内腹水比较多,一般认为移动性浊音阳性提示腹水量在1000毫升以上。因为如果少量的腹水,例如500毫升左右,是不会导致移动性浊音阳性的。移动性浊音阳性只能作为提示腹水量的一个检查,并不能判断病因,需要通过其他检查进一步判断病因 病因及常见疾病: 1.血浆胶体渗透压降低 血浆白蛋白低于25g/L或同时伴有门静脉高压,液体容易从毛细血管漏入组织间隙及腹腔,若水分漏入腹腔则形成腹水。此种情况见于重度肝功能不全、中晚期肝硬化(蛋白合成减少)、营养缺乏(蛋白摄入不足)、肾病综合征与蛋白丢失性肠病等情况。 2.钠水潴留 常见于心肾功能不全及中晚期肝硬化伴继发性醛固酮增多症。肝硬化与右心衰竭时,利钠因子活性降低使肾近曲小管对钠的重吸收增加。近年认为近曲小管的钠重吸收机制较醛固酮作用于远曲小管更为重要。

3.内分泌障碍 肝硬化或肝功能不全时,肝降解功能减退。一方面抗利尿激素与醛固酮等灭活功能降低致钠、水潴留;另一方面血液循环中一些扩血管性血管活性物质浓度增高,这些物质引起外周及内脏小动脉阻力减低,心排血量增加,内脏处于高动力循环状态。由于内脏血管扩张,内脏淤血,造成有效循环血容量相对不足及低血压,机体代偿性释放出血管紧张素II及去甲肾上腺素,以维持血压。这样因反射性地兴奋交感神经系统释放出一些缩血管物质,使肾血流量减低肾小球滤过率下降,加之抗利尿激素释放,引起肾小管钠、水回吸收增加,导致钠水潴留并形成腹水。

移动荷载作用下主梁绝对最大弯矩的计算

移动荷载作用下主梁绝对最大弯矩的计算 摘要:在设计起重机梁等承受移动荷载的结构时,利用内力包络图可以求的在横荷载和移动活荷载共同作用下各杆件、各截面可能出现的最大内力、最小内力。其中弯矩包络图表示各截面的最大弯矩值,其中弯矩最大者称为绝对最大弯矩。我们已经学习了简支梁绝对最大弯矩的求法,那么主梁在移动荷载作用下绝对最大弯矩的求法是怎样的呢?本文根据简支梁绝对最大弯矩的求法,给出了一组平行荷载直接沿着纵梁移动时,主梁承受结点荷载作用下绝对最大弯矩的计算方法。 关键词:结点荷载,绝对最大弯矩,主梁,影响线 桥梁或房屋建筑中的某些主梁,是通过一些次梁(纵梁和横梁)将荷载传递到主梁上的。主梁这些荷载的传递点称为主梁的结点。从移动荷载来说,不论是荷载作用在次梁的哪些位置,其作用都是通过这些固定的结点传递到主梁上。如下图所示: 本文研究的主要问题是一组平行荷载直接沿着纵梁移动时怎样判断主梁绝对最大弯矩的发生的截面位置和计算主梁的绝对最大弯矩(假定相邻两横梁间的距离、节间距是相等的)。 1.主梁绝对最大弯矩的发生截面位置 回想我们学过的简支梁,有两种计算方法。一种是近似计算,划分30个以上等分截面,画出梁的弯矩包络图,采取电算的方法。另一种是精确计算,也是最常用的方法。它的求法是:由于荷载在任一位置时,梁的弯矩图顶点永远发生在集中荷载下。因此可以断定,绝对最大弯矩必定发生在某一集中何在的作用点。 取一集中荷载F pcr ,它的弯矩为: F R 为梁上实际荷载的合力,M cr 为F Pcr 以左梁上实际荷载对F Pcr 作用点的力矩,a 为F R 与 F Pcr 作用线之间的距离。经分析可得,F pcr 作用点弯矩最大时,梁的中线正好平分F pcr 与F R 之间的距离。如下图所cr R cr yA M x L a x L F M x F M ---=-=

