树脂基复合材料连接技术研究现状及在桥梁工程中的应用和发展

树脂基复合材料连接技术研究现状及在桥梁工程中的应用和发展
树脂基复合材料连接技术研究现状及在桥梁工程中的应用和发展

树脂基复合材料在各领域的应用

树脂基复合材料在建筑工业中的应用 建筑工业在国民经济中占有很重要的地位,不论是哪一个国家,建筑工业望远是国民经济的支柱产业之一。随着社会的进步,人们对居住面积、房屋质量和娱乐设施等提出越来越高的要求,这就是推动建筑工业改革发展的动力。 建筑工业现代化的发展方向是:改善施工条件,加快建设进度,降低成本,提高质量,节约能源,减少运输,保护耕地,保护环境和提高技术经济效益等。为了达到此目的,必须从改善现有的建筑材料和发展新型建筑材料方向着手。 在建筑工业中发展和使用树脂基复合材料对减轻建筑物自重,提高建筑物的使用功能,改革建筑设计,加速施工进度,降低工程造价,提高经济效益等都十分有利,是实现建筑工业现代化的必要条件。 1、树脂基复合材料的建筑性能 (1)材料性能的可设计性树脂基复合材料的性能可根据使用要求进行设计,如要求耐水、防腐、高强,可选用树脂基复合材料。由于树脂基复合材料的重量轻,制造方便,对于大型结构和形状复杂的建筑制品,能够一次成型制造,提高建筑结构的整体性。 (2)力学性能好树脂基复合材料的力学性能可在很大范围内进行设计,由于选

用的材料不同,增强材料的铺设方向和方向差异,可以获得性能判别很大的复合材料,如单向玻纤增强环氧复合材料的拉伸强度可达1000MPa以上,比钢(建筑钢)的拉伸强度还高,选用碳纤维作增强材料,制得的树脂基复合材料弹性模量可以达到建筑钢材水平,而其密度却比钢材小4~5倍。更为突出的是树脂基复合材料在制造过程中,可以根据构件受力状况局部加强,这样既可提高结构的承载能力,又能节约材料的减轻自重。 (3)装饰性好树脂基复合材料的表面光洁,可以配制成各种鲜艳的色彩,也可以制造出不同的花纹和图案,适宜制造各种装饰板、大型浮雕及工艺美术雕塑等。 (4)透光性透明玻璃钢的透光率达85%以上(与玻璃相似),其最大特点是不易破碎,能承受荷载。用于建筑工程时可以将结构、围护及采光三者综合设计,能够达到简化采光设计,降低工程造价之目的。 (5)隔热性建筑物的作用是能够防止由热传导、热对流引起的温度变化,给人们以良好的工作和休息环境。一般建筑材料的隔热性能较差,例如普通混凝土的导热系数为1.5~2.1W(m?K),红砖的导热系数为0.81 W(m?K),树脂基复合材料的夹层结构的导热系数为0.05~0.08 W(m?K),比普通红砖小10倍,比混凝土小20多倍。 (6)隔音性隔音效果好坏是评价建筑物质量的标准之一。但传统材料中,隔音效果好的建筑材料往往密度较大,隔热性差,运输和安装困难。树脂基复合材料

中国桥梁工程的发展历史与展望

中国桥梁工程的发展历史与展望 1.中国桥梁工程的发展历史 中国古今桥梁的科学技术,不少都曾走在世界桥梁建筑的前列,许多桥梁样式仍继续对世界近代桥梁建筑产生影响。同时,它又是活的文物瑰宝,记载着许多珍贵的资料。中国是桥的故乡,自古就有“桥的国度”之称,发展于隋,兴盛于宋。遍布在神州大地的桥、编织成四通八达的交通网络,连接着祖国的四面八方。我国古代桥梁的建筑艺术,有不少是世界桥梁史上的创举,充分显示了我国古代劳动人民的非凡智慧。 1.1木桥桥梁最早文献记载见于公元前13世纪,但均不详细。《水经注》记有春秋时晋国公平年间(公元前556~前532年)曾在汾水上建木梁木柱桥。秦代(公元前221~前200年)建都咸阳,西汉(公元前206~公元24年)建都长安(今陕西西安),那时所修建的渭河桥、灞河桥等,在《水经注》、《三辅黄图》中都有确凿记载。这些桥屡毁屡建,多采用木梁木柱或木梁石柱桥式,当桥的跨度大于木材长度时,曾使用悬臂梁式桥及拱桥。按南北朝宋代《沙州记》记载,在安西到吐鲁番之间,羌人曾修建单跨悬臂梁桥,称为“河厉”。其法是“两岸垒石作基陛,节节相次,大木纵横更相镇压,两边俱平,相去三丈。并大材以板横次之,施钩栏甚严饰”。如是多跨桥,则是在各桥墩上用大木纵横相叠,各向跨中伸出,再在伸出端之间用纵梁相连;为保持稳定,一般需在桥墩台纵横大木之上修建楼阁,用其重量压住悬臂的固端,如始建于南宋理宗宝六年(1258年)的湖南醴陵渌江桥。 在拱式木桥中,宋代虹桥构造奇特。据《渑水燕谈录》等书,知其始建于宋明道中(1032~1033年)。在宋代名画《清明上河图》上绘有宋代汴京(今河南开封)的虹桥(见彩图[《清明上河图》中的宋代虹桥,一种构造奇特的木拱桥])。其承重结构实际由两套多铰木拱各若干片相间排列,配以横木,以篾索扎成。其中一套多铰木拱拱骨包括长木3根,作梯形布置;另套木拱拱骨包括长木2根,短木2根,作尖拱状布置。各木以端头彼此抵紧,形成铰接;一套拱骨的铰,恰好是在另一套拱骨长木中点之上;用蔑索将两套木拱夹着横木扎紧,于是,两套木拱就形成了稳定的超静定结构(图5 [虹桥和梅]" class=image>[桥的承重结构比较])。根据画面,估计此桥实际跨度大约18.5米,桥上大车荷载约3吨。北宋之后,这一桥式传至浙江和福建等地。建于清嘉庆七年(1802年)的浙江云和梅木拱桥(图4 [浙江云和梅桥结构(长度]桥结构(长度" class=image>[单位:cm)])跨度为33.4米,至今仍保持原貌;其两套木拱的布置和宋代虹桥稍有不同(图5 [虹桥和梅桥]桥" class=image>[的承重结构比较]),宋代虹桥的横木是搁在两套木拱之间,而梅桥横木是置在每套木拱的铰接点处。 1.2石桥在河南新野安乐寨村1957年出土的东汉画像砖(图6[东汉画像砖]),刻有石拱桥图形,桥上有车马,桥下有两叶扁舟,证明当时已经修造跨河石拱桥。在《水经注》水条,对晋太康三年(282年)所建成的旅人桥有这样的描述:“桥去洛阳宫六七里,悉用大石,下圆以通水,可受大舫过也。”隋开皇十五年至大业元年(595~605年),建成净跨37.02米、历1300多年而无恙的赵州桥。金明昌三年(1192年)建成位于今北京西南的卢沟桥,共11孔,跨度11.4~13.5米,桥栏上配有栩栩如生的大小石狮485个;13世纪来华的意大利人马可·波罗,在游记中誉为世所罕见。北京颐和园内的十七孔桥建于清乾隆年间(1736~1795年);玉带桥建于乾隆十五年(1750年)。前者的拱洞随桥面缓和的上下坡从桥中向两端逐渐收小;后者则以两端有反弯曲线的玉石穹背高出绿丛。这两座桥都以同环境协调,使湖山增辉见称。在长江以南,从唐代以来曾修建不少以弧形板石及横向长条锁石结成拱圈的石拱桥,以及巨形石梁桥。弧板石拱桥自重较轻,对地基承压强度要求较低,能在软土地基上采用。拱圈内的板石和锁石在榫槽相接处能发生小量相对转动以适应基础沉降和温度变化;此外,拱上夯实的灰土能在拱圈变形时发生被动压力,提高拱的承载能力。福建长汀水东桥(南宋

