电抗器选择标准

电抗器选择标准
电抗器选择标准

并联电容器用串联电抗器设计选择标准

发布日期:2010-5-11 (阅398次)

所属频道: 电网关键词: 输入输出电抗器谐波电抗器直流电抗器

第一章总则

第1.0.1条并联电容器用串联电抗器(以下简称电抗器)的设计选择必须执行国家的技术经济政策,并应根据安装地点的电网条件、谐波水平、自然环境等,合理地选择其技术参数,做到安全可靠、经济合理。

第1.0.2条本标准适用于变电所和配电所中新建或扩建的6~63KV并联电容器装置中电抗器的设计选择。第1.0.3条本标准所指电抗器是串联于高压并联电容器回路中的电抗器,该电抗器用于限制合闸涌流,减轻电网电压波形畸变和防止发生系统谐波谐振。

第1.0.4条电抗器的设计选择,除应符合本标准的规定外,尚应符合国家现行有关标准的规定。

第二章环境条件

第2.0.1条电抗器的基本使用条件:

一、安装场所:户外或户内;

二、环境温度:-40℃~+40℃;

-25℃~+45℃;

三、海拔:不超过1000m;

四、相对湿度:对于户内电抗器月平均相对湿度不超过90%,日平均不超过95%;

五、地震裂度:设计地震基本裂度为8度;即水平加速度0.3g,垂直加速度0.15g;

六、户外式最大风速为35m/s;

七、电抗器的外绝缘泄漏比距不应小于2.5cm/KV。对于重污秽地区可以取3.5cm/KV。

第2.0.2条选用电抗器时,应按当地环境条件校核,当环境条件超出其基本使用条件时,应通过技术经济比较分别采取下列措施:

一、向制造厂提出补充要求,制造符合当地环境条件的产品;

二、在设计中采取相应的防护措施,如采用户内布置、水冲洗、减震装置等。

第三章技术参数选择

第一节电抗率的选择

第3.1.1条电抗率的选择,应使装置接入处n次谐波电压含量和电容器上n次谐波电压值均不超过有关标准规定的限值。

第3.1.2条当仅需要限制合闸涌流时,宜选用电抗率为4.5%~6%的电抗器。

第3.1.3条为抑制5次及以上谐波电压放大,宜选用电抗率为4.5%~6%的电抗器;抑制3次及以上谐波电压放大,宜选用电抗率为12%~13%的电抗器。

第3.1.4条在电力系统谐波电压较大时,应由非线性用电设备所属单位负责采取限制谐波的措施,在采用交流滤波电容器装置时,电抗器应按滤波电抗器的要求选择。

第二节额定值

第3.2.1条电抗器的基本额定参数,应选择下列规定值:

一、额定频率:50Hz;

二、相数:1Φ或3Φ;

三、系统额定电压:6KV,10KV,35KV,63KV;

四、额定电抗率(K):0.1%~1%,4.5%~6%,12%~13%。

第3.2.2条电抗器的额定电流应和与其串联组合的电容器或电容器组的额定电流相等。

第3.2.3条电抗器的额定端电压应等于与其串联组合的一相电容器额定电压的K倍,其值见表3.2.3。

第3.2.4条电抗器的额定容量,应等于与其串联组合的电容器或电容器组额定容量的K倍。

第三节主要技术性能

第3.3.1条电抗器在额定电流下的电抗值偏差,应在下列范围之内:

0%~+5%(K≥4.5%);

0%~+10%(K<4.5%)。

对于每相电抗值的偏差,不应超过三相平均电抗值的±2%。

铁芯电抗器在工频1.8倍额定电流下,其电抗值偏差不得超过额定电抗值的-5%。

第3.3.2条电抗器应能承受下列最大短时电流而不得出现任何热的和机械的损伤。

一、铁芯电抗器应能承受25倍额定电流持续2s ;

二、空心电抗器为额定电抗率的倒数倍,但不宜超过25倍额定电流持续2s ;

当电抗器流过的短时故障电流超过上述电流时,应采取措施。

第3.3.3条电抗器应能承受下列稳态过电流;

一、电抗器应能在工频1.35倍或工频加谐波合成电流方均根值为1.2倍的额定电流下连续运行;

二、有特殊要求时,电抗器可在工频加谐波合成电流方均根值为1.3倍的额定电流下连续运行。 第3.3.4条电抗器应能承受合闸涌流的冲击而不得产生机械损伤。

第3.3.5条电抗器的绝缘水平,应分别符合表3.3.5-1和表3.3.5-2的要求。

电抗器的匝间绝缘应能在工频加谐波电压峰值下长期运行。

第3.3.6条电抗器的套管出线端子间,出线端与箱壳间以及支持绝缘子带电部分对地间的净距,应符合表

3.3.6的规定。

安装在地面上的电抗器的绝缘水平 表3.3.5-1

系统额定电压(kV)

工频耐受电压(Kv)(干、湿)1min

冲击耐受电压(kV)峰值1.2/50s

油浸铁芯式

干式空心 6

25 32 60 10

35 42 75 35

85 95 200 63 140 165 325 安装在绝缘台架上的电抗器的绝缘水平 表3.3.5-2

系统额定电压(kV) 工频耐受电压(Kv)(干、湿)1min 冲击耐受电压(kV)峰值1.2/50s

35

35 134 63 63 233

电抗器外绝缘最小尺寸 表3.3.6

系统额定电压(kV)

6 10 35 63 电气净距(mm) 200 200 400 650

第3.3.7条适用于第3.3.3条第一款的电抗器的温升试验电流为工频1.35倍额定电流;适用于第3.3.3条第二款的电抗器的温升试验电流应与厂家商定。其温升限值分别不超过表3.3.7-1和表3.3.7-2的规定。 油浸铁芯电抗器温升限值 表3.3.7-1

测量部位绕组(电组法) 没面(温度计法)

温升限值(K°) 55 50

干式空心电抗器绕组温升限值表3.3.7-2 绝缘等级 A E B F H C

浊升限值(K°)(电阻法) 50 65 70 90 115 140

第3.3.8条在工频额定电流下,电抗器的损耗值不宜大于表3.3.8的规定值。

电抗器损耗限值表3.3.8

损耗值(W/vat)

电抗器额容量(Kvat)

油浸铁芯式干式空心100及以下0.015 0.03

100~300 0.012 0.024

301~500 0.010 0.02

501~1000 0.008 0.016

1000以上0.006 0.012

第3.3.9条在工频额定电流下,电抗器的声级水平不得超过表3.3.9的规定。

电抗器声级水平表3.3.9 民抗器额容量(Kvat) 声级水平(dB)

200及以下50

201~500 55

501~1000 60

1000以上65

第3.3.10条设计选择电抗器时,厂家应提供下列技术参数:

一、电抗器名称;

二、型号;

三、系统额定电压(kV);

四、额定频率(50Hz);

五、额定端电压(kV);

六、额定容量(kvar);

七、额定电抗(Ω/Φ);

八、额定电流(A);

九、损耗值(W/var);

十、相数;

十一、总重(kg);

十二、油重(kg);

十三、外形尺寸及安装尺寸;

十四、最大短时电流(kA);

十五、声级水平(dB)。

附录一名词术语

1 额定频率:设计电抗器时所采用的频率,取50Hz。

2 系统额定电压(Usn):电抗器与并联电容器相串联的回路接入电力系统处电网的额定电压。

3 额定端电压(Un):设计电抗器时,一相绕组两端所采用的工频电压有效值。

4 额定容量(Sn):电抗器在额定端电压和额定电流下运行时的无功功率。

5 额定电流(In):设计电抗器时所采用的工频电流有效值。

6 额定电抗(Xn):工频额定电流下的电抗值。

7 额定电抗率(K):电抗器额定电抗对串联组合的电容器组额定电抗的百分比值。

8 短时电流:在规定时间内,通过电抗器的短时电流稳态分量的方均根值。

9 油浸铁芯电抗器:铁芯和线圈均浸在绝缘油中的电抗器。

10 干式空心电抗器:线圈不浸在绝缘油中且无铁芯的电抗器。

附录二计算公式

一、电抗器额定电流:

