模拟电子实训电路:资料

模拟电子实训电路:资料
模拟电子实训电路:资料

模拟电子实训电路:

TDA2030集成音频功率放大器组装与维修

一、TDA2030简介:

TDA2030是许多音频功放产品所采用的Hi-Fi功放集成块。它接法简单,价格实惠,使用方便,在现有的各种功率集成电路中,它的管脚属于最少的一类,总共才5个引脚,外型如同塑封大功率管,给使用带来不少方便。

TDA2030 在电源电压±14V,负载电阻为4Ω时输出14瓦功率(失真度≤0.5%);在电源电压±16V,负载电阻为4Ω时输出18瓦功率(失真度≤0.5%)。电源电压为±6~±18V。输出电流大,谐波失真和交越失真小(±14V/4欧姆,THD=0.5%)。具有优良的短路和过热保护电路。其接法分单电源和双电源两种,如图3-3-2所示。

二、集成音频功率放大器组装 (一)电路组成与工作原理

电路原理如图3-3-3,该电路由左右两个声道组成,其中W101为音量调节电位器,W102低音调节电位器,W103为高音调节电位器。输入的音频信号经音量和音调调节后由C106、C206送到TDA2030集成音频功率放大器进行功率放大。该电路工作于双电源(OCL )状态,音频信号由TDA2030的1脚(同向输入端)输入,经功率放大后的信号从4脚输出,其中R108、C107、R109组成负反馈电路,它可以让电路工作稳定,R108和R109的比值决定了TDA2030的交流放大倍数,R110、C108和R210、C208组成高频移相消振电路,以抑制可能出现的高频自激振荡。图3-3-4为电源电路,为功放电路提供15-18V 的正负对称电源。

图3-3-2 TDA2030应用电路图

图3-3-3TDA2030集成音频功放电路原理图

(二)电路元器件选择

TDA2030为功率元件,使用过程中将会产生大量热量,要求安装到足够大的散热片上。信号输入插座采用双孔莲花插座,功放输出插座和电源连接采用便于接线的接线端子。其余元件的选择可以参见表3-3-2。

表3-3-2 集成音频功放电路元件清单

(三)电路安装与调试

元件分布图如图3-3-5电路,按图安装。

图3-3-5TDA2030集成音频功放元件分布图

二、TDA2030集成音频功放电路调试和故障的维修

由于集成音频功放电路结构简单,元件数量较分立元件功放少了很多,其维修方法可以参考分立元件OCL功放电路进行。

维修中要求熟悉集成电路的相关引脚功能,可以通过在线测量各引脚的电阻和工作电

压,对比正常时的相关参数进行检修。

一、常用集成音频功放电路简介

上个世纪80 年代以前,输出功率仅几瓦的声频功率放大器都要采用分立元件来制作。进入80年代后,国内开始研制生产出一些小功率的功放IC,但由于这些功放IC的性能指标不佳,尤其是可靠性比较差,很快就被国外生产的功放IC所取代。日本生产的HA1392、TA7240曾经是80年代用得非常普遍的功放IC。HA1392与TA7240的输出功率都只有4W ~ 6W。HA1392的工作频率上限较低,电源极性接反就即刻损坏。TA7240的外围电路设计难度较大,静音控制易受外界干扰而产生误动作。意法SGS公司在80年代初开发生产的TDA2030A算是比较好的一款功放IC,它的输出功率能够达到12W以上。尽管SGS公司

在TDA2030A基础上又研制出TDA2040、TDA2050功放IC,使输出功率能够达到24W,但由于它们的电源适用范围只有±22V,如果使用未经稳压的整流滤波直流电供电,它们实际上都只能给4Ω负载输出12W功率。美国NS公司在80年代开发生产的LM1875功放IC,比SGS公司生产的TDA2030A功放IC输出功率高出一倍,原因就在于它的电源适用范围可以达到±30V。如果使用稳压直流电供电,TDA2030A与LM1875实际上都能在±18V供电条件下给4Ω 负载输出24W正弦波有效功率。而且提高供电电压,除了使LM1875在更低的输出功率下发生功耗过载保护动作外,并不能增大输出功率。作为早期开发的功放器件,TDA2030A与LM1875都没有静音控制功能,对电源纹波的抑制能力也不够强。荷兰菲利普公司在意法SGS公司推出TDA2030A之后不久,也开发生产出一款性能指标类同的TDA1521Q双功放IC。该款功放IC的电源适用范围也是±22V,能够同时给两个4Ω负载分别输出12W功率。由于TDA1521Q已把决定放大倍率的负反馈电路做在IC内部,使用上相对比较简便。此后,菏兰菲利普公司又推出一款型号为TDA1514A的高性能功放IC,产品介绍资料上称它能够输出40W的功率。但是,实际的使用实验证明:在使用稳压直流电源供电的情况下,TDA1514A能够可靠工作的电源电压只到±18V,给4Ω负载输出的正弦波有效功率为24W。如果将电源电压提高到±20V以上电压,TDA1514A将出现过载保护动作,而且所进行的过载保护动作表现为半波截止输出。这样,人们只能把TDA1514A的工作电压设计为与LM1875相同的工作电压。

在90 年代以前,电子器件生产厂商提供的功放IC输出功率实际都在30W以下。在经过10多年的努力后,美国NS公司和意法SGS公司都在90年代期间相继开发生产出多款输出功率超过30W的功放IC芯片。其中,LM3876、LM3886是美国NS公司的代表作,TDA7294、TDA7295、TDA7296是意法SGS公司的代表作。这些功放IC芯片都具有很小的安装体积和多项安全保护功能,使用上很可靠。但同时也正因为功放IC芯片需要有很可靠的过热、过流、过压、过功耗等多项安全保护功能,生产厂家在设计IC芯片的内部保护电路时,可能会因为所采取的检测方式过于敏感或欠成熟,出现一些不够良好的问题。生产厂家没有在其产品介绍说明中将这些缺陷写出来,固然有可能是不希望自己的产品销售受到影响,但更多的原因是他们自己也未必发现了这些缺陷,而需要用户在使用过程中将发现的问题反馈给生产厂家,他们再去改进开发新的器件。譬如,美国NS公司的音响工程师曾给我推荐使用他们生产的功放IC,其中有一款型号为LM4701(样品型号为LM4700),该款功放IC据说是替代LM1875的器件,它具有静音控制功能,输出功率比LM1875高。但实际的使用证明:LM4701在推动4Ω负载时能够正常工作,不出现误保护动作的电源电压不