树脂基复合材料研究进展

先进树脂基复合材料研究进展 摘要:本文介绍了颗粒增强、无机盐晶须增强、光固化等类型的树脂基复合材料,亦指出热固性、环氧树脂基复合材料,并简述了制备方法和新技术的应用。 关键词:树脂基复合材料,颗粒增强,无机盐晶须增强,光固化,制备方法,新技术ADVANCE THE RESEARCH OF POLYMER MATRIX COMPOSITES ABSTRACT: The particulate reinforced、inorganic salt whisker, light-cured of resin matrix composites were introduced in this paper,the thermosetting and thermoplastic resin matrix composites was also show in the paper.This paper also discussed the application of new preparation method and technology. Keywords: resin matrix composites,particulate reinforced,inorganic salt whisker, light-cured,preparation method,new technology 先进树脂基复合材料是以有机高分子材料为基体、高性能连续纤维为增强材料、通过复合工艺制备而成,并具有明显优于原组分性能的一类新型材料。目前航空航天领域广泛应用的先进树脂基复合材料主要包括高性能连续纤维增强环氧、双马和聚酞亚胺基复合材料[1]。树脂基复合材料具有比强度高、比模量高、力学性能可设计性强等一系列优点,是轻质高效结构设计最理想的材料[2]。用复合材料设计的航空结构可实现20%一30%的结构减重;复合材料优异的抗疲劳和耐腐蚀性,能提高飞机结构的使用寿命,降低飞机结构的全寿命成本;复合材料结构有利于整体设计和制造,可在提高飞机结构效率和可靠性的同时,采用低成本整体制造工艺降低制造成本。可见复合材料的应用和发展是大幅提高飞机安全性、经济性等市场竞争指标的重要保证,复合材料的用量已成为衡量飞机先进性和市场竞争力的重要标志。 纤维增强树脂基复合材料是在树脂基体中嵌人高性能纤维,比如碳纤维、超高分子量聚乙烯纤维和芳纶纤维等所制得的材料[3]。树脂基体可以分为热塑性树脂和热固性树脂两种,常用的热塑性树脂有聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)等;常用的热固性树脂有酚醛树脂、环氧树脂和聚醋树脂等。由于纤维增强复合材料具有高强度、高模量、低密度等一系列优良特性,其在航空航天、汽车、建筑、防护、运动器材和包装等领域已有广泛的应用。然而新材料新技术的发展使人们对纤维增强复合材料的性能有了更高的期望,所以高性能纤维增强树脂基复合材料依然是近年来的研究热点。 1 先进树脂基复合材料体系 1.1 纤维增强 纤维增强树脂基复合材料由纤维和树脂基体两部分组成,纤维起承担载荷的作用,树脂均匀传递应力,界面在应力传递的过程中起到关键的作用,是纤维与树脂问应力传递的纽带.随着对复合材料界面性能研究的不断的深入,人们发现纤维的浸润性能、纤维与树脂间的键台及纤维与树脂间的机械嵌合作用等因素对复合材料的性能影响显著,并以此设计出一系列提高界面粘接强度的方法,有效地提高了纤维复合材料的界面性能[4]. 1.1.1碳纤维(CF)增强树脂基复合材料 碳纤维以热碳化方式由聚丙烯睛、沥青或粘胶加工而成,具有高强度、高模量、优异的耐酸碱性和抗蠕变性[4J。对碳纤维增强树脂基复合材料的研究主要集中在对纤维进行改性、对树脂基体进行改性和改善纤维和树脂基体的粘接性能这几个方面。 1.1.2超高强度聚乙烯纤维(uHMPE), 超高分子量聚乙烯纤维(UHMWPE)是1975年由荷兰DSM公司采用凝胶纺丝一超拉伸技术研制成功并实现工业化生产的高强高模纤维。UHMWPE纤维中大分子具有很高的取向度和结晶程度,纤维大分子几乎处于完全伸直的状态,赋予最终纤维高强度、高模量、低密度、耐酸碱

