膜材料简介.

膜材料简介.
膜材料简介.

摘要

膜材料是两相间的不连续区间。膜技术的核心是膜。高分子膜的制备方法及其工艺条件的控制是获得稳定膜结构和优异膜性能的关键技术,众所周知,高分子膜材料具有易加工、结构难控制的特点。目前高分子分离膜材料制膜方法有浸没沉淀相转化法、应力场下熔融挤出-拉伸制备聚烯烃微孔膜、热诱导相分离法制备聚合物微孔膜、聚合物与无机支撑复合膜的制备技术等膜技术。膜技术现已应用在我们生活的各个方面,如废水处理环境净化、医疗、医学和食品加工生物工程方面等等。我们主要谈了膜技术在水处理和医学方面的显著作用。水处理方面的应用有一般的废水处理、处理采出水和油田注水、果汁饮料的澄清等。在医疗、医学方面膜技术可用于制人工肺、在药物生产过程中去除菌及固悬物、药物检验与疫病诊断、血浆分离等。

关键字:膜材料、制备、应用、水处理、医学工程

Abstract

Membrane material is discrete interval of two phases.Membrane technology is the core of the membrane.The preparation method of polymer film and its control of process conditions is to obtain the key technology of membrane stability of membrane structure and excellent properties, it is well known that the polymer film material has the characteristics of easy processing, structure, difficult to control.The high polymer separation membrane materials membrane method in immersion precipitation phase catalysis, melt extrusion - under tensile stress field of preparation of polyolefin microporous membrane preparation, thermal induced phase separation of polymer microporous membrane, polymer and inorganic composite membrane preparation technology of membrane technology, etc.Membrane technology has been applied in every aspect of our life, such as wastewater treatment environment purification, medical treatment, medicine and food processing and biological engineering, etc.We mainly talk about the membrane technology in water treatment and medical aspects of the significant role.The application of water treatment has the general wastewater treatment, treatment of produced water and oil field water injection, juice clarification etc.In the aspect of medical treatment, medical membrane technology can be used for making artificial lung, removing bacteria in the process of drug production and solid suspension, drug test and diagnosis of disease and plasma separation, etc.

Key words: membrane materials, preparation, application, water treatment, medical engineering

0 引言

膜技术是当代高效分离新技术,与传统的分离技术相比,它具有分离效率高、能耗低、占地面积小、过程简单、操作方便、不污染环境、便于与其他技术集成等突出优点。它的研究和应用与节能、环境保护、水资源开发、利用和再生极为密切。在当今世界能源、水资源短缺,水和环境污染日益严重的情况下,膜分离科学与技术的研究得到了世界各国的高度重视。目前,膜分离技术在我国的石油化工、制药、生化、环境、能源、电子、冶金、轻工、食品、航天、海水淡化、医疗等领域已获得有效而广泛的应用。

1 膜材料简介

一般意义上,“膜”指两相之间的不连续区间。膜可为气相、液相和固相,或是它们的组合。即也可以说,“膜”是指分隔两相界面,并以特定的形式限制和传递各种化学物质的阻挡层。它可以是均相的或非均相的,对称的或非对称的,固体的或液体的,中性的或荷电的。其厚度范围一般可从几微米到几毫米。

膜分离过程基于化学物质通过膜相际的传递速度的不同而不同。迁移率主要由溶质的分子尺寸和相界面物质的结构决定,而溶质在相界面内的浓度决定于溶质和相界面物质的亲和力大小、溶质尺寸和膜的结构。

通过膜相际有以下三种基本的传质形式。一、被动传递。通过膜的组分均以化学势梯度为推动力。该化学势梯度,可以是膜两侧的压力差、温度差或电势差。二、促进传递。通过膜的组分仍以化学势梯度为推动力,各组分由特定的载体带入膜中。促进传递是一种高选择性的被动传递。三、主动传递。与前两者不同,各组分可以逆化学势梯度而传递,其推动力由膜内某化学反应提供,这类现象主要存在于生命膜。而目前已工业化的主要膜分离过程均为被动传递过程。

膜技术的核心是膜。一般来说,膜的化学性质和结构对膜分离的性质起着决定性影响,故要求膜材料应具有良好的成膜性能,化学稳定性,耐酸、碱、氧化物和微生物侵蚀等。

分离膜按其凝聚状态可分为固膜、液膜、汽膜三类,目前大规模应用的多为固膜。固膜目前主要以高分子合成膜为主,它可以是致密或是多孔的,可以是对称或非对称的。另外,以无机物为膜材料的分离膜近年来也发展迅速。液膜分乳状液膜和带支撑的液膜两类,它们主要用于废水处理和某些气体分离等。气膜分离现在尚处于实验研究阶段。

膜有几种通用分类。按膜的材料分类,膜可分为天然膜和合成膜。天然膜指生物膜与天然物质改性或再生而制成的膜。合成膜指无机膜与高分子聚合物膜。按膜的结构性分类,膜可分为多孔膜和非多孔膜和液膜。多孔膜指微孔介质与大孔膜。非多孔膜指无机膜与聚合物膜。而多孔膜和非多孔膜也可按晶型区分为结晶型和无定型两种。液膜指无固相支撑型,又称乳化液膜,有固相支撑膜,又称固定膜或支撑液膜。当然,除此之外,还可按膜的用途、膜的作用机理等将它们分类。

2 膜材料的制备

高分子膜的制备方法及其工艺条件的控制是获得稳定膜结构和优异膜性能的关键技术,众所周知,高分子膜材料具有易加工、结构难控制的特点。目前高分子分离膜材料制膜方法有浸没沉淀相转化法、应力场下熔融挤出-拉伸制备聚烯烃微孔膜、热诱导相分离法制备聚合物微孔膜、聚合物与无机支撑复合膜的制备技术等。

2.1 浸没沉淀相转化法

相转化法制膜指配置一定组成的均相聚合物溶液,通过一定的物理方法改变溶液的热力学状态,使其从均相的聚合物溶液发生相分离,最终变成一个三维大分子网络式的凝胶结构。而相转化制膜法根据改变溶液热力学状态的物理方法的不同,可以分为以下几种:溶剂蒸发相转化法、热诱导相转化法、气相沉淀相转变法和浸没沉淀相转变法。

下面我们主要介绍浸没沉淀相转变法。在浸没沉淀相转化法制膜过程中,聚合物溶液先流延于增强材料上或从喷丝口挤出,而后迅速浸入非溶剂浴中,溶剂扩散浸入凝固浴,而非溶剂扩散到刮成的薄膜内,经过一段时间,溶剂和

非溶剂之间的交换达到一定程度,聚合物溶液变成热力学不稳定溶液,发生聚合物溶液的液-液相分离或液-固相分离,成为两相,我们称之为聚合物富相和聚合物贫相,聚合物富相在分相后不久就固化构成膜的主体,贫相则形成所谓的孔。浸入沉淀法至少涉及聚合物、溶剂、非溶剂三个组分,为适应不同应用过程的要求,又常常需要添加非溶剂、添加剂来调整铸膜液的配方以及改变制膜的其他工艺条件,从而得到不同的结构形态和性能的膜。所制成的膜可以分为两种构型:平板膜和管式膜。平板膜用于板框式和卷式膜器中,而卷式膜主要用于中空纤维、毛细管和管状膜器中。

2.1.1 平板膜

制备平板膜时,往往是先用刮刀把聚合物制膜液刮在无纺布、聚酯、玻璃、金属板等支撑物上形成溶液薄膜,再将支撑物与溶液薄膜一并浸入凝固浴中。聚合物溶液中的溶剂与凝固浴中非溶剂通过界面交换,首先在表面固化成膜,随后向膜内部扩展,使溶液中聚合物析出固化得到平板膜,沉淀后得到的膜可以直接使用,也可以经过后处理。制备条件包括:聚合物浓度、蒸发时间、湿度、温度、铸膜液组成、凝固浴组成等,这些条件大体决定了膜的形态结构和基本性能,也决定了膜的应用场合。

