刘豹版现代控制理论第六章课件6最优控制11

刘豹版现代控制理论第六章课件6最优控制11
刘豹版现代控制理论第六章课件6最优控制11

Technical

Technical parameters for turntable (2) parameters

for

turntable

(1)

通过实例来初步认识

为转动惯量;

内,电动机从静止起动,转过一定角度最小,求θ

t t I R D t D f

d )(2

∫=)

(t I D 的函数,E 是函数的函数,称为中的直流他励电动机,如果电动机从初始

)(t I D 又停下,求控制(

是。θ()D I t F

D D D m T J I J K ????????+???

?100末值状态?

?

?

???=??????0)()(21θf f t x t x 最优控制问题提法为:在状态方程约束下,寻求最优控制,使J 为最小

最优控制:在某个性能指标下的最优控制;性能指标

处的增量为:

:求平面上两固定点连线最短的曲线c

=

自由的终端约束的极值问题。

c

e t

回顾前面最优控制问题提出的第二个例子

可以看出:

1、当终值时刻,ω=0

2、I D (t )为负斜率线性函数

,,]

x u t ③边界条件(以始端固定、终端自由为例):

[(),]()

f f f x t t x t φ?]

,,,*t λu 与通常基

于变分法的最优控制不同处

极值的必要条件是使哈密尔顿函1

线性系统的二次型性能指标最优控制

u 在这里不是输入,而是一种(反馈)控制结构

03,0

f t t ==322212121

(242)2

x x x x u dt

+++10???21???

02S =?

??

14Q =???

121222p x p x ???

??????

x

x

x

+

}

t

随着参考输入的不同,系统的结构

(输入部份)也不同

变输入变结构控制?

其状态方程模型

u x

=2&21x x

=&}

u ≤1

系统的初始状态为

)0(1x )

0(2x 末值状态为

)(1=f t x 0

)(2=f t x 性能指标为

f

t t t J f ==∫

d )(f t x 要求在状态方程约束下,寻求最优控制,

转移到

,同时使J 取极小值。

)(*

t u

画出轨迹如下图所示的两族抛物线。

2?

当初始状态位于:为(+1,-1)

)0(x +R *

u 最优轨线:当初始状态位于:

为(-1,+1))0(x ?R *

u 0→→→C B A 0

→→E D 开关曲线方程式为:0

21

),(22121=+=x x x x x h 最优控制为

?+10),(21

?1

0),(21>x x h 当

及,0),(21=x x h 2x ≥0

最优控制系统的结构图,如图所示

210201x +

2

这里的最优控制实现是一方波(或恒值)幅值信号,突动态规划概念

贝尔曼(美国)在上世纪50年代提出中心思想:

将一个多级决策问题转化为多个一级决策问题。

具体实施方法:

创立一套基于最优化原理的、由后向前的逆向递推算法。

?)1(

现代控制理论1-8三习题库

信息工程学院现代控制理论课程习题清单

正确理解线性系统的数学描述,状态空间的基本概念,熟练掌握状态空间的表达式,线性变换,线性定常系统状态方程的求解方法。 重点容:状态空间表达式的建立,状态转移矩阵和状态方程的求解,线性变换的基本性质,传递函数矩阵的定义。要求熟练掌握通过传递函数、微分方程和结构图建立电路、机电系统的状态空间表达式,并画出状态变量图,以及能控、能观、对角和约当标准型。难点:状态变量选取的非唯一性,多输入多输出状态空间表达式的建立。 预习题 1.现代控制理论中的状态空间模型与经典控制理论中的传递函数有何区别? 2.状态、状态空间的概念? 3.状态方程规形式有何特点? 4.状态变量和状态矢量的定义? 5.怎样建立状态空间模型? 6.怎样从状态空间表达式求传递函数? 复习题 1.怎样写出SISO系统状态空间表达式对应的传递函数阵表达式 2.若已知系统的模拟结构图,如何建立其状态空间表达式? 3.求下列矩阵的特征矢量 ? ? ? ? ? ? ? ? ? ? - - = 2 5 10 2 2 1- 1 A 4.(判断)状态变量的选取具有非惟一性。 5.(判断)系统状态变量的个数不是惟一的,可任意选取。 6.(判断)通过适当选择状态变量,可将线性定常微分方程描述其输入输 出关系的系统,表达为状态空间描述。 7.(判断)传递函数仅适用于线性定常系统;而状态空间表达式可以在定 常系统中应用,也可以在时变系统中应用. 8.如果矩阵A 有重特征值,并且独立特征向量的个数小于n ,则只能化为 模态阵。 9.动态系统的状态是一个可以确定该系统______(结构,行为)的信息集 合。这些信息对于确定系统______(过去,未来)的行为是充分且必要 的。 10.如果系统状态空间表达式中矩阵A, B, C, D中所有元素均为实常数时, 则称这样的系统为______(线性定常,线性时变)系统。如果这些元素 中有些是时间t 的函数,则称系统为______(线性定常,线性时变)系 统。 11.线性变换不改变系统的______特征值,状态变量)。 12.线性变换不改变系统的______(状态空间,传递函数矩阵)。 13.若矩阵A 的n 个特征值互异,则可通过线性变换将其化为______(对 角阵,雅可比阵)。 14.状态变量是确定系统状态的______(最小,最大)一组变量。 15.以所选择的一组状态变量为坐标轴而构成的正交______(线性,非线性) 空间,称之为______(传递函数,状态空间)。