土木工程桥梁施工技术现状及未来发展趋势

土木工程桥梁施工技术现状及未来发展趋势 发表时间:2018-09-03T09:14:45.700Z 来源:《红地产》2017年9月作者:蒋志建[导读] 为更好的了解土木工程桥梁施工技术的发展现状和趋势,本人查阅大量文献资料,进行深入的调研和探究,总结了目前土木工程桥梁施工技术种类及各种类技术的发展现状及趋势。 一、钢筋混凝土结构桥梁施工技术现状及发展趋势 我国大跨度钢筋混凝土结构的各种桥梁采用的施工方法主要有体外支架法、缆索吊装法、悬臂拼装法、转体法和劲性骨架法。而在外国,发展比较快的桥梁施工技术是悬臂浇筑方,该桥梁施工方法能够适用于地势复杂的地理环境,并且具有很多优点,比如,施工费用低、工期短、施工变形易控制、结构整体性好、对环境破坏小等,进而使钢筋混凝土结构桥梁的竞争优势得到了提升,促进其相关技术不断前进。 钢筋混凝土结构桥梁因为可以有效地利用材料的高强度特性,能够避免混凝土裂缝发生,使结构的重量下降,使桥梁的跨度提高,因此,在桥梁施工中得到了认可。钢筋混凝土结构桥梁施工技术要点如下: 1)钢筋混凝土结构桥梁材料的质量控制。桥梁施工前,对材料进行现场检验,保证材料的强度、刚度、严密性等不同性能参数达到合格标准。采取有效的措施保护波纹管,尽可能地减少焊接操作。2)钢筋混凝土结构桥梁预应力张拉前的准备。力筋形成预应力前,必须检验构件,使其尺寸满足质量要求。保证混凝土的强度符合设计规范。应该清理掉端部的预埋铁板和垫板之间的毛刺、混凝土残渣等。3)钢筋混凝土结构桥梁预应力张拉施工。为了防止波纹管破损,需要重复张拉并且持续一断时间,从而可以防止摩擦力过大。在张拉过程中应该及时检测桥梁上各部位的变形,进而防止过大的裂纹刑场,将对应数据记录备案,为以后施工参考。 今后,应该完善钢筋混凝土结构桥梁施工技术规范和技术标准,并且保证施工过程完成符合技术规范和技术标准。不断地提高桥梁施工的质量,进一步减少裂纹的形成,从而保证桥梁的整体性以及提高桥梁的寿命,同时,系统地研究钢筋混凝土桥梁耐久性评价方法。 二、节段桥梁施工技术现状及发展趋势节段桥梁施工方法主要有以下几种:预制拼装法、悬臂拼装法。 (一)预制拼装法的施工技术 (1)施工技术要点。首先,能够大大地缩短施工周期。和现浇箱梁进行比较,在进行下部结构施工的同时就能够进行节段的预制。若利用工厂化预制和混凝土低温蒸汽养护技术,每一节段的生产周期能够减少到 1 天。同时,因为利用了新型的特种架桥机设备进行节段的逐跨拼装,一跨箱梁的架设时间大概在七天左右,极大到底减少了施工周期。其次,对环境的影响降低。节段拼装时占用比较少的地面道路,施工过程中对地面交通和行人的影响不大,尤其适合城市范围内的高架桥梁施工,不仅能够利用必要的安全措施,而且能够确保原有的交通运行,使桥梁施工的文明程度提高。再次,节段预制拼装工艺能够确保桥梁的线型美观。由于预制时利用密贴镶合匹配浇筑法,而且整根梁的每个节段由同一套模板浇筑而成,确保了梁体线型的一致性。 (2)发展趋势。该方法对设备的一次性投入比较大。桥梁施工中主要用到的设备包括预制模板、小平车、架桥机等,工厂化的预制模板包括能够自动脱模的内、侧模和自动找平的底模,这些都需要由专业的制造工厂进行设计、制造。另外,通用性较差。在节段预制拼装施工中,模板系统和架桥机是较大的投资,只有达到一定的工程量,才能达到一次摊销的目的。因为,每套模板是针对本次施工节段的长度和横断面,如果在以后的施工中运用该项工艺,就需对模板和架桥机进行重新改造。其次,架桥机对纵坡、线性都有一定的限制条件,当桥梁的设计参数不满足要求时,将不能采用此项施工工艺。 (二)节段桥梁悬臂拼装法 (1)技术要点。悬臂拼装法是具竞争力的方案,即主梁在预制场地分段预制,留好预应力孔道,下部结构施工完成后,把梁段运到工地拼装,同时张拉所需的钢束。整个过程的结构体系为先是悬臂结构,合龙后形成连续体系。节段桥梁的分段长度可根据结构的受力要求及施工机具灵活划分。 (2)发展趋势。设计方面,可采用高标号混凝土,预应力体系可多种多样,计算机的使用已使桥梁的结构分析及挠度控制十分简便。与满堂支架法相比,结构由简支到连续,存在结构体系转换问题,预应力及徐变引起的次内力已不容忽视。钢束既可布置在腹板内,也可布置在顶底板内,结构自重大大降低,跨越能力增强。施工方面,可以节省大量的支架、型钢和模板,混凝土质量可以得到保证。对城市桥梁而言,不必用挂篮进行张拉钢束等作业,只需简单的移动支架即可。节段的预制可与下部构造同时进行,一方面大大加快了施工进度,另一方面可减少徐变带来的负面影响,充分发挥力筋的高强性能。节段的安装可充分利用机械化设备,安排在车流量较小的时段进行,对交通影响较小。但是,节段式桥梁的技术要求较高,影响结构的因素较多,施工控制也很严格,对小跨度桥梁由于梁高较低,无工作面张拉连续力筋,不适宜采用节段桥梁。采用悬臂拼装的 PC 连续梁,在技术上可行、经济上合理,机械化程度应用高,有利于工厂化生产,可满足业主对工期和质量的要求及日新月异的城市发展需要,具有较大的优越性,而且在同等造价条件下可以增大跨度,节省下部工程量。悬臂拼装法也适用于曲线梁。 三、预应力现浇桥梁施工技术现状与发展趋势 (一)发展现状。预应力混凝土现浇梁的施工过程是在桥位上安装满堂支架,在支架上进行混凝土的浇筑,如果混凝土的强度满足要求后,将模板和支架卸下的土木工程桥梁施工技术。预应力现浇法施工,当施工的桥梁具有跨径不等特点的时候,利用该方法更加具有优势。原因在于该施工技术不用事先布置施工场地,同时也不用对施工设备进行吊装,从而全部梁体的钢筋不会发生断开的情况,使桥梁具有非常好的整体刚度,进而防止了预制安装产生的接缝和梁体颜色的不同,因此桥梁具有整体上比较好的色泽,同时,如果和碗扣式支架进行配合,能够使桥梁上部梁板架设非常可靠和方便,进而属于目前桥梁施工技术中非常重要的一种施工技术。 预应力混凝土现浇梁施工的技术要点如下所示:(1)合理地进行地基的处理,确保地基具有较好的承载能力,是桥梁施工过程的关键注意事项。为防止支架因沉降过大和沉降不均匀引起连续箱梁横隔梁墩顶负弯矩区产生裂缝,进而使箱梁的总体质量下降以及无法较好的地控制连续箱梁施工标高,一定要对原地面采取处理措施。 (2)支架的确定和安装。支架可以利用钢材、塑料以及其他可以满足设计条件的材料制造。在支架荷载计算的方面,按照现浇梁自身的重力、模板的重力、支架自自身的重力以及桥梁施工荷载求解出必须的基础承载力的大小,并根据计算结果进行地基的处理。地基处理以后接着依据事先设计的计划进行支架的安装。