2.1.2 管状膜

管状膜根据规格的不同可以大致分为三种:中空纤维膜、毛细管膜和管状膜。中空纤维和毛细管膜有三种不同的制备方法:湿纺法,熔融纺丝法和干纺法。其中干-湿法纺丝是由聚合物、溶剂、添加剂组成的制膜溶液经过滤后用泵打入喷丝头,以围绕由喷丝头中心供给的线状芯液周围形成管状液膜的形式被挤出,经“空气间隙”被牵引、拉伸到一定的径向尺寸后浸入凝固浴固化成中空纤维,再经洗涤等处理后被收集在导丝轮。凝固是从内侧、外侧两个表面同时发生,形成双皮层结构。管状膜的制备工艺完全不同于中空纤维和毛细管膜。管状膜是加压于一个装有聚合物溶液的贮罐,使溶液沿一个中空管流下,在此刮管下部有一个带小孔的“刮膜棒”,在其内壁上被刮上一层聚合物薄膜,然后将此管浸入凝固浴中,此时所刮涂上的溶液沉淀,从而形成管状膜。

2.2 应力场下熔融挤出-拉伸制备聚烯烃微孔膜

聚烯烃微孔膜主要是利用热致相分离和熔融挤出-拉伸工艺制备。在热致相分离过程中,高聚物与稀释剂混合物在高温下形成均相熔体,随后在冷却时发生固-液或液-液相分离,稀释剂所占的位置在除去后形成微孔。而在熔融挤出-拉伸过程中,以纯高聚物融体进行熔融挤出,微孔的形成主要与聚合物材料的硬弹性有关系,在拉伸过程中,硬弹性材料垂直于挤出方向平行排列的片晶结构被拉开形成微孔,然后通过热定型工艺固定此孔结构。

2.3 热诱导相分离法制备聚合物微孔膜

热诱导相分离法是将聚合物与高沸点、低分子量的稀释剂在高温时形成均相溶液降低温度又发生固-液或液-液相分离,而后脱除稀释剂就成为聚合物微孔膜。热诱导相分离法制备微孔膜扩宽了膜材料的范围,可得到各式各样的微孔结构。通过改变制备条件可以得到蜂窝状结构或网状结构。

热诱导相分离法制备微孔膜主要有溶液的制备、膜的浇铸和后处理三步,具体为:一、聚合物与高沸点、低分子量的液态稀释剂或固态稀释剂混合,在高温时形成均相溶液二、将溶液制成所需要的形状三、溶液冷却,发生相分离四、除去稀释剂五、除去萃取剂得到微孔结构。聚合物稀释剂溶液可在塑料挤出机中形成,溶液按预定形状被挤出并浇在控温的滚筒上,由于滚筒温度低,溶液立即分相并固化,然后经溶剂萃取脱去稀释剂,干燥检测并卷绕成产品。

2.4 聚合物与无机支撑复合膜的制备技术

复合膜按结构可以分为三种:无机物填充聚合物膜,聚合物填充无机膜,无机有机杂聚膜。聚合物填充无机膜制备方法有聚合物溶液沉淀相转化法和表面聚合法。表面聚合法是通过化学方法使聚合物复合在无机支撑膜的表面或孔中。而这种方法包括两种,一是直接在无机膜表面进行单体的共聚或均聚,无机膜和聚合物膜之间是物理相互作用,二是对无机膜表面进行改性,使无机膜表面具有活性部位,然后通过活性部位进行单体的接枝聚合,这里无机膜和聚合膜之间是通过化学键相互连接。

3 膜的应用

膜技术现已应用在我们生活的各个方面,如废水处理环境净化、医疗、医学和食品加工生物工程方面等等。现在我们主要谈谈膜技术在水处理和医学方面的显著作用。

3.1 膜技术在水处理方面的应用

3.1.1 一般的废水处理

对于一般的废水,根据净化后水质的要求,需要选择合适的膜去除水中的污染物。根据水中粒子从大到小,可选用的膜技术有微滤、超滤、纳滤、反渗透等。有效孔径在1nm-10nm之间的膜称为微孔膜,其中随着孔径的由小变大,又分为超滤膜和微滤膜等。一般认为,微滤膜的有效孔径范围为0.1-10um。对超滤膜,一般认为其有效孔径在1-0.2um之间。微孔膜净化系统一般由絮凝预过滤、活性炭吸附和微孔膜过滤三部分组成。微孔膜组件可分为两类:一类为平板膜折叠式滤芯;另一类为中空纤维膜滤芯,膜孔径为0.1-0.45um的微裂纹型结构,膜材料为聚丙烯、聚乙烯、聚砜等。

微滤膜能滤去水中颗粒悬浮物、细菌、原生动物孢囊及卵囊虫等微生物,提供优质净化水,达到饮用目的。采用孔径小于0.1um的超滤膜可去除水中粒径在0.1um以上的悬浮颗粒和细菌,结合活性炭吸附、紫外辐射等工艺,可生产可直接饮用的水。目前工业上已广泛应用超滤膜作为水净化技术来生产矿泉水、饮料配制用水、药剂用水、发酵用水、工业循环水。

反渗透和纳滤膜在废水处理中主要能对无机盐和有机物质的分离与浓缩,反渗透和纳滤膜与其他传统处理方法相结合,如吸附、氧化、生化法等,可以使膜过程比较有效的将化学物质与水分开,而被反渗透纳滤所截留的化学物质可以在过程中被浓缩20-50倍。因此可以回收利用彻底处理,它的透过液则可以循环使用或用于冲洗、绿化用水等。

3.1.2 处理采出水和油田注水

采出水是开采石油过程中随原油一同采出地面的地层水,含有原油、悬浮物等组分。油田注水是注入地下将油压出的水,国内不同的单位对回注水水质有不同要求,比如低渗透油层的注水标准为含油小于5mg/L,悬浮固体小于1mg/L,粒径小于2um的颗粒占总颗粒体积的80%以上。微滤膜技术是处理油

田注水和采出水的主要方法。通常使用的高分子微滤膜材料有PP、PSF中空纤维膜等,无机膜主要是陶瓷微滤膜。

3.1.3 果汁饮料的澄清

果汁的澄清是指除去果胶、细菌及粗蛋白质等会引起果汁液的澄清,得到的果汁品质优良,比传统的过滤加巴氏灭菌生产的果汁更具有芳香味。研究中发现,使用截留分子量为5×100000的聚砜中空纤维膜便可除去所有悬浮物。用孔径为0.45um的聚四氟微孔滤膜除去肝复舒口服液中的杂质,效果良好。另外,我国制糖工业也成功采用孔径为0.45um微滤膜消除糖液中的浑浊物质,在提高糖的色度方面已取得良好效果。

3.2 膜技术在医疗、医学方面的应用

首次在医疗卫生中应用微滤膜起源于G.Mueller及Hamburg大学卫生学研究所的研究人员首次将膜用于细菌的培养和过滤。迄今为止,将微滤膜用于除菌消毒及溶液中微粒的去除仍然是微滤膜在医学上的一个重要的应用领域。

3.2.1 人工肺

人工肺分为气泡式人工肺和膜式人工肺,主要用于胸腔手术和肺功能不全患者的辅助治疗。但是气泡式人工肺易发生气泡进入动脉而可能导致人发生危险。而采用膜式充氧技术的膜式人工肺,不存在上述弊端。

人膜式人工肺早期使用的是PTFE膜。1963年,Bodell首先用硅橡胶制造了毛细管型膜式氧合器,目前已得到大规模的临床应用。前述的膜式充氧器作为人工肺是微孔膜在医疗中的主要应用之一。

3.2.2 药物生产过程中去除菌及固悬物

微滤膜、超滤膜除了用于对药液本身进行过滤、去除药物及注射针剂中细菌和微粒外,还用于制药用水的纯化和制备,用气的纯化和其他消毒过程。可解决热压灭菌法中细菌尸体仍留在药液中的问题。

药品在储存、运输、使用过程中均有可能被污染,同时多种药物的配合也会产生粒子,可用微滤、超滤作为药液进入人体之前净化处理的终端。

对于热敏性药物,如胰岛素、辅酶A、细胞色素C、疫苗、抗生素、诊断血管注射剂和各类血液制品及组织培养液等,不能用加热或化学法灭菌,微滤膜过滤技术除菌是最佳的选择。其优点在于不改变药物原来的性质,细菌尸体可以被膜截留而脱除,而且便于实现药物生产的机械化和自动化。

3.2.3 药物检验与疾病诊断

微滤膜还用于药品的无菌检验,目的是检查药品制剂灭菌是否彻底。

由于微滤膜的分离作用,微生物可以将从一切有害于其生长繁殖的可溶性成分中分离出来并得到富集,这是微滤技术用于化验和疾病诊断的技术基础。可采用微滤技术的方面有以下两个。一是癌症的早期诊断。采用微滤技术过滤大量体液以收集为数甚少的癌细胞,这些癌细胞在滤膜上固定染色后其形态和结构便清晰等显现出来,有助于癌症的早期诊断。这种方法也同样适用于血液、脑脊液、痰液等方面的检查。二是细菌的快速检测。细菌被截留在膜表面上,经荧光抗体染色后用荧光显微镜直接进行镜检技术和菌种鉴定,从而可以省去接种、培养等繁琐的步骤和时间。