可以超过±20V,最大输出功率只有20W。如果电源电压超过±20V,譬如为±22V时,输出功率不但不会增大,100Hz以下低声频段能够正常输出的功率会降低到只有10W。虽然在±26V稳压电源供电下,LM4701可以给8Ω负载输出25W功率,但因其电源实用范围只有±32V,在使用非稳压直流电源供电情况下,LM4701可以给8Ω负载输出的功率还达不到20W。又譬如,意法SGS公司生产的TDA7264双功放IC,产品介绍资料中标明它的最高工作电压为±25V,最大输出电流为4A,比TDA2030A的性能指标(最高工作电压为±22V,最大输出电流为3.5A)要高。但实际的使用证明:TDA7264在推动4Ω负载时,能够可靠工作,不出现误保护作的电源电压不可以超过±15V,相应的输出功率只有2×12W。此外,TDA7264工作时器件上的发热温度(测试点放在IC金属片上)应保持在70℃以下。否则,TDA7264的内部过热保护电路会因为IC在较高的发热温度下工作产生累积效应,在连续工作30分钟后出现“软保护”而使其能够输出的功率降低到正常值的1/4以下。本来,理想的过热保护功能应该是在功放IC的发热温度达到最高允许值时关断输出,待其温度冷却至比最高允许值低若干度时重新恢复输出。TDA7264工作之后,发热温度在短时间内达到110℃也没有出现过热保护,工作情况良好,人们会因此误认为TDA7264具有很好的温度特性而降低对它的散热要求。美国NS公司在80年代生产的LM1875功放IC虽然没有静音功能,但其内部设计的过热保护功能已接近理想要求,因此直到如今还继续被音响生产厂大量选用。但是美国NS公司在90年代生产的LM3875、LM3886大功率功放IC,在过热保护功能方面的表现却很令人失望!尤其是采用陶瓷绝缘封装的功放IC,因其导热状况不佳,LM3875在推动4Ω负载时,连10W以上的正弦波额定功率都不能连续输出。就是改成8Ω负载,陶瓷绝缘封装的LM3875能够正常输出30W正弦波额定功率的时间也仅能维持几秒钟就开始出现杂波。同样,陶瓷绝缘封装的LM3876,在推动4Ω负载时能够正常输出40W正弦波额定功率的时间也只能维持几秒钟就开始出现杂波。必须使用金属片导热的封装器件,并保持功放IC金属片上的发热温度不超过85℃,LM3875(或LM3876)、LM3886才能分别给4Ω负载正常的长期输出30W与50W正弦波额定功率。因此,人们在使用LM3875、LM3886等功放IC器件时,一定要给它们配上足够大的散热器。同时,用于给功放IC金属片绝缘的导热片厚度应尽可能薄,不要超过0.3mm,这样才能确保功放IC与散热器之间的温差只有几度。

二、前置放大器

在功率放大器之前,往往需要加入前置放大器,用于将各种音源送出的较微弱的电信号进行电压放大,对重放声音的音量、音调和立体声状态等进行调控。它通常由输入选择与均

衡放大电路、等响音量控制电路、音调控制电路等组成,见图3-3-6。

图3-3-6 前置放大器组成方框图

前置放大器由于工作在功放电路的前端,它产生的声音失真将由功放电路放大,产生更大的失真。因此,对前置放大器要求信噪比要高、谐波失真度要小、输入阻抗要高、输出阻抗要低、立体声通道的一致性要好、声道的隔离度要高等。

1. 音源选择电路

用于音源与前置放大器的选通。图3-3-7为飞利浦公司生产的TDA1029音源电子开关电路。该音源电子开关可以对输入的4组立体声信号进行选通。

图3-3-7 音源选择电路

2. 前置放大电路

通常由分立元件或集成电路构成,集成电路的特点是增益高,噪声小,含有补偿电路,双通道一致性好,电路简单,安装、调试方便,在实际产品中常常使用集成电路小信号音频

电压放大电路,如NE5532、TL082等,见图3-3-8。

图3-3-8 集成前置放大电路

3. 音调控制电路

主要用于对音频信号各频段内的信号进行提升或衰减控制。一般分为RC衰减式音调控制电路、RC负反馈式音调控制电路两种形式。

(1)RC衰减式音调控制电路,如图3-3-9。

RP1是低音控制电位器,调节RP1对中高音的影响不大,而对低频信号的影响较显著;RP2是高音控制电位器,调节RP2对中低音的影响不大,而对高频信号的影响较显著。

图3-3-9 RC衰减式音调控制电路

(2)RC负反馈式音调控制电路,如图3-3-10。

RP1是低音控制电位器,当动片滑到最左端时,低音呈最大提升状态,当动片滑动到最右端时,低音呈最大衰减状态。RP2是高音控制电位器,当动片滑到最左端时,对高音呈最大提升状态,当动片滑到最右端时,对高音呈最大衰减状态。

图3-3-10 RC负反馈式音调控制电路

4. 音量控制电路

其作用是调节馈入功放的信号电平,以控制扬声器的输出音量。包括电位器音量控制和电子式音量控制电路两种形式,如图3-3-11。电位器音量控制电路(左图)采用指数型电位器构成分压电路,直接控制信号电平。电子音量控制电路采用间接方式控制音量大小,可以克服电位器音量控制电路的缺点。偏流调节型音量控制电路如下图右图所示。

图3-3-11 音量控制电路

5.等响控制电路

其作用是在小音量放送音乐时利用频率补偿网络适当提升低音和高音分量,以弥补人耳听觉缺陷,达到较好的听音效果,常有以下两种电路形式。

(1)抽头电位器响度控制电路,如图3-3-12所示。

R1,C1,C2和抽头电位器组成频率补偿网络,电位器滑动触点既能控制输出音量,又能实现响度控制。

图3-3-12 抽头电位器响度控制电路

(2)独立响度控制电路,如图3-3-13所示。

独立于音量控制的响度控制电路,常应用于在音量遥控的音响系统中,电路中的响度控制开关(图中S1)由遥控电路控制。当S1置于ON位置时,响度控制电路具有低音补偿作用,在不同音量的情况下具有相同的低音提升量;当S1置于OFF位置时,电容C1被短路,因而电路无响度频率补偿作用。

图3-3-13 独立响度控制电路

6.平衡控制电路

其作用是调整左、右声道增益,使两声道增益相等,即用来校正左右声道的音量差别,使左右扬声器声级平衡,电路非常简单,通常由一个同轴双联电位器便可完成。

7.图示均衡器(Graphic Equalizer,缩写为GEQ),也称为多段频率音调控制电路。它可以对整个音频范围内以若干个频率点为中心的频段分别进行提升或衰减的控制,从而实现对音质的精细调整。根据分段的多少可以分为5段、7段、10段、15段、27段、31段等几种。各个频率点的分布可以根据1/3倍频、2/3倍频、2倍频或3倍频进行变化。如按照3倍频变化的5段频率图示均衡器的频率点为100Hz、330Hz、1kHz、3.3kHz、10kHz。其电路结构如图3-3-14,各LC串联谐振支路对其谐振频率f0的信号呈现最小阻抗。中心频率f0分别为100 Hz、330Hz、1kHz、3.3kHz、10kHz。调节RP1~RP5可分别对各频率点信号的输出进行衰减或提升。

图3-3-14 LC串联谐振式图示均衡电路

【做一做】

根据你的理解和实际条件,制作一款集成音频功放电路,在它之前加入相关声音信号

处理电路,感受一下有什么变化,谈谈它有什么特性。

模拟电子线路期末试题及其答案(两套)