移动荷载作用下路面结构的动力响应

移动荷载作用下路面结构的动力响应 摘要 现实情况中车辆总是以一定速度行驶在路面上的,因此研究沥青路面在车辆移动荷载作用下的动态响应是掌握路面结构行为的必要条件。建立刚性基层沥青路面的三维有限元模型,分析移动荷载作用下路面结构的动力响应。分析得出了荷载正下方不同深度处节点竖向剪应力he各结构层底弯拉应力的时间历程曲线。结果表明,在移动荷载作用下,路面结构的动力响应具有明显的波动性质,与静荷载作用有明显区别。 绪论 目前国内现有的道路设计方法通常将车辆荷载简化为双圆均布荷载静荷载,以双轮单轴BZZ-100(100kN)为标准轴载,以设计弯沉值作为路面整体刚度的控制指标,对沥青混凝土面层和基层、底基层进行层底弯拉应力的验算[1],经过大量的使用实验证明,现有规范设计模型具有很大的局限性。这是因为现实中车辆都是以一定的速度行驶在路面上,属于是移动荷载,路面结构在移动荷载作用下的力学响应与静力响应明显不同。因此研究移动荷载作用下路面结构的动力响应更具有实际意义。大量国内外学者对弹性层状体系在动荷载作用下的力学响应作了理论研究。Siddharthan[2][3]结合弹性力学原理,建立层状体系动力学模型,研究了材料粘弹性对路面结构动力响应的影响。Lv[4]采用Green函数、Laplace 积分变换和Fourier变换等方法求解出Kevlin地基上的无限大板在移动荷载作用下动态响应的数值求解。 钟阳、孙林[5]等利用Laplace-Hankel联合积分变换和传递矩阵相结合的方法推导出了轴对称半空间层状弹性体系动态反应的理论解,为进行路面结构的动态反应分析和路面材料参数的动态反算提供了一种行之有效的方法。董泽蛟、曹丽萍[6]等采用ADINA建立了移动荷载作用下多层线弹性的三维沥青路面有限元分析模型,模拟分析了移动荷载作用下路面结构的三向应变动力响应。 鉴于理论解都涉及到较复杂的积分变换和无穷积分,最终只能采用数值方法求解。本文采用Abaqus建立移动荷载作用下三维沥青路面动力响应分析的有限元模型,分析移动荷载作用下路面结构的竖向剪应力和层底弯拉应力。以应力分析研究移动荷载作用下路面结构的动力动力响应,以便为路面结构设计和路面养护提供一定参考。 1 动力学有限元计算原理 根据沥青路面层状弹性体系结构的基本假定以及弹性动力学的Hamilton变分原理,可以建立路面系统在移动荷载作用于下的有限元动力方程: (1)

基于ANSYS钢桁架桥的静动力分析

基于ANSYS钢桁架桥的静动力分析 黎波含 华北科技学院 摘要:本文采用ANSYS分析程序,对下承式钢桁架桥进行了空间有限元建模;对桁架桥进行了静力分析和动力分析(模态分析),作出了桁架桥在静载下的结构变形图、位移云图、以及各个节点处的结构内力图(轴力图、弯矩图、剪切力图),找出了结构的危险截面,在对桁架桥进行模态分析时,主要绘制出了桁架桥的八阶模态振型图,得出一些结论,这些都为桥梁的设计、维护、检测提供了一些技术参数。关键词:ANSYS;钢桁架桥;模态分析;动力特性 引言:随着现代交通运输的快速发展,桥梁兴建的规模在不断的扩大,尤其是现代铁路行业的快速发展更加促进了铁路桥梁的建设,一些新建的高速铁路桥梁可以达到四线甚至是六线,由于桥面和桥身的材料不同导致其受力情况变得复杂,这就需要桥梁需要有足够的承载力,足够的竖向侧向和扭转刚度,同时还应具有良好的稳定性以及较高的减震降噪性,因此对其进行静动力学分析了解其受力特性具有重要的意义。基于此文中对某下承式钢桁梁桥进行了静动力学分析,初步得到了该桥的一些静动力学结果该结果对桥梁的设计、维护、检测具有一定的指导意义。 1工程简介 某一下承式简支钢桁架桥桥长72米,每个节段12米,桥宽10米,高16米。桥面板为0.3米厚的混凝土板,桁架桥的杆件均使用的是工字型截面但型号有所不同,钢桥的形式见图1,其结构简图见

图2 图1 图2 刚桁架桥简图 所用的桁架杆件有三种规格,见表1 表1 钢桁架杆件规格 杆件截面号形状规格 端斜杆 1 工字形400X400X16X16 上下弦 2 工字形400X400X12X12 横向连接梁 3 工字形400X400X12X12 其他腹杆 4 工字形400X300X12X12 所用的材料属性见表2 表2 材料属性 参数钢材混凝土弹性模量EX 2.1×1011 3.5×10 泊松比PRXY 0.3 0.1667 密度DENS 78502 2500 2 模型构建 将下承式钢桁梁桥的各部分杆件,包括上弦杆、下弦杆、腹杆、