3.2.4 血浆分离

血清蛋白或抗血友病因子等血液制品都是从血浆中经过分离和提纯后得到的。传统的血浆分离过程是首先将捐献者的血液收集到塑料袋内。然后采用离心技术对红细胞和血浆进行分离。移去上层的血浆后,红细胞被回输到血液捐献者体内以便于每周三次从同一捐献者体内提取血浆。将微滤技术用于血浆分离可以实现血液连续流动血浆分离。即血液不断从捐献者的体内流出,经过微滤膜分离器,在血浆分离的同时将红细胞回输到体内,如此形成一个血浆连续分离的过程。同传统的血浆分离法相比,采用连续膜分离技术直接对人体血液分离有两个明显的优势:由于血液不必再被收集到塑料袋内而减少了交叉感染的几率;采集血浆所需的时间被大幅度地缩短。用于血浆分离的微滤膜的孔径太大或太小都不合适。孔径太大会导致非溶血红细胞泄漏,孔径太小则会阻碍部分高分子量血浆蛋白的滤过。比较合适的微滤膜孔径约为0.6um。另外,必须控制血液流动的速度以取得良好的分离效果。实验证明,通量和溶血均随血液流动速度的增加而提高,因此血流速度的提高有最大值,在该最大值以上而引起的溶血程度将无法接受。

血浆分离不仅可用于血库采集血浆,也可以用于对某些疾病的治疗。血浆交换疗法是用置换或净化过的血浆将血细胞组分回输入患者体内以达到清除患者血浆中有害组分的治疗方法。这种疗法在治疗各种自免疫疾病和失重导致的肌肉衰弱症等方面获得各种自免疫疾病和失重导致的肌肉衰弱症等方面获得了令人瞩目的成功。该技术对于扩散性胸癌、肝昏迷及免疫代谢紊乱患者的临床治疗也有一定成效。此外,该技术还可用于对药物过量患者或药物中毒患者实施排毒治疗。

4结论

膜分离材料是以化学、物理、材料、力学、化工过程等学科为基础,它的研究与发展具有多学科交叉的显著特点。而高分子材料具有分子链柔顺、可加工性好、价廉以及便于分子设计等特点,因此成为应用最广泛的膜分离材料。本文介绍了以高分子材料为主的一些常见的膜制备方法及其相应的应用。但是用高分子材料制膜过程中有结构不易控制的问题。目前,膜分离技术在我国的石油化工、制药、生化、环境、能源、电子、冶金、轻工、食品、海水淡化、医疗等领域已获得有效而广泛的应用。它也有力地带动了相关行业的科技进步,成为实现我国国民经济可持续发展战略的重要组成部分。然而,我国在膜分离技术的关键部件-膜材料和器件方面,与世界先进水平之间的差距仍然很大,许多膜材料仍然依赖进口。因此,我国必须大力加强膜材料的基础研究,加快膜材料的产业化步伐。

参考文献

[1] 徐又一,徐志康.高分子膜材料[J]. 19-97

[2] 汪锰,王湛,李政雄.膜材料及其制备[J]1-7

[3] 赵长生,蔡政武,乐以伦. 聚醚砜中空纤维血浆分离膜的孔径大小及分布,化学与分子工程,2001,8(5),295-299

[4] 吕晓龙.超滤膜孔径及其分布的测定方法[J].1995,21(3);137-141

[5] 李春杰,顾国维.膜生物反应器的研究进展,污染防治技术,1993,12(1)51-53

[6] 时钧,袁权,高从锴.膜技术手册, 北京.化学工业出版社,2001

[7] Mark C Porter,Handbook of Industrial Membrane Technology.New Jersey:Noyes Publications,1988

膜结构简介

膜结构的节点和相关结构设计 武岳胥传喜 (哈尔滨工业大学)(RIGHT TECH(S) PTE LTD) 提要: 介绍了膜结构节点设计的一般原则,给出了一些典型的节点连接做法,并介绍了膜结构中常见支承结构和基础结构的形式,着重阐述了桅杆和锚碇系统的设计要点。 关键词:张拉结构节点支承结构锚碇系统 Connection Detailing, Mast and Anchor Design for Tensile Membrane Structure Wu Yue Xu Chuanxi (Harbin Institute of Technology)(RIGHT TECH(S) PTE LTD) Abstract Connection detailing and calculation is the substantial part of membrane design. In this paper, some principles of detailing were discussed, and some typical details were introduced. Moreover, this paper also introduces some principles for supporting structures and foundation design with a focus on the design methodology of mast and tension anchors. Key words tensile structure, connection, supporting structure, tension anchor 在膜结构系统中,除了膜和索构件以外,还有支承结构(如桅杆、框架等)和基础结构(包括锚碇系统)。这些结构元素通过节点的有效连接,共同维持整个系统的平衡与稳定。节点的构造设计是膜结构设计中的一个重要环节。节点设计是否得当,不仅关系到加工制造难易和施工安装能否顺利进行(例如节点的调节量不足就可能会导致结构局部安装不到位或出现较多褶皱)、影响节点的耐久性和美观程度,还关系到结构的整体性和可靠度。从国内外已发生的一些膜结构破坏工程实例来看,节点构造措施不当导致膜材撕裂,是引发工程事故的主要原因之一。 1. 节点设计的一般原则 膜结构节点具有传递荷载、将结构构件连成整体和提供初始预张力施加点等作用;在进行节点设计时,应综合考虑结构、构造、施工张拉等方面的要求,既要遵循普通钢结构节点设计的一般原则,又要考虑到结构形式和所用材料的具体特点。节点设计要遵循以下一般原则: (1)结构强度要求 节点连接件本身应具有足够的强度、刚度和稳定性,以保证其在各种工况下均能可靠地传递荷载,不先于主体材料和构件破坏。 (2)对结构大变形的适应能力 膜结构在风荷载作用下易产生较大的变形和振动,节点和连接应具有一定的灵活性和自由度,以释放由于大变形所引发的附加应力作用。

高分子膜材料的制备方法

高分子膜材料的制备 方法 xxx级 xxx专业xxx班 学号:xxxxxxx xxx

高分子膜材料的制备方法 xxx (xxxxxxxxxxx,xx) 摘要:膜技术是多学科交叉的产物,亦是化学工程学科发展的新增长点,膜分离技术在工业中已得到广泛的应用。本文主要介绍了高分子分离膜材料较成熟的制膜方法(相转变法、熔融拉伸法、热致相分离法),而且介绍了一些新的制膜方法(如高湿度诱导相分离法、超临界二氧化碳直接成膜法以及自组装制备分离膜法等)。 关键词:膜分离,膜材料,膜制备方法 1.引言 膜分离技术是当代新型高效的分离技术,也是二十一世纪最有发展前途的高新技术之一,目前在海水淡化、环境保护、石油化工、节能技术、清洁生产、医药、食品、电子领域等得到广泛应用,并将成为解决人类能源、资源和环境危机的重要手段。目前在膜分离过程中,对膜的研究主要集中在膜材料、膜的制备及膜过程的强化等三大领域;随着膜过程的开发应用,人们越来越认识到研究膜材料及其膜技术的重要性,在此对膜材料的制备技术进行综述。 2.膜材料的制备方法

2.1 浸没沉淀相转化法 1963年,Loeb和Sourirajan首次发明相转化制膜法,从而使聚合物分离膜有了工业应用的价值,自此以后,相转化制膜被广泛的研究和采用,并逐渐成为聚合物分离膜的主流制备方法。所谓相转化法制膜,就是配置一定组成的均相聚合物溶液,通过一定的物理方法改变溶液的热力学状态,使其从均相的聚合物溶液发生相分离,最终转变成一个三维大分子网络式的凝胶结构。相转化制膜法根据改变溶液热力学状态的物理方法的不同,可以分为一下几种:溶剂蒸发相转化法、热诱导相转化法、气相沉淀相转变法和浸没沉淀相转化法。 2.1.1 浸没沉淀制膜工艺 目前所使用的膜大部分均是采用浸没沉淀法制备的相转化膜。在浸没沉淀相转化法制膜过程中,聚合物溶液先流延于增强材料上或从喷丝口挤出,而后迅速浸入非溶剂浴中,溶剂扩散进入凝固浴(J2),而非溶剂扩散到刮成的薄膜内(J1),经过一段时间后,溶剂和非溶剂之间的交换达到一定程度,聚合物溶液变成热力学不稳定溶液,发生聚合物溶液的液-液相分离或液-固相分离(结晶作用),成为两相,聚合物富相和聚合物贫相,聚合物富相在分相后不久就固化构成膜的主体,贫相则形成所谓的孔。 浸入沉淀法至少涉及聚合物/溶剂/非溶剂3个组分,为适应不同应用过程的要求,又常常需要添加非溶剂、添加剂来调整铸膜液的配方以及改变制膜的其他工艺条件,从而得到不同的结构形态和性能的膜。所制成的膜可以分为两种构型:平板膜和管式膜。平板膜用于板