《模拟电子技术基础(一)》期末试题〔A 〕 一、填空题(15分) 1.由PN 结构成的半导体二极管具有的主要特性是 性。 2、双极性晶体三极管工作于放大模式的外部条件是 。 3.从信号的传输途径看,集成运放由 、 、 、 这几个部分组成。 4.某放大器的下限角频率L ω,上限角频率H ω,则带宽为 Hz 。 5.共发射极电路中采用恒流源做有源负载是利用其 的特点以获得较高增益。 6.在RC 桥式正弦波振荡电路中,当满足相位起振条件时,则其中电压放大电路的放大 倍数要略大于 才能起振。 7.电压比较器工作时,在输入电压从足够低逐渐增大到足够高的过程中,单限比较器的 输出状态发生 次跃变,迟滞比较器的输出状态发生 次跃变。 8.直流稳压电源的主要组成部分是 、 、 、 。 二、单项选择题(15分) 1.当温度升高时,二极管反向饱和电流将 。 [ ] A 增大 B 减小 C 不变 D 等于零 2.场效应管起放大作用时应工作在漏极特性的 。 [ ] A 非饱和区 B 饱和区 C 截止区 D 击穿区

3.直接耦合放大电路存在零点漂移的原因主要是 。 [ ] A 电阻阻值有误差 B 晶体管参数的分散性 C 晶体管参数受温度影响 D 受输入信号变化的影响 4.差动放大电路的主要特点是 。 [ ] A 有效放大差模信号,有力抑制共模信号;B 既放大差模信号,又放大共模信号 C 有效放大共模信号,有力抑制差模信号; D 既抑制差模信号,又抑制共模信号。 5.互补输出级采用射极输出方式是为了使 。 [ ] A 电压放大倍数高 B 输出电流小 C 输出电阻增大 D 带负载能力强 6.集成运放电路采用直接耦合方式是因为 。 [ ] A 可获得较高增益 B 可使温漂变小 C 在集成工艺中难于制造大电容 D 可以增大输入电阻 7.放大电路在高频信号作用下放大倍数下降的原因是 。 [ ] A 耦合电容和旁路电容的影响 B 晶体管极间电容和分布电容的影响 C 晶体管的非线性特性 D 放大电路的静态工作点设置不合适 8.当信号频率等于放大电路的L f 和H f 时,放大倍数的数值将下降到中频时的 。 A 0.5倍 B 0.7倍 C 0.9倍 D 1.2倍 [ ] 9.在输入量不变的情况下,若引入反馈后 ,则说明引入的是负反馈。[ ] A 输入电阻增大 B 输出量增大 C 净输入量增大 D 净输入量减小 10 [ ] A 、

模拟电路课程设计心得体会

模拟电路课程设计心得 体会 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

精选范文:《模拟电路》课程设计心得体会(共2篇)本学期我们开设了《模拟电路》与《数字电路》课,这两门学科都属于电子电路范畴,与我们的专业也都有联系,且都是理论方面的指示。正所谓“纸上谈兵终觉浅,觉知此事要躬行。”学习任何知识,仅从理论上去求知,而不去实践、探索是不够的,所以在本学期暨模电、数电刚学完之际,紧接着来一次电子电路课程设计是很及时、很必要的。这样不仅能加深我们对电子电路的任职,而且还及时、真正的做到了学以致用。这两周的课程设计,先不说其他,就天气而言,确实很艰苦。受副热带高气压影响,江南大部这两周都被高温笼罩着。人在高温下的反应是很迟钝的,简言之,就是很难静坐下来动脑子做事。天气本身炎热,加之机房里又没有电扇、空调,故在上机仿真时,真是艰熬,坐下来才一会会,就全身湿透,但是炎炎烈日挡不住我们求知、探索的欲望。通过我们不懈的努力与切实追求,终于做完了课程设计。在这次课程设计过程中,我也遇到了很多问题。比如在三角波、方波转换成正弦波时,我就弄了很长时间,先是远离不清晰,这直接导致了我无法很顺利地连接电路,然后翻阅了大量书籍,查资料,终于在书中查到了有关章节,并参考,并设计出了三角波、方波转换成正弦波的电路图。但在设计数字频率计时就不是那么一帆风顺了。我同样是查阅资料,虽找到了原理框图,但电路图却始终设计不出来,最后实在没办法,只能用数字是中来代替。在此,我深表遗憾!这次课程设计让我学到了很多,不仅是巩固了先前学的模电、数电的理论知识,而且也培养了我的动手能力,更令我的创造性思维得到拓展。希望今后类似这样课程设计、类似这样的锻炼机会能更多些!

国开模拟电子电路形考作业2

模拟电子电路形考作业2 一、单选题(每小题4分,共40分) 题目1 N沟道结型场效应管的偏置电压UGS应为( )。 选择一项: A. 零 B. 负 C. 正 题目2 当UGS=0时,仍能工作在放大区的场效应管是( )场效应管。选择一项: A. 耗尽型MOS B. 增强型MOS C. 结型 题目3 下列有关多级放大电路的说法中,( )是错的。 选择一项: A. 直接藕合放大电路能放大交流信号和直流信号 B. 变压器耦合放大电路能放大变化缓慢的信号 C. 阻容藕合放大电路只能放大交流信号 题目4 输入失调电压UIO是( )补偿电压。 选择一项: A. 使uO为0在输入端的 B. 使uI为0在输出端的 C. 使uO为0在输出端的

题目5 选用差分放大电路作为多级放大电路的第一级的原因是( )。 选择一项: A. 提高放大倍数 B. 提高输入电阻 C. 克服温漂 题目6 互补输出级采用共集接法是为了使( )。 选择一项: A. 带负载能力强 B. 最大不失真输出电压大 C. 电压放大倍数增大 题目7 功率放大电路的转换效率是指( )。 选择一项: A. 晶体管所消耗的功率与电源提供的平均功率之比 B. 最大输出功率与晶体管所消耗的功率之比 C. 最大输出功率与电源提供的平均功率之比 题目8 电压反馈和电流反馈是描述放大电路和反馈网络在( )连接方式的反馈形式。选择一项: A. 输入端 B. 输出端 C. 两者皆可 题目9 为了减小输出电阻,应引入()。

选择一项: A. 电压负反馈 B. 电流负反馈 C. 并联负反馈 题目10 即要使放大电路具有稳定输出电流的作用,又要降低其输入电阻,应采用下列()的反馈形式。 选择一项: A. 电流串联负反馈 B. 电流并联负反馈 C. 电压并联负反馈 二、判断题(每小题3分,共30分) 题目11 场效应管和三极管一样,都是有两种载流子(多子和少子)参与导电。( ) 选择一项: 对 错 题目12 场效应管是由电压即电场来控制电流的器件。( ) 选择一项: 对 错 题目13 集成电路采用直接耦合方式,是因为硅片上不能制作大电容。( ) 选择一项: 对