习题解答_现控理论_第6章

6-1 对线性系统 A B C D =+?? =+? x x u y x u 作状态反馈v x u +-=K ,试推导出闭环系统的状态空间模型和传递函数。 解 将反馈律代入状态空间模型,则有 ()()()()A B K A BK B C D K C DK D =+-+=-+=+-+=-+x x x v x v y x x v x v 因此,闭环系统的状态空间模型和传递函数分别为 1()()()()()K A BK B C DK D G s C DK sI A BK B D -=-+?? =-+?=--++x x v y x v 6-2 对线性系统 A B C D =+?? =+? x x u y x u 作输出反馈u =-H y +v ,试推导出闭环系统的状态空间模型和传递函数。 解 将反馈律代入状态空间模型的输出方程,则有 () C D H C DH D =+-+=-+y x y v x y v 即 ()I DH C D +=+y x v 因此,当()I DH +可逆时,闭环系统输出方程为 11()()I DH C I DH D --=+++y x v 将反馈律和上述输出方程代入状态方程,则有 11() [()][()]A B A B H A BH I DH C BH I DH D B --=+=+-+=-++++x x u x y v x v 当闭环系统的状态空间模型和传递函数分别为 1111 11111[()][()]()()()()[()][()]()H A BH I DH C BH I DH D B I DH C I DH D G s I DH C sI A BH I DH C BH I DH D B I DH D ---------?=-++++?=+++?=+-++++++x x v y x v

《现代控制理论》刘豹著(第3版)课后习题答案

《现代控制理论》刘豹著(第3版)课后习题答案 《现代控制理论》刘豹著(第3版)课后习题答案第一章习题答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。 解:系统的模拟结构图如下: 系统的状态方程如下: 令,则所以,系统的状态空间表达式及输出方程表达式为1-2有电路如图1-28所示。以电压为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻上的电压作为输出量的输出方程。 解:由图,令,输出量有电路原理可知: 既得写成矢量矩阵形式为: 1-3 参考例子1-3. 1-4 两输入,,两输出,的系统,其模拟结构图如图1-30所示,试求其状态空间表达式和传递函数阵。 解:系统的状态空间表达式如下所示: 1-5系统的动态特性由下列微分方程描述列写其相应的状态空间表达式,并画出相应的模拟结构图。 解:令,则有相应的模拟结构图如下: 1-6 已知系统传递函数,试求出系统的约旦标准型的实现,

并画出相应的模拟结构图解: 1-7 给定下列状态空间表达式‘画出其模拟结构图求系统的传递函数解: 1-8 求下列矩阵的特征矢量解:A的特征方程解之得: 当时,解得: 令得当时,解得: 令得当时,解得: 令得1-9将下列状态空间表达式化成约旦标准型解:A的特征方程当时,解之得令得当时,解之得令得当时,解之得令得约旦标准型1-10 已知两系统的传递函数分别为W1(s)和W2(s)试求两子系统串联联结和并联连接时,系统的传递函数阵,并讨论所得结果解:串联联结并联联结1-11 已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为求系统的闭环传递函数解: 1-11 已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为求系统的闭环传递函数解: 1-12 已知差分方程为试将其用离散状态空间表达式表示,并使驱动函数u的系数b(即控制列阵)为解法1: 解法2: 求T,使得得所以所以,状态空间表达式为

现代控制理论习题解答(第四章)

1 v(x) a 1x 12 b 1x 22 c 1 x 32 2x 1x 2 4x 3 x 2 2X 1X 3 a 1 x T 1 1 b 1 2 (1) v(x) x 12 4x 22 x 32 2x 1x 2 6x 3x 2 2x 1x 3 (2) v(x) x 12 10x 22 4x 32 6x 1 x 2 2x 3x 2 2 2 2 (3) v(x) 10x 1 4x 2 x 3 2x 1x 2 2x 3x 2 4x 1 x 3 【解】: (1) 二次型函数不定。 ⑵ 二次型函数为负定。 ⑶ 二次型函数正定。 3-4-2 试确定下列二次型为正定时,待定常数的取值范围。 【解】: 3-4-1 第四章 控制系统的稳定性 试确定下列二次型是否正定。 1 1 1 1 1 1 1 1 1 4 3 , 1 0, 3 0, 1 4 3 1 1 1 1 4 1 3 1 1 1 3 1 P 4 10 0, 3 10 0, 10 10 P 1 2 1 , 10 1 1 10 1 2 10 1 39 0 1 4 1 1 4 2 1 1 0, 17