小度写范文[膜结构建筑及膜材料的发展] 膜结构建筑,张拉膜,上海摩模板

[膜结构建筑及膜材料的发展] 膜结构建筑,张拉膜,上海摩 随着北京奥运会及上海世博会的顺利落幕,其中的大型膜结构建筑给人们留下了深刻的印象。本文介绍了近年来国内外膜结构材料的发展及其在建筑领域的应用,并对几类主要产品以及不同生产商生产的同类产品进行了性能对比,通过各类产品的优劣性对比,期望能为广大下游用户提供一定的参考。The noticeable mega membrane structures presented in the Beijing 2008 Olympic Games and Shanghai Expo 2010 have undoubtedly attracted lots of attention. Development trajectory of membranes and the application of which in the architectural field were introduced in this paper. Product performances of some major categories manufactured by different producers were compared to finalize the superior ones for the reference of downstream users. 120世纪膜结构建筑和膜结构材料的发展历程1.1国际上膜结构建筑的发展情况一般认为,现代膜结构建筑的出现是从1970年大阪世博会开始的。其标志性建筑是在该届世博会上展出的美国馆,它采用气承式膜结构建筑,外形近视椭圆形,具体尺寸为140 m×83.5 m。该展馆之所以在当时受到瞩目,是因为它是世界上首次出现的现代膜结构建筑,其使用的膜材是玻纤织物涂以聚氯乙烯(PVC)树脂,与后来大量建造的膜结构建筑材料类似。大阪世博会以后,在20世纪最后的 20 年中,膜结构建筑得到了快速发展。当时据专家估计,1970 ― 1996年世界上大约已建造了 150 座大型膜结构建筑,其中美国占有很大的比例。下面是一些具有代表性的膜结构建筑及其所用膜材。1952年沙特阿拉伯建成吉大(Jeddah)机场哈吉(Haj)候机厅,至今它仍是世界上最大的膜结构建筑,总面积达到 42 万m2,全部使用玻纤织物涂以聚四氟乙烯(PTFE)树脂,织物面积超过 50 万m2。大约1995年左右,美国建造了丹佛(Denver)国际机场,采用双层玻纤织物涂以PTFE树脂的膜结构建筑,篷面设计可透过光线,使整个场所都有充足的采光,顶篷由钢制栓柱和缆绳吊住,面积为 2 万m2。1996年美国在亚特兰大建造的乔治亚圆顶体育馆,整个圆顶采用缆绳支持,该建筑首次应用于1996年奥运会会场。 1.2中国膜结构建筑的发展情况中国的膜结构建筑发展相对较晚,1997年在上海建成了容纳 8 万人的上海体育场,这是我国首次将膜结构建筑应用到大型体育场上,其覆盖面积为3.61 万m2,所用的膜材料全部从国外进口,包括玻纤织物涂PTFE树脂的膜材料和一些附属材料,设计、施工也依赖外国公司。据了解,其造价比传统的建筑要高得多,但其对我国膜结构建筑的发展影响甚大。我国第 2 个大型膜结构建筑是青岛颐中体育场,总面积为 3 万m2,所采用的膜材料为涤纶工业丝织造的织物,以PVC进行涂层,其顶面层再覆以聚偏氟乙烯层(PVDF),可容纳 6 万观众。自此以后,膜结构建筑在我国得到了迅速发展,如上海虹口足球场,武汉、郑州、广州等一些城市都纷纷建造了运动场馆,甚至一些中小城市亦相继效仿。除了体育场馆外,如展览馆、会展中心、水上乐园、剧场、飞机场、加油站等亦纷纷采用膜结构建筑。2膜结构材料的分类及其性能特点根据以上介绍,20世纪开发出的膜材基本上都以纺织材料为基材(包括玻璃纤维和涤纶,用以织成织物),表面再加以涂层(或贴合)。主要有两大类,一类是玻璃纤维涂PTFE树脂;另一类是涤纶织物涂PVC树脂,两种膜材的性能优劣如表 1 所示。下面主要对这两种膜材进行详细分析。(1)以玻纤织物为基材,用PTFE(或硅树脂)涂层①产品特点这种膜材是由美国DuPont(杜邦)公司和Dow Corning(道康宁)公司首先开发出来的,其优点是膜材的强度高,力学性能十分优异,同时具有很高的热稳定性和化学惰性,防火、不燃、不受紫外线影响,具有很高的自洁性和耐用性,根据资料,其使用寿命可达 25 ~ 30 年。这种膜材透光性较好,透光率可达 25%,光线柔和,膜材对太阳光的反射率可达 70% 以上,可减少热量的传递,保持膜结构表面和内部不至于因阳光照射而升温过高。在膜结构建

干膜技术性能应用全方位分析与介绍

干膜技术性能应用全方位分析与介绍 印制电路制造者都希望选用性能良好的干膜,以保证印制板质量,稳定生产,提高效益。近年来随着电子工业的迅速发展,印制板的精度密度不断提高,为满足印制板生产的需要,不断有推出新的干膜产品,性能和质量有了很大的改进和提高。 使用干膜时,首先应进行外观检查。质量好的干膜必须无气泡、颗粒、杂质;抗蚀膜厚度均匀;颜色均匀一致;无胶层流动。如果干膜存在上述要求中的缺陷,就会增加图像转移后的修版量,严重者根本无法使用。膜卷必须卷绕紧密、整齐,层间对准误差应小于1mm,这是为了防止在贴膜时因卷绕误差而弄脏热压辊,也不会因卷绕不紧而出现连续贴膜的故障。聚酯薄膜应尽可能薄,聚酯膜太厚会造成曝光时光线严重散射,而使图像失真,降低干膜分辨率。聚酯薄膜必须透明度高,否则会增加曝光时间。聚乙烯保护膜厚度应均匀,如厚度不均匀将造成光致抗蚀层胶层流动,严重影响干膜的质量。一般在产品包装单或产品说明书上都标出光致抗蚀层的厚度,可根据不同的用途选用不同厚度的干膜。如印制蚀刻工艺可选光致抗蚀层厚度为25m 的干膜,图形电镀工艺则需选光致抗蚀层厚度为38m 的干膜。如用于掩孔,光致抗蚀层厚度应达到50 m。 当在加热加压条件下将干膜贴在覆铜箔板表面上时,贴膜机热压辊的温度105土10℃,传送速度0.9~1.8米/分,线压力0.54公斤/cm,干膜应能贴牢。 感光性包括感光速度、曝光时间宽容度和深度曝光性等。感光速度是指光致抗蚀剂在紫外光照射下,光聚合单体产生聚合反应形成具有一定抗蚀能力的聚合物所需光能量的多少。在光源强度及灯距固定的情况下,感光速度表现为曝光时间的长短,曝光时间短即为感光速度快,从提高生产效率和保证印制板精度方面考虑,应选用感光速度快的干膜。 干膜曝光一段时间后,经显影,光致抗蚀层已全部或大部分聚合,一般来说所形成的图像可以使用,该时间称为最小曝光时间。将曝光时间继续加长,使光致抗蚀剂聚合得更彻底,且经显影后得到的图像尺寸仍与底版图像尺寸相符,该时间称为最大曝光时间。通常干膜的最佳曝光时间选择在最小曝光时间与最大曝光时间之间。最大曝光时间与最小曝光时间之比称为曝光时间宽容度。