二、电抗器额定端电压:

三、电抗器额定容量:

四、电抗器额定电抗:

五、装置接入系统后电抗器的n次谐波电流:

六、电容器上n次谐波电压:

七、装置接入系统后,在装置接入处的n次谐波电压:

八、装置接入系统后,在装置接入处的n次谐波电压含量率:

九、系统谐振谐波次数:

中国工程建设标准化协会标准

并联电容器用串联电抗器设计选择标准

CECS 32:91

条文说明

主编单位:能源部西南电力设计院

河北省电力工业局

第一章总则

第1.0.1条本条阐述本标准的指导思想及主要设计原则。

一、首先强调设计选择必须执行国家的技术经济政策。

二、设计原则中,除应考虑电网条件、自然环境特点与方便运行和检修要求外,还强调考虑谐波水平。因为随着电力系统的不断扩大,谐波源的日渐增多,并联电容器装置的大量投入,如并联电容器用串联电抗

器(以下简称电抗器)的选择不当,将造成谐波放大,甚至谐波谐振现象,从而加剧谐波污染或危及设备与系统的安全。因此,电抗器的设计选择谐波的影响很大,应慎重对待。

三、在总的设计选择的指导思想上突出了安全可靠。由于并联电容器装置的使用可获得重大的社会经济效益(较之装设调相机),但并联电容器一旦发生爆裂与火灾事故将引起巨大的经济损失,且电抗器占整个无功补偿装置总投资的比例较小,因此,必须把安全可靠摆在首位,强调保证产品的质量和技术条件,使装置安全运行。

第1.0.2条本条中心内容是阐明标准的适用范围。鉴于63kV以上电压等级的并联到容器装置国内尚未出现,故不列入本标准。

第1.0.3条本条着重阐明电抗器的装设目的、用途,据此能准确地提出其技术参数和性能要求。

第1.0.4条本条主要阐明本标准与相关标准、规范、规程之间的关系。

电抗器的设计选择,除应符合本标准的规定外,还应符合现行有关标准,如《并联电容器装置设计技术规程》(DJ 25-85)等的规定。本标准与待批颁发的行业标准《高压并联电容器用串联电抗器订货技术条件》的区别在于:后者内容侧重于运行使用要求,而本标准侧重于设计时设备的选用方面,即着重提出选用电抗器应遵循的技术条件。

第二章环境条件

本章主要是规定被选用的电抗器应符合其安装地点周围的环境条件。工程设计中选用的电抗器应当地环境条件校核。超出基本使用条件时,或向制造厂提出特殊要求,或采取适当的措施。

第2. 0.1条本条所规定的基本使用条件,既参考了有关标准,还考虑了一般电气设备的通用环境条件,并结合我国制造水平而提出。

说明以下两点:

一、海拔。本标准在征求意见时,曾有提出将海拔不超过1000m改为1500m或2500m,理由是我国部分地区的海拔高度已超过1000m。但是考虑到我国绝大部分地区海拔高度低于1000m,如果按1500m或2500m 要求将所有电抗器产品的外绝缘强度提高,势必

造成产品造价的增大,既浪费又不必要,且其它电气产品的外绝缘性能也与此不配套。故本标准仍维持1000m海拔高度不变,与国标《并联电容器》及其它电气产品的要求相一致。

二、污秽。国标《高压电力设备外绝缘污秽等级》正在修订中,现电抗器外绝缘泄漏比距仍采用2.5cm/kV;重污秽地区采用3.5cm/kV。

按《发电厂、变电所污秽分级标准》规定:中性点非直接接地系统泄漏比距:1级为2.0cm/kV;2级为3.0cm /kV;3级为4.0cm/kV。经研讨确定按国标规定取值,且运行中尚未发现有不妥之处,待今后逐步总结完善。

第2. 0.2条设计选择电抗器,如当地环境条件与第2.0.1条规定的基本使用条件不符时,应与厂家协商解决。或提高绝缘等级,或制订防震措施,或设计中采取相应的防护措施。如采用户内布置,加强清扫或设计上考虑设置水冲洗装置,涂用硅脂、有机硅油类涂料措施等,以加强其防污性能。

第三章技术参数选择

本章包括电抗器的全部技术条件。重点内容分三部分:电抗率的选择、额定值和主要技术性能。

第一节电抗率的选择

我国地域辽阔,各大区电网的情况和运行经验差异较大。对电抗率要定出一个统一的参数相当困难,只能规定一个范围,给设计人员以灵活选用的余地。

电抗率的选择由系统谐波电压设计确定。电容器投运前后,变电所各级电压的各次谐波电压均不应超过《电力系统谐波管理暂行规定》SD 126-84的允许值。

第3.1.1条本条规定了电抗率确定的原则,具体设计计算可按附录二所列公式进行。计算得的谐波电压应符合《电力系统谐波管理暂行规定》SD 126-84的规定,

第3.1.2条、第3.1.3条具体推荐了谐波电压情况不同时的电抗率选择。如当系统中高次谐波电压含量较小,电抗器主要用于限制合闸涌流时,可选用电抗率K等于0.1%~1%的阻尼电抗器,但应当注意电容器接人系统时对各次谐波电压的放大。

对于主要用于抑制5次及以上的高次谐波电压时,宜选用电抗率K等于4,5%~6%电抗器。但要注意电容器接人系统时对3次谐波电压的放大。

如为抑制3次及以上高次谐波电压时,则宜选择电抗率K等于12%一13%的电抗器。

在谐波电压放大后仍不超过规定值、电容器谐波电压在允许范围内的条件下,宜选择较小电抗率的电抗器,以减小无功容量的损失,并可减少其对低次谐波电压放大程度。

第3.1.4条对于谐波较大的地点,除了按《电力系统谐波管理暂行规定》SDl26-84的有关规定,要求有关用户采取有效的限制谐波电压的措施外,也可集中装设交流滤波电容器装置。对于该装置中的电抗器,由于其运行条件不同于并联电容器装置中的串联电抗器,故不得按本标准选用。

第二节额定值

第3.2.1条本条规定了电抗器的四个基本额定参数。

第3.2.2条一第3.2.4条在实际装置中,电抗器与并联电容器直接串联连接,流过电流亦为同一电流,其配套组合的关系由电抗率所确定。根据额定电抗率的定义,规定电抗器的额定电流与并联电容器组的额定电流相同,而其额定端电压及额定容量则为并联电容器组的额定相电压及额定容量乘以额定电抗率K。考虑到电抗器接人将引起电容器端电压升高,应当注意选用相应的较高额定电压的电容器。不同额定电抗率时,电抗器的额定端电压与并联电容器额定相电压、系统额定电压之间的关系可以从本标准表3.2.3中得到。对于其它的额定电抗率,其电抗器额定端电压可按表中数值用线性插值法计算得到。

