飞机飞行手册

飞机飞行手册
飞机飞行手册

飞行控制系统简介

自动飞行控制系统 飞行控制系统(简称飞控系统)的作用是保证飞机的稳定性和操纵性,提高飞机飞行性能和完成任务的能力,增强飞行的安全性和减轻驾驶员的工作负担。 深圳市瑞伯达科技有限公司,致力于成为全球无人机飞行器领导品牌,是智能化无人机飞行器及控制系统的研制开发的专业厂商,生产并提供各行业无人机应用的解决方案。产品线涵盖各种尺寸多旋翼飞行器、专业航拍飞行器、无人机飞行控制系统、无人机地面站控制系统、高清远距离数字图像传输系统、专业级无线遥控器、高精飞行器控制模块及各类飞行器配件 飞行器的自动飞行一、问题的提出早在重于空气的飞行器问世时,就有了实现自动控制飞行的设想。1891年海诺姆.马克西姆设计和建造的飞行器上安装了用于改善飞行器纵向稳定性的飞行系统。该系统中用陀螺提供反馈信号,用伺服作动器偏转升降舵。这个设想在基本概念和手段上与现代飞行自动控制系统有惊人的相似,但由于飞机在试飞中失事而未能成为现实。 60年代飞机设计的新思想产生了,即在设计飞机的开始就考虑自动控制系统的作用。基于这种设计思想的飞机称为随控布局飞行器(Control Configured Vehicle 简称CCV)。这种飞机有更多的控制面,这些控制面协同偏转可完成一般飞机难以实现的飞行任务,达到较高的飞行性能。 飞控系统分类飞控系统分为人工飞行控制系统和自动飞行控制系统两大类。由驾驶员通过对驾驶杆和脚蹬的操纵实现控制任务的系统,称为人工飞行控制系统。最简单的人工飞行控制系统就是机械操纵系统。不依赖于驾驶员操纵驾驶杆和脚蹬指令而自动完成控制任务的飞控系统,称为自动飞行控制系统。自动驾驶仪是最基本的自动飞行控制系统。飞控系统构成飞控系统由控制与显示装置、传感器、飞控计算机、作动器、自测试装置、信息传输链及接口装置组成。控制及显示装置是驾驶员输入飞行控制指令和获取飞控系统状态信息的设备,包括驾驶杆、脚蹬、油门杆、控制面板、专用指示灯盘和电子显示器(多功能显示器、平视显示器等)。传感器为飞控系统提供飞机运动参数(航向角、姿态角、角速度、位置、速度、加速度等)、大气数据以及相关机载分系统(如起落架、机轮、液压源、电源、燃油系统等)状态的信息,用于控制、导引和模态转换。飞控计算机是飞控系统的“大脑”,用来完成控制逻辑判断、控制和导引计算、系统管理并输出控制指令和系统状态显示信息。作动器是飞控系统的执行机构,用来按飞控计算机指令驱动飞机的各种舵面、油门杆、喷管、机轮等,以产生控制飞机运动的力和力矩。自测试装置用于飞行前、飞行中、飞行后和地面维护时对系统进行自动监测,以确定系统工作是否正常并判断出现故障的位置。信息传输链用于系统各部件之间传输信息。常用的传输链有电缆、光缆和数据总线。接口装置用于飞控系统和其他机载系统之间的连接,不同的连接情况可以有多种不同的接口形式。 自动飞行控制系统由自动驾驶仪、自动油门杆系统、自动导航系统、自动进场系统和自动着陆系统、自动地形跟随/回避系统构成。 RIBOLD瑞伯达科技有限公司,致力于成为全球飞行影像系统独家先驱,其产品线涵盖无人机飞行控制系统及地面站控制系统、影视航拍飞行平台、商用云台系统、高清远距离数字图像传输系统、无线遥控和成像终端及模型飞行器产品,多旋翼飞行器和高精控制模块。 RBD瑞伯达坚持创新, 以技术和产品为核心,通过完美的产品带来前所未有的飞行体验。我们的目标是做世界一流的无人机企业,为我们的客户提供一流的产品和服务!