树脂基复合材料的发展史

树脂基复合材料的发展史 树脂基复合材料(Resin Matrix Composite)也称纤维增强塑料(Fiber Reinforced Plastics),是目前技术比较成熟且应用最为广泛的一类复合材料。这种材料是用短切的或连续纤维及其织物增强热固性或热塑性树脂基体,经复合而成。以玻璃纤维作为增强相的树脂基复合材料在世界范围内已形成了产业,在我国俗称玻璃钢。 树脂基复合材料于1932年在美国出现,1940年以手糊成型制成了玻璃纤维增强聚酯的军用飞机的雷达罩,其后不久,美国莱特空军发展中心设计制造了一架以玻璃纤维增强树脂为机身和机翼的飞机,并于1944年3月在莱特-帕特空军基地试飞成功。从此纤维增强复合材料开始受到军界和工程界的注意。 第二次世界大战以后这种材料迅速扩展到民用,风靡一时,发展很快。1946年纤维缠绕成型技术在美国出现,为纤维缠绕压力容器的制造提供了技术贮备。 1949年研究成功玻璃纤维预混料并制出了表面光洁,尺寸、形状准确的复合材料模压件。1950年真空袋和压力袋成型工艺研究成功,并制成直升飞机的螺旋桨。 60年代在美国利用纤维缠绕技术,制造出北极星、土星等大型固体火箭发动机的壳体,为航天技术开辟了轻质高强结构的最佳途径。在此期间,玻璃纤维-聚酯树脂喷射成型技术得到了应用,使手糊工艺的质量和生产效率大为提高。 1961年片状模塑料(Sheet Molding Compound, 简称SMC)在法国问世,利用这种技术可制出大幅面表面光洁,尺寸、形状稳定的制品,如汽车、船的壳体以及卫生洁具等大型制件,从而更扩大了树脂基复合材料的应用领域。 1963年前后在美、法、日等国先后开发了高产量、大幅宽、连续生产的玻璃纤维复合材料板材生产线,使复合材料制品形成了规模化生产。拉挤成型工艺的研究始于50年代,60年代中期实现了连续化生产,在70年代拉挤技术又有了重大的突破,近年来发展更快。除圆棒状制品外,还能生产管、箱形、槽形、工字形等复杂截面的型材,并还有环向缠绕纤维以增加型材的侧向强度。目前拉挤工艺生产的制品断面可达76cm×20cm。 在70年代树脂反应注射成型(Reaction Injection Molding, 简称RIM)和增强树脂反应注射成型(Reinforced Reaction Injection Molding, 简称RRIM)两种

树脂基复合材料的力学性能

树脂基复合材料的力学性能 力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。 1、树脂基复合材料的刚度 树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。 由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。 对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。 2、树脂基复合材料的强度 材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。 树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,还不够成熟。 单向树脂基复合材料的轴向拉、压强度不等,轴向压缩问题比拉伸问题复杂。其破坏机理也与拉伸不同,它伴随有纤维在基体中的局部屈曲。实验得知:单向树脂基复合材料在轴向压缩下,碳纤维是剪切破坏的;凯芙拉(Kevlar)纤维的破坏模式是扭结;玻璃纤维一般是弯曲破坏。 单向树脂基复合材料的横向拉伸强度和压缩强度也不同。实验表

浅谈转体桥梁的施工现状及关键技术

侯书亮水务二班 1101060228 浅谈转体桥梁的应用现状及关键技术 摘要:随着我国城市交通的发展,道路立交化已经是大势所趋。尤其是在已修建的公路、铁路上修建桥梁,每月必须申请多日铁路 A 类“天窗”内方可施工,不但施工进度受到道路行车运营情况的严重制约,而且也会影响繁忙的道路正常运营,同时也对道路的安全构成严重威胁。所以转体桥梁施工技术应运而生,并在近几年取得飞速发展。随着转体桥梁技术的大范围应用,其关键技术成为保障工程质量的关键性因素。现对转体桥梁的应用现状与关键的施工技术进行研究,了解这一技术的发展情况。 关键词:转体桥梁现状关键技术 1 转体桥梁的概念 桥梁转体施工技术是指桥梁在非设计位置完成桥梁上部结构的施工,然后通过转动体系使桥梁上部结构转动一定角度后就位于设计位置的一种施工方法(平面或竖向角度)。该施工方法具有结构合理、节约材料。施工设备投入少。施工安全,不影响通航、不中断桥下通行等优点,所以该施工方法发展迅速应用越来越广泛。尤其是对修建处于交通运输繁忙、安全要求苛刻的铁路跨线桥。由于该方法将在铁路上方的施工转换为在安全区域的施工,不对铁路运输产生安全威胁,所以其优势更加明显。目前跨越铁路的桥梁施工,铁路部门一般均要求采用该施工方法进行设计、施工。 2 转体桥梁的应用现状 为了确保既有铁路的运营安全,尽量减少施工对既有铁路运输的影响,铁道部及相关铁路局在进行跨越既有铁路桥梁方案的审批过程中越来越倾向于采用转体施工方案。特别是跨越既有电气化铁路、繁忙客货运铁路均要求转体施工。为此针对于采用转体施工方案过程中保证既有铁路运输安全如何使制订的施工方案更有针对性和可操作性成为一个新的研究课题。 3 转体桥梁施工的关键技术 在跨铁路桥梁转体施工法中,转动设备与转动能力是最为关键的技术问题。这一技术问题的突破能有效保证施工过程中的结构稳定,还能保证其强度,有效的实施结构的合拢,进行相应体系的高效转换。 3.1 竖转法 一般在肋拱桥工程中主要采用竖转法。而肋拱一般都是在底位浇筑,或是进行低位拼装之后再向上拉升,进而使其达到相应的设计位置,之后再进行合拢。竖转体系的构成也相对来说简单一些,方案设计为安装旋转支座——搭设拼装支架、塔架,安装扣索、平衡索——起吊安装拱肋——竖转对接—调整线形—焊接合龙。其中,在脱架时,竖转的拉索索力是最大的。主要是由于在这时候拉索的