选择与本标准表3.2.3中所列数值不一致的电容器额定相电压时,则应当按实际的电抗值计算其电抗率及电抗器的端电压。

若电抗器额定电流不等于电容器组额定电流时,也应按实际电抗计算其电抗率及电抗器的端电压。这些,在设计选择时应特别注意。同样,对电抗器的容量亦如此考息

第三节主要技术性能

第3.3.1条为了保证电抗器在各种工况下均能满足电抗率的要求,同时又能为制造厂所接受,规定了较为严格的电抗值偏差范围。

对于油浸铁芯电抗器,还规定了较高的线性度要求,在1.8In时,电抗值与额定值之差不超过-5%。这一点是为了控制设计电抗器时选取合理的磁通密度,它是一个综合指标,以确保损耗、噪声等性能均符合标准要求。

第3.3.2条本条主要为满足电抗器的动、热稳定而规定的最大短时电流要求。

第3.3.3条、第3.3.7条考虑到实际在接人电抗器后,合成电流通常不超过1.2In(我国与日本的情况均如此),而目前生产的电抗器亦均按此考虑,故在条文中作为一种情况的稳态过电流规定为1.2In)的合成电流。经验表明,它的发热相当于1.35In的工频电流,因此在温升试验时即按此电流进行。

另一种情况的稳态过电流规定为1.3In的合成电流,这与并联电容器的稳态过电流能力相一致,对于阻尼电抗器及某些设计要求时可选用此种规格,其相对应的等价工频电流倍数尚需进一步做工作确定之,对这类电抗器进行温升试验时的试验电流可与制造厂商定。

第3. 3.4条对涌流的承受能力是用于并联电容器装置的串联电抗器所必须具备的技术性能。对于阻尼电抗器,由于电抗小,涌流倍数较高,应予以重视。至于4.5%及以上的电抗器,其承受涌流能力的要求实际上较最大短路电流的承受要求要低,一般不会有什么问题。

第3. 3.5条安装在地面上的电抗器,其涌流水平应考虑中性点不接地系统的因素,故按《高压输变电设备的绝缘配合高电压试验技术》GB 311-64规定的接人系统额定电压来选取。

第3.3. 6条本条文规定的有关电气净距,是根据《高压配电装置规程》SDJ 5-85的规定。

第3. 3. 8条电抗器的损耗虽说比与之串联的电容器组的损耗小得多,但是在足够大容量的装置中,这一损耗仍是可观的。且其损耗引起的发热对设备亦不利。因此,对照参考电力变压器的情况,对电抗器的损耗值,提出一定的要求是必要的。这一要求在制造厂方面亦是可以接受的。

第3.3.9条噪声除了从环保角度要求控制外,对电抗器也是反映其产品质量水平的一个重要指标。因此,在设计选择时,应当重视其声级水平的指标。

第3. 0. 10条从设计要求出发,厂家应当提供所列的主要技术指标,以便于设计人员选择使用。

互感器与电抗器标准精选(最新)

互感器与电抗器标准精选(最新) G1207《GB1207-2006电磁式电压互感器》 G1208《GB1208-2006电流互感器》 G16847《GB/T16847-1997保护用电流互感器暂态特性技术要求》 G17201《GB17201-2007组合互感器》 G17443《GB/T17443-1998500KV电流互感器技术参数和要求》 G20836《GB/T20836-2007高压直流输电用油浸式平波电抗器》 G20837《GB/T20837-2007高压直流输电用油浸式平波电抗器技术参数和要求》G20840.1《GB20840.1-2010互感器第1部分:通用技术要求》 G20840.3《GB20840.3-2013互感器第3部分:电磁式电压互感器的补充技术要求》 G20840.5《GB/T20840.5-2013互感器第5部分:电容式电压互感器的补充技术要求》 G20840.7《GB/T20840.7-2007互感器第7部分:电子式电压互感器》 G20840.8《GB/T20840.8-2007互感器第8部分:电子式电流互感器》 G22071.1《GB/T22071.1-2008互感器试验导则第1部分:电流互感器》 G22071.2《GB/T22071.2-2008互感器试验导则第2部分:电磁式电压互感器》G23753《GB/T23753-2009330kV及500kV油浸式并联电抗器技术参数和要求》G24841《GB/Z24841-20091000kV交流系统用电容式电压互感器技术规范》 G24844《GB/Z24844-20091000kV交流系统用油浸式并联电抗器技术规范》 G29327《GB/Z29327-20121000kV电抗器保护装置技术要求》 G50774《GB50774-2012±800KV及以下换流站干式平波电抗器施工及验收规范》 GJ1864《GJB1864-1994射频固定和可变片式电感器总规范》 J5356《JB/T5356-2002电流互感器试验导则》 J5357《JB/T5357-2002电压互感器试验导则》 J6300《JB/T6300-2004控制用电压互感器》 J7068《JB/T7068-2002互感器用金属膨胀器》 J7632《JB/T7632-2006串联电抗器试验导则》 J8510.1《JB/T8510.1-2007交流电气化铁道牵引供电用互感器第1部分:电流互感器》 J8510.2《JB/T8510.2-2007交流电气化铁道牵引供电用互感器第2部分:电压互感器》 J10432《JB/T10432-2004三相组合互感器》 J10433《JB/T10433-2004三相电压互感器》 J10665《JB/T10665-2006微型电流互感器》 J10667《JB/T10667-2006微型电压互感器》 J10775《JB/T10775-20076kV~35kV级干式并联电抗器技术参数和要求》 J10779《JB/T10779-2007750kV油浸式并联电抗器技术参数和要求》 J10780《JB/T10780-2007750kV油浸式电力变压器技术参数和要求》 J10941《JB/T10941-2010合成薄膜绝缘电流互感器》 DL271《DL/T271-2012330kV~750kV油浸式并联电抗器使用技术条件》 DL278《DL/T278-2012直流电子式电流互感器技术监督导则》 DL668《DL/T668-1999测量用互感器检验装置》

各种电抗器的计算公式

各种电抗器的计算公式 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用 360ohm 阻抗,因此:电感量(mH) = 阻抗 (ohm) ÷ (2*3.14159) ÷ F (工作频率) = 360 ÷ (2*3.14159) ÷ 7.06 = 8.116mH 据此可以算出绕线圈数: 圈数 = [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径 (吋) 圈数 = [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 作者:佚名转贴自:本站原创点击数:6684 文章录入: zhaizl 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量 l单位: 微亨 线圈直径 D单位: cm 线圈匝数 N单位: 匝 线圈长度 L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位 F 本题建义c=500...1000pf 可自行先决定,或由Q值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈) AL= 感应系数 H-DC=直流磁化力 I= 通过电流(A) l= 磁路长度(cm) l及AL值大小,可参照Micrometal对照表。例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH L=33.(5.5)2=998.25nH≒1μH 当流过10A电流时,其L值变化可由l=3.74(查表) H-DC=0.4πNI / l = 0.4×3.14×5.5×10 / 3.74 = 18.47 (查表后) 即可了解L值下降程度(μi%) 2。介绍一个经验公式 L=(k*μ0*μs*N2*S)/l