尾矿坝稳定性分析

一、现场高浓度尾矿分级筑坝试验 二、X X尾矿坝稳定分析 (一)研究目标 本项目的基本构思和总体目标为: 采用现场实测、室内试验和数值模拟三种研究手段。基于现场放矿试验综合给出尾矿坝典型剖面的尾砂分布规律,采用室内试验(静动力试验)确定相应尾砂的静、动力物理力学特性,并以此为基础通过数值仿真的方法定量评价尾矿坝的稳定性,确定其影响因素,提出改进措施。 具体目标如下: 1.现场尾矿分级筑坝试验 1)给出尾矿的移动特征、沉降过程及颗粒分布规律,包括堆积体的形态、坡度和坡面颗粒组成等,获得将来尾矿堆坝的结构组成; 2)给出高浓度尾矿堆存沉积滩的坡度变化规律,确定高浓度尾矿堆存所需的沉积距离; 3)根据尾矿沉积规律及现场勘测,确定尾矿坝进行稳定性分析的两个典型断面。 2.室内试验 1)静力学试验:给出尾矿砂的静力学参数(强度及变形特性); 2)渗透性试验:给出尾矿砂的渗透系数; 2)动三轴试验:给出尾矿砂的液化动力强度及阻尼比等参数。 3.数值模拟 数值模拟主要从三个方面对尾矿坝进行稳定性分析: 1)渗流稳定分析 确定堆积坝体的浸润线及其下游可能出逸点的位置;计算坝体和坝基的渗流量。 2)尾矿坝的静力稳定性分析 采用不同工况时对应的荷载组合,计算坝体在不同高度时的坝坡稳定性,给出典型断面上应力、应变的分布规律、坝体的变形。 3)尾矿坝的动力稳定性分析 采用二维数值模拟方法,选用三条典型地震动+一条人工合成地震动计算尾矿坝在地震荷载作用下的动力稳定性,给出典型断面坝体的应力、应变分布规律;给出地震作用下,尾矿坝可能发生的液化范围。

(二)技术路线 本项目研究的技术路线如下: 1.确定工程场地的基本特征,场地的类别、特征周期及设防烈度等; 2.根据现场放矿试验确定沿堆积坝的尾砂分布规律; 3.根据设计资料、场地及其他相关因素,确定尾矿坝的两个典型断面; 4.对两个典型断面进行现场勘测,根据尾砂特点及分布规律确定尾砂分布的概化剖面; 5.根据概化剖面上尾砂分布的类型,对尾砂进行室内渗透、静力以及三轴动力试验,测量得到相应尾砂的渗透系数、静力强度、变形特性以及动力液化强度、阻尼比等模型参数; 6.利用数值模拟方法建立典型断面的二维数值模型,分别进行静力、动力及渗流的二维数值模拟分析; 7.根据计算结果对尾矿筑坝工艺提出相应建议。 (三)经费预算 经费申请表(金额单位:万元)

车辆操纵动力学稳定性分析

车辆操纵动力学 摘要:汽车的前轮转角和横摆角速度是衡量汽车稳定性的两个重要指标。汽车在行驶过程中,由于路况的各种不确定因素,驾驶员可能会采取紧急制动和转向的行为来避免交通事故。在此过程中汽车的操纵稳定性会起到关键性的作用,因此对于汽车的稳定性的分析必不可少。本文建立了汽车线性二自由度汽车模型,以前轮转角为输入,运用MATLAB进行时域分析。对不同车型的在相同行驶速度、相同前轮转角下分析横摆角速度瞬态响应;在相同行驶速度下,在不同前轮转角输入下分析达到相同加速度的横摆角速度瞬态响应;随着车速增加,分析车辆瞬时转向响应与系统特征根之间的关系。 关键词:横摆角速度;前轮转角;特征根 引言 车辆稳定性控制是汽车主动安全领域研究的热点,已有的研究如以车辆横摆角速度、质心侧偏角、轮胎的滑移率、侧向加速度及这些变量联合作为控制变量的控制策略研究。本文主要考虑车辆横摆角速度和前轮转角对车辆操纵稳定性的影响,进一步利用MATLAB得出状态空间矩阵的特征根变化趋势,了解车辆瞬时响应与其之间的关系。 1建立汽车数学模型 假设汽车的驱动力不大,不考虑地面切向力对轮胎侧偏特性的影响,没有空气动力的作用,忽略左、右车轮轮胎由于载荷的变化而引起轮胎特性的变化以及轮胎回正力矩的作用。汽车模型即可简化为线性二自由度模型,如图1。 图1 线性二自由度模型 根据假设以及图1模型,二自由汽车收到的外力沿y轴方向的合力与绕质心的力