模拟电路课程设计题目

电子技术(模拟电路部分)课程设计题目 一、课程设计要求 1、一个题目允许两个人选择,共同完成电子作品,但课程设计报告必须各自独立完成。 2、课程设计报告按给定的要求完成,要上交电子文档和打印文稿(A4)。 3、设计好的电子作品必须仿真,仿真通过后,经指导老师检查通过后再进行制作。 4、电子作品检查时间:2010年3月4日,检查通过作品需上交。 4、课程设计报告上交时间:2010年5月20日前。 二、课程设计题目 方向一、波形发生器设计 题目1:设计制作一个产生方波-三角波-正弦波函数转换器。 设计任务和要求 ①输出波形频率范围为0.02Hz~20kHz且连续可调; ②正弦波幅值为±2V,; ③方波幅值为2V; ④三角波峰-峰值为2V,占空比可调; ⑤设计电路所需的直流电源可用实验室电源。 题目2:设计制作一个产生正弦波-方波-三角波函数转换器。 设计任务和要求 ①输出波形频率范围为0.02Hz~20kHz且连续可调; ②正弦波幅值为±2V,; ③方波幅值为2V; ④三角波峰-峰值为2V,占空比可调; ⑤设计电路所需的直流电源可用实验室电源。 题目3:设计制作一个产生正弦波-方波-锯齿波函数转换器。 设计任务和要求 ①输出波形频率范围为0.02Hz~20kHz且连续可调; ②正弦波幅值为±2V,; ③方波幅值为2V; ④锯齿波峰-峰值为2V,占空比可调;

⑤设计电路所需的直流电源可用实验室电源。 题目4:设计制作一个方波/三角波/正弦波/锯齿波函数发生器。 设计任务和要求 ①输出波形频率范围为0.02Hz~20kHz且连续可调; ②正弦波幅值为±2V; ③方波幅值为2V,占空比可调; ④三角波峰-峰值为2V; ⑤锯齿波峰-峰值为2V; ⑥设计电路所需的直流电源可用实验室电源。 方向二、集成直流稳压电源设计 题目1:设计制作一串联型连续可调直流稳压正电源电路。 设计任务和要求 ①输出直流电压1.5∽10V可调; ②输出电流I O m=300mA;(有电流扩展功能) ③稳压系数Sr≤0.05; ④具有过流保护功能。 题目2:设计制作一串联型连续可调直流稳压负电源电路。 设计任务和要求 ①输出直流电压1.5∽10V可调; ②输出电流I O m=300mA;(有电流扩展功能) ③稳压系数Sr≤0.05; ④具有过流保护功能。 题目3:设计制作一串联型二路输出直流稳压正电源电路。 设计任务和要求 ①一路输出直流电压12V;另一路输出5-12V连续可调直流稳压电源; ②输出电流I O m=200mA; ③稳压系数Sr≤0.05;

模拟电路第三版课后习题答案详解

N7习题1-1欲使二极管具有良好的单向导电性,管子的正向电阻和反向电阻分别为大一些好,还是小一些好? 答:二极管的正向电阻越小越好,反向电阻越大越好。理想二极管的正向电阻等于零,反向电阻等于无穷大。 习题1-2假设一个二极管在50℃时的反向电流为10μA,试问它在20℃和80℃时的反向电流大约分别为多大?已知温度每升高10℃,反向电流大致增加一倍。 解:在20℃时的反向电流约为:3 210 1.25 A A μμ -?= 在80℃时的反向电流约为:321080 A A μμ ?=

习题1-5欲使稳压管具有良好的稳压特性,它的工作电流I Z 、动态电阻r Z 以及温度系数αU ,是大一些好还是小一些好? 答:动态电阻r Z 愈小,则当稳压管的电流变化时稳压管的电压变化量愈小,稳压性能愈好。 一般来说,对同一个稳压管而言,工作电流I Z 愈大,则其动态内阻愈小,稳压性能也愈好。但应注意不要超过其额定功耗,以免损坏稳压管。 温度系数αU 的绝对值愈小,表示当温度变化时,稳压管的电压变化的百分比愈小,则稳压性能愈好。

100B i A μ=80A μ60A μ40A μ20A μ0A μ0.9933.22 安全工作区

习题1-11设某三极管在20℃时的反向饱和电流I CBO =1μA ,β=30;试估算该管在50℃的I CBO 和穿透电流I CE O 大致等于多少。已知每当温度升高10℃时,I CBO 大约增大一倍,而每当温度升高1℃时,β大约增大1% 。解:20℃时,()131CEO CBO I I A βμ=+=50℃时,8CBO I A μ≈() () ()0 5020 011%3011%301301%39 t t ββ--=+=?+≈?+?=()13200.32CEO CBO I I A mA βμ=+==

模拟电子线路习题习题答案(DOC)

第一章 1.1 在一本征硅中,掺入施主杂质,其浓度D N =?214 10cm 3 -。 (1)求室温300K 时自由电子和空穴的热平衡浓度值,并说明半导体为P 型或N 型。 (2 若再掺入受主杂质,其浓度A N =?31410cm 3 -,重复(1)。 (3)若D N =A N =1510cm 3 -,,重复(1)。 (4)若D N =16 10cm 3 -,A N =14 10cm 3 -,重复(1)。 解:(1)已知本征硅室温时热平衡载流子浓度值i n =?5.110 10 cm 3 -,施主杂质 D N =?21410cm 3->> i n =?5.11010 cm 3-,所以可得多子自由浓度为 0n ≈D N =?214 10cm 3 - 少子空穴浓度 0p =0 2 n n i =?125.16 10cm 3- 该半导体为N 型。 (2)因为D A N N -=14101?cm 3 ->>i n ,所以多子空穴浓度 0p ≈14 101?cm 3 - 少子电子浓度 0n =0 2 p n i =?25.26 10cm 3- 该半导体为P 型。 (3)因为A N =D N ,所以 0p = 0n = i n =?5.11010cm 3 - 该半导体为本征半导体。 (4)因为A D N N -=10-16 1014 =99?1014 (cm 3 -)>>i n ,所以,多子自由电子浓度 0n =?9914 10 cm 3- 空穴浓度 0p =0 2 n n i =14 2101099)105.1(??=2.27?104(cm 3 -)

该导体为N 型。 1.3 二极管电路如图1.3所示。已知直流电源电压为6V ,二极管直流管压降为0.7V 。 (1) 试求流过二极管的直流电流。 (2)二极管的直流电阻D R 和交流电阻D r 各为多少? 解:(1)流过二极管的直流电流也就是图1.3的回路电流,即 D I = A 1007 .06-=53mA (2) D R =A V 3 10537.0-?=13.2Ω D r =D T I U =A V 3310531026--??=0.49Ω 1.4二极管电路如题图1.4所示。 (1)设二极管为理想二极管,试问流过负载L R 的电流为多少? (2)设二极管可看作是恒压降模型,并设二极管的导通电压7.0)(=on D U V ,试问流过负载L R 的电流是多少? (3)设二极管可看作是折线模型,并设二极管的门限电压7.0)(=on D U V ,()Ω=20on D r ,试问流过负载的电流是多少? (4)将电源电压反接时,流过负载电阻的电流是多少? (5)增加电源电压E ,其他参数不变时,二极管的交流电阻怎样变化? 解:(1)100== L R E I mA D 题图1.4 10V + E R L 100Ω + 6V D R 100Ω 图1.3