电抗器的选型介绍

并联电抗器:发电机满负载试验用的电抗器是并联电抗器的雏型。铁心式电抗器由于分段铁心之间存在着交变磁场的吸引力,因此噪音一般要比同容量变压器高出10dB左右。并联电抗器里面通过的交流,并联电抗器的作用是补偿系统的容抗。通常与晶闸管串联,可连续调节电抗电流。 串联电抗器:里面通过的是交流,串联电抗器的作用是与补偿电容器串联,对稳态性谐波(5、7、11、13次)构成串联谐振。通常有5~6%电抗器,属于高感值电抗器。 调谐电抗器:里面通过的是交流电,串联电抗器的作用是与电容器串联,对规定的n次谐波分量构成串联谐振,从而吸收该谐波分量,通常n=5、7、11、13、19。 输出电抗器:它的作用是限制电机连接电缆的容性充电电流及使电机绕组上的电压上升率限制在54OV/us以内,一般功率为4-90KW变频器与电机间的电缆长度超过50m时,应设置输出电抗器,它还用于钝化变频器输出电压(开关的陡度),减少对逆变器中的元件(如IGBT)的扰动和冲击。 输出电抗器的使用说明:为了增加变频器到电机之间的距离可以适当加粗电缆,增加电缆的绝缘强度,尽量选用非屏蔽电缆。输出电抗器的特点: 1、适用于无功补偿和谐波的治理; 2、输出电抗器主要作用是补偿长线分布电容的影响,抑制输出谐波电流; 3、有效地保护变频器和改善功率因数,能阻止来自电网的干扰,减少整流单元产生的谐波电流对电网的污染。 输入电抗器:它的作用是限制变流器换相时电网侧的电压降;抑制谐波以及并联变流器组的解耦;限制电网电压的跳跃或电网系统操作时所产生的电流冲击。当电网短路容量与变流器变频器容量比大于33:1时,输入电抗器的相对电压降,对单象限工作为2%,四象限为4%。当电网短路电压大于6%时,允许输入电抗器运行。对于12脉动整流单元,至少需要一相对电压降为2%的网侧进线电抗器。输入电抗器主要应用于工业/工厂自动化控制系统中,安装在变频器、调速器与电网电源输入电抗器之间,用于抑制变频器、调速器等产生的浪涌电压和电流,最大限度的衰减系统中的高次谐波及畸变谐波。 输入电抗器的特点: 1、适用于无功功率补偿和谐波的治理; 2、输入电抗器用来限制电网电压突变和操作过电压引起的电流冲击;对谐波起滤波作用,以抑制电网电压波形畸变; 3、平滑电源电压中包含的尖峰脉冲,平滑桥式整流电路换相时产生的电压缺陷。 限流电抗器:限流电抗器一般用于配电线路。从同一母线引出的分支馈线上往往串有限流电抗器,以限制馈线的短路电流,并维持母线电压,不致因馈线短路而致过低。 消弧线圈:消弧线圈广泛用于10kV-63kV级的谐振接地系统。由于变电所的无油化倾向,因此35kV以下的消弧线圈现很多是干式浇注型。 阻尼电抗器:(通常也称串联电抗器)与电容器组或密集型电容器相串联,用以限制电容器的合闸涌流。这一点,作用与限流电抗器相类似滤波电抗器滤波电抗器与滤波电容器串联组成谐振滤波器,一般用于3次至17次的谐振滤波或更高次的高通滤波。直流输电线路的换流站、相控型静止补偿装置、中大型整流装置、电气化铁道,以至于所有大功率晶闸管控制的电力电子电路都是谐波电流源,必须加以滤除,不让其进入系统。电力部门对于电力系统中的谐波有具体规定。 平波电抗器:平波电抗器用于整流以后的直流回路中。整流电路的脉波数总是有限的,在输出的整直电压中总是有纹波的。这种纹波往往是有害的,需要由平波电抗器加以抑制。直流输电的换流站都装有平波电抗器,使输出的直流接近于理想直流。直流供电的晶闸管电气传动中,平波电抗器也是不可少的。平波电抗器在整流电路中是个重要元件,在中频电源中主要作用是:

变频器电抗器选型

变频器专用型输入电抗器,安装于电源和变频器输入线之间,限制变频器的进线端的压降,抑制晶闸管的dv/dt(电压变化率)和di/dt(电流变化率)。 作用 在变频调速器系统的运行过程中,变频调速器经常会受到来自电网的浪涌电流和浪涌电压的冲击,影响变频调速器的性能,缩短变频调速器的使用寿命,甚至会严重损坏变频调速器。 变频器专用型输入电抗器的作用在于: 1、抑制来自电网的浪涌电压和浪涌电流,保护变频速器,延长其使用寿命; 2、抑制来自电网的3,5次谐波的电磁干扰(如果频率高于5次,需选用变频器专用型输入滤波器);适用范围1、电网相间电压的不平衡率大于额定电压的1.8%; 2、阻抗极低的线路(动力变压器为变频器额定值的10倍以上); 3、在一条线路上为减小线电流而安装大量的变频器; 4、使用功率因数校正电容,或者是校正电源; 变频器专用型输出电抗器 变频器专用型输出电抗器,安装于变频器的电源输出线与电机之间,用以钝化变频器输出电压(开关频率)的陡度,减少逆变器中的功率元件的扰动和冲击,且在负载合闸瞬间能够有效地抑制回路涌流,保护回路中的变频器装置及其它元器件免受过电流冲击。 变频器专用型输出电抗器根据其选用的芯体材质的不同,分为以下两种: 1、铁芯式变频器专用型输出电抗器 当变频器的载波频率小于3KHZ时采用铁芯式变频器专用型输出电抗器。 2、铁氧体式变频器专用输出电抗器电抗器 当变频器的载波频率小于6KHZ时采用铁氧体式变频器专用型输出电抗器。 作用 1、有效降低IGBT输出的高dv/dt,延长电机寿命; 2、抑制变频器输出的谐波干扰; 3、补偿长线分布电容的影响,延长传输距离(最大允许电动机电缆长度主要取决于传动装置的开关频率和输出电压); 4、减小变频器噪声; 使用环境 1、海拔高度不超过2000米; 2、运行环境温度-25℃~+45℃,相对湿度不超过90%; 3、周围无有害气体,无易燃易爆物品; 4、周围环境应有良好的通风条件,如装在柜内,应加装通风设备; 性能参数 1、可用于400V、660V系统; 2、额定绝缘水平3kV/min; 3、电抗器各部位的温升限值:铁芯不超过85K,电圈温升不超过95K; 4、电抗器噪声不大于45dB; 5、三相电抗器的任意两相电抗值之差不大于±3%。 6、耐温等级H级(180℃)以上。 电抗器产品执行检验标准:IEC289:1987 电抗器 GB10229-88 电抗器 JB9644-1999 半导体电气传动用电抗器 GB6450-86 本标准等效国标IEC 726(1982)《干式电力变压器》 用户对变频器使用电抗器应如何选择?下面从额定交流电流的选择、电压降、电感量的选择、对应额定电流的电感量与电缆长度等方面进行分析。 1,额定交流电流的选择

电抗器技术规范书

设备/材料集中招标文件技术范本第五册电抗器招标文件技术规范范本 (DKQ - 2009) (送审稿) 2009年9月呼和浩特

设备/材料集中招标文件技术范本第五册电抗器招标文件技术规范范本 (DKQ - 2009) 批准单位:内蒙古电力(集团)有限责任公司 组织单位:内蒙古电力(集团)有限责任公司招投标管理中心 编制单位:内蒙古电力勘测设计院 内蒙古电力科学研究院 内蒙古蒙能招标有限公司 内蒙古电力(集团)有限责任公司物资供应分公司 施行日期:2009年9月 2009年9月呼和浩特

总目录 ◆设备∕材料集中招标文件商务范本 ◆设备∕材料集中招标文件技术范本 第一册变压器招标文件技术规范范本 第二册断路器招标文件技术规范范本 第三册隔离开关招标文件技术规范范本 第四册绝缘子招标文件技术规范范本 第五册电抗器招标文件技术规范范本 第六册组合电器招标文件技术规范范本 第七册互感器招标文件技术规范范本 第八册电容器招标文件技术规范范本 第九册避雷器招标文件技术规范范本 第十册导线、地线招标文件技术规范范本 第十一册光缆招标文件技术规范范本 第十二册电缆招标文件技术规范范本 第十三册输电线路铁塔招标文件技术规范范本第十四册高压开关柜招标文件技术规范范本