矩和为: ?? ?-=∑+=∑2 12 1cos cos Y Y Z Y Y Y bF aF M F F F δδ (1) 式中,FY1、FY2为地面对前后轮的侧向反作用力;δ为前轮转角;a 、b 分别为汽车前、后轮至质心的距离。 汽车前、后轮侧偏角与其运动参数有关,如图1所示,汽车前、后轴中点的速度u 1、u 2,侧偏角为α1、α2,质心的侧偏角为β,β=v/u 。ξ是u 1与x 轴的夹角,其值为: u aw u aw v r r +=+= βξ (2) 根据坐标系规定,由式(2)得,前、后轮侧偏角为: ??? ??? ?-=-=-+=--=u bw u bw v u aw r r r βαδβξδα21)( (3) 考虑到δ角较小,前、后轮所受到的侧向力与相应的侧偏角成线性关系,则FY1、FY2为: ??? ??? ??-=?=?-+=?=cr u bw cr a FY cf u aw cf a F r r Y )(2)(211βδβ (4) 将公式(2)、(3)、(4)以及公式β=v/u 带入(1),消去α1、α2,得二自由度汽车运动微分方程为: ??? ????+----=---+-=+δδr r r f r f r Z f r r f r aC w u C b C a v u bC aC w I C w u bC aC v u cr cf uw v m 2 2)( (5) 2 MATLAB 系统仿真 本文采用MATLAB 对汽车的操纵稳定性进行仿真研究。以1949 Buick 和Ferrari 轿车为例,进行对比分析。汽车具体参数如表1所示。通过仿真实验分析不同前轮转角和不同车速下横摆角速度和前轮转角对汽车操纵稳定性的影响,并粗略得出状态矩阵的特征根与车辆瞬时转向响应之间的关系。

移动荷载作用下主梁绝对大弯矩的计算结构力学

移动荷载作用下主梁绝对大弯矩的计算结构力学

————————————————————————————————作者:————————————————————————————————日期:

移动荷载作用下主梁绝对最大弯矩的计算 摘要:在设计起重机梁等承受移动荷载的结构时,利用内力包络图可以求的在横荷载和移动活荷载共同作用下各杆件、各截面可能出现的最大内力、最小内力。其中弯矩包络图表示各截面的最大弯矩值,其中弯矩最大者称为绝对最大弯矩。我们已经学习了简支梁绝对最大弯矩的求法,那么主梁在移动荷载作用下绝对最大弯矩的求法是怎样的呢?本文根据简支梁绝对最大弯矩的求法,给出了一组平行荷载直接沿着纵梁移动时,主梁承受结点荷载作用下绝对最大弯矩的计算方法。 关键词:结点荷载,绝对最大弯矩,主梁,影响线 桥梁或房屋建筑中的某些主梁,是通过一些次梁(纵梁和横梁)将荷载传递到主梁上的。主梁这些荷载的传递点称为主梁的结点。从移动荷载来说,不论是荷载作用在次梁的哪些位置,其作用都是通过这些固定的结点传递到主梁上。如下图所示: 本文研究的主要问题是一组平行荷载直接沿着纵梁移动时怎样判断主梁绝对最大弯矩的发生的截面位置和计算主梁的绝对最大弯矩(假定相邻两横梁间的距离、节间距是相等的)。 1.主梁绝对最大弯矩的发生截面位置