模拟电路基础知识大全

模拟电路基础知识大全 一、填空题:(每空1分共40分) 1、PN结正偏时(导通),反偏时(截止),所以PN结具有(单向)导电性。 2、漂移电流是(反向)电流,它由(少数)载流子形成,其大小与(温度)有关,而与外加电压(无关)。 3、所谓理想二极管,就是当其正偏时,结电阻为(零),等效成一条直线;当其反偏时,结电阻为(无穷大),等效成断开; 4、三极管是(电流)控制元件,场效应管是(电压)控制元件。 5、三极管具有放大作用外部电压条件是发射结(正偏),集电结(反偏)。 6、当温度升高时,晶体三极管集电极电流Ic(增大),发射结压降(减小)。 7、三极管放大电路共有三种组态分别是(共集电极)、(共发射极)、(共基极)放大电路。 8、为了稳定三极管放大电路的静态工作点,采用(直流)负反馈,为了稳定交流输出电流采用(交流)负反馈。 9、负反馈放大电路和放大倍数AF=(A/1+AF),对于深度负反馈放大电路的放大倍数AF= (1/F )。 10、带有负反馈放大电路的频带宽度BWF=(1+AF)BW,其中BW=(fh-fl ), (1+AF )称为反馈深度。

11、差分放大电路输入端加上大小相等、极性相同的两个信号,称为(共模)信号,而加上大小相等、极性相反的两个信号,称为(差模)信号。 12、为了消除乙类互补功率放大器输出波形的(交越)失真,而采用(甲乙)类互补功率放大器。 13、OCL电路是(双)电源互补功率放大电路; OTL电路是(单)电源互补功率放大电路。 14、共集电极放大电路具有电压放大倍数(近似于1 ),输入电阻(大),输出电阻(小)等特点,所以常用在输入级,输出级或缓冲级。 15、差分放大电路能够抑制(零点)漂移,也称(温度)漂移,所以它广泛应用于(集成)电路中。 16、用待传输的低频信号去改变高频信号的幅度称为(调波),未被调制的高频信号是运载信息的工具,称为(载流信号)。 17、模拟乘法器输出与输入的关系式是U0=(KUxUy ) 1、1、P型半导体中空穴为(多数)载流子,自由电子为(少数)载流子。 2、PN结正偏时(导通),反偏时(截止),所以PN结具有(单向)导电性。 3、反向电流是由(少数)载流子形成,其大小与(温度)有关,而与外加电压(无关)。 4、三极管是(电流)控制元件,场效应管是(电压)控制元件。 5、当温度升高时,三极管的等电极电流I(增大),发射结压降UBE(减小)。

20个常用模拟电路

一. 桥式整流电路 1二极管的单向导电性:二极管的PN结加正向电压,处于导通状态;加反向电压,处于截止状态。 伏安特性曲线; 理想开关模型和恒压降模型: 理想模型指的是在二极管正向偏置时,其管压降为0,而当其反向偏置时,认为它的电阻为无穷大,电流为零.就是截止。恒压降模型是说当二极管导通以后,其管压降为恒定值,硅管为0.7V,锗管0.5 V 2桥式整流电流流向过程: 当u 2是正半周期时,二极管Vd1和Vd2导通;而夺极管Vd3和Vd4截止,负载R L 是的电流是自上而下流过负载,负载上得到了与u 2正半周期相同的电压;在u 2的负半周,u 2的实际极性是下正上负,二极管Vd3和Vd4导通而Vd1和Vd2 截止,负载R L 上的电流仍是自上而下流过负载,负载上得到了与u 2正半周期相同的电压。 3计算:Vo,Io,二极管反向电压 Uo=0.9U 2, Io=0.9U 2 /R L ,U RM =√2 U 2 二.电源滤波器 1电源滤波的过程分析:电源滤波是在负载R L 两端并联一只较大容量的电容器。由于电容两端电压不能突变,因而负载两端的电压也不会突变,使输出电压得以平滑,达到滤波的目的。 波形形成过程:输出端接负载R L 时,当电源供电时,向负载提供电流的同时也

向电容C充电,充电时间常数为τ 充=(Ri∥R L C)≈RiC,一般Ri〈〈R L, 忽略Ri压 降的影响,电容上电压将随u 2迅速上升,当ωt=ωt 1 时,有u 2=u 0,此后u 2 低于u 0,所有二极管截止,这时电容C通过R L 放电,放电时间常数为R L C,放 电时间慢,u 0变化平缓。当ωt=ωt 2时,u 2=u 0, ωt 2 后u 2又变化到比u 0 大,又开始充电过程,u 0迅速上升。ωt=ωt 3时有u 2=u 0,ωt 3 后,电容通 过R L 放电。如此反复,周期性充放电。由于电容C的储能作用,R L 上的电压波动 大大减小了。电容滤波适合于电流变化不大的场合。LC滤波电路适用于电流较大,要求电压脉动较小的场合。 2计算:滤波电容的容量和耐压值选择 电容滤波整流电路输出电压Uo在√2U 2~0.9U 2 之间,输出电压的平均值取决于 放电时间常数的大小。 电容容量R L C≧(3~5)T/2其中T为交流电源电压的周期。实际中,经常进一步 近似为Uo≈1.2U 2整流管的最大反向峰值电压U RM =√2U 2 ,每个二极管的平均电 流是负载电流的一半。 三.信号滤波器 1信号滤波器的作用:把输入信号中不需要的信号成分衰减到足够小的程度,但同时必须让有用信号顺利通过。 与电源滤波器的区别和相同点:两者区别为:信号滤波器用来过滤信号,其通带是一定的频率范围,而电源滤波器则是用来滤除交流成分,使直流通过,从而保持输出电压稳定;交流电源则是只允许某一特定的频率通过。 相同点:都是用电路的幅频特性来工作。 2LC串联和并联电路的阻抗计算:串联时,电路阻抗为Z=R+j(XL-XC)=R+j(ωL-1/ωC) 并联时电路阻抗为Z=1/jωC∥(R+jωL)= 考滤到实际中,常有R<<ωL,所以有Z≈

模拟电子电路课程作业(一).