本册目录 电抗器范本使用说明 (1) 第一部分500kV并联电抗器及中性点接地电抗器招标文件技术规范范本 (2) 1 500kV并联电抗器及中性点接地电抗器招标文件技术规范范本通用部分 (3) 2 500kV并联电抗器及中性点接地电抗器招标文件技术规范范本专用部分 (18) 第二部分35kV干式空心电抗器招标文件技术规范范本 (30) 1 35kV干式空心电抗器招标文件技术规范范本通用部分 (31) 2 35kV干式空心并联电抗器招标文件技术规范范本专用部分 (36) 3 35kV干式空心串联、限流电抗器招标文件技术规范范本专用部分 (43) 第三部分10kV电抗器招标文件技术规范范本 (50) 1 10kV干式空心电抗器招标文件技术规范范本通用部分 (51) 2 10kV干式铁心并联电抗器招标文件技术规范范本通用部分 (57) 3 10kV油浸式并联电抗器招标文件技术规范范本通用部分 (63) 4 10kV干式空心电抗器招标文件技术规范范本专用部分 (77) 5 10kV干式铁心并联电抗器招标文件技术规范范本专用部分 (84) 6 10kV油浸式并联电抗器招标文件技术规范范本专用部分 (90) 7 10kV干式空心限流电抗器招标文件技术规范范本专用部分 (99)

各种电抗器的计算公式

各种电抗器的计算公式 The manuscript was revised on the evening of 2021

各种电抗器的计算公式 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * * F(工作频率) * 电感量(mH),设定需用 360ohm 阻抗,因此:电感量(mH) = 阻抗 (ohm) ÷ (2* ÷ F (工作频率) = 360 ÷ (2* ÷ = 据此可以算出绕线圈数: 圈数 = [电感量* { ( 18*圈直径(寸)) + ( 40 * 圈长(寸))}] ÷圈直径 (寸) 圈数 = [ * {(18* + (40*}] ÷ = 19 圈 空心电感计算公式 作者:佚名转贴自:本站原创点击数:6684 文章录入: zhaizl 空心电感计算公式:L(mH)= D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=*D*N*N)/(L/D+ 线圈电感量 l单位: 微亨 线圈直径 D单位: cm 线圈匝数 N单位: 匝 线圈长度 L单位: cm 频率电感电容计算公式: l=[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ= 谐振电容: c 单位 F 本题建义c=500...1000pf 可自行先决定,或由Q值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=πNI / l N= 线圈匝数(圈) AL= 感应系数 H-DC=直流磁化力 I= 通过电流(A) l= 磁路长度(cm) l及AL值大小,可参照Micrometal对照表。例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD为英寸),经查表其AL值约为33nH L=33.2=≒1μH 当流过10A电流时,其L值变化可由l=(查表) H-DC=πNI / l = ×××10 / = (查表后) 即可了解L值下降程度(μi%) 2。介绍一个经验公式 L=(k*μ0*μs*N2*S)/l 其中

串联电抗器标准

串联电抗器 JB 5346-1998 代替JB 5346-91 前言 本标准是根据机械工业部 1997 年标准制、修订计划号,对JB 5346-91标准修订而成。 本标准的编写格式按照GB/T标准重新编排。 本标准主要修订的内容如下: 1)修改了额定电抗率项目,由原来的 %、6%、12%、(13%)项改为%、5%、6%、12%、13%。 2)按配套并联电容的额定电压要求增加了电抗器的额定端电压、及其相关参数要求项。 3)原标准按 R10 系列数系规定了电容器组容量,再按额定电抗率导出电抗器容量系列,目的是制造厂以尽可能少的容量满足尽可能多的用户规格品种要求。但由于电容器组的容量和电容器单元系列型谱标准不尽吻合,存在匹配组合困难。而且即便如此,也还满足不了用户规格繁多的需要,故本次修订取消了原标准中的表 2 和表 3,不再规定容量的系列规格。 4)由于取消容量系列规格,也就无法再以表格形式对每一种容量规定其损耗标准值。本次修订取消了原标准中的表 6(A)、6(B)、7(A)、7(B)、8(A)、8(B),给出了损耗值计算公式并规定了损耗系数。 5)电抗值允许偏差由原来 0~15% 改为 0 +10%。 6)绝缘水平与GB311标准一致。即油浸铁心式电抗器的绝缘水平和油浸式电力变压器相同,干式空心电抗器的绝缘水平和母线支柱绝缘子相同。 7)增加了用电桥法测量电抗值内容。 8)取消了对户外式空心电抗器在淋雨状态下做绕组匝间绝缘试验的要求。 9)取消稳态过电压条款。因为对稳定过电流的规定条件,实际上已包括了对稳态过电压的要求。 本标准由全国变压器标准化技术委员会提出并归口。 本标准主要起草单位:沈阳变压器研究所、宁波变压器厂、兴城特种变压器厂。 本标准参加起草单位:沈阳变压器有限责任公司综合电器厂,保定第二变压器厂、北京电力设备总厂、中山和泰机电厂。 本标准主要起草人:王丁元、韩庆恒。 本标准参加起草人:王辉、戈承、何见光、沈文洋。 本际准 1991 年首次发布。1997 年第一次修订。 本标准由沈阳变压器研究所负责解释。 1 范围 本标准规定了高压并联电容器用串联电抗器产品的定义、型号和分类、技术要求、试验方法、检验规则、产品标志及出厂文件、铭牌的基本内容、包装运输及贮存的基本要求等。

各类电抗器计算

如下 1. 进线电抗器 1.1 进线电抗器的额定电流I LN: 对直流传动装置(6RA70): I LN=0.82I dN (A) 式中:I dN:传动装置额定整流电流,通常即为由其供电的电动机的额定电流 (A)。 对电压型变频器(6SE70): I LN=1.1I CN (A) 式中:I CN:变频器额定输出电流,通常即为由其供电的电动机的额定电流 (A)。 对6SE70中的整流单元和整流/回馈单元: I LN=0.87I dc (A) 式中:I dc:整流单元或整流/回馈单元额定输出电流 (A)。 1.2 进线电抗器的电感值L: 对直流传动装置(6RA70)和6SE70中的整流/回馈单元按压降4%选择L: L=0.04U LN/(30.5×2πfI LN) (H) 式中:U LN:进线电压的线电压有效值 (V) f:电网频率 (Hz) I LN:进线电抗器的额定电流 (A) 当f=50Hz时: L=73.51×U LN/I LN (μH) 也可根据进线电抗器的进线电压U LN和额定电流I LN直接从下面的表1.1~表1.4中选择进线电抗器(适用于f=50Hz)。 对变频器(6SE70)和6SE70中的整流单元,按压降2%选择L: L=0.02×U LN/(30.5×2πfI LN) (H) 式中:U LN:进线电压的线电压有效值 (V) f:电网频率 (Hz) I LN:进线电抗器的额定电流 (A) 当f=50Hz时: L=36.76×U LN/I LN (μH) 也可根据进线电抗器的进线电压U LN和额定电流I LN直接从下面的表1.5~表1.8中选择进线电抗器(适用于f=50Hz)。

三相滤波电抗器参数计算实例

三相滤波电抗器作 一.设计依据 482V 500V 1,电抗器总额定容量16.66kvar 15.51kvar 2,电抗率 4.16% 4.16% 3,总电感量 0.0577mH 0.0619mH 4,电容器安装总容量550Kvar 550Kvar 5,电容器额定电压 480v 500v 6,电容器基波容量383.31Kvar 357.31Kvar 7,成套装置分四组即:50kvar ,100kvar ,200kvar ,200kvar 。 按安装容量分配: 1/2/4/4 故需制做四只三相或12只单相电抗器 二,电抗器制作要求 ⒈ 电抗器的绝缘等级660v 。 ⒉ 电抗器的耐热等级H 级。 ⒊ 电抗器的额定容量S ,0.7Kvar 。 ⒋ 电抗器的电抗率 4.16%。 ⒌ 电抗器的电感1.995mH 。 ⒍ 电抗器的额定电流33.2A 。 ⒎ 电抗器的绝缘耐压5千伏。 三,铁芯计算及材料的选择 ⒈ 硅钢片选用D310取向硅钢片。 2.电抗器容量的确定。 (1)给定无功16.6Kvar 求电容量 C =92102?fU ?=9210500 3146.16??=910785000006.16?=211.46μF (2)根具电容量求容抗 Xc= 6101c ω=61046 .2113141??=15.064?