我国道路与桥梁发展现状分析及展望

道路桥梁工程概论论文 ——我国道路与桥梁发展现状分析及展望 姓名:宿凌飞 班级:2011级房建5班 学号:201110703059 任课教师:汪杰

我国道路与桥梁发展现状分析及展望 摘要:随着我国建设的发展,公路已具有非常重要的作用。近几年来,可以说是我国公路桥梁的建设在飞速发展的同时也取得了非常大的成就。交通运输是现代经济社会正常运行的基础保障,生产要素之间的快速交换是保障和维护生产正常运行的基本条件。交通运输规模的大小是经济社会现代化程度的基本标识之一,而交通运输的发展又在很大程度上限制的经济的发展。道路与桥梁的发展又占交通运输发展的很大部分,本文主要阐述的就是我国道路与桥梁发展现状及展望。 关键字:基础设施道路桥梁交通运输发展现状 正文: 交通运输把社会生产、分配、交换和消费等各个环节有机地联系起来,既是重要的基础产业,又为商品流通和人员流动提供基本条件。交通运输是国民经济的重点战略产业,是国民经济的重要基础设施,是制约经济与社会发展的一个重要因素。自改革开放以来,各地政府和人民都认识到“要想富,先修路”。交通运输业要先行,才能保持国民经济的持续、稳定、协调发展。 一、我国道路发展现状 由于之前200年中国经济科技相对于西方工业革命的落后以及战争的影响,中国和平发展的时间非常短,造成了中国交通运输等基础设施的建设严重滞后,据统计,在1949年新中国成立时全国公路通车总里程为8.07万公里,且缺桥少涵,路况极差。全国有1/3的县不通公路,整个西藏的公路交通还是一片空白。从建国到改革开放,由于交通运输的基础性和重要性不被重视,导致了对基础交通设施的投资严重不足,交通发展长期滞后。改革开放以后,虽然同时期公路交通设施在快速发展,但与国民经济发展的需求相比仍然偏低,且由于改革开放前几十年的历史欠账太大,城市出入口和交通干线严重堵塞,交通事故频频发生,运输效率低下,基础设施的落后成为了国民经济发展的主要瓶颈。20世纪80年代后期,中央政府开始了交通运输基础设施的修建,交通运输得到了很大的发展,尤其表现在公路交通方面。进入21世纪后,交通运输的发展速度进一步提高。 我国的高速公路建设自1988年沪嘉高速公路通车实现中国大陆高速公路零的突破后中国高速公路的建设一路突飞猛进。进入2000年之后,国民生活水平进一步提高,国家经济相比于改革开放初期已经有了极大的提高,高速公路等国民基础设施因此得到了进一步的投资。2000年1月,国务院成立了西部地区开发领导小组。西部大开发战略开始实施,中国西部相对于东部沿海的落后地区的交通运输等基础设施开始大力兴建,交通网络的形成加快了各省各地区的物资交流,各地区的经济联系得到进一步的加强。“十一五”规划期间,房地产行业的兴起更是带动了全国基础设施的建设。国家高速公路网规划中重点建设的“五射两纵七横”14条线路中,已建和在建路段达到95%以上。从1988年的100公里一路飙升至2012年的9.62万公里,中国高速公路实现了从无到有,

树脂基复合材料成型工艺介绍

树脂基复合材料成型工艺介绍 树脂基复合材料成型工艺介绍(1):模压成型工艺 模压成型工艺是复合材料生产中最古老而又富有无限活力的一种成型方法。它是将一定量的预混料或预浸料加入金属对模内,经加热、加压固化成型的方法。 模压成型工艺的主要优点: ①生产效率高,便于实现专业化和自动化生产; ②产品尺寸精度高,重复性好; ③表面光洁,无需二次修饰; ④能一次成型结构复杂的制品; ⑤因为批量生产,价格相对低廉。 模压成型的不足之处在于模具制造复杂,投资较大,加上受压机限制,最适合于批量生产中小型复合材料制品。随着金属加工技术、压机制造水平及合成树脂工艺性能的不断改进和发展,压机吨位和台面尺寸不断增大,模压料的成型温度和压力也相对降低,使得模压成型制品的尺寸逐步向大型化发展,目前已能生产大型汽车部件、浴盆、整体卫生间组件等。 模压成型工艺按增强材料物态和模压料品种可分为如下几种: ①纤维料模压法 是将经预混或预浸的纤维状模压料,投入到金属模具内,在一定的温度和压力下成型复合材料制品的方法。该方法简便易行,用途广泛。根据具体操作上的不同,有预混料模压和预浸料模压法。 ②碎布料模压法 将浸过树脂胶液的玻璃纤维布或其它织物,如麻布、有机纤维布、石棉布或棉布等的边角料切成碎块,然后在金属模具中加温加压成型复合材料制品。 ③织物模压法 将预先织成所需形状的两维或三维织物浸渍树脂胶液,然后放入金属模具中加热加压成型为复合材料制品。 ④层压模压法 将预浸过树脂胶液的玻璃纤维布或其它织物,裁剪成所需的形状,然后在金属模具中经加温或加压成型复合材料制品。 ⑤缠绕模压法 将预浸过树脂胶液的连续纤维或布(带),通过专用缠绕机提供一定的张力和温度,缠在芯模上,再放入模具中进行加温加压成型复合材料制品。 ⑥片状塑料(SMC)模压法 将SMC片材按制品尺寸、形状、厚度等要求裁剪下料,然后将多层片材叠合后放入金属模具中加热加压成型制品。 ⑦预成型坯料模压法 先将短切纤维制成品形状和尺寸相似的预成型坯料,将其放入金属模具中,然后向模具中注入配制好的粘结剂(树脂混合物),在一定的温度和压力下成型。 模压料的品种有很多,可以是预浸物料、预混物料,也可以是坯料。当前所用的模压料品种主要有:预浸胶布、纤维预混料、BMC、DMC、HMC、SMC、XMC、TMC及ZMC