模拟电子电路课程作业(一)1.题1-1判断图1-1中各电路有无放大作用,简述理由。 (a) (b) (c) (d) (e) (f) 图1

2.题1-2设图1-2各电路中的电容均足够大。试画出各电路的直流通路和交流通路,计算它们的静态工作点,并说明各电路的直流负载和交流负载。 (a ) (b) 图1-2 3.题1-5假设图1-3中各三极管的?均为50,U BEQ 均为0.7V 。试判断它们分别工作在什么区(截止区、放大区或饱和区)。 (a) (b) (c) 图1-3 4.题1-10在图1-4的放大电路中,三极管的?=100, U BEQ =-0.2V ,r bb'=200Ω。 ① 估算静态时的I BQ 、I CQ 和U CEQ ; ② 计算三极管的r be 值; ③ 求出中频时的电压放大倍数A u 。 5.题1-14在图1-5的共射输出器中,三极管的?=100,U BEQ =0.7V ,r be =1.5k Ω。 图 1-4

①试估算静态工作点; ②分别求出当R L=∞和R L=3kΩ时,放大电路的电压放大倍数A u; ③估算输入电阻R i和输出电阻R o; ④如果信号源内阻R s=1kΩ,R L=3kΩ,此时的A us=? 图1-5 6.题1-17判断图1-6中的各放大电路,属于共射、共集、共基三种基本组态中的哪一种。 (a) (b) (c) 图1-6 7.题1-26在图1-7所示两级直接耦合放大电路中,已知两个三极管的?均为30,U BEQ均为0.7V,r bb'=300Ω,稳压管D Z的稳压值为2V。 ①估算各级静态工作点;

模拟电子技术基础试题汇总附有答案.

模拟电子技术基础试题汇总 1.选择题 1.当温度升高时,二极管反向饱和电流将 ( A )。 A 增大 B 减小 C 不变 D 等于零 2. 某三极管各电极对地电位如图所示,由此可判断该三极管( D ) A. 处于放大区域 B. 处于饱和区域 C. 处于截止区域 D. 已损坏 3. 某放大电路图所示.设V CC>>V BE, L CEO≈0,则在静态时该三极管 处于( B ) A.放大区 B.饱和区 C.截止区 D.区域不定 4. 半导体二极管的重要特性之一是( B )。 ( A)温度稳定性 ( B)单向导电性 ( C)放大作用 ( D)滤波特性 5. 在由NPN型BJT组成的单管共发射极放大电路中,如静态工 作点过高,容易产生

( B )失真。 ( A)截止失真( B)饱和v失真( C)双向失真( D)线性失真 6.电路如图所示,二极管导通电压U D=0.7V,关于输出电压的说法正确的是( B )。 A:u I1=3V,u I2=0.3V时输出电压为3.7V。 B:u I1=3V,u I2=0.3V时输出电压为1V。 C:u I1=3V,u I2=3V时输出电压为5V。 D:只有当u I1=0.3V,u I2=0.3V时输出电压为才为1V。 7.图中所示为某基本共射放大电路的输出特性曲线,静态工作点由Q2点移动到Q3点可 能的原因是 。 A:集电极电源+V CC电压变高B:集电极负载电阻R C变高 C:基极电源+V BB电压变高D:基极回路电阻 R b变高。

8. 直流负反馈是指( C ) A. 存在于RC耦合电路中的负反馈 B. 放大直流信号时才有的负反馈 C. 直流通路中的负反馈 D. 只存在于直接耦合电路中的负反馈 9. 负反馈所能抑制的干扰和噪声是( B ) A 输入信号所包含的干扰和噪声 B. 反馈环内的干扰和噪声 C. 反馈环外的干扰和噪声 D. 输出信号中的干扰和噪声 10. 在图所示电路中,A为理想运放,则电路的输出电压约为( A ) A. -2.5V B. -5V C. -6.5V D. -7.5V 11. 在图所示的单端输出差放电路中,若输入电压△υS1=80mV, △υS2=60mV,则差模输 入电压△υid为( B ) A. 10mV B. 20mV C. 70mV D. 140mV 12. 为了使高内阻信号源与低阻负载能很好地配合,可以在信 号源与低阻负载间接入 ( C )。 A. 共射电路 B. 共基电路

模拟电子课程设计仿真

1、集成运放的应用电路 (1)参考电路图如下: (2)应用仿真库元件,3D元件分别进行仿真,熟悉示波器的使用2、电流/电压(I/V)转换器的制作与调试 (1)参考电路图如下:

(2)要求将0~10毫安电流信号转换成0~10伏电压信号。(3)分析电路的工作过程,完成制作与调试。 (4)填写下表,分析结果。 3、电压/电流(V/I)转换器的制作与调试(1)参考电路图如下: (2)要求将0~10伏电压信号转换成0~10毫安电流信号。(3)分析电路的工作过程,完成制作与调试。 (4)填写下表,分析结果。

4、电子抢答器制作 (1)参考电路图如下: (2)电路的工作原理: 本电路使用一块时基电路NE555,其高电平触发端6脚和低电平触发端2脚相连,构成施密特触发器,当加在2脚和6脚上的电压超2/3V CC时,3脚输出低电平,当加在2脚和6脚上的电压低于1/3V CC时,3脚输出高电平。按下开关SW,施密特触发器得电,因单向可控硅SCR1~SCR4的控制端无触发脉冲,SCR1~SCR4关断,2脚和6脚通过R1接地而变为低电平,所以3脚输出高电平,绿色发光二极管LED5发光,此时抢答器处于等待状态。 K1~K4为抢答键,假如K1最先被按下,则3脚的高电平通过K1作用于可控硅SCR1的控制端,SCR1导通。红色发光二极管LED1发光,+9V电源通过LED1和SCR1作用于NE555的2脚和6脚,施密特触发器翻转,3脚输出低电平,LED5熄灭。因3脚输出为低电平,所以此后按下K2~K4时,SCR2~SCR4不能获得触发脉冲,SCR2~SCR4维持关断状态,LED2~LED4不亮,LED1独亮说明按K1键者抢先成功,此后主持人将开关SW起落一次。复位可控硅,LED1熄灭,LED5亮,抢答器又处于等待状态。 220V市电经变压器降压,VD1~VD4整流,C滤波,为抢答器提供+9V直流电压。VD1~VD4选IN4001,C选用220μF/15V。R1和R2选1KΩ,LED1~LED4选红色发光二极管,LED5选绿色发光二极管。SW为拨动开关,K1~K4为轻触发开关,单向可控硅选2P4M,IC 为NE555。 (3)完成电路的制作与调试。 5、交替闪光器的制作与调试 (1)参考电路图如下:

模拟电路课程设计..