(3)已知容抗和电抗率求电抗 XL=0.0416064.15?=0.6266624 ? (4)求制作电抗器的电感 L=310?ωXL =310314 6266624.0=1.9957mH (5)根具电容器的容抗和额定电压求电抗器的流 IL=XC u =064 .15500=33.2A (6)求制作电抗器的容量 Q=310-IV =33.2?21310-=0.7kvar ⒉ 铁芯柱截面积的选择。 ⑴按0.7Kvar 计算铁芯柱的截面积。(按三相变 直径 D =kd 4P =69×47.0=6.31cm (KD-经验数据) 铁芯柱圆截面积 S =π×2231.6??? ??=3.14×9.55=312cm 电抗器的电压 V =P ÷I =0.7÷33.2=21V 一、 硅钢片宽度的选择 1 硅钢片宽度尺寸的计算 E =(2.6-2.9)2LI =2.922.330019957.0?=4.3cm 取4.8 2 铁心厚度尺寸的计算 ⑴ 净厚度B =S ÷E =31 2cm ÷4.8cm =6.5 cm 硅钢片数为:6.5÷0.27=240片 ⑵铁心厚度 s B =B ÷K =6.5 cm ÷0.91=7.15 cm 二、 绕组匝数w 和气隙的计算 ⒈ 绕组匝数的计算w

电气装置安装工程电力变压器 油浸电抗器 互感器施工及验收规范

电气装置安装工程电力变压器、油浸电抗器、互感器施工及验收规范 中华人民共和国国家标中华人民共和国国家标准 电气装置安装工程电力变压器、油浸电抗器、互感器施工及验收规范 GBJ148—90 中华人民共和国国家标准 电气装置安装工程电力变压器、油浸电抗器、互感器施工及验收规范 GBJ148—90 主编部门:中华人民共和国原水利电力部 批准部门:中华人民共和国建设部 施行日期:1991年10月1日 关于发布国家标准《电气装置安装工程高压电器施工及验收规范》等三项规范的通知 (90)建标字第698号 根据原国家计委计综〔1986〕2630号文的要求,由原水利电力部组织修订的《电气装置安装工程高压电器施工及验收规范》等三项规范,已经有关部门会审,现批准《电气装置安装工程高压电器施工及验收规范》GBJ147—90;《电气装置安装工程电力变压器、油浸电抗器、互感器施工及验收规范》GBJ148—90;《电气装置安装工程母线装置施工及验收规范》GBJ149—90为国家标准。 自1991年10月1日起施行。 原国家标准《电气装置安装工程施工及验收规范》GBJ23—82中的高压电器篇,电力变压器、互感器篇,母线装置篇同时废止。 该三项规范由能源部负责管理,其具体解释等工作,由能源部电力建设研究所负责。出版发行由建设部标准定额研究所负责组织。 中华人民共和国建设部 1990年12月30日 修订说明 本规范是根据原国家计委计综(1986)2630号文的要求,由原水利电力部负责主编,具体由能源部电力建设研究所会同有关单位共同编制而成。 在修订过程中,规范组进行了广泛的调查研究,认真总结了原规范执行以来的经验,吸取了部分科研成果,广泛征求了全国有关单位的意见,最后由我部会同有关部门审查定稿。 本规范共分三章和两个附录,这次修订的主要内容为: 1.根据我国电力工业发展需要及实际情况,增加了电压等级为50kV的电力变压器、互感器的施工及验收的相关内容,使本规范的适用范围由330kV扩大到500kV及以下。 2.由于油浸电抗器在330kV及500kV系统中大量采用,故将油浸电抗器的相关内容纳入本规范内。

电抗器起动时电抗器的选定计算书

电抗器起动时电抗器的选定计算书计算依据 《工业与民用配电设计手册》第三版中P270页表6-16的公式 已知条件 线缆类型:铜 线缆截面S(mm2 )=120.000 线缆长度L(km)=0.025 电机名称:Y(IP44) 电机型号:90L-2 电机功率(kw):2.200 电机转速(r/min):2840.000 电机额定电流(A):4.740 电机起动电流(A):33.000 电机额定电压(kV):0.380 母线短路容量Skm(MVA)=80.000 预接负荷Sfh(MKVA)=0.400 功率因数cosφ=0.850 母线标称电压UM(kV)=10.500 计算要求:母线电压相对值Ustm=0.900 起动电抗器型号: 计算公式和过程 电动机起动电流倍数Kst=Iq/Ir=33.000A/4.740A=6.962 电动机额定容量Srm=1.732UrIr=1.732*0.380kV*4.740A/1000=0.003MVA 电动机额定起动容量Sstm=KstSrm=6.962*0.003MVA=0.022MVA 铜线Xl=(0.08+18.3/S)L=(0.08+18.3/120.000mm2)*0.025km=0.006Ω 预接负荷Qfh=Sfh*SINφ=0.400MKVA*0.527=0.211MVar 电抗值Xk =Um2 /[(Qfh+Skm)(1/Ustm-1)]-Xl-Um2 /Sstm =10.500kV2 /[(0.211MVar+80.000MVA)*(1/0.900-1)]-0.006Ω-10.500kV2 /0.022MVA =-5063.770Ω

并联电抗器的选择及保护装置的配置

并联电抗器的选择及保护装置的配置 来源:时间:2007-06-13 字体:[ 大中小 ] 投稿 摘要: 本文讨论了在地方电网工程设计实践中,线路并联电抗器的容量、台数、装设地点、继电保护配置等有关技术问题,对设计人员有一定参考价值。 电抗器分为铁芯的和空芯的两大类。铁芯电抗器有线路并联电抗器和消弧线圈两种,其构造与变压器相似,不同的是其铁芯带有气隙,电抗器的线圈只有一个,不分一次和二次。空芯电抗器有水泥电抗器,用电缆做成空心线圈,沿线圈圆周均匀对称的用水泥浇注,把线圈匝间固定起来。水泥电抗器大多用在大容量发电厂或变电站的输配电系统中。 一、并联电抗器容量及台微选择 二、在大电力系统中,并联电抗器的容量、台数、装设地点、中性点小电抗器参数及伏安特性等的选择比较复杂,需对工频暂态及稳态电压升高、潜供电流及恢复电压、发电机自励磁、谐振过电压等方面进行专题计算、模拟试验和分析比较后才能确定。 对地方小电力系统,我们是对工频电压升高,发电机自励磁计算分析后,再根据小电力系统实际情况来确定并联电抗器容量。其推荐值可按下式初步计算。 若线路电压为110~220千伏,线路长度在300公里以下,取0.4~0.45.线路电压为330千伏,线路长度在300公里以上,可取0.5 Ue——电力网额定线电压(千伏)来源:https://www.360docs.net/doc/925047433.html, Ic.——电力网电容电流(千安) 此值可用计算或直接测量的方法求得.如果能从有关手册查出输电线的电纳,则可直接由下式计算求得:请登陆:输配电设备网浏览更多信息