航空安全诸要素(飞行的四个过程)

编号:SY-AQ-07496 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 航空安全诸要素(飞行的四个 过程) Elements of aviation safety (four processes of flight)

航空安全诸要素(飞行的四个过程) 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管 理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关 系更直接,显得更为突出。 飞行预先准备、飞行直接准备、飞行实施和飞行讲评四个阶段是保证安全飞行的有效方法。 飞行预告准备是组织飞行的要求阶段,每次飞行都应当预先进行充分准备。飞行预告准备的内容是:制定次日飞行计划,召开飞行预告准备会议,进行飞行和飞行保障的准备工作并检查落实。 飞行直接准备是在起飞前所进行的飞行准备工作。空勤组要按规定时间到达工作岗位,充分作好飞行直接准备,其内容包括: (1)研究天气,进行领航准备,计算起飞滑跑距离,确定起飞重量;(2)研究飞行中气象条件变坏或者发生特殊情况时的处置方案;(3)校正航行、通信、导航资料,交验航行记录; (4)听取工程机务人员关于飞机准备情况的报告,检查并接收飞机;(5)检查与监督货物装载,办理载运手续; (6)检查飞机上服务用品是否配备齐全;

(7)不迟于飞机预计起飞前30分钟办理离场手续,交验飞行的有关文件; (8)向指挥调度室提出能否飞行的建议。在国外,机长与驻外办事机构商讨决定起飞或者延误起飞。 飞行实施阶段是飞行四个阶段中保证安全和完成飞行任务的关键阶段。在飞行实施阶段中,应当严格按照飞行计划实施飞行,积极主动地做好飞行指挥和保障工作,完成飞行任务。 飞行讲评,是飞行的总结提高阶段,通过讲评,对完成任务的情况,飞行安全和质量,飞行组织和指挥,各项勤务保障工作,作出正确的评价。对于发现的问题,是安全、质量和技术方面的问题,要认真分析原因,总结经验,接受教训,提出措施,以便改进或纠正。 这里填写您的公司名字 Fill In Your Business Name Here

B737-300型飞机起飞分析手册概述

公司目前有B737-300型固定翼飞机,为保证B737-300型飞机在各个机场的起飞安全,特制订了本手册。使用本手册提供的起飞重量,可保证飞机在V1速度(决断速度, 目前称行动速度)时临界发动机失效,继续起飞或中断起飞都是安全的。 一、适用机型 山东航空股份有限公司B737-300型飞机。 二、功用 1.确定性能允许的最大起飞重量。 2.确定减推力起飞时可用的最大假设温度。 3.确定起飞速度。 三、制作的依据 B737-300 型飞机的起飞分析工具是波音公司提供的起飞分析软件 MARK7J.EXE。 四、起飞安全的要求 1.最大允许起飞重量必须保证飞行员有做出飞与不飞决断的能力,尤其在发动机失效时,可保证以下两点: 1.1在跑道终点之前停机的能力 1.2起飞、爬升和超越任何飞行航道下障碍物的能力 2.最大允许起飞重量受六种限制 2.1场长限重 2.2爬升限重 2.3越障能力限重 2.4刹车能量限重 2.5轮胎速度限重 2.6最低操纵速度限制 3.最大允许起飞重量的审定要求包括: 3.1全发性能 3.2一发失效的性能 3.3不列入反推力 4.场长限重必须保障飞行员能够安全地起飞或终止起飞 四发飞机在全发时需要最长的场长 双发飞机在单发时需要最长的场长 增大场长限重的条件是: 4.1增大起飞襟翼设定 4.2关闭空调引气 5.爬升限重必须保证飞机能够继续安全起飞