膜结构介绍

膜结构介绍 一种适合建筑的新材料的出现,必然引建筑结构的革命,如历史上的混凝土和钢材,70年代以来,以欧美为中心发展起来的新型织物膜材,也是如此,用这种优良的织物,辅以柔性或钢性支撑,可绷成一个曲率互反,有一定刚度和张力的结构体系。这种全新的建筑结构形式,集建筑学、结构力学、材料学与精细化工、计算机技术等为一体,具有以下优秀的特点: 1、造型的艺术性。它既能充分发挥建筑师的想象力,又能体现结构构件清晰受力之类。 2、良好的自洁性。膜建筑中采用具有防护涂层的膜材,可使建筑具有良好的自洁效果,同时保证建筑的使用寿命。 3、施工的快捷性。膜建筑工程中所有加工和制作均在工厂内完成,现场只进行半成品组装,因此施工简便快捷,施工周期短。 4、较好的经济性。由于膜材具有一定的透光率,白天可减少照明强度和时间,因而比较节约能源,降低了长期使用费用,同时夜间彩灯透射形成的绚烂景观也能达到很好的广告宣传效益。 5、 结构自重轻,非常适合于建造大跨度空间结构。 膜结构的分类 膜结构按结构受力特性大致可分为充气式膜结构、张拉式膜结构(Tension/Suspension membrane structure)、骨架式膜结构(Frame membrane strcture,Cable dome membrane structure)、组合式膜结构(Compound membrane structure)等几大类。 充气式膜结构张拉式膜结构

骨架式膜结构组合式膜结构 膜 应 用 领 域: ★ 体育设施: 体育场、健身中心、游泳馆、网球馆、篮球馆等。 ★ 商业设施: 商场、购物中心、大型会展场所、餐厅、酒店(挑檐)等。 ★ 文化设施: 展览中心、剧院、会议厅、博物馆、植物园、水族馆、音乐广场等。 ★ 交通设施: 机场、火车站、公交车站、收费站、码头、加油站、天桥连廊等。 ★ 工业设施: 工厂、仓库、科研中心、处理中心、温室、物流中心等。 ★ 景观设施: 建筑入口、标志性建筑或景观性小品、广场休闲区、海滨娱乐休闲建筑、居住小区、游乐场、步行街、停车场、楼宇屋顶改造更新等。  与膜结合的结构大约有下述几类: 纯钢拱形结构 采用传统的梁柱系统,屋顶为圆拱式,柱梁间距一般为8m左右。 混凝土结构主体加钢拱 以上两种最简单的膜结构,依平面的形状,如方形、菱形等,可有许多变化,拱的间距依使用的膜材强度、设计荷载、风力等确定。 混凝土主体结构加钢索 脊素为上弯,位于膜布下面,谷索为下弯,位于膜上面。两种钢索的弯向相反张拉后造成相反方向的垂直力,使膜市受到垂直方向的张力,膜布中水平方向的张力直接张拉形成。 混凝土主体结构加钢柱 张拉式帐篷膜结构 大型(跨度在200m以上)气撑式膜结构 用扁钢作的钢索加上膜布,可以做成大跨度的巨型屋顶。这种建筑,结构简单,施工方便,经济效益高,无需维修。但因需常年维持封闭,进出较不便,现己不再新建,但仍不失为一种好的结构形式。由于膜结构需要精确的设计及剪裁,以达到理想的效果,大卫、盖格和哥伦比亚大学的同僚迈克、马克麦克和约塞夫、赖特共同开发了非线性钢索计算程式,为气撑式大型膜屋顶工程设计奠定了基础。自1973年至1978年,在世界各地一连建造了12座气撑式膜结构大型室内体育馆,与同时期落成的其他球场比较,这些膜结构的体育馆不但价格便宜,而且施工快。面积40000m2的银顶球场的屋顶只用了11.5个月即全部完成。为世界最大之室内体育馆。

水处理技术之7种膜技术简介

水处理技术之7种膜技术 膜分离技术被公认为是目前最有发展前途的高科技之一。膜分离技术是以选择性多孔薄膜为分离介质,使分子水平上不同粒径分子的混合物/溶液借助某种推动力(如:压力差、浓度差、电位差等)通过膜时实现选择性分离的技术,低分子溶质透过膜,大分子溶质被截留,以此来分离溶液中不同分子量的物质,从而达到分离、浓缩、纯化目的。 近些年来,扩散定理、膜的渗析现象、渗透压原理、膜电势等研究为膜技术的发展打下了坚实的理论基础,膜分离技术日趋成熟,而相关科学技术的突飞猛进也使得膜的实际应用已十分广泛从环境、化工、生物到食品各行业都采用了膜分离技术。 迄今为止,水处理的膜技术主要有以下几种: (1)反渗透(RO)膜技术。 反渗透(又称高滤)过程是渗透过程的逆过程,推动力为压力差,即通过在待分离液一侧加上比渗透压高的压力,使原液中的溶剂被压到半透膜的另一侧。反渗透技术的特点是无相变,能耗低、膜选择性高、装置结构紧凑,操作简便,易维修和不污染环境等。 (2)纳滤(NF)膜技术。 纳滤技术是超低压具有纳米级孔径的反渗透技术。纳滤膜技术对单价离子或相对分子质量低于200的有机物截留较差,而对二价或多价离子及相对分子质量介于200-1000的有机物有较高脱除率。纳滤膜具有荷电,对不同的荷电溶质有选择性截留作用,同时它又是多孔膜,在低压下透水性高。 (3)微滤(MF)膜技术。 微滤膜是以静压差为推动力,利用筛网状过滤介质膜的筛分作用进行分离。微滤膜是均匀的多孔薄膜,其技术特点是膜孔径均一、过滤精度高、滤速快、吸附量少且无介质脱落等。主要用于细菌、微粒的去除,广泛应用在食品和制药行业中饮料和制药产品的除菌和净化,半导体工业超纯水支配过程中颗粒的去除,生物技术领域发酵液中生物制品的浓缩与分离。 (4)超滤(UF)膜技术。 超滤是以压差为驱动力,利用超滤膜的高精度截留性能进行固液分离或使不同相对分子质量物质分级的膜分离技术。其技术特点是:能同时进行浓缩和分离大分子或胶体物质。与反渗透相比,其操作压力低,设备投资费用和运行费用低,无相变,能耗低且膜选择性高。在食品、医药、工业废水处理、超纯水制备及生物技术工业领域应用较广泛。 (5)电渗析(ED)膜技术。 电渗析是一个电化学分离过程,是在直流电场作用下以电位差为驱动力,通过荷电膜将溶液中带电离子与不带电组分分离的过程。该分离过程是在离子交换膜中完成的。主要应用于海水淡化,苦咸水脱盐,海水浓缩制盐,乳精、糖、酒、饮料等的脱盐净化,锅炉给水、冷却循环水软化,废水中高价值物质回收与水的回用,废酸、废碱液净化与回收等。 (6)双极膜(BPM)技术。 双极膜是由阴离子交换膜和阳离子交换膜叠压在一起形成的新型分离膜。阴阳膜的复合可以将不同电荷密度、厚度和性能的膜材料在不同的复合条件下制成不同性能和用途的双极膜。主要应用于酸碱生产、烟道气脱硫、食盐电解等。 (7)渗透蒸发(PV)膜技术。 渗透蒸发是一个压力驱动膜分离过程,它是利用液体中两种组分在膜中溶解度与扩散系数的差别,通过渗透与蒸发,达到分离目的的一个过程,其设备投资和运行费用较低。近年来,对渗透蒸发技术的研究虽然进展很快,但它单独使用的经济性并不好。 【广州奥凯环保科技水处理设备公司采编】