模拟电子技术课程设计任务书 一、课程设计的任务 通过理论设计和实物制作解决相应的实际问题,巩固和运用在《模拟电子技术》中所学的理论知识和实验技能,掌握常用模拟电路的一般设计方法,提高设计能力和实践动手能力,为以后从事电子电路设计、研发电子产品打下良好的基础。 二、课程设计的基本要求 1、掌握电子电路分析和设计的基本方法。包括:根据设计任务和指标初选电路;调查研究和设计计算确定电路方案;选择元件、安装电路、调试改进;分析实验结果、写出设计总结报告。 2、培养一定的自学能力、独立分析问题的能力和解决问题的能力。包括:学会自己分析解决问题的方;对设计中遇到的问题,能通过独立思考、查询工具书和参考文献来寻找解决方案,掌握电路测试的一般规律;能通过观察、判断、实验、再判断的基本方法解决实验中出现的一般故障;能对实验结果独立地进行分析,进而做出恰当的评价。 3、掌握普通电子电路的生产流程及安装、布线、焊接等基本技能。 4、巩固常用电子仪器的正确使用方法,掌握常用电子器件的测试技能。 5、通过严格的科学训练和设计实践,逐步树立严肃认真、一丝不苟、实事求是的科学作风,并逐步建立正确的生产观、经济观和全局观。

三、课程设计任务 课题4 逻辑信号电平测试器的设计 (一)设计目的 1、学习逻辑信号电平测试器的设计方法; 2、掌握其各单元电路的设计与测试方法; 3、进一步熟悉电子线路系统的装调技术。 (二)设计要求和技术指标 在检修数字集成电路组成的设备时,经常需要使用万用表和示波器对电路中的故障部位的高低电平进行测量,以便分析故障原因。使用这些仪器能较准确地测出被测点信号电平的高低和被测信号的周期,但使用者必须一面用眼睛看着万用表的表盘或者示波器的屏幕,一面寻找测试点,因此使用起来很不方便。 本课题所设计的仪器采用声音来表示被测信号的逻辑状态,高电平和低电平分别用不同声调的声音来表示,使用者无须分神去看万用表的表盘或示波器的荧光屏。 1、技术指标: (1)测量范围:低电平<1V,高电平>3V; (2)用1.5KH Z的音响表示被测信号为高电平; (3)用500H Z的音响表示被测信号为低电平;

常见的20个基本模拟电路

电子电路工程师必备的20种模拟电路 对模拟电路的掌握分为三个层次:初级层次:是熟练记住这二十个电路,清楚这二十个电路的作用。只要是电子爱好者,只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟 电路。 中级层次:是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程;定性了解电路输入输出阻抗的大小,信号与阻抗的关系。有了这些电路知识,您极有可能成长为电子产品和工业控制设备的出色的维修维护技师。高级层次是能定量计算这二十个电路的输入输出阻抗、输出信号与输入信号的比值、电路中信号电流或电压与电路参数的关系、电路中信号的幅度与频率关系特性、相位与频率关系特性、电路中元器件参数的选择等。达到高级层次后,只要您愿意,受人尊敬的高薪职业--电子产品和工业控制设备的开发设计工程师将是您的首选职业。 一、桥式整流电路 1、二极管的单向导电性:伏安特性曲线:理想开关模型和恒压降模型: 2、桥式整流电流流向过程:输入输出波形: 3、计算:Vo, Io,二极管反向电压。 二、电源滤波器

1、电源滤波的过程分析:波形形成过程: 2、计算:滤波电容的容量和耐压值选择。 三、信号滤波器1、信号滤波器的作用:与电源滤波器的区别和相同点:2、LC 串联和并联电路的阻抗计算,幅频关系和相频关系曲线。3、画出通频带曲线。计算谐振频率。 四、微分和积分电路 1、电路的作用,与滤波器的区别和相同点。 2、微分和积分电路电压变化过程分析,画出电压变化波形图。 3、计算:时间常数,电压变化方程,电阻和电容参数的选择。 五、共射极放大电路 1、三极管的结构、三极管各极电流关系、特性曲线、放大条件。 2、元器件的作用、电路的用途、电压

模拟电路基础知识大全

一、填空题:(每空1分共40分) 1、PN结正偏时(导通),反偏时(截止),所以PN结具有(单向)导电性。 2、漂移电流是(反向)电流,它由(少数)载流子形成,其大小与(温度)有关,而与外加电压(无关)。 3、所谓理想二极管,就是当其正偏时,结电阻为(零),等效成一条直线;当其反偏时,结电阻为(无穷大),等效成断开; 4、三极管是(电流)控制元件,场效应管是(电压)控制元件。 5、三极管具有放大作用外部电压条件是发射结(正偏),集电结(反偏)。 6、当温度升高时,晶体三极管集电极电流Ic(增大),发射结压降(减小)。 7、三极管放大电路共有三种组态分别是(共集电极)、(共发射极)、(共基极)放大电路。 8、为了稳定三极管放大电路的静态工作点,采用(直流)负反馈,为了稳定交流输出电流采用(交流)负反馈。 9、负反馈放大电路和放大倍数AF=(A/1+AF),对于深度负反馈放大电路的放大倍数AF= (1/F )。 10、带有负反馈放大电路的频带宽度BWF=(1+AF)BW,其中BW=(fh-fl ), (1+AF )称为反馈深度。 11、差分放大电路输入端加上大小相等、极性相同的两个信号,称为(共模)信号,而加上大小相等、极性相反的两个信号,称为(差模)信号。

12、为了消除乙类互补功率放大器输出波形的(交越)失真,而采用(甲乙)类互补功率放大器。 13、OCL电路是(双)电源互补功率放大电路; OTL电路是(单)电源互补功率放大电路。 14、共集电极放大电路具有电压放大倍数(近似于1 ),输入电阻(大),输出电阻(小)等特点,所以常用在输入级,输出级或缓冲级。 15、差分放大电路能够抑制(零点)漂移,也称(温度)漂移,所以它广泛应用于(集成)电路中。 16、用待传输的低频信号去改变高频信号的幅度称为(调波),未被调制的高频信号是运载信息的工具,称为(载流信号)。 17、模拟乘法器输出与输入的关系式是U0=(KUxUy ) 1、1、P型半导体中空穴为(多数)载流子,自由电子为(少数)载流子。 2、PN结正偏时(导通),反偏时(截止),所以PN结具有(单向)导电性。 3、反向电流是由(少数)载流子形成,其大小与(温度)有关,而与外加电压(无关)。 4、三极管是(电流)控制元件,场效应管是(电压)控制元件。 5、当温度升高时,三极管的等电极电流I(增大),发射结压降UBE(减小)。 6、晶体三极管具有放大作用时,发射结(正偏),集电结(反偏)。 7、三极管放大电路共有三种组态()、()、()放大电路。

模拟电子电路课程设计_带LED闪光灯的音响电路

模拟电子电路课程设计—带LED闪光灯的音响电路 指导老师: 专业班级:自动化09-05 姓名: 学号:3

目录 第1章内容摘要 (3) 1.1大概内容 (3) 1.2设计指标 (3) 第2章系统框图 (4) 第3章各单元电路设计 (5) 3.19V直流稳压电源 (5) 3.2语音放大电路 (5) 3.3555振荡电路 (5) 3.4LED闪烁电路 (5) 第4章电路原理图及工作原理 (6) 4.19V直流电源电路 (6) 4.2语音放大电路 (6) 4.3555振荡电路 (7) 4.4LED闪烁电路 (8) 第5章元器件清单 (10) 第6章电路特点 (11) 6.1电源电路 (11) 6.2语音放大电路 (11) 6.3555振荡电路和LED闪光灯 (11) 第7章心得体会 (12) 第8章参考文献 (13)