增大爬升限重的条件是: 5.1减小起飞襟翼设定 5.2关闭空调引气 5.3采用改进爬升 6.越障能力限重必须保证飞机能够继续安全起飞和安全越过起飞航道下的 所有障碍物 7.刹车能量限重必须保证飞机能够安全地终止起飞 7.1制动器须能吸收停住飞机所需的能量 7.2刹车能量限重不保证有足够的跑道停住飞机 8.轮胎速度限重必须保证飞机能在地面上安全运行直至取得所要求的离地 速度。 9.起飞速度V1是: 起飞过程中在这个速度时,如果飞行员启动第一项减速装置,飞机可以在"加速--停止"距离内停下来。或者,如果关键发动机在Vef处失效而飞机继续起飞,飞机可以在起飞距离内达到所要求的高度。起飞速度V1不是发动机失效时的速度,不是故障确认时的速度,不是决定时的速度, 而是起始终止起飞动作时的速度。 起飞速度V1应等于或大于最低地面操纵速度 最低地面操纵速度在飞机一发失效时能够保证飞行员能够仅凭方向舵来 控制飞机的方向。 10.起飞抬头速度Vr必须: 10.1等于或大于V1 10.2至少比最低起飞速度大10% 11.35英尺高度处的起飞安全速度V2必须: 11.1至少比失速速度大20% 11.2至少比最低空中操纵速度大10% 12.使用改进爬升可提高起飞重量,前提是: 场长限重大于爬升限重 使用改进爬升会带来: 12.1改善爬升能力 12.2增长所需的跑道长度 使用改进爬升的方法: 利用多余的跑道长度增大飞机的起飞速度,改进飞机的爬升性能 ,增大飞机的最大允许起飞重量。 13.最大允许起飞重量的计算可利用: 13.1飞机飞行手册 13.2使用手册 13.3 BOEING飞机可利用起飞分析程序(MARK7J) 14.使用假设温度进行减推力起飞

飞机飞行手册_文档.总结

飞机飞行手册 前言 飞机飞行手册作为一本技术手 册,它介绍了飞机驾驶方面非 常重要的基本驾驶技能和知识。 它提供了过渡到其他飞机和不 同飞机系统运行的信息。本书 由飞行标准服务,飞行人员测 试标准部和很多航空教育者以及产业协同下完成的。 本手册是为了帮助飞行学员学习驾驶飞机。对那些希望提高他们的飞行潜能和航空知识的飞行员也有帮助,也有助于那些准备额外证书和等级的飞行员,以及忙于指导飞行学员和认证飞行员的飞行教官。它把未来的飞行员介绍到飞行领域,还为飞行员提供考试要求的程序和机动性能方面的信息及指导。诸如导航和通讯、气象、飞行信息出版物的使用,法规,以及航空决策制定等主题可以在FAA的其他出版物中获取。 本手册遵循FAA确立的飞行员训练和认证理念。有不同的教学方法,以及执行飞行步骤和机动的方法,以及在解释航空动力学理论和原理时也有很多变化。本手册采用了驾驶飞机的精心选择的方法和概念。书中的讨论和解释反映了最常使用的实践和原则。偶尔在预期行动被

认为是充满危险的时候,会使用”必须”或者类似语气。使用这种语气不是对联邦法规全书第14篇的责任的一种附加、解释或者减轻。 使用本手册的人熟悉和使用联邦法规全书第14篇的相关部分和航空 信息手册(AIM)也是重要的。航空信息手册可以在线获得,其网址为https://www.360docs.net/doc/9415436694.html,/atpubs。飞行员认证所需要的成绩标准在相关的飞机实践考试标准中进行了说明。 为所有飞行人员认证和评级所需要的最新飞行标准司飞行人员训练和测试材料和相关知识代码可以从飞行标准司网站 https://www.360docs.net/doc/9415436694.html,获得。 联邦航空局非常感激整个航空社团中很多个人和组织提供的宝贵帮助,他们的专家级贡献得以成就此书。 本手册取代飞机飞行手册 1999年版本。本手册也取代1974年版本的复杂单发和轻型双发飞机的飞行员提高课程,以及取代私人和商业飞行员进修课程 1972年版本的相关部分。本次修订扩展了所有以前版本中的技术主题方面,旧版本为 FAA-H-8083-3。还提供了在以前版本中没有的安全考虑和技术信息方面的新内容。讨论水上飞机和雪上飞机的部分已经被删除,转移到了新的手册 FAA-H-8083-23 水上飞机,水上飞机和装浮子的直升机操作手册。 本手册可以从https://www.360docs.net/doc/9415436694.html,下载或者从FAA的飞行测试标准部定购。