膜结构行业介绍6

膜结构的发展历史 世界上第一座充气膜结构建成于1946年,设计者为美国的沃尔特·勃德(W.Bird),这是一座直径为15m的充气穹顶。1967年在德国斯图加特召开的第一届国际充气结构会议,无疑给充气膜结构的发展注入了兴奋剂。随后各式各样的充气膜结构建筑出现在1970年大阪世界博览会上。其中具有代表性的有盖格尔设计的美国馆(137m×78m 卵形),以及川口卫设计的香肠形充气构件膜结构。后来人们认为70年大阪博览会是把膜结构系统地、商业性地向外界介绍的开始。大阪博览会展示了人们可以用膜结构建造永久性建筑。而70年代初美国盖格尔-勃格公司 (Geiger-Berger Associates)开发出的符合美国永久建筑规范的特氟隆(Teflon)膜材料为膜结构广泛应用于永久、半永久性建筑奠定了物质基础。 之后,用特氟隆材料做成的室内充气式膜结构相继出现在大中型体育馆中,如1975年建成的密歇根州庞蒂亚克“银色穹顶”(椭圆形220×159m),1988年建成的日本东京体育馆(室内净面积4,6767㎡)。 张拉形式膜结构的先行者是德国的奥托(F.Otto),他在1955年设计的张拉膜结构跨度在25m左右,用于联合公园多功能展厅。由于张拉膜结构是通过边界条件给膜材施加一定的预张应力,以抵抗外部荷载的作用,因此在一定初始条件(边界条件和应力条件)下,其初始形状的确定、在外荷载作用下膜中应力分布与变形以及怎样用二维的膜材料来模拟三维的空间曲面等一系列复杂的问题,都需要有计算来确定,所以张拉膜结构的发展离不开计算机技术的进步和新算法的提出。 目前国外一些先进的膜结构设计制作软件已非常完善,人们可以通过图形显示看到各种初始条件和外荷载作用下的形状与变形,并能计算任一点的应力状态,使找形(初始形状分析)、裁剪和受力分析集成一体化,使得膜结构的设计大为简便,它不但能分析整个施工过程中各个不同结构的稳定性和膜中应力,而且能精确计算由于调节索或柱而产生的次生应力,完全可以避免各种不利荷载式况产生的不测后果。 因此计算机技术的迅猛发展为张拉膜结构的应用开辟了广阔的前景。而特氟隆膜摸材料的研制成功也极大地推动了张拉膜结构的应用。比较著名的有沙特阿拉伯吉达国际航空港、沙特阿拉伯利雅得体育馆、加拿大林德塞公园水族馆、英国温布尔登室内网球馆、美国新丹佛国际机场等。 张拉膜结构的特征 张拉膜结构作为一种建筑体系所具有的特性主要取决于其独特的形态及膜材本身的性能。恰由于此,用膜结构可以创造出传统建筑体系无法实现的设计方案。 轻质:张拉膜结构自重小的原因在于它依靠预应力形态而非材料来保持结构的稳定性。从而使其自重比传统建筑结构的小得多,但却具有良好的稳定性。建筑师可以利用其轻质大跨的特点设计和组织结构细部构件,将其轻盈和稳定的结构特性有机地统一起来。 透光性:透光性是现代膜结构最被广泛认可的特性之一。膜材的透光性可以为建筑提供所需的照度,这对于建筑节能十分重要。对于一些要求光照多且亮度高的商业建筑等尤为重要。通过自然采光与人工采光的综合利用,膜材透光性可为建筑设计提供更大的美学创作空间。夜晚,透光性可将膜结构变成了光的雕塑。 膜材透光性是由它的基层纤维、涂层及其颜色所决定的。标准膜材的光谱透射比在10%~20%之间,有的膜材的光谱透射比可以达到40%,而有的膜材则是不透光的。膜材的透光性及对光色的选择可以通过涂层的颜色或是面层颜色来调节。

膜结构的发展史

膜结构的发展历史 世界上第一座充气STRONG>膜结构建成于1946年,设计者为美国的沃尔特·勃德(W.Bird),这是一座直径为15m的充气穹顶。1967年在德国斯图加特召开的第一届国际充气结构会议,无疑给充气膜结构的发展注入了兴奋剂。随后各式各样的充气膜结构建筑出现在1970年大阪世界博览会上。其中具有代表性的有盖格尔设计的美国馆(137m×78m卵形),以及川口卫设计的香肠形充气构件膜结构。后来人们认为70年大阪博览会是把膜结构系统地、商业性地向外界介绍的开始。大阪博览会展示了人们可以用膜结构建造永久性建筑。而70年代初美国盖格尔-勃格公司(Geiger-Berger Associates)开发出的符合美国永久建筑规范的特氟隆(Teflon)膜材料为膜结构广泛应用于永久、半永久性建筑奠定了物质基础。 之后,用特氟隆材料做成的室内充气式膜结构相继出现在大中型体育馆中,如1975年建成的密歇根州庞蒂亚克“银色穹顶”(椭圆形220×159m),1988年建成的日本东京体育馆(室内净面积4,6767㎡)。 构跨度在25m左右,用于联合公园多功能展厅。由于张拉膜结构是通过边界条件给膜材施加一定的预张应力,以抵抗外部荷载的作用,因此在一定初始条件(边界条件和应力条件)下,其初始形状的确定、在外荷载作用下膜中应力分布与变形以及怎样用二维的膜材料来模拟三维的空间曲面等一系列复杂的问题,都需要有计算来确定,所以张拉膜结构的发展离不开计算机技术的进步和新算法的提出。 目前国外一些先进的膜结构设计制作软件已非常完善,人们可以通过图形显示看到各种初始条件和外荷载作用下的形状与变形,并能计算任一点的应力状态,使找形(初始形状分析)、裁剪和受力分析集成一体化,使得膜结构的设计大为简便,它不

薄膜材料制备原理、技术及应用知识点2013by张为政

薄膜材料制备原理、技术及应用知识点1 一、名词解释 1. 气体分子的平均自由程:自由程是指一个分子与其它分子相继两次碰撞之间,经过 的直线路程。对个别分子而言,自由程时长时短,但大量分子的自由程具有确定的统计规律。气体分子相继两次碰撞间所走路程的平均值。 2. 物理气相沉积(PVD):物理气相沉积(Physical Vapor Deposition,PVD)技术表示在真 空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。 3. 化学气相沉积(CVD):化学气相沉积(Chemical vapor deposition,简称CVD)是反应 物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程。 4. 等离子体鞘层电位:等离子区与物体表面的电位差值ΔV p即所谓的鞘层电位。 5. 溅射产额:即单位入射离子轰击靶极溅出原子的平均数,与入射离子的能量有关。 6. 自偏压效应:在射频电场起作用的同时,靶材会自动地处于一个负电位下,导致气 体离子对其产生自发的轰击和溅射。 7. 磁控溅射:在二极溅射中增加一个平行于靶表面的封闭磁场,借助于靶表面上形成 的正交电磁场,把二次电子束缚在靶表面特定区域来增强电离效率,增加离子密度和能量,从而实现高速率溅射的过程。 8. 离子镀:在真空条件下,利用气体放电使气体或被蒸发物部分离化,产生离子轰击 效应,最终将蒸发物或反应物沉积在基片上。结合蒸发与溅射两种薄膜沉积技术而发展的一种PVD方法。 9. 离化率:被离化的原子数与被蒸发气化的原子数之比称为离化率.一般离化装置的 离化率仅为百分之几,离化率较高的空心阴极法也仅为20~40% 10. 等离子体辅助化学气相沉积(PECVD)技术:是一种用等离子体激活反应气体,促 进在基体表面或近表面空间进行化学反应,生成固态膜的技术。等离子体化学气相沉积技术的基本原理是在高频或直流电场作用下,源气体电离形成等离子体,利用低温等离子体作为能量源,通入适量的反应气体,利用等离子体放电,使反应气体激活并实现化学气相沉积的技术。 11. 外延生长:在单晶衬底(基片)上生长一层有一定要求的、与衬底晶向相同的单晶 层,犹如原来的晶体向外延伸了一段,故称外延生长。 12. 薄膜附着力:薄膜对衬底的黏着能力的大小,即薄膜与衬底在化学键合力或物理咬 合力作用下的结合强度。 二、填空: 1、当环境中元素的分压降低到了其平衡蒸气压之下时,元素发生净蒸发。反之,元素发生 净沉积。 2、在直流放电系统中,气体放电通常要经过汤生放电阶段、辉光放电阶段和弧光放电阶段 三个放电过程,其中溅射法制备薄膜主要采用辉光放电阶段所产生的大量等离子体来形 1 微观永远大于宏观你永远大于人类今天永远大于永远■■■■■■■■纯属个人行为,仅供参考■■■■■■■■勿删■■■■■■■■■