桥梁的现状与发展前景

桥梁的现状与发展前景 摘要:本篇从桥梁入手,简单概述了桥梁的意义;它在国内外的发展历史;桥梁的基础构造,特点及流程;它与其它学科的联系和它的发展前景。说明了桥梁事业发展的巨大潜力,因此身为土木学子的我们更应该从现在努力学好专业知识,为以后跻身土木事业而奋斗! 关键词:石桥,木桥,浮桥,石拱桥,索桥,钢架桥,主跨径,支座,桥墩,桥台,平梁,悬臂梁。 交通事业是社会主义建设的主要组成部分之一,它对于发展国民经济,促进各地经济发展,促进文化交流和巩固国防,都具有非常重要的意义。桥梁又是公路,铁路,农村道路以及水利建设的重要组成部分。在经济上,桥梁的造价平均仅占公路总造价的10%~20%左右,在国防上,桥梁是交通运输的咽喉,在战争中具有重要的地位。在历史上,每当运输工具发生重大变化,对桥梁在载重、跨度等方面提出新的要求,便推动了桥梁工程技术的发展。在公路施工中,桥梁往往是全线通车的关键。桥梁是线路的重要组成部分。 人类的生活及发展必离不开衣食住行.而随着历史车轮的滚滚向前,出行逐渐成为人们的必然行为.这就自然地要求道路和桥梁的建设要跟上历史的脚步.下面我就单纯地分析一下桥梁的历史和现状以及发展前景 桥梁本身只是人类用于跨越障碍的建筑物.古代,用于民称"梁"用于战称"关梁".<<诗经-大-大明>>中"亲迎于渭,造舟为梁"意即用船架了一个浮桥."梁"字左为水之形,右为刃示刀身,木示材质.梁以"刀"为形,以木搭建,跨水而过."但随着时代的发展, 的作用也与时俱进,增添了不少功能,而且对它的基础作用以外的要求也越来越高了,自然也就承担了不少以往的责任.比如景观,人文等及反映科技经济水平等.下面单纯地就的几个方面来阐述一下.从古代的木桥,秦汉以后的石拱桥兴起,则古代匠人创了千姿万态的石桥,构成和谐绚丽的景色.除使当时人们通行之外,平添了不少美景以供行人欣赏.可知,忆古诗中常有飞桥,虹桥,曲桥之喻,《清明上河图》中的木虹桥,结构巧妙,景观更绝. 我国古代在桥梁建筑上,可谓起步早且集功能,美观,艺术与一体,这跟我国历史,文化悠久,是世界我们古国之一有非常的关系。单就桥梁讲我们的祖先在世界桥梁建筑史上曾写下光辉灿烂的一页。根据历史记载远在3000多年前的周朝,宽阔的渭河上就曾出现过浮桥。鉴于浮桥的架设具有简便快速的特点,常被用于军事,汉唐以后,浮桥的运用日趋普遍。在拱式木桥中,宋代虹桥(1032-1033)构造奇特。宋代画家张端在其名画《清明上河图》中所描绘的汴京(今河南开封市)的虹桥。该桥梁采用两套木拱(一套由3根按样形布置,另一套由5根短木组成)并配以横木形成稳定的拱架。后这一桥式又被广泛借鉴,如始建于明庆隆四年(1570年,1745年重建,1986年重修)的浙江泰顺县泗溪东桥,以及建于1802年的浙江云和梅桥(跨度为33.4米)等。尽管历经风雨,至今仍保持原貌,其他造型的桥数不胜数,下面仅列举数个典型的。例如,甘肃魏源灞凌桥,始建于明洪武年间(1368-1398)全长约40米,从两岸向跨中以四层悬臂梁伸出,跨越12米;兰州握桥(又名卧桥)始建于明永乐年间(1403-1424年清代两次重建现已不存),此桥由两岸向内斜上伸出重叠的悬臂梁各五层,中

铁路桥梁工程技术发展动态

铁路桥梁工程技术发展动态 摘要随着科技的进步,铁路桥梁技术日益更新,不 论是在桥梁的理论分析、结构设计、材料研究、还是数字模拟技术等领域,我国桥梁工程技术都达到了先进水平。 关键词桥梁技术;材料研究;工程技术 号U44 文献标识码 A 文章编号1674-6708 中图分类 2014)115-0057-02 1 概述过去封建社会的禁锢下,我国铁路建设在相当一段时期 毫无起色,直到清光绪二年,淞沪铁路的修建标志着我国第条铁路诞生,也是我国桥梁技术发展的开端。解放前的所有桥梁都是由外国人修建的,修建在黄河上的京汉铁路黄河大桥也是外国人掌控建造的,此桥因为跨距小的影响时常出现汛情。我国技术人员开始建造的桥梁就是浙赣线钱塘江大桥,其特点是双层两用大桥,上层运用钢铁简支梁,全部都是铆接,但是当时我国技术装备等都比较落后,所以任然无法避免外国人的干涉。新中国成立之前,相当一部桥梁都受到了毁坏,我国铁路桥梁工程技术基本原地停留。 新中国成立之后,我国的桥梁史迎来一个美好的春天, 以长江第一桥的的修建为标志,之后一直都在快速的发展。 桥梁的结构不断更进,尤其是新型材料出现和数字化的运用等,为我国桥梁的发展起到了很大的作用,也体现了我国桥梁工程技术获得的成绩。 2桥梁设计理论的确立桥梁的建造主要涉及材料的选择和结构设计,所以, 般用材料学科的理论为依据。过去,全世界都采用容许应力状态理