a 1 0 a 1 b 1 1 a 1b 1 c 1 4 b 1 4a 1 c 1 【解】: (1) 设 2 2 v(x) 0.5x 1 0.5X 2 V (X ) X 1X 1 X 2X 2 X 1X 2 X 1X 2 X2 x/ ° " °)为半负定。 0 (x 0) 又因为v(x) 0时,有X 2 0, 则X 2 0,代入状态方程得: X 1 0. 所以系统在X 0时,v(x)不恒为零。 则系统渐近稳定,又因为是线性系统,所以该系统是大范围渐近稳定。 (2) 设 2 2 v(x) 0.5X 1 0.5X 2 v(x) X 1X 1 X 2X 2 X 1 ( X 1 X 2) X 2(2X 1 3X 2) X 12 3X 22 3X 1X 2 T 1 1.5 1 1 1 1.5 X x 1 0, 1.5 3 1 1 1 1.5 3 T … X Px P 负定,系统渐近稳定,又因为是线性系统,所以该系统是大范围渐近稳定。 (3) 0 1 1 1 (1) X X (2) x X ; 1 1 2 3 1 1 1 0 (3) x X (4) x X 1 1 0 1 3-4-3 满足正定的条件为: a i | of 1 1 b i a i 0, 1 1 1 1 b 1 2 0 2 C 1 试用李亚普诺夫第二法判断下列线性系统的稳定性。

现代控制理论第3版刘豹课后习题答案完整免费

《现代控制理论参考答案》第三版 第一章答案 1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。 图1-27系统方块结构图 解:系统的模拟结构图如下: 图1-30双输入--双输出系统模拟结构图 系统的状态方程如下:

u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x p p p p n p b 161116613153 461 514131 3322211 +-- =+-==++- - == =?? ? ?? ? 令y s =)(θ,则1x y = 所以,系统的状态空间表达式及输出方程表达式为 []????? ? ??? ? ??????????=??????? ???????????????+?????? ?????????????????????????? ?? ??????????? ?-----=????????????????????????????? ?654321165432111111112654321000001000000 000000010010000000000010x x x x x x y u K K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p p p n p b 1-2有电路如图1-28所示。以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。 U 图1-28 电路图

解:由图,令32211,,x u x i x i c ===,输出量22x R y = 有电路原理可知:? ? ? +==+=++3 213 222231111x C x x x x R x L u x x L x R 既得 2 221332 2222131111111111x R y x C x C x x L x L R x u L x L x L R x =+- =+-=+-- =? ? ? 写成矢量矩阵形式为: []???? ? ?????=?? ?? ? ? ????????+?????????????????? ? ?? ???????--- -=??????????????3212 13212 22 111 321000*********x x x R y u L x x x C C L L R L L R x x x 。。 。 1-4 两输入1u ,2u ,两输出1y ,2y 的系统,其模拟结构图如图1-30所示,试求其状态空间表达式和传递函数阵。 1 u 2 u 图1-30双输入--双输出系统模拟结构图 解:系统的状态空间表达式如下所示: []??? ? ? ???????=????? ???????+????????????????????????------=????????????432121432134 5 61 243 210101000000 100100010x x x x y u b b x x x x a a a a a a x x x x &&&&

现代控制理论第4章教学要求(第四章)

现代控制理论第4章教学要求 按章节,打*号的部分为本科不要求的内容,另外在一些未打*的部分有些内容也不要求,请按下面要求的内容组织本科教学。 第4 章动态系统的结构分析 4.1 引言 4.1.1 能控性与能观性物理现象——从例子谈起 从物理角度理解能控性与能观性的重要性。 4.1.2 能控性与能观性的数学描述 从数学角度理解能控性与能观性的状态方程特点。 4.2 连续线性系统能控性与能观性定义 4.2.1 能控性定义 理解能控性的定义包含的丰富内涵。 能利用定义解决与系统能控性相关的问题。 4.2.2 能观性定义 理解能观性的定义包含的丰富内涵。 能利用定义解决与系统能观性相关的问题。 4.3 连续线性系统能控性与能观性判据 4.3.1 定常系统的能控性判据与能控性指数 掌握定常系统的Gram矩阵能控性判据。 掌握Jordan标准型的能控性判据,并能依此进行相应计算。 掌握能控性矩阵秩判据,并能依此进行相应计算。 了解能控性PBH判据,包括PBH秩判据和PBH特征向量判据。 了解定常系统的能控性指数,并基此减小能控性矩阵的规模。 4.3.2 定常系统的能观性判据与能观性指数 掌握定常系统的Gram矩阵能观性判据。 掌握Jordan标准型的能观性判据,并能依此进行相应计算。。 掌握能观性矩阵秩判据,并能依此进行相应计算。 了解能观性PBH判据,包括PBH秩判据和PBH特征向量判据。。 了解定常系统的能观性指数,并基此减小能观性矩阵的规模。 4.3.3 时变系统的能控性判据 了解时变系统的 Gram矩阵能控性判据。 了解时变系统的能控性秩判据。 4.3.4 时变系统的能观性判据 了解时变系统的 Gram矩阵能观性判据。 了解时变系统的能观性秩判据。 4.3.5 时变系统的能控、能观性判据与其定常情况的关系 理解时变系统的能控、能观性判据与其定常情况的关系。 4.4 连续线性系统输出能控性和输出函数能控性及判据 4.4.1 输出能控性定义及其判定* 本科不要求此节内容。 4.4.2 输出函数能控性定义及其判定* 本科不要求此节内容。 4.5 连续线性系统的对偶关系 4.5.1 定常情况下的对偶关系 理解定常情况下的对偶关系,燕能利用对偶关系解决相关问题。 4.5.2 时变情况下的对偶关系 了解定常情况下的对偶关系,燕能利用对偶关系解决相关问题。 4.6 定常连续线性系统的能控型与能观型 4.6.1 SISO 系统的能控标准型与能观标准型 掌握SISO系统的能控标准型与能观标型以及变换方法,能计算标准型。 4.6.2 MIMO 类SISO 的能控标准型与能观标准型 了解MIMO 类SISO 的能控标准型与能观标准型。 4.6.3 MIMO 系统的Wonham 规范型与Luenberger 规范型* 本科不要求此节内容。 4.7 连续线性系统的结构分解