膜结构发展

工程应用 2008年鸟巢竣工的北京奥运会场馆“鸟巢”和“水立方”膜结构采用ETFE膜材,是目前国内最大的ETFE膜材结构建筑,膜材采用进口产品。“鸟巢”采用双层膜结构,外层用ETFE防雨雪防紫外线,内层用PTFE达到保温、防结露、隔音和光效的目的。“水立方”采用双层ETFE充气膜结构,共1437块气枕,每一块都好像一个“水泡泡”,气枕可以通过控制充气量的多少,对遮光度和透光性进行调节,有效地利用自然光,节省能源,并且具有良好的保温隔热、消除回声,为运动员和观众提供温馨,安逸的环境。目前国内膜结构发展振奋人心,随着一些大型体育馆、候机大厅等建设以及201年上海世博会和广州亚运会等国际盛会的举办,为我国膜结构的发展带来了机遇和挑战。尤其在膜材方面,我国起步晚,技术水平低,大部分膜材还主要依靠进口。PTFE、PVC和表面改性的PVC、ETFE等膜材是市场的主流,应用比较广泛。我国已有PTFE膜材的自主知识产权,性能也基本达到国外同类产品的要求。很多公司、科研单位以及高校都在进行PVC表面涂层材料的研究,如PVDF、纳米TiO2表涂剂等的研究已初见成效,另外在表面防污自洁处理方面的研究如仿生荷叶构筑微粗糙表面也开始起步。在引进世界一流的生产设备和工艺技术的同时,加紧消化吸收并改进创新,尽快开发适合我国市场需求的膜材表面处理技术,对提升我国整个产业用纺织品产国家游泳馆“水立方”品档次和市场竞争力都具有重要意义。索膜结构是用高强度柔性薄膜材料经受其它材料的拉压作用而形成的稳定曲面,能承受一定外荷载的空间结构形式。其造型自由、轻巧、柔美,充满力量感,节能、使用安全等优点,因而使它在世界各地受到广泛应用,膜结构建筑作为新的建筑形式于本世纪五十年代在国际上开始出现,至今已有四十多年的历史,特别是到了七十年代以后膜结构的应用得到了迅速发展。膜结构的出现为建筑师们提供了超出传统建筑模式以外的新选择。膜结构一改传统建筑材料而使用膜材,其重量只是传统建筑的三十分之一。而且膜结构可以从根本上克服传统结构在大跨度(无支撑)建筑上实现时所遇到的困难,可创造巨大的无遮挡的可视空间。其造型自由轻巧、阻燃、制作简易、安装快捷、节能、易于、使用安全等优点,因而使它在世界各地受到广泛应用。另外值得一提的是,在阳光的照射下,由膜覆盖的建筑物内部充满自然漫射光,无强反差的着光面与阴影的区分,室内的空间视觉环境开阔和谐。夜晚,建筑物内的灯光透过屋盖的膜照亮夜空,建筑物的体型显现出梦幻般的效果。这种结构形式特别适用于大型体育场馆、入口廊道、小品、公众休闲娱乐广场、展览会场、购物中心等领域。张拉膜结构(Tesioned Membrane Structure) ,是依靠膜自身的张拉应力与支撑杆和拉索共同构成机构体系。在阳光的照射下,由膜覆盖的建筑物内部充满自然漫射光,无强反差的着光面与阴影的区分,室内的空间视觉环境-广西北海度假村680方开阔和谐。夜晚,建筑物内的灯光透过屋盖的膜照亮夜空,建筑物的体型显现出梦幻般的效果。张拉膜结构特别适合用来建造城市标志性建筑的屋顶,如体育与娱乐性场馆,需有广告效应的商场、餐厅等。城市的交通枢纽是城市命脉的关键性建筑,使用功能要求建筑物各组成单元的标志明确。因而近来年,这类建筑越来越多采用膜结构。建筑膜材料的使用寿命为25 年以上。在使用期间,在雪或风荷载作用下均能保持材料的力学形态稳定不变。建成于1973 年的美国加州La Verne大学的学生活动中心是已有23 年历史的张拉膜结构建筑.跟踪测试与材料的加载与加速气候变化的试验,证明它的膜材料的力学性能与化学稳定性指标下降了20 %至30 %,但仍可正常使用。膜的表层光滑,具有弹性,大气中的灰尘、

膜结构体系的应用和发展

张其林/ZHANG Qilin 摘要:本文分析了膜结构中曲面单元的建筑几何特征,通过 工程实例展示了膜结构体系的类型及其特点,介绍了在新型 膜结构体系方面的若干研究成果,探讨了膜结构体系的应用 和发展趋势。 Abstract: This article analyzes the architectural characteristic of curved surface in membrane structure. By presenting several real projects, it introduces different types of membrane system and their features, presents recent research on new membrane systems, and discusses the trends of application and development of membrane structure systems. 关键词:膜结构建筑,膜材料,膜结构体系 Key words: Membrane architecture, Membrane materials, Membrane structure systems 作者单位:同济大学土木工程学院 收稿日期:2009-08-25 一、 前言 膜结构在国内的应用晚于世界近50年,但近10几 年来,膜结构在国内的应用发展速度高于世界任何地 区。目前,膜结构已广泛应用于大型体育场馆、展览中 心、航空和铁路交通、文化娱乐等公共建筑中,雕塑、小 品等小型临时建筑也在公共绿地和公园中极为普遍。 膜结构之所以得到如此众多的建筑师的青睐和日益 广泛的应用,根本原因在于膜材料的独特性。区别于传 统建筑材料钢、混凝土及玻璃的“刚性”本质,膜材料是 一种完全“柔性”的材料,又是一种介乎不透明的钢或混 凝土与全透明的玻璃之间的“半透光”的材料。因这些特 质,膜结构可以生成各类丰富多彩、复杂多变的空间光 滑曲面,能够充分反映建筑师的独特个性,甚至能够生 成令建筑师感到惊喜的出乎其意的建筑效果。 膜结构按所采用的材料,可划分为PVC材料膜结 构、PTFE材料膜结构、ETFE材料膜结构;按其建筑几 何元素,可划分为马鞍形膜结构、伞形膜结构、碗形膜 结构;按其支承结构体系及支承方式,可划分为张拉膜 结构、框架支承膜结构、气承式膜结构、气枕膜结构; 按其使用功能和使用方式,还可划分为可移动、可展开、 可开合膜结构等。 二、膜材料的类型和基本特点 膜材料可分为两大类:基层涂层类和高分子复合类。 基层涂层类材料由双向纤维编织的基材和具有耐久 和自洁功能的涂层组成[1],见图1所示。其中,基材有 玻璃纤维基材和聚酯纤维基材两类,涂层有PVC和PTFE 两类。玻璃纤维基材一般覆盖PTFE涂层,而聚酯纤维 基材一般覆盖PVC涂层。所以,常将玻璃纤维类膜材称 为PTFE材料,将聚酯纤维类膜材称为PVC膜材。 高分子复合类膜材是ETFE材料经特殊处理后制造 的高强度薄膜材料,常称为ETFE膜材。 膜结构体系的应用和发展 THE APPLICATION AND DEVELOPMENT OF MEMBRANE STRUCTURE SYSTEMS 膜材料是一种完全柔性的面料,所以膜面受拉时张 紧,拉力为零时松弛褶皱。越是曲率半径小的膜面越能 保证其保持较大水平的拉力,平面膜面极易发生应力松 弛而导致褶皱,所以膜面必是曲面。但膜材料成品是平 的,当采用平的膜成品制成曲面膜面时,只能将成品平 面裁剪成具有较窄宽度的裁剪片,各裁剪片拼接形成近 似曲面,再经张拉才能形成光滑的膜面。裁剪片之间拼 接缝具有两层膜面厚度,与单层膜面透光率差异很大, 所以拼接缝在膜面上是可见且极为明显的(图2)。如果 膜面上拼接缝杂乱无章,将大大影响其美观性,所以必 须按一定规则设计一个美观的拼接缝图案。 PVC、PTFE和ETFE膜材料均具有一定的弹性变形 能力。其中PVC的变形能力最强,因而仅需较小的张力 就可生成较光滑的曲面,但相对而言,PVC膜材的耐久 性和自洁能力又较差,一般用于临时建筑和半永久性建 筑中。PTFE可用于永久性建筑中,但价格一般高于PVC 材料。相对于PVC和PTFE膜材,无基材的ETFE材料的 应力蠕变现象明显且持续时间长[2],所以宜用于制作充 气单元,这样可以通过补充空气维持气压稳定以保持膜 面具有足够的张力、不因蠕变而松弛。因为没有基材, ETFE是一种近乎透明的材料,所以运用小尺度的充气 ETFE膜单元还可以替代玻璃面板或配以灯光达到特殊 的建筑效果。PVC和PTFE为半透光的材料,所以在大 面积覆盖的建筑屋面中运用PVC和PTFE在白天无需照 明,将达到很好的节能效果。PVC和PTFE的水密性和 气密性不亚于ETFE,所以也可应用于各类充气单元和 充气结构中。 三、膜结构表面的建筑几何元素 任何复杂或大型的膜结构表面均是由许多相对独立 的曲面单元组成的,曲面单元是指至少包含一个多边形 封闭边界的面内受拉的膜面单元。在一个多边形封闭边 12 1 基层涂层类膜材 2 膜面上的裁剪缝