论,此理论主要指材料的计算应力必须不大于许应力,而且它是建立在弹性理论之上。如今,各国都在向极限状态理论转变,极限状态指某结构的部分或者个别单元不满足要求的临界,此理论由苏联提出,逐渐被大家所公认。极限状态理论与前者相比,它的安全系数有两部分组成,即载荷和抗力,这样分类的益处就是可以进行数据统计分析,提高经济效益。 目前我国两者兼用,即用容许应力状态理论也用极限状 态理论。例如,用容许应力状态理论计算钢结构,但是受到轴向压力的钢筋混凝土会产生轴向塑性变形,故一般用破坏理论计算。尤其是预应力的结构需要验证截面强度,所以大多采用极限状态理论。在桥梁设计方面我国也规定了很多标准,比如《建筑结构设计统一标准》、《钢结构设计规范》,《公路桥涵设计通用规范》等等。 3计算机辅助技术的应用计算机辅助设计指利用计算机和图像设备帮助工作人

环氧树脂复合材料的分类组成特性以及应用

环氧树脂复合材料的分类组成特性以及应用 日期: 2008-03-03 复合材料是由基体材料和增强材料复合而成的多相体系固体材料。它充分发挥了各组分材料的特点和潜在能力,通过各组分的合理匹配和协同作用,呈现出原来单一材料(均质材料、单相材料)所不具有的优异的新性能,从而达到对材料某些性能的综合要求。复合材料的出现在材料发展史上具有划时代的意义。受到国内外的极大重视。其发展之迅猛在历史上是空前的。已在工业、农业、交通、军事、科学技术和人民生活等各个领域广为应用。尤其是在航空、航天等尖端技领域中已成为不可缺少的重要的结构材料。无怪乎有人认为21世纪将进入“复合材料时代”。 热固性树脂基复合材料是目前研究得最多、应用得最广的一种复合材料。它具有质量轻、强度高、模量大、耐腐蚀性好、电性能优异、原料来源广泛,加工成型简便、生产效率高等特点,并具有材料可设计性以及其他一些特殊性能,如减振、消音、透电磁波、隐身、耐烧蚀等特性,已成为国民经济、国防建设和科技发展中无法取代的重要材料。在热固性树脂基复合材料中使用最多的树脂仍然是酚醛树脂、不饱和聚酪树脂和环氧树脂这三大热固性树脂。这三种树脂阶性能各有特点:酚醛树脂的耐热性较高、耐酸性好、固化速度快,但较脆、需高压成型;不饱和聚酪树脂的工艺性好、价格最低,但性能较差;环氧树脂的粘结强度和内聚强度高,耐腐蚀性及介电性能优异,综合性能最好,但价格较贵。因此,在实际工程中环氧树脂复合材料多用于对使用性能要求高的场合,如用作结构材料、耐腐蚀材料、电绝缘材料及透波材料等。 1、环氯树脂复合材料的分类 环氧树脂复合材料(简称环氧复合材料,也有人称为环氧增强塑料)的品种很多,其名称、含义和分类方法也没有完全统一,但大体上讲可按以下方法分类。 (1)按用途可分为环氧结构复合材料、环氧功能复合材料和环氧功能型结构复合材料。结构复合材料是通过组成材料力学性能的复合,使之能用作受力结构材料,并能按受力情况设计和制造材料,以达到材料性能册格比的最佳状态。功能复合材料是通过组成材料其他性能(如光、电、热、耐腐蚀等)的复合,以得到具有某种理想功能的材料。例如环氧树脂覆铜板、环氧树脂电子塑封料、雷达罩等。需要指出的是,无论使用的是材料的哪一种功能性,都必须具有必要的力学性能,否则再好的功能材料也没有实用性。已有些功能材料同时还要有很高的强度,如高压绝缘子芯棒,要求绝缘性和强度都很高,是一种绝缘性结构复合材料。 (2)按成型压力可分为高压成型材料(成型压力5—30MPa),如环氧工程塑料及

聚合物基复合材料

聚合物基复合材料 第二节聚合物基复合材料(PMC) 1.1聚合物基体 1.2PMC界面 1.3PMC制备工艺 1.4PMC性能与应用 聚合物基复合材料(PMC)是以有机聚合物为基体,连续纤维为增强材料组合而成的。聚合物基体材料虽然强度低,但由于其粘接性能好,能把纤维牢固地粘接起来,同时还能使载荷均匀分布,并传递到纤维上去,并允许纤维承受压缩和剪切载荷。而纤维的高强度、高模量的特性使它成为理想的承载体。纤维和基体之间的良好的结合充分展示各自的优点,并能实现最佳结构设计、具有许多优良特性。 实用PMC通常按两种方式分类。一种以基体性质不同分为热固性树脂基复合材料和热塑性树脂基复合材料;另一种按增强剂类型及在复合材料中分布状态分类。如:玻璃纤维增强热固性塑料(俗称玻璃钢)、

短切玻璃纤维增强热塑性塑料、碳纤维增强塑料、芳香族聚酰胺纤维增强塑料、碳化硅纤维增强塑料、矿物纤维增强塑料、石墨纤维增强塑料、木质纤维增强塑料等。这些聚合物基复合材料具有上述共同的特点,同时还有其本身的特殊性能。 通常意义上的聚合物基复合材料一般就是指纤维增强塑料(FRP),而为各种目的加入各种填料的高分子材料不在这里论及。 1.1聚合物基体 聚合物基体是纤维增强塑料的一个必需组分,在复合材料成型过程中,基体经过复杂的物理、化学变化过程,与增强纤维复合成具有一定形状的整体。因而基体性能直接影响复合材料性能。基体的主要作用包括将纤维粘合成整体并使纤维位置固定,在纤维间传递载荷,并使载荷均匀;决定复合材料的一些性能。如复合材料的高温使用性能(耐热性)、横向性能、剪切性能、耐介质性能(如耐水、耐化学品性能)等;决定复合材料成型工艺方法及工艺参数选择;保护纤维免受各种损伤。此外对复合材料一些性能有重要影响,如纵向位伸、尤其是压缩性能,疲劳性能,断裂韧性等。 1、分类 用于复合材料的聚合物基体主要按树脂热行为可分为热固性及热塑性两类。热塑性基体如聚丙烯、聚酰胺、聚碳酸酯、聚醚砚、聚醚醚酮等,它们是一类线形或有支链的固态高分子,可溶可熔,可反复加