现代控制理论-第7章

第六次课小结 一、 Lyapunov 意义下的稳定性问题基本概念 平衡状态的概念 Lyapunov 意义下的稳定性定义(稳定,一致稳定,渐进稳定,一致渐进稳定,大范围渐进稳定等) 纯量函数的正定性,负定性,正半定性,负半定性,不定性 二次型,复二次型(Hermite 型) 二、 Lyapunov 稳定性理论 第一方法 第二方法 三、 线性定常系统的Lyapunov 稳定性分析 应用Lyapunov 方程 Q PA P A H -=+ 来进行判别稳定性 四、 线性定常系统的稳定自由运动的衰减率性能估计 衰减系数,一旦定出min η,则可定出)(x V 随时间t 衰减上界。 计算min η的关系式 五、 离散时间系统的状态运动稳定性及其判据 离散系统的大范围淅近稳定判据,Lyapunov 稳定判据在离散系统中的应用

六、线性多变量系统的综合与设计的基本问题 问题的提法 性能指标的类型 研究的主要内容 七、极点配置问题 问题的提出 可配置条件 极点配置算法

爱克曼公式(Ackermann’s Formula) 考虑由式()给出的系统,重写为 Bu Ax x +=& 假设该被控系统是状态完全能控的,又设期望闭环极点为n s s s μμμ===,,,21Λ。 利用线性状态反馈控制律 Kx u -= 将系统状态方程改写为 x BK A x )(-=& 定义 BK A A -=~ 则所期望的特征方程为 ) ())((~ 11121=++++=---=-=+-* *--*n n n n n a s a s a s s s s A sI BK A sI ΛΛμμμ 由于凯莱-哈密尔顿定理指出A ~ 应满足其自身的特征 方程,所以

现代控制理论第2章l

第2章 线性系统理论 线性系统是实际系统的一类理想化模型,通常用线性的微分方程或差分方程描述。其基本特征是满足叠加原理,可分为线性定常系统和线性时变系统。 现代控制理论中,采用状态变量法描述系统,它既能反映系统内部变化情况,又能考虑初始条件,也为多变量系统的分析、综合提供了强有力的工具。 2.1 基本概念 输入:外部施加到系统上的全部激励。 输出:能从外部测量到的来自系统的信息。 状态变量:确定动力学系统状态的最小的一组变量。 状态向量:若n 个状态变量)(1t x ,)(2t x ,…,)(t x n 是向量)(t x 的各个分量,即 )(t x 为状态向量。 状态空间:以各状态变量作为基底组成的n 维向量空间。在特定的时间,状态向量)(t x 在状态空间中只是一个点。 状态轨迹:状态向量)(t x 在状态空间中随时间t 变化的轨迹。 连续时间系统:)(t x 的定义域为某时间域],[f 0t t 内一切实数。 离散时间系统:)(t x 的自变量时间t 只能取到某实数域内的离散值。 状态方程:描述系统状态变量与输入变量之间动态关系的一阶微分方程

组或一阶差分方程组。一般形式为 或 式中 u ——输入向量; k ——采样时刻。 状态方程表征了系统由输入引起的内部状态的变化。 输出方程:描述输出变量与系统输入变量和状态变量间函数关系的代数方程,具有形式 它是一个代数变换过程。 状态空间表达式:状态方程与输出方程联立,构成对动态系统的完整描述,总称为系统的状态空间表达式,又称动态方程。 线性系统的状态空间表达式具有下列一般形式: 1)连续时间系统 ? ??+=+=)()()()()()()()()()(t t t t t t t t t t u D x C y u B x A x & (2–1) 式中 A (t )——系统矩阵或状态矩阵,n ?n 矩阵; B (t )——控制矩阵或输入矩阵,n ?p 矩阵; C (t )——观测矩阵或输出矩阵,q ?n 矩阵; D (t )——输入输出矩阵,q ?p 矩阵; x ——状态向量,n 维; u ——控制作用,p 维; y ——系统输出,q 维。 2)离散时间系统