飞行管理系统

第16章飞行管理系统 16.1飞行管理系统概述 随着飞机性能的不断提高,要求飞行控制系统实现的功能越来越多,系统变得越来越复杂,从而迫使系统系统设计师们在可用的技术条件、任务和用户要求,飞机可用空间和动力,飞机的气动力特性及规范要求等诸因素的限制下,把许多分系统综合起来,实施有效的统一控制和管理。于是便出现了新一代数字化、智能化、综合化的电子系统-飞行管理系统(FMS-Flight Management System)。在1981年12月,飞行管理系统首次安装在B767型飞机上。此后生产的大中型飞机广泛采用飞行管理系统。 16.2飞行管理系统的组成和功能 16.2.1飞行管理系统的组成 飞行管理系统由几个独立的系统组成。典型的飞行管理系统一般由四个分系统组成,如图16-1,包括: (1)处理分系统-飞行管理计算机系统(FMCS),是整个系统的核心; (2)执行分系统-自动飞行指引系统和自动油门,见自动飞行控制系统; (3)显示分系统-电子飞行仪表系统(EFIS),见仪表系统; (4)传感器分系统-惯性基准系统(IRS)、数字大气数据计算机(DADC)和无线电导航设备。 驾驶舱主要控制组件是自动飞行指引系统的方式控制面板(AFDS MCP)、两部控制显示组件(CDU)、两部电子飞行仪表系统(EFIS)控制面板。主要显示装置是CDU、电子姿态指引仪(EADI)、电子水平状态指示器(EHSI)和推力方式显示。各部分都是一个独立的系统,既可以单独使用,又可以有多种组合形式。飞行管理系统一词的概念是将这些独立的部分组成一个综合系统,它可提供连续的自动导航、指引和性能管理。

图16-1飞行管理系统 16.2.2飞行管理系统的功能 FMS的主要功能包括导航/制导、自动飞行控制、性能管理和咨询/报警功能。FMS实现了全自动导航,大大减轻了驾驶员的工作负担。另外,飞机可以在FMS的控制下,以最佳的飞行路径、最佳的飞行剖面和最省油的飞行方式完成从起飞直到进近着陆的整个飞行过程。 FMS在各飞行阶段的性能管理功能: (1)起飞前 通过FMS的控制显示组件人工向FMC输入飞行计划、飞机全重和外界温度。如果飞行计划已经存入FMC的导航数据库,则可直接调入。飞行计划包括起飞机场、沿途航路点和目的机场的经纬度、高度等。 (2)起飞 根据驾驶员输入的飞机全重和外界温度,FMC计算最佳起飞目标推力。 (3)爬升 根据驾驶员的选择,FMC计算最佳爬升剖面。FMC还根据情况向驾驶员提供阶梯爬升和爬升地点的建议,供驾驶员选择,以进一步节约燃油。 (4)巡航 FMC根据航线长短、航路情况等因素,选择最佳巡航高度和速度。结合导航设施,确定起飞机场至目的机场的大圆航线,以缩短飞行距离。 (5)下降 FMC根据驾驶员输入或存储的导航数据确定飞机下降的顶点。在下降阶段,FMC确定下降速度,最大限度利用飞机的势能,节约燃油。 (6)进近 FMS以优化速度引导飞机到达跑道入口和着陆点。 16.2.3飞行管理计算机系统 由飞行管理计算机(FMC)和控制显示组件(CDU)组成。

飞行管理系统介绍

飞行管理系统介绍 一、飞行管理系统(FMC)组成和基本功用 (一)、飞行管理系统(FLIGHT MANAGEMENT SYS)由五个分系统组成:1、飞行控制系统(DFCS) 包括自动驾驶(A/P)和飞行指引(F/D),其核心为两台飞行控制计算机,该系统用于自动飞行控制(FCC)和飞行指引。 2、自动油门系统(A/T) 其核心是一台自动油门计算机和两台发动机油门操纵的伺服机构,A/T 提供从起飞到着陆全飞行过程的油门控制。 3、飞行管理计算机系统(FMCS) 其核心是一台飞行管理计算机FMC和两台控制显示组件CDU,它用于从起飞到进近的几乎全部飞行过程的横向(LATERAL)剖面和纵向(VERTICAL)剖面的飞行管理。 我部的34N型飞机装有两部FMCS,这使飞行管理系统的可靠性更高。 4、惯性基准系统(IRUS) 其核心为两台惯导基准组件IRU,其主要功用为提供飞机的姿态基准和定位参数,也可用于飞机自备、远距导航。 5、电子飞行仪表系统(EFIS) 33A和34N型飞机装备的是电子飞行仪表系统,3T0型飞机装备的还是旧式的机械式仪表。由于飞行仪表的电子化,逐渐淘汰老式的机械式仪表,而电子飞行仪表必须有相应的字符,符号等图形信号发生器,以提供阴极射线管CRT或液晶LCD显示。EFIS就是起这个作用的电子式飞行仪表显示系统,它主要包括两台符号发生器(EFIS SG)和两套姿态指引仪(EADI)、两套水平状态指示器(EHSI)。