可查表求得(表略). 根据以上公式计算出并联电抗器容量后进行标准化,选取铁芯式电抗器.其台数决定于并联电抗器总容量的大小,设计容量在10000千乏以上,投切次数少,可选一台集中补偿;8000千乏以下适用于小电力系统、电压等级低,一般选两台分散补偿,有利于运行调整. 并联电抗器可向特种变压器厂订货,选取BKSJ型. 二、装设地点及安装方式 理论上讲,并联电抗器装设地点设在线路的哪一方都可以.但要根据工程实际情况考虑所选并联电抗器电压等级高低、新建工程是否需要补偿,工程扩建时是否有安装地方,控制操作是否方便灵活等各方面因素后再确定. 对大电力系统,补偿容量大,电压高,可集中安装在区域性枢纽变电所高压倒,采用户外安装方式.因投切次数少,在满足开断容量条件下可采用隔离开关和油开关操作. 小电力系统的补偿容量小,电压等级低,可户外分散安装。为了运行、调整投切灵活力便,可采用ZN型真空断路器开关柜. 三、保护装置的配置 (-)装设瓦斯保护.当并联电抗器内部由于短路等原因产生大量瓦斯时,应及时动作并跳闸。当产生轻微瓦斯或油面下降时,应及时发出信号。 瓦斯保护流速整定值的选择,主要取决于并联电抗器容量、冷却方式及导油管直径。目前国内尚无统一标准,均采用经验数据进行整定。 1.并联电抗器容量≤10000千乏、导油管直径≤5.3厘米或瓦斯继电器为QJ1一50型时,流速值可取0.6~0.8米/秒。 2.当并联电抗器容量大于10000千乏以上,导油管直径为8.0厘米或瓦斯继电器为QJ1一80型时,流速值可取0.8~1.2米/秒。 3.对于强迫油循环冷却的并联电抗器不低于1.1米/秒。 (二)装设差动保护或电流速断保护 大容量并联电抗器装设差动保护,小容量若灵敏度满足要求时可装设电流速断保护,以防御并联电抗器内部及其引出线的相间和单相接他短路。在可能出现的最大不平衡电流下,保护装置不应该误动作.并联电抗器装设过电流保护作为差动保护的后备,保护装置带时限动作于跳闸。 (三)装设过负荷保护,以防御电源电压升高和引起并联电抗器的过负荷。保护装置带时限动作后作用于信号。来源:输配电设备网

变频器电抗器的选择

变频器电抗器的选择 关键词:变频器电感量输入电抗器输出电抗器直流电抗器 我们从额定交流电流的选择、电压降、电感量的选择、对应额定电流的电感量与电缆长度等方面进行分析。 额定交流电流的选择 额定交流电流是从发热方面设计电抗器的长期工作电流,同时应该考虑足够的高次谐波分量。即输出电抗器实际流过的电流是变频器电机负载的输出电流。 电压降 电压降是指50HZ时,对应实际额定电流时电抗器线圈两端的实际电压降。通常选择电压降在4V~8V左右。 电感量的选择 电抗器的额定电感量也是一个重要的参数!若电感量选择不合适,会直接影响额定电流下的电压降的变化,从而引起故障。而电感量的大小取决于电抗器铁芯的截面积和线圈的匝数与气隙的调整。 输出电抗器电感量的选择是根据在额定频率范围内的电缆长度来确定,然后再根据电动机的实际额定电流来选择相应电感量要求下的铁芯截面积和导线截面积,才能确定实际电压降。 理想的电抗器在额定交流电流及以下,电感量应保持不变,随着电流的增大,而电感量逐渐减小。 当额定电流大于2倍时,电感量减小到额定电感量的0.6倍。 当额定电流大于2.5倍时,电感量减小到额定电感量的0.5倍。

当额定电流大于4倍时,电感量减小到额定电感量的0.35倍 在高压补偿装置中一般都装设有串联电抗器,它的作用主要有两点:一是限制合闸涌流,使其不超过额定电流的20倍;二是抑制供电系统的高次谐波,用来保护电容器。因此电抗器在补偿装置中的作用非常重要。只有科学、合理的选用电抗器才能确保补偿装置的安全运行。用于变频器的电抗器主要三种: 输出电抗器的作用:输出电抗器主要作用是补偿长线分布电容的影响,并能抑制输出谐波电流,提高输出高频阻抗,有效抑制dv/dt.减低高频漏电流,起到保护变频器,减小设备噪声的作用。电容器在补偿功率的时候,往往会受到谐波电压和谐波电流的冲击,造成电容器损坏和功率因数降低,为此,需要在补偿的时候进行谐波治理。 输入电抗器的作用;用来限制电网电压突变和操作过电压引起的电流冲击,平滑电源电压中包含的尖峰脉冲,或平滑桥式整流电路换相时产生的电压缺陷, 有效地保护变频器和改善功率因数,它既能阻止来自电网的干扰,又能减少整流单元产生的谐波电流对电网的污染。 直流电抗器的作用:直流电抗器接在变频系统的直流整流环节与逆变环节之间,主要用途是将叠加在直流电流上的交流分量限定在某一规定值,保持整流电流连续,减小电流脉冲值,使逆变环节运行更稳定及改善变频器的功率因数。 对于电抗器的选用主要有三方面的内容:电抗器的电抗率K值的选取

电抗器计算公式和顺序

电抗器计算公式和步骤 S=1.73*U*I 4% X=4/S*.9 1. 铁芯直径D D=KPZ0.25 cm K—50~58 PZ—每柱容量kVA 2.估算每匝电压ET ET=4.44fBSP×10-4 V B—芯柱磁密 0.9~1T SP—芯柱有效截面

cm2 3. 线圈匝数 W=UKM/(ET×100)KM—主电抗占总电抗的百分数 U—总电抗电压 V 4. 每匝电压及铁芯磁密 ET=UKM/(W×100) V BM=ET×104/(4.44fSP) T 5. 主电抗计算 选择单个气隙尺寸δ=0.5~3cm 计算行射宽度E E=δ/πln((H+δ)/δ) cm H—铁饼高度,一般5cm 计算行射面积SE

SE=2E×(AM+BM+2E) cm2 AM—叠片总厚度 cm BM—最大片宽 cm 计算气隙处总有效截面积 SM=SF/KF+SE cm2 SF—铁芯截面 KF—叠片系数 计算气隙个数 n=(7.9fW2SM)/(X NδKM×106) XN—电抗Ω 计算主电抗 XM=(7.9fW2SM)/(nδ×108) 如果XM≈X N KM/100则往下进行,否则重新选择单个气隙长度,重复上述计算。 6.