《现代控制理论》(刘豹_唐万生)

第1章 控制系统的状态空间表达式 1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式 图1-27系统方块结构图 解:系统的模拟结构图如下: 图1-30双输入--双输出系统模拟结构图 系统的状态方程如下: u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x p p p p n p b 161116613153 46 1 5141313322211 +-- =+-==++--== =??? ??? 令θ(s)=y ,则y =x 1 所以,系统的状态空间表达式及输出方程表达式为

[ x 1?x 2?x 3?x 4?x 5?x 6?] =[ 010000 00K b J 200000?K p J 1?K n J 11J K p J 100100000?K 100K 1?K 1p ?K 1p ] [ x 1 x 2x 3 x 4x 5x 6] +[ 000 00K 1K p ] u y =[10 00 00][ x 1x 2x 3 x 4x 5x 6] 1-2 有电路如图1-28所示。以电压u(t)为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻R 2上的电压作为输出量的输出方程。 L1 L2 U 图1-28 电路图 解:由图,令i 1=x 1,i 2=x 2,u c =x 3,输出量y =R 2x 2 有电路原理可知:R 1x 1+L 1x 1? +x 3=u L 2x ? 2+R 2x 2=x 3 x 1=x 2+ Cx 3? 既得 x 1? =?R 1L 1 x 1?1 L 1 x 3+1L 1 u

(完整word版)现代控制理论习题解答(第二章)

第二章 状态空间表达式的解 3-2-1 试求下列矩阵A 对应的状态转移矩阵φ(t )。 (1) ???? ??-=2010A (2) ?? ? ???-=0410A (3) ??????--=2110 A (4) ???? ??????-=452100010A (5)?? ??????? ???=000010000100 0010A (6)? ???? ? ??? ???=λλλλ000100010000A 【解】: (1) ???? ? ? ????? ?++=?? ????+-=-=Φ-----)2(10)2(11}201{])[()(11 111s s s s L s s L A sI L t ??? ? ????-=????? ? ??????++-=---t t e e s s s s L 22105.05.01)2(10)2(5.05.01 (2) ?? ? ???-=???? ? ? ??????+++- +=?? ????-=-=Φ-----t t t t s s s s s s L s s L A sI L t 2cos 2sin 22sin 5.02cos 44 441 4}41{])[()(222211 111 (3) ??? ? ? ?????? ?++-+++=?? ????+-=-=Φ-----222211 111)1()1(1)1(1 )1(2 }211{])[()(s s s s s s L s s L A sI L t ??? ? ????--+=Φ------t t t t t t te e te te e te t )( (4) 特征值为:2,1321===λλλ。 由习题3-1-7(3)得将A 阵化成约当标准型的变换阵P 为

现代控制理论基础第二章习题答案

第二章 状态空间表达式的解 3-2-1 试求下列矩阵A 对应的状态转移矩阵φ(t )。 (1) ???? ??-=2010A (2) ?? ? ???-=0410A (3) ??????--=2110 A (4) ???? ??????-=452100010A (5)?? ??????? ???=000010000100 0010 A (6)? ???? ? ??????=λλλλ000100010000A 【解】: (1) (2) (3) (4) 特征值为:2,1321===λλλ。 由习题3-1-7(3)得将A 阵化成约当标准型的变换阵P 为 ???? ??????=421211101P ,??????????----=-1211321201 P 线性变换后的系统矩阵为: (5) 为结构四重根的约旦标准型。 (6) 虽然特征值相同,但对应着两个约当块。 或}0 100010000{ ])[()(1 111----?? ??? ????? ??------=-=Φλλλλs s s s L A sI L t 3-2-2 已知系统的状态方程和初始条件 (1)用laplace 法求状态转移矩阵; (2)用化标准型法求状态转移矩阵; (3)用化有限项法求状态转移矩阵; (4)求齐次状态方程的解。 【解】:

(1) (2) 特征方程为: 特征值为: 2,1321===λλλ。 由于112==n n ,所以1λ对应的广义特征向量的阶数为1。 求满足0)(11=-P A I λ的解1P ,得: 0110000000312111=????????????????????--P P P ,???? ? ?????=0011P 再根据0)(22=-P A I λ,且保证1P 、2P 线性无关,解得: 对于当23=λ的特征向量,由0)(33=-P A I λ容易求得: 所以变换阵为: []??????????-==11001000132 1 P P P P ,???? ??????=-1100100011P 线性变换后的系统矩阵为: (3) 特征值为: 2,1321===λλλ。 即 (4) 3-2-3 试判断下列矩阵是否满足状态转移矩阵的条件,如果满足,试求对应的矩阵A 。 (1)??? ???????-=Φt t t t t sin cos 0cos sin 0001 )((2)????????-=Φ--t t e e t 220)1(5.01)( (3)???? ??? ?+--+--=Φ--------t t t t t t t t e e e e e e e e t 22222222)((4)? ??? ??? ?++-+-+=Φ----t t t t t t t t e e e e e e e e t 33335.05.025.025.05.05.0)( 【解】: (1) ∴不满足状态转移矩阵的条件。 (2) ∴满足状态转移矩阵的条件。 由)()(t A t Φ=Φ &,得A A =Φ=Φ)0()0(&。