树脂基复合材料复习要点

1.功能复合材料主要由功能体和基体组成,或由两种(或两种以上)的功能体组成。 2.材料在复合后所得的复合材料,依据其产生复合效应的特征,可分为线性效应和非线性效应。 3.燃烧过程,大致分为五个不同的阶段:(1)加热阶段;(2)降解阶段;(3)分解阶段;(4)点燃阶段;(5)燃烧阶段。 4.氧指数(OI)愈高,表示燃烧愈难。当OI<22时,为易燃性塑料;当OI在22—27之间时,为自熄性塑料;当OI > 27时,为难燃塑料 5.在美国UL-94防火标准中,塑料阻燃等级由HB,V-2,V-1向V-O逐级递增。 6.阻燃机理有多种:保护膜机理、不燃性气体机理、冷却机理、终止链锁反应机理、协同作用体系。 7.非金属材料的腐蚀类型按腐蚀机理分类①物理腐蚀②化学腐蚀③大气老化④环境应力开裂 8.为了弄清材料的腐蚀机理,进一步对其寿命进行预测,对其进行的实验以试验场所划分,可分为现场试验及实验里试验。 9.摩阻复合材料一般由增强体、摩擦功能调节体与基体等构成,各组分在摩擦材料中的作用是不同的。 10.列举三种常见的水溶性高分子聚合物:聚乙二醇、聚乙吡咯烷酮、聚乙烯。 11.防辐射服是利用服饰内金属纤维构成的环路产生感生电流,有感生电流产生反向电磁场进行屏蔽。 12.吸波材料之所以能够吸收进入材料内部的电磁波主要是由于电磁波在材料内部产生电损耗或磁损耗而使电磁波的电磁性能转化为其他形式的能量散失掉,从而达到减少反射的目的。 13.电损耗介质的吸波机理主要是松弛极化、磁性介质在交变磁场的作用下产生能量损耗的机制有:①磁滞损耗②涡流损耗③剩磁效应④磁共振。 14.密封材料的耐磨性通常以磨损率的倒数来表示。 15.影响玻璃钢透光率的主要因素:玻璃纤维和粘结剂的折射指数;玻璃纤维和粘结剂的光吸收系数;玻璃纤维的直径及其在玻璃钢中的体积含量。 16.阻尼特性可以通过对数衰减率δ与阻尼因子η两种方式来描述。 17.复合材料用于装甲防护主要有两种形式,即单纯的纤维织物和复合材料层合板。 18.防弹复合材料所用的纤维通常为玻璃纤维、尼龙纤维、芳纶和超高分子量聚乙烯纤维,最近开发出具有目前最高强度的聚苯并噁唑(PBO)纤维。 19.理想的树脂基体应具有耐高温、高韧性、高强度、低模量等性能,以及低成本。常用的树脂基体有:( )、( )、低密度聚乙烯、交联聚异戊二烯、聚丙烯等。 20.抗辐射聚合物基体一般在分子主链上具有多重环,如环氧树脂、聚酰亚胺树脂、聚醚砜、聚醚醚酮树脂等均具有良好的耐辐射性。 21.功能复合材料:除力以外而提供其它物理性能的复合材料即具有各种电学性能、磁学性能、光学性能、热学性能、声学性能以及摩擦、阻尼等性能。 22.高分子纳米复合材料:是由各种纳米单元和高分子复合而成的一种新型复合材料,其中纳米单元按化学成分分为金属陶瓷高分子和无机非金属。 23.燃烧氧指数:指试样像蜡烛状持续燃烧时,在氮-氧混合气流中所必须的最低氧含量。

铁路桥梁工程技术的现状与发展

铁路桥梁工程技术的现状与发展 1 概述 过去封建社会的禁锢下,我国铁路建设在相当一段时期毫无起色,直到清光绪二年,淞沪铁路的修建标志着我国第一条铁路诞生,也是我国桥梁技术发展的开端。解放前的所有桥梁都是由外国人修建的,修建在黄河上的京汉铁路黄河大桥也是外国人掌控建造的,此桥因为跨距小的影响时常出现汛情。我国技术人员开始建造的桥梁就是浙赣线钱塘江大桥,其特点是双层两用大桥,上层运用钢铁简支梁,全部都是铆接,但是当时我国技术装备等都比较落后,所以任然无法避免外国人的干涉。新中国成立之前,相当一部桥梁都受到了毁坏,我国铁路桥梁工程技术基本原地停留。 新中国成立之后,我国的桥梁史迎来一个美好的春天,以长江第一桥的的修建为标志,之后一直都在快速的发展。桥梁的结构不断更进,尤其是新型材料出现和数字化的运用等,为我国桥梁的发展起到了很大的作用,也体现了我国桥梁工程技术获得的成绩。 2 桥梁设计理论的确立

桥梁的建造主要涉及材料的选择和结构设计,所以,一般用材料学科的理论为依据。过去,全世界都采用容许应力状态理论,此理论主要指材料的计算应力必须不大于许应力,而且它是建立在弹性理论之上。如今,各国都在向极限状态理论转变,极限状态指某结构的部分或者个别单元不满足要求的临界,此理论由苏联提出,逐渐被大家所公认。极限状态理论与前者相比,它的安全系数有两部分组成,即载荷和抗力,这样分类的益处就是可以进行数据统计分析,提高经济效益。 目前我国两者兼用,即用容许应力状态理论也用极限状态理论。例如,用容许应力状态理论计算钢结构,但是受到轴向压力的钢筋混凝土会产生轴向塑性变形,故一般用破坏理论计算。尤其是预应力的结构需要验证截面强度,所以大多采用极限状态理论。在桥梁设计方面我国也规定了很多标准,比如《建筑结构设计统一标准》、《钢结构设计规范》,《公路桥涵设计通用规范》等等。 3 铁路桥梁工程技术 3.1、变形控制与结构刚度的限制技术

相关文档
最新文档