第1章内容摘要 1.1 大概内容 该系统由电源电路,语音放大电路,555振荡电路和LED电路四部分组成。由电源电路进行为两个系统供电,语音放大电路实现音频信号滤除和信号放大并在喇叭输出,555振荡电路产生矩形波控制LED灯进行闪烁,LED电路摆出形状引出电源引脚。 1.2 设计指标 该系统有三部分功能组成,一个是电源输出,一个是音响放大,还是一个是LED灯光闪烁。 电源要求输出9V直流电压,带载能力较强,电压稳定。 语音电路放大要求输出清晰的音响。 555控制电路要求输出矩形振荡波形。 LED电路围成一个太阳形状,共分三层,内层12个红色LED灯,中层6个黄色LED灯,外层6个红色LED灯。要求中层和外层交替闪烁,内层一直亮。

第2章系统框图

模拟电子电路第4章答案

简述耗尽型和增强型MOS 场效应管结构的区别;对于适当的电压偏置(V DS >0V ,V GS >V T ),画出P 沟道增强型MOS 场效应管,简要说明沟道、电流方向和产生的耗尽区,并简述工作原理。 解:耗尽型场效应管在制造过程中预先在衬底的顶部形成了一个沟道,连通了源区和漏区,也就是说,耗尽型场效应管不用外加电压产生沟道。而增强型场效应管需要外加电压V GS 产生沟道。 随着V SG 逐渐增大,栅极下面的衬底表面会积聚越来越多的空穴,当空穴数量达到一定时,栅极下面的衬底表面空穴浓度会超过电子浓度,从而形成了一个“新的P 型区”,它连接源区和漏区。如果此时在源极和漏极之间加上一个负电压DS V ,那么空穴就会沿着新的P 型区定向地从源区向漏区移动,从而形成电流,把该电流称为漏极电流,记为D i 。当SG v 一定,而SD v 持续增大时,则相应的DG v 减小,近漏极端的沟道深度进一步减小,直至DG t v V =,沟道预夹断,进入饱和区。电流D i 不再随SD v 的变化而变化,而是一个恒定值。 考虑一个N 沟道MOSFET ,其n k '=50μA/V 2,V t =1V ,以及W /L =10。求下列情况下的漏极电流: (1)V GS =5V 且V DS =1V ; (2)V GS =2V 且V DS =; (3)V GS =且V DS =; (4)V GS =V DS =5V 。 (1) 根据条件GS t v V …,()DS GS t v v V <-,该场效应管工作在变阻区。 ()2D n GS t DS DS 12W i k v V v v L ??'=--???? = (2) 根据条件GS t v V …,()DS GS t v v V >-,该场效应管工作在饱和区。 ()2 D n GS t 12W i k v V L '=-= (3) 根据条件GS t v V <,该场效应管工作在截止区,D 0i = (4) 根据条件GS t v V …,()DS GS t v v V >-,该场效应管工作在饱和区 ()2 D n GS t 12W i k v V L '=-=4mA 由实验测得两种场效应管具有如图题所示的输出特性曲线,试判断它们的类型,并确定夹断电压或开启电压值。

模拟电路基础 教案

教师教案(2011—2012学年第一学期) 课程名称:模拟电路基础 授课学时:64学时 授课班级:20XX级光电2-4专业任课教师:钟建 教师职称:副教授 教师所在学院:光电信息学院 电子科技大学教务处

第1章半导体材料及二极管(讲授8学时+综合训练2学时) 一、教学内容及要求(按节或知识点分配学时,要求反映知识的深度、广度,对知识点的掌握程度(了解、理解、掌握、灵活运用),技能训练、能力培养的要求等) 1.1 半导体材料及其特性:理解并掌握本征半导体与杂质半导体(P型与N 型)的导电原理,本征激发与复合、多子与少子、漂移电流与扩散电流的区别;理解并掌握PN结的形成原理(耗尽层、空间电荷区和势垒区的含义);理解PN 结的单向导电特性与电容效应。(2学时) 1.2 PN结原理:PN结的形成:耗尽层、空间电荷区和势垒区的含义,PN结的单向导电特性,不对称PN结。(2学时) 1.3 晶体二极管及应用:理解并掌握二极管单向导电原理及二极管伏安特性方程;理解二极管特性随温度变化的机理;理解并掌握二极管的四种等效电路及选用原则与区别;理解并掌握二极管主要参数;了解不同种类二极管区别(原理),了解硅管与锗管的区别;理解稳压二极管的工作原理。(4学时) 二、教学重点、难点及解决办法(分别列出教学重点、难点,包括教学方式、教 学手段的选择及教学过程中应注意的问题;哪些内容要深化,那些内容要拓宽等等) 重点:半导体材料及导电特性,PN结原理,二极管单向导电特性及二极管方程,二极管伏安特性曲线及其温度特性。 难点:晶体二极管及应用,PN结的反向击穿及应用。 三、教学设计(如何讲授本章内容,尤其是重点、难点内容的设计、构思) 重点讲解二极管的单向导电性,二极管单向导电特性及二极管方程,二极管伏安特性曲线及其温度特性,二极管导通电压与反向饱和电流,二极管的直流电阻与交流电阻。反向击穿应用:设计基本稳压管及电路。

模拟电子电路课程设计——正弦波-三角波-方波函数发生器

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目:正弦波-三角波-方波函数发生器 初始条件: 具备模拟电子电路的理论知识;具备模拟电路基本电路的设计能力;具备模拟电路的基本调试手段;自选相关电子器件;可以使用实验室仪器调试。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、频率范围三段:10~100Hz,100 Hz~1KHz,1 KHz~10 KHz; 2、正弦波Uopp≈3V,三角波Uopp≈5V,方波Uopp≈14V; 3、幅度连续可调,线性失真小; 4、安装调试并完成符合学校要求的设计说明书 时间安排: 一周,其中3天硬件设计,2天硬件调试 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 1.综述...........................................................1 1.1信号发生器概论...................................................1 1.2 Multisim简介....................................................2 1.3集成运放lm324简介...............................................3 2.方案设计与论证...............................................4 2.1方案一...................................................4 2.2方案二..................................................4 2.3方案三..................................................5 3.单元电路设计..............................................6 3.1正弦波发生电路的工作原理...............................6 3.2正弦波变换成方波的工作原理.............................8 3.3方波变换成三角波的工作原理.............................9 3.4正负12V直流稳压电源的设计............................10 4.电路仿真................................................12 4.1总波形发生电路............................................12 4.2正弦波仿真................................................13 4.3方波仿真...................................................14 4.2三角波仿真...............................................14 5.实物制作与调试..........................................15 5.1焊接过程.............................................15 5.2 实物图...............................................15 5.3调试波形.............................................18 6.数据记录................................................19 7.课设总结................................................20 8.参考书目................................................21 9.附录....................................................22 本科生课程设计成绩评定表....................................24

相关文档
最新文档