回想我们学过的简支梁,有两种计算方法。一种是近似计算,划分30个以上等分截面,画出梁的弯矩包络图,采取电算的方法。另一种是精确计算,也是最常用的方法。它的求法是:由于荷载在任一位置时,梁的弯矩图顶点永远发生在集中荷载下。因此可以断定,绝对最大弯矩必定发生在某一集中何在的作用点。 取一集中荷载Fpcr ,它的弯矩为: FR 为梁上实际荷载的合力,Mcr 为FPcr 以左梁上实际荷载对FPcr 作用点的力矩,a 为FR 与 FPcr 作用线之间的距离。经分析可得,Fpcr 作用点弯矩最大时,梁的中线正好平分Fpcr 与FR 之间的距离。如下图所示: 比较各个荷载作用点的最大弯矩,选择其中最大的一个,就是绝对最大弯矩。 与简支梁类似,当一组平行荷载直接沿着纵梁移动时,主梁在任意时刻的弯矩图总是呈折线图形,弯矩图的顶点永远位于集中荷载作用点,也就是各结点截面。因此,主梁绝对最大弯矩将发生在某结点截面,发生绝对最大弯矩的移动荷载位置就是该结点截面弯矩最大值对应的最不利荷载位置。 简支梁的绝对最大弯矩通常发生在梁的跨中截面附近,因此设计计算中可以用跨中截面的最大弯矩近似代替绝对最大弯矩,一般误差在 5℅ 以内。所以可以用以下方法快速判别绝对最大弯矩发生截面位置:当荷载数目较多时(多于4个),首先判别跨中截面发生最大弯矩时的荷载位置,然后稍稍移动该荷载位置, cr R cr yA M x L a x L F M x F M ---=-=

第3章 工业机器人静力学及动力学分析概要

注:1)2008年春季讲课用;2)带下划线的黑体字为板书内容;3)公式及带波浪线的部分为必讲内容第3章工业机器人静力学及动力学分析 3.1 引言 在第2章中,我们只讨论了工业机器人的位移关系,还未涉及到力、速度、加速度。由理论力学的知识我们知道,动力学研究的是物体的运动和受力之间的关系。要对工业机器人进行合理的设计与性能分析,在使用中实现动态性能良好的实时控制,就需要对工业机器人的动力学进行分析。在本章中,我们将介绍工业机器人在实际作业中遇到的静力学和动力学问题,为以后“工业机器人控制”等章的学习打下一个基础。 在后面的叙述中,我们所说的力或力矩都是“广义的”,包括力和力矩。 工业机器人作业时,在工业机器人与环境之间存在着相互作用力。外界对手部(或末端操作器)的作用力将导致各关节产生相应的作用力。假定工业机器人各关节“锁住”,关节的“锁定用”力与外界环境施加给手部的作用力取得静力学平衡。工业机器人静力学就是分析手部上的作用力与各关节“锁定用”力之间的平衡关系,从而根据外界环境在手部上的作用力求出各关节的“锁定用”力,或者根据已知的关节驱动力求解出手部的输出力。 关节的驱动力与手部施加的力之间的关系是工业机器人操作臂力控制的基础,也是利用达朗贝尔原理解决工业机器人动力学问题的基础。 工业机器人动力学问题有两类:(1)动力学正问题——已知关节的驱动力,求工业机器人系统相应的运动参数,包括关节位移、速度和加速度。(2)动力学逆问题——已知运动轨迹点上的关节位移、速度和加速度,求出相应的关节力矩。 研究工业机器人动力学的目的是多方面的。动力学正问题对工业机器人运动仿真是非常有用的。动力学逆问题对实现工业机器人实时控制是相当有用的。利用动力学模型,实现最优控制,以期达到良好的动态性能和最优指标。 工业机器人动力学模型主要用于工业机器人的设计和离线编程。在设计中需根据连杆质量、运动学和动力学参数,传动机构特征和负载大小进行动态仿真,对其性能进行分析,从而决定工业机器人的结构参数和传动方案,验算设计方案的合理性和可行性。在离线编程时,为了估计工业机器人高速运动引起的动载荷和路径偏差,要进行路径控制仿真和动态模型的仿真。这些都必须以工业机器人动力学模型为基础。 工业机器人是一个非线性的复杂的动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间。因此,简化求解过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。 在这一章里,我们将首先讨论与工业机器人速度和静力学有关的雅可比矩阵,然后介绍工业机器人的静力学问题和动力学问题。

运动力学(有答案)