漏电抗计算 Xd=(7.9fW2Sdρ)/(H×108) Ω Sd=2π/3FRF+πRn2-SF/KF ρ=1-2×(RW-RO)/(π×H)式中: F—线圈幅向尺寸 cm RF—线圈平均半径 cm Rn—线圈内半径 cm RW—线圈外半径 cm RO—铁芯半径 cm

H—线圈高度 cm 总电抗X N X N=XM+Xd Ω 附:串联电抗器参数与计算 一基本技术参数 1 额定电压UN (电力系统的额定电压kV) 并联电容器的额定电压U1N 2 额定电流I1 3 额定频率f 4 相数单相三相 5 电抗器额定端电压U1当电抗器流过额定电流时一相绕组二端的电压6 电抗器额定容量P

电抗器选择方法

电抗器选择方法 1.1电抗率的选择 ■补偿装置接入处的背景谐波为3次 当接入电网处的背景谐波为3次及以上时,一般为12%;也可采用4.5%~6%与12%两种电抗率。只有3次等零序谐波不需要补偿时也可以选择零序滤波电抗器。 3次谐波含量较小,可选择0.1%~1%的串联电抗器,但应验算电容器装置投入后3次谐波放大是否超过或接近国标限值,并且有一定的裕度。 3次谐波含量较大,已经超过或接近国标限值,一般为12%;也可采用4.5%~6%与12%两种电抗率的串联电抗器混合装设。 ■补偿装置接入处的背景谐波为3次、5次 3次谐波含量很小,5次谐波含量较大(包括已经超过或接近国标限值),选择4.5%~6%的串联电抗器,忌用0.1%~1%的串联电抗器。 3次谐波含量略大,5次谐波含量较小,选择0.1%~1%的串联电抗器,但应验算电容器装置投入后3次谐波放大是否超过或接近国标限值,并且有一定的裕度。 3次谐波含量较大,已经超过或接近国标限值,选择12%或12%与4.5%~6%的串联电抗器混合装设。 ■补偿装置接入处的背景谐波为5次、7次及以上(中频冶炼、电镀、轧机、工业炉、单晶炉等大部分工业负荷为此类负荷) 5次谐波含量较小,应选择4.5%~6%的串联电抗器。 5次谐波含量较大,应选择4.5%的串联电抗器。 ■对于采用0.1%~1%的串联电抗器,要防止对5次、7次谐波的严重放大或谐振;对于采用4.5%~6%的串联电抗器,要防止对3次谐波的严重放大或谐振。 ■补偿装置接入处的特征次背景严重超过了国标限值,需要谐波治理达到国标要求的需要经过专业的技术人员进行滤波设计并特殊定做滤波电抗和其它滤波组件 负荷容量和配电变压器容量相当时选择并联型无功补偿兼谐波治理装置。 负荷容量远小于配电变压器时选择串联型无功补偿兼谐波治理装置。 1.2电抗器类型的选择 电抗器按照结构的不同分为油浸式铁芯电抗器、干式铁芯电抗器、干式空芯电抗器、干式半芯电抗器、干式磁屏蔽电抗器,不同类型的电抗器互有优缺点,需要根据用电现场情况斟酌选择。 理想的电抗器应是有如下特点:无油、无噪音、体积小、线性度好、无漏磁、过流能力强、结构稳定、耐候性强等 1.3■铁芯电抗器 体积小、漏磁小,损耗小,可以装高压柜内,但噪声大,线性度差,有漏磁局部过热的可能,易发生磁饱和,烧毁线圈。系统过压、过流和谐波的影响,致使铁芯过饱和电抗值急剧下降,抑制谐波的能力下降,抗短路电流能力低。干式铁芯式电抗器除上述缺点外,还不能在室外运行。 1.4■干式空芯电抗器 线性度好,噪声小,过流能力强,散热能力强,机械结构简单、坚固,户内外都可使用,基本免维护,但体积大,占地面积大,漏磁范围广,对周围的用电设备电磁干扰大,有功损耗较高。 1.5■半芯电抗器 半芯电抭器是介于铁芯电抭器和空芯电抗器之间的一种新型电抭器,结构简单、线性好、噪音小、维护方便,比空心电抗器体积小、重量轻、损耗小,但由于采用了非线性材料铁芯、其电

9.2.4限流电抗器选择

9.2.4 限流电抗器选择 (1)参数选择:限流电抗器应按表9?2?9所列技术条件选择,并按表中环境条件校验。 表9?2?9中的一般项目,按第9.1节有关要求进行选择,并补充说明如下: 1)普通电抗器k X %>3%时,制造厂已考虑连接于无穷大电源、额定电压下,电抗器端头发生短路时的动稳定度。但由于短路电流计算是以平均电压(一般比额定电压高5%)为准,因此在一般情况下仍应进行动稳定校验。 2)分裂电抗器动稳定保证值有两个,其一为单臂流过短路电流时之值,其二为两臂同时流过反向短路电流时之值。后者比前者小得多。在校验动稳定时应分别对这两种情况,选定对应的短路方式进行。 3)安装方式是指电抗器的布置方式。普通电抗器一般有水平布置、垂直布置和品字布置三种。进出线端子角度一般有90°、120°、180°三种,分裂电抗器推荐使用120°。 (2)额定电流选择:普通电抗器的额定电流选择: 1)电抗器几乎没有过负荷能力,所以主变压器或出线回路的电抗器,应按回路最大工作电流选择,而不能用正常持续工作电流选择。 2)变电所母线分段回路的电抗器应满足用户的一级负荷和大部分二级负荷的要求。 (3)电抗百分值选择:普通电抗器的电抗百分值应按下列条件选择和校验: 1)将短路电流限制到要求值。此时所必须的电抗器的电抗百分值(k X %)按下式计算 k X %≥%100????? ??-''*j nk j nk j j I U U I X I I (9?2?5) 或 k X %≥%100????? ??-''*nk j nk j j j U I I U X S S (9?2?6) 式中 j U ——基准电压,kV ; j I ——基准电流,A ; j X *——以j U 、j I 为基准,从网络计算至所选用电抗器前的电抗标么值; j S ——基准容量,MV A ; nk U ——电抗器的额定电压,kV ; nk I ——电抗器的额定电流,A ; I ''——放电抗限制后所要求的短路次暂态电流,kA ;

10KV-66KV干式电抗器运行规范

10kV~66kV干式电抗器运行规范 目录 第一章总则 1 第二章引用标准 1 第三章设备的验收 2 第四章设备运行维护管理 4 第五章运行巡视检查项目及要求 5 第六章缺陷管理及异常处理 7 第七章事故处理预案 8 第八章培训要求 9 第九章设备的技术管理 10 第十章备品备件管理 12 第十一章更新改造 12 低压干式电抗器运行管理规范编制说明 13 第一章总则 第一条为完善干式电抗器设备管理机制,使其达到制度化、规范化,保证设备安全、可靠和经济运行,特制定本规范。 第二条本规范是依据国家和行业有关标准、规程、制度及《国家电网公司变电站管理规范》,并结合近年来国家电网公司输变电设备评估分析、生产运行情况分析以及设备运行经验而制定。 第三条本规范提出了对10kV~66kV干式电抗器在设备投产、验收、检修、运行巡视和维护、缺陷和事故处理、运行和检修评估分析、改造和更新、培训以及

技术资料档案的建立与管理等提出了具体规定。 第四条本规范适用于国家电网公司所属范围内10kV~66kV干式电抗器的运行管理工作。 本规范适用于10kV~66kV的单相干式电抗器,以下简称干式电抗器。 第二章引用标准 第五条以下为本规范引用的标准、规程和导则,但不限于此。 DL408-1991 《电业安全工作规程》(发电厂和变电所电气部分)DL/T596-1996 《电气设备预防性试验规程》 DL5014-1992 《330-500kV变电所无功补偿装置设计技术规定》 GB 10229-88 电抗器 GB 6450-1986 干式电力变压器 GBJ147-1990 《电气装置安装工程施工及验收规范》 GB 50150-1991 电气装置安装工程电气设备交接试验标准 国电电网公司《防止电力生产重大事故的二十五项重点要求》 国家电网公司《变电站管理规范》 国家电网公司《电力生产设备评估管理办法》 国家电网公司《10kV~66kV干式电抗器技术标准》 国家电网公司《10kV~66kV干式电抗器检修规范》 国家电网公司《10kV~66kV干式电抗器技术监督规定》 国家电网公司《预防10kV~66kV干式电抗器事故措施》 第三章设备的验收 第六条运行单位应全过程的参与干式电抗器的设计图纸审核、土建安装、设备

相关文档
最新文档