现代控制理论刘豹第三版印刷勘误表

1、 第29页 式1.34中最后一个1n β- 改为1β。 2、 36页 分为:“(1)A 阵的特征值无重根;(2)A 阵的特征值有重根;”这样的分法不是 很严密,建议应该为:“(1)A 有n 个线性无关的特征向量;(2)线性无关的特征向量数少于n ” 3、 48页上面W(s)中的第三行=号左面的“1 11()SI A B --”应移到上一行最末尾。避免误解。 4、 67页2.24式应改为:11 1221111 (1)!011 (2)!2(1)(2)312! 2!1211 1!1!2111121()00 01()000(1)()001()012()1n n t t n t t n n n n t t n t n t n n t n e t t n e t e t e t e λλλλλααλαλαλλαλλλ-------------??????????-???? ?????? ?=??????????????????? ? ????? ??? ???? ??????? 5、 70页2.32式最后 1t A -改为1 A t - 6、 97页第一行121 1 1 001 012T λλλ????=?????? 7、 100页 例3-8 2 244120100142100A B ????????=???????????? 应该改为 2 2440101001100042A B ????=???????????????? 或者改为 2121010103120110A B ???????????? ??=?? ???? 8、 103页图3.7中 12,y y 的输出箭头不应该指向211,m c c ,应断开。 9、 126页 例3-12中224()168121216M b Ab A b ?? ??=?? ???? 10、 130页用对偶原理证明,有待考证。表述不明确。另外最后倒数第二行能控标准I 行,应该改为能观标准I 型。 11、 144页式(3.124)0 lim ()s D W s →= 改为lim ()s D W s →∞ = 12、 145页式(3.133)下一行,“m 为输入矢量维数。”改为“m 为输出矢量维数。” 13、 165页4.18式下面,“其中 ,(1,2,,)i i n λ= 为对称矩阵p 的互异特征值,且均为 实数。”这句话表述不正确。,(1,2,,)i i n λ= 未必是P 的互异特征值,还有可能是有n

现代控制理论第4章答案

现代控制理论第四章习题答案 4-1判断下列二次型函数的符号性质: (1)222 123122313()31122Q x x x x x x x x x x =---+-- (2)222123122313()4262v x x x x x x x x x x =++--- 解:(1)由已知得 []1123 123 1232311 2 3231 1()3112 2111113211112x Q x x x x x x x x x x x x x x x x x x ?? ? ???=-+------???? ? ????? ? ? ??--??? ?????=--???????????? ---?? 110?=-<,211 2013 -?= =>-,31111711 3 024 1 1112 --?=--=-<-- - 因此()Q x 是负定的 (2)由已知得 [][]112312312323112323()433111143131x Q x x x x x x x x x x x x x x x x x x ????=---+---+?????? --???? ????=--???? ????--???? 110?=>,211 3014 -?= =>-,3111 143160131 --?=--=-<-- 因此()Q x 不是正定的 4-2已知二阶系统的状态方程:

11122122a a x x a a ??= ??? 试确定系统在平衡状态处大范围渐进稳定的条件。 解:方法(1):要使系统在平衡状态处大范围渐进稳定,则要求满足A 的特征值均具有负实部。 即: 11 12 2122 2112211221221()0 a a I A a a a a a a a a λλλλλ---= --=-++-= 有解,且解具有负实部。 即:1122112212210a a a a a a +<>且 方法(2):系统的原点平衡状态0e x =为大范围渐近稳定,等价于T A P PA Q +=-。 取Q I =,令11 121222P P P P P ??=???? ,则带入T A P PA Q +=-,得到 11 2111121122 211212 2222220100 221a a P a a a a P a a P -???? ????????+=????????????-?????? 若 112112 1122 2111221122122112 22 220 4()()0022a a a a a a a a a a a a a a +=+-≠,则此方程组有唯一解。即 22 21221222211122 1222211111121122()1 ()2()A a a a a a a P a a a a A a a a a A ??++-+=-??-++++?? 其中11221221det A A a a a a ==- 要求P 正定,则要求 22 2122 111112202()A a a P a a A ++?== >-+ 22 1122122121122()()0 4() a a a a P a a ++-?==>-+