一选择题: 1根据人体重心与支撑点得位置关系,手倒立属于哪种支撑平衡?(B) A 上支撑平衡 B 下支撑平衡 C 混合支撑平衡 D 稳定支撑平衡 2 跳高运动员起跳时要用力摆臂摆腿,这就是因为 (C) A 能带动重心,超越较高得横杆 B把动量传递到起跳腿上,带动起跳腿向上 C 改变支撑反作用力,能增加起跳腿得蹬地力量 D 上述答案都不对 3 人体平衡时得稳定角就是(B) A重心得倾斜角 B 重心垂线与重心到支撑面边缘得相应点连线得夹角 C 重心与支撑面边缘相应连线得夹角 D 重心垂线与重心到支撑面中心连线得夹角 4跟腱附着点得跟骨骨折,就是由于小腿三头肌得强力收缩对跟骨产生异常大得(B)引起得、 A、剪切载荷 B、拉伸载荷 C、压缩载荷 D、复合载荷 5乒乓球静止放于球桌上,球与桌面之间存在着弹力,弹力得大小 (B) A、大于球得重力 B、等于球得重力 C、小于球得重力 D、没有弹力 6人体得骨杠杆系统包括:(ABC) A 省力杠杆 B 平衡杠杆 C 速度杠杆 D力量杠杆 7影响物体转动惯量得因素包括:(ACD) A质量 B 物体得转动速度 C质量得分布 D转动轴得位置 8水对人体得阻力包括:(ABCD) A 摩擦阻力 B形状阻力 C 兴波阻力 D 碎破阻力 9下列方法“不属于"运动学研究方法得就是:(ABC) A 三维测力

B 表面肌电测试 C身体成分测试 D 平面图像解析 10 运动生物力学得任务就是:(ABCD) A改进运动技术 B改善训练手段 C改革运动器材 D预防运动损伤、运动康复与健康促进 11撑杆跳属于(C)动作系统、 A周期性 B非周期性 C混合性 D不固定 12 跳高运动员起跳时要用力摆臂摆腿,这就是因为 (C) A 能带动重心,超越较高得横杆 B把动量传递到起跳腿上,带动起跳腿向上 C改变支撑反作用力,能增加起跳腿得蹬地力量 D 上述答案都不对 13 人体平衡时得稳定角就是( B ) A 重心得倾斜角 B 重心垂线与重心到支撑面边缘得相应点连线得夹角 C 重心与支撑面边缘相应连线得夹角 D 重心垂线与重心到支撑面中心连线得夹角 14转动惯量就是度量物体惯性大小得物理量。( B) A、平动 B、转动 C、静止 D、扭动 15 体育运动中得动作系统大体可分为:(ABCD) A周期性动作系统 B非周期性动作系统 C混合性动作系统 D不固定动作系统 18根据平衡得稳定程度,可以将人体得平衡分为:(ABCD) A稳定平衡 B 有限稳定平衡 C 不稳定平衡 D随遇平衡 19 下列说法正确得就是:(ACD) A 根据肌肉活动得顺序性原理,大关节肌肉首先活动有利于速度得迅速提升。 B 缓冲动作通过延长力得作用时间来降低冲量 C缓冲动作通过延长力得作用时间来降低冲力 D缓冲动作可为后继动作提供适宜得空间与时间以及各关节肌肉适宜得发力条件

Midas 移动荷载 设置流程

midas Civil 技术资料 ----移动荷载设置流程 目录 midas Civil 技术资料 1 ----移动荷载设置流程 1 一、定义车道线(车道面) 2 二、定义车辆荷载 5 三、定义移动荷载工况 7 四、移动荷载分析控制 9 五、运行并查看分析结果 12 参考文献 14 北京迈达斯技术有限公司 桥梁部 2013/05/17

本章主要结合中国规范JTG D60-2004[1]进行纵向(顺桥向)移动荷载分析介绍,移动荷载分析主要是计算移动荷载(车道、车辆或人群荷载)在指定路径上(车道线、车道面)移动时产生的各种效应(反力、内力、位移、应力)的包络结果,具体分析过程如下:(1)定义车道线/面; (2)定义车辆荷载--车道荷载、车辆荷载、人群荷载等活荷载; (3)定义移动荷载工况; (4)定义移动荷载分析控制; (5)运行分析并查看结果。 一、定义车道线(车道面) 荷载>移动荷载>移动荷载规范-china,定义车道线或车道面,确定移动荷载路径,程序提供车道单元和横向联系梁两种方法,其中,车道单元法是将作用在车道中心线上的荷载换算到车道单元上(换算为集中力和扭矩),单梁模型中常用;而横向联系梁法是将移 图1-1车道单元法及横向联系梁法示意图 动荷载作用在横梁上,然后由横梁按比例传递到临近的纵梁单元上,梁格模型中常用,此时需要将横梁定义成为一个结构组,传力示意如图1-1所示。 随后即可进行车道线定义,首先是“斜交角”设置,对于斜桥梁格模型可以输入起点和终点的斜交角度,此设置需跟横向联系梁法配合使用,车道单元法不需要设置此项。 “车辆移动方向”,对于直桥,选择三者无差别;如果是斜桥,则车辆移动方向不同,分析结果也不同,故要选择“往返”。

相关文档
最新文档