膜结构

一、膜结构概述 膜结构是用多种高强薄膜材料( PVC 或Teflon) 及加强构件(钢架、钢柱或钢索)通过一定的方式使其内部产生一定的预应力以形成某种空间结构形状,作为覆盖结构,并能承受一定的外荷载作用的一种空间结构形式。 膜结构有如下特点:造型活泼优美, 富有时代气息; 自重轻,适合大跨度的建筑; 可充分利用自然光,减少能源消耗;造价相对低廉,施工速度快;结构抗震性能好, 使用范围广。 膜结构可分为张拉膜结构和充气膜结构两大类。张拉膜结构又可分为边界直接张拉成型和通过支撑、悬挂等成型两种;充气膜结构可分室内充气式和充气构件式两种。 张拉膜结构具有造型优美柔和、使用维护方便等特点,它适用于中小跨度的结构中,支撑、悬挂式也能用于大跨度结构中, 充气式膜结构适用于大中型跨度的建筑,但使用期间维护较为麻烦。 二、充气式膜结构 早在1917 年,英国威廉·兰切斯特(Willian Lanchester)首次提出气承式( air - supported)帐篷,用于野战医院,并申请了专利,但由于当时的技术条件原因没有成为现实。直到1946 年,美国沃尔特·勃德(Walter Bird)才首次造成了一座直径15m 的充气穹顶。之后,德国的F. 奥托( F. Ot to) 把皂膜原理应用到膜结构设计中, 取得了不少经验。1967年第一届国际充气结构会议在德国斯图加特( Stuttgart )召开。这无疑给充气结构的发展注射了兴奋剂。 随后,各式各样的膜结构建筑出现在1970 年大阪世界博览会上,其中最具代表性的是D.盖格( David Geiger)设计的美国馆( T he U. S. Pavilion) , 其平面是140m×80m 椭圆形的室内充气结构,其次是川口卫( Mamoru Kaw aguchi) 设计的充气香肠构件式的富士馆( 图1)。 后来人们认为: 70 年大阪博览会是把膜屋顶系统地、商业性地向外界介绍的开始, 尤其是川口卫在这一领域内的研究成果,引起了国际的关注,是劲性结构向柔性结构转变的开始, 是建筑业的一个转折, 一次革命,尤如1851 年伦敦博览会上水晶宫( The Crystal Palace) 的建成,向人们展示了工业化建筑技术和幕墙施工技术; 1889 年巴黎博览会上埃菲尔铁塔( T he Eiffel Tow er )展示了摩天技术的能力和可能性一样, 1970 年大阪博览会展示了人们可以用膜结构建造永久性建筑。这时,盖格-勃格公司( Geiger- Berger Associates)在多方支援下开发出了具有适合美国永久建筑规范的特氟隆( Teflon) 膜材料,为膜结构广泛应用于永久、半永久性建筑奠定了物质基础。之后,用特氟隆覆盖玻璃纤维材料做成的充气膜结构建筑相继出现在大中型体育场馆中。 其中典型的有: 1973 年美国加利福尼亚州圣克拉勒大学活动中心( Activities Center at Santa Clara College in California)建成, 平面为91m×59m 椭圆型。1975 年密歇根州庞蒂亚克“银色穹顶”( Silverdome) , 平面为220m×159m 椭圆型。到1984 年,美国共建成8 个大中型充气式体育馆,其中有4 个平面尺寸在40 万平方英尺(约合37249m2)以上。1988年日本建成东京体育馆( Tokyo Dome) ,室内面积46756m2。 在十几年的应用中,充气膜结构虽然实现了大型体育场馆的室内化,但也存在着不少问题,特别是融雪热气系统和空压自动控制系统性能不稳定, 寿命也有限,而且随着时间的推移这个问题更为突出, 几乎所有的充气场馆在使用中都出现过问题, 有的还不止一次。尤其是1985 年冬,密歇根州遇到一次大风雪, 庞蒂亚克“银色穹顶”差点没有全部倒塌,使得人们对这种结构越来越没有兴趣,似乎这种体系在大型体育场馆中再加应用已没有可能,人们因而把目光转向索穹顶( cable dome)膜结构中来。尽管如此, 人们还为自己的城市拥有这样代表先进设计技术的建筑而骄傲。 三、张拉式膜结构 张拉式膜结构的前身是索网结构。第一个索网结构是1951 年美国F. 赛沃特( Fred Sev erud)设计的雷利活动中心( T he Raleigh Arena) ,索网为双曲抛物面。最大的是1972 年德

膜结构在中国的发展历史

膜结构在中国的发展历史 如今大家听到膜结构都自然而然的联想到膜结构生产出来的物品,例如膜结构停车棚,大型的游泳场,大型的体育中心,歌剧院等等都有膜结构的存在。那么您是否知道膜结构的由来的,膜结构在中国历经了怎么的才衍生到今天这样一个繁荣的景象呢。 膜结构(Membrane)是20世纪中期发展起来的一种新型建筑结构形式,是由多种高强薄膜材料(PVC或Teflon)及加强构件(钢架、钢柱或钢索)通过一定方式使其内部产生一定的预张应力以形成某种空间形状,作为覆盖结构,并能承受一定的外荷载作用的一种空间结构形式。膜结构可分为充气膜结构和张拉膜结构两大类。充气膜结构是靠室内不断充气,使室内外产生一定压力差(一般在10㎜~30㎜水柱之间),室内外的压力差使屋盖膜布受到一定的向上的浮力,从而实现较大的跨度。张拉摸结构则通过柱及钢架支承或钢索张拉成型,其造型非常优美灵活。 世界上第一座充气膜结构建成于1946年,设计者为美国的沃尔特·勃德(W.Bird),这是一座直径为15的充气穹顶。1967年在德国斯图加特召开的第一届国际充气结构会议,无疑给充气膜结构的发展注入了兴奋剂。随后各式各样的充气膜结构建筑出现在1970年大阪世界博览会上。其中具有代表性的有盖格尔设计的美国馆(137m×7m8卵形),以及川口卫设计的香肠形充气构件膜结构。后来人们认为70年大阪博览会是把膜结构系统地、商业性地向外界介绍的开始。大阪博览会展示了人们可以用膜结构建造永久性建筑。而70年代初美国盖格尔-勃格公司(Geiger-Berger Associates)开发出的符合美国永久建筑规范的特氟隆(Teflon)膜材料为膜结构广泛应用于永久、半永久性建筑奠定了物质基础。之后,用特氟隆材料做成的室内充气式膜结构相继出现在大中型体育馆中,如1975年建成的密歇根州庞蒂亚克“银色穹顶”(椭圆形220×159m),1988年建成的日本东京体育馆(室内净面积4,6767㎡)。 而中国现代空间结构的发展受到了西方国家先进技术的影响。近几年来,在膜结构应用上显示了活跃的趋势。虽然一开始工程规模不大,但已逐渐扩展到更大的面积和跨度。所采用的技术与材料在某种程度上还要依靠国外,但预计会有更多的工程依靠自己的力量来完成。在过去十年中,中国的许多城市都在筹划建设新的体育设施。由于其重量很轻的优点,膜结构往往被采用。体育建筑可以说是膜结构在中国应用的突破口。1997年之前,只建造了少量的小型与中型的膜结构,同年在上海举行的第七届全国运动会,膜结构被用在主体育场的看台挑篷,总面积达36100m2。这是中国第一次将膜材制成的屋顶用在大面积的永久性建筑上,具有深远的影响。当时涂PTFE的玻璃纤维膜材、张拉膜和工程安装还借助于国外的力量。在上海体育场成功的建成后,虽然它的价格仍高于传统的结构,又出现了一些膜结构屋顶的体育场。颐中体育场坐落在山东省的滨海城市青岛,这是中国第一个靠自己力量设计与施工的大型膜结构体育场,外包尺寸为266m×180m,可容纳6万观众。悬挑40m 的屋盖是一个包括膜、索和钢支承结构的典型张拉体系,整个屋盖由70个锥形索膜单元组成,总面积为30000m2。环顾整个中国大地,新的体育中心正在一个接一个的规划,膜结构成为覆盖主体育场的优选,估计已有十多个体育场采用。在大城市中有上海(虹口区足球场)、武汉、郑州和广州,在中小城市有烟台、威海和芜湖。另一个适宜采用膜结构的对象是室内体育馆,在中国还刚开始。在华北的秦皇岛体育馆是第一个采用双层膜的工程,其平

相关文档
最新文档