《现代控制理论》第3版课后习题答案

《现代控制理论参考答案》 第一章答案 1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。 解:系统的模拟结构图如下: 系统的状态方程如下: 令y s =)(θ,则1x y = 所以,系统的状态空间表达式及输出方程表达式为 1-2有电路如图1-28所示。以电压)(t u 为输入量,求以电感中的电流与电容上的电压作为状态变量的状态方程,与以电阻2R 上的电压作为输出量的输出方程。 解:由图,令32211,,x u x i x i c ===,输出量22x R y = 有电路原理可知:? ? ? +==+=++3 213 222231111x C x x x x R x L u x x L x R 既得 2 221332 2222131111111111x R y x C x C x x L x L R x u L x L x L R x =+- =+-=+-- =? ? ? 写成矢量矩阵形式为: 1-4 两输入1u ,2u ,两输出1y ,2y 的系统,其模拟结构图如图1-30所示,试求其状态空间表达式与传递函数阵。 解:系统的状态空间表达式如下所示: 1-5系统的动态特性由下列微分方程描述 列写其相应的状态空间表达式,并画出相应的模拟结构图。 解:令.. 3. 21y x y x y x ===,,,则有 相应的模拟结构图如下: 1-6 (2)已知系统传递函数2 )3)(2() 1(6)(+++= s s s s s W ,试求出系统的约旦标准型的实现,并画出相应的模拟结构图 解:s s s s s s s s s W 31 233310)3(4)3)(2()1(6)(22++++- ++-=+++= 1-7 给定下列状态空间表达式 []??? ? ? ?????=???? ??????+????????????????????----=??????????321321321100210311032010x x x y u x x x x x x ‘ (1) 画出其模拟结构图 (2) 求系统的传递函数

现代控制理论基础_周军_第二章状态空间分析法

2.1 状态空间描述的基本概念 系统一般可用常微分方程在时域内描述,对复杂系统要求解高阶微分方程,这是相当困难的。经典控制理论中采用拉氏变换法在复频域内描述系统,得到联系输入-输出关系的传递函数,基于传递函数设计单输入-单输出系统极为有效,可从传递函数的零点、极点分布得出系统定性特性,并已建立起一整套图解分析设计法,至今仍得到广泛成功地应用。但传递函数对系统是一种外部描述,它不能描述处于系统内部的运动变量;且忽略了初始条件。因此传递函数不能包含系统的所有信息。由于六十年代以来,控制工程向复杂化、高性能方向发展,所需利用的信息不局限于输入量、输出量、误差等,还需要利用系统内部的状态变化规律,加之利用数字计算机技术进行分析设计及实时控制,因而可能处理复杂的时变、非线性、多输入-多输出系统的问题,但传递函数法在这新领域的应用受到很大限制。于是需要用新的对系统内部进行描述的新方法-状态空间分析法。 第一节基本概念 状态变量指描述系统运动的一组独立(数目最少的)变量。一个用阶微分方程描述含有个独立变量的系统,当求得个独立变量随时间变化的规律时,系统状态可完全确定。若变量数目多于,必有变量不独立;若少于, 又不足以描述系统状态。因此,当系统能用最少的个变量 完全确定系统状态时,则称这个变量为系统的状态变量。 选取状态变量应满足以下条件:给定时刻的初始值, 以及的输入值,可唯一确定系统将来的状态。而时 刻的状态表示时刻以前的系统运动的历史总结,故状态变量是对系统过去、现在和将来行为的描述。 状态变量的选取具有非唯一性,即可用某一组、也可用另一组数目最少的变量。状态变量不一定要象系统输出量那样,在物理上是可测量或可观察的量,但在实用上毕竟还是选择容易测量的一些量,以便满足实现状态反馈、改善系统性能的需要。

第七章---现场控制盘

第七章现场控制盘 在海上平台,一个大的处理系统,经常包含有多个子系统,如注水系统、分子筛干燥再 生系统、热油炉供热系统、丙烷制冷系统、三甘醇脱水及再生系统等。这些子系统规模较小,控制简单且相对独立,这些子系统的控制因此也常常采用现场控制PLC来实现子系统的控制,子控制系统PLC经过通讯方式与主控制系统相连,把它的数据信息传递给主控制系统,主控制系统又可将ESD信号通过硬线送到就地控制盘,实施对就地盘的关断,从而实现整个控制系统的集中管理与监视。也实现了平台控制系统的控制分散和危险分散的概念。 一、现场控制盘所用的控制系统 许多子系统都采用了性能好、可靠性高的A-B公司P LC的S LC500系列控制器,下面主要 介绍由SLC500系列控制器组成的现场控制系统。 1. 结构 SLC500系列控制器是为小规模应用而设计的可编程控制器,该系列有两种硬件结构:一种是用于固定式控制器,电源、CPU,I/O卡等都连为一体,不能随意配置;另一种用于模块式控制器,由于该系列可提供各种各样I/O模块,可以随意地、很经济地配置其控制系统。 一个SLC500系列的现场控制系统包括S LC硬件、显示终端、寻址、软件等。模块式现场 控制系统的结构如图4-1所示。 图7-1 模块式现场控制系统结构图 2. 硬件 SLC硬件包括安装框架、处理器模块、I/O模块、电源块等。 SLC安装框架均需要电源向处理器CPU及每个I/O槽供电。 处理器模块是现场控制系统的核心部分,它负责整个控制系统的数据处理、通讯、工作方式等。在处理器模块上有一个钥匙开关,使用钥匙开关可以改变处理器的操作方式。在处理器上有三种操作模式:运行(RUN)、编程(PROG)、远程(REM)。如表7-1 162