(二)、飞行管理系统的基本作用: 这套系统技术先进,设备量大,承担的任务多,其中最根本的功用是:1、实现飞行的自动化,大大减轻了飞行员的工作负担,减少人为操作所不可避免的差错和失误。 2、实现飞行全程的优化: (1)起飞阶段(TO)—根据飞机的全重和环境温度提供最佳目标推力。(2)爬升降段(CLB)—提供最佳爬升剖面:包括爬升点,阶段爬升的设置,目标推力和目标空速的设定。 (3)巡航(CRZ)—提供最佳高度和巡航速度,以及大圆航线和导航系统的选择和自动调谐。 (4)下降阶段(DSE)—提供下降顶点,目标下降速度和分段,以充分利用飞机高度下降所得到的动能,并以最佳的高度,速度和距离转入进近阶段。(5)进近(APP)—确定飞机在五边进近基准点时的高度、空速和距离。 飞行的优化不仅得到最合理的飞行路径,节省燃油和飞行时间,而且飞机机体的损耗率最少。 3、实现自动着陆 由于有两套自动驾驶通道,具有余度通道,借助仪表着陆系统可实现Ⅱ类气象标准的自动着陆(决断高度50英尺,跑道能见距离700英尺)和自动复飞。 二、FMC控制飞行过程工作概述 飞行过程可归纳为正常程序和辅助正常程序 1、正常程序 所谓正常程序就是自动飞行的标准程序,可分为如下七个飞行阶段:(1)起飞TAKE OFF 在完成起飞前准备后,只要按压TO/GA开关,即开始起飞程序,此时推力杆自动前进到起飞目标N1值,当飞机滑跑达到60节时,F/D指令杆提

中国民航飞行员航班飞行流程知识讲解

中国民航飞行员航班 飞行流程

中国民航飞行员航班飞行流程--------转自carnoc 让我们用波音757来模拟一个北京到上海浦东的航班,来揭开飞行那神秘的面纱。 飞行前地面准备 飞行前一日准备 在接到飞行任务后,机长和副驾驶在飞行前一天的下午来到飞行情报室进行飞行前的准备。主要是熟悉所飞航线的导航数据、降落及备降机场的使用细则、飞行程序,并且在准备结束后与机组其他成员一起就明日的飞行做出详细分工安排。 取得放行许可 清晨,机长按照航班时刻,提前1小时来到飞机上,副驾驶已将飞机里加入所需的航油。民航班机在出港前需由空管部门给予放行许可ATC Clearanc e,其中应包括:目的地、使用跑道、航路飞行规则、标准离场程序SID、航路巡航高度、应答机编码,如有必要还应该包括:起始高度、离场频率、特殊要求等。 地面活动和起飞(塔台) 推出开车 得到放行许可后,飞机开始做起飞前准备,包括上客、装货、机务人员检查完毕签署文件放行飞机、地面商务值机人员与机组共同核对人员、飞机装舱单正确等。副驾驶完成驾驶舱的初步准备工作,包括在飞行管理计算机(FM S)里输入今日飞行的主要数据,等待机长进行检查;乘务员们也来到飞机上,机上共有8名乘务员,她们在乘务长的安排下对客舱、旅客餐食、机上供应品进行准备;大约在起飞前25分钟时,旅客们开始登机。机长和副驾驶各自坐在驾驶舱的左右驾驶座上。机长打开了“系好安全带”的信号,设置了飞机停留刹车,开始对飞行管理计算机的内容进行检查。飞行管理计算机里存储了航空公司所飞航班的大部分信息,飞行员仅需要输入相应代码即可,计算机会自动生成航路。今天共有178名乘客,飞机的起飞重量为102吨,副驾驶根据舱单(客货装载表)在计算机里输入了起飞速度。打开航行灯光(左红、右绿、尾白),皮托管开关、防冰开关(如需要)等。数分钟后,机长确认了准备工作已完成,在驾驶舱的显示器上已表明所有舱门都已关好,乘务长报告客舱准备完毕。所有准备完成后,机组要请求推出许可,在得到许可后,方可启动发动机,叫做推出开车。机长示意副驾驶向塔台请示开车,同意后飞机在五分钟后启动好发动机。 地面滑行 飞机由停机位推出开车后,开始向塔台地面管制申请滑行的放行许可,滑行许可中应包括:使用滑行道,将滑行所到达的跑道号及必要时的特殊规定,如:“CCA197,经过滑行道Z3,Z2,L,36L,在 L 稍等。”在得到同意后开始