《现代控制理论(第三版)》答案刘豹-唐万生编

第一章答案 1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。 图1-27系统方块结构图 解:系统的模拟结构图如下: 图1-30双输入--双输出系统模拟结构图 系统的状态方程如下:

u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x p p p p n p b 161116613153 46 1 5141313322211 +-- =+-==++--== =??? ?? ? 阿 令y s =)(θ,则1x y = 所以,系统的状态空间表达式及输出方程表达式为 []????? ? ??? ? ??????????=??????? ???????????????+?????? ?????????????????????????? ?? ??????????? ?----- =????????????????????????????? ?65432116543211111111 2654321000001000000 00000001001000000 0000010x x x x x x y u K K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p p p n p b 1-2有电路如图1-28所示。以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。

U 图1-28 电路图 解:由图,令32211,,x u x i x i c ===,输出量22x R y = 有电路原理可知:? ? ? +==+=++3 213 222231111x C x x x x R x L u x x L x R 既得 2 221332 2222131111111111x R y x C x C x x L x L R x u L x L x L R x =+- =+-=+--=??? 写成矢量矩阵形式为: []???? ? ?????=?? ?? ? ? ????????+?????????????????? ? ?? ???????--- -=??????????????3212 13212 22 111 321000*********x x x R y u L x x x C C L L R L L R x x x 。。 。 1-4 两输入1u ,2u ,两输出1y ,2y 的系统,其模拟结构图如图1-30

习题解答_现控理论_第2章

2-1 如题图2-1所示为RLC 电路网络,其中()i U t 为输入电压,安培表的指示电流)(t i o 为输出 量。试列写状态空间模型。 题图2-1 解: (1) 根据回路电压和节点电流关系,列出各电压和电流所满足的关系式. ()()() 1()()()()() i L C L C R C C d U t L i t U t dt d i t i t i t C U t U t dt R =+=+=+ (2) 在这个电路中,只要给定了储能R 元件电感L 和电容C 上的i L 和U C 的初始值,以及t ≥t 0 时刻后的输入量U i (t ),则电路中各部分的电压、电流在t ≥t 0时刻以后的值就完全确定了。也就是说,i L 和U C 可构成完整的描述系统行为的一组最少个数的变量组,因此可选i L 和为U C 状态变量,即 x 1(t )=i L , x 2(t )=u C (3) 将状态变量代入电压电流的关系式,有 12212 1111i dx x U dt L L dx x x dt C RC =-+ =- 经整理可得如下描述系统动态特性的一阶矩阵微分方程组--状态方程 11i 22110 110x x L U L x x C RC ?? - ?? ????????=+???????? -???????? ???? (4) 列写描述输出变量与状态变量之间关系的输出方程, 12211 10C x y U x x R R R ?? ??= = =???????? (5) 将上述状态方程和输出方程列写在一起,即为描述系统的状态空间模型的状态空间表达 式

上海交大杜秀华老师《现代控制理论》第四章 线性系统的能控性和能观性4

4.4 时变系统的能控性和能观性 一、能控性判据 1、有关线性系统能控性的几点说明 1)允许控制u(t),其元在时间[t 0,t f ]上绝对平方可积。 2)能控状态和控制作用的关系式 τ ττττ τττττττd )(u )(B ),t (d )(u )(B ),t ()t ,t (X 0 d )(u )(B ),t (X )t ,t ()t (X f f f t t 0t t f 0f 1 0t t f 00f f ???-=-==+=-ΦΦΦΦΦ ) 8.3.4(d )(u )(B ),t (X f t t 00τ τττ?-=∴Φ 3)非奇异变换不改变系统的能控性 设系统在变换前是能控的,它必满足(4.3.8) 即 ττττd )(u )(B ),t (X f t t 00?-=Φ 若取变换矩阵P ,对X 进行线性变换 X P X = 则有 B P B AP P A 11 --== 即 B P B P A P A 1 ==- 将上述关系式代入(4.3.8)式,有

τ τττφ-=τ τττφ-=τ τττφ-=???-d )(u )(B ),t (X d )(u )(B P ),t (P X d )(u )(B P ),t (X P f f f t t 00t t 010t t 00 上式表明非奇异变换不改变系统的能控性 4)如果0X 是能控状态,则0X α也是能控状态,α是任意非零实数。 5)如果01X 和02X 是能控状态,则0201X X +也是能控状态。 6)由线性代数关于线性空间的定义可知,系统中所有的能控状态构成状态空间中的一个子空间,此子空间称为系统的能控子空间,记为c X 。 例:u 11x x 1001x x 2121??????+????????????=?????? 解:系统的能控状态为21x x =的状态,为两维状态空间中的一条450斜线。 2、线性连续时变系统的能控性判据 1)【定理】时变系统的状态方程为 )t (U )t (B )t (X )t (A )t (X += 系统在[t 0,t f ]上状态完全能控的充分必要条件是格拉姆矩阵 ?φφ=f t t 0T T 0f 0c dt )t ,t ()t (B )t (B )t ,t ()t ,t (W

相关文档
最新文档