专题飞机飞行的力学原理

专题 飞机飞行的力学原理 ? 飞机用途 民用(运输、勘探、农用、消防、拯救等) 军用(歼击、轰炸、侦察、反潜、运输等) ? 飞机动力 螺桨式(活塞螺桨、涡轮螺桨、涡轮轴) 喷气式(涡轮喷气、涡轮风扇、、冲压、火箭等) ? 机翼类型 固定翼(双翼、单翼、矩形翼、后掠翼、前掠翼、三角翼、双三角翼、鸭翼、可变后掠翼等) 旋翼(单旋翼、双旋翼、可倾转旋翼等) ? 举例 歼10飞机:军用歼击机,采用涡轮风扇发动机,机翼类型为鸭翼。 飞机的机翼在飞行中产生升力和阻力 机翼的升力: 2 21Sv C F Y Y ρ= 机翼的阻力: 2 21Sv C F X X ρ= 升力系数C Y 和阻力系数C X :

C Y和C X都与气流方向和机翼运动方向(航向)的夹角有关,这一角度称为迎角。 一般来说,迎角越大,升力和升力系数越大,阻力和阻力系数也越大。当迎角大于某一角度时,升力和升力系数会急剧下降。这一角度称为失速角。 飞机飞行的受力分析:质点情况 ?考虑飞机为一质点,其受力情况为: 升力F Y 阻力F X 重力mg 发动机的推力(或拉力)F ?若飞机在水平方向进行匀速直线运动,则: F = F X F Y = mg 若飞机进行滑翔飞行,其受力情况为:

升力 F Y 阻力 F X 重力 mg 很明显,在理想情况下,升力、阻力、重力三者矢量和为零,滑翔飞机做匀速直线运动。即: R F F mg Y X =+= 2 2 一点奥秘 ?由于:221Sv C F Y Y ρ= 2 21Sv C F X X ρ= 在稳定飞行时:F Y = mg F = F X ?结论: ? 高速飞行器的翼面积较小,低速飞机的翼面积较大。 ? 重型飞机的翼面积较大,轻型飞机的翼面积较小。 ? 高速飞行器阻力系数较小,升力系数也不大。 ? 低速飞行器升力系数较大,阻力系数也较大。 速度和升阻比的测量和计算

飞行管理系统介绍

飞行管理系统介绍 飞行管理系统介绍 一、飞行管理系统(FMC)组成与基本功用 (一)、飞行管理系统(FLIGHT MANAGEMENT SYS)由五个分系统组成: 1、飞行控制系统(DFCS) 包括自动驾驶(A/P)与飞行指引(F/D),其核心为两台飞行控制计算机,该系统用于自动飞行控制(FCC)与飞行指引。 2、自动油门系统(A/T) 其核心就是一台自动油门计算机与两台发动机油门操纵的伺服机构,A/T提供从起飞到着陆全飞行过程的油门控制。 3、飞行管理计算机系统(FMCS) 其核心就是一台飞行管理计算机FMC与两台控制显示组件CDU,它用于从起飞到进近的几乎全部飞行过程的横向(LATERAL)剖面与纵向(VERTICAL)剖面的飞行管理。 我部的34N型飞机装有两部FMCS,这使飞行管理系统的可靠性更高。 4、惯性基准系统(IRUS) 其核心为两台惯导基准组件IRU,其主要功用为提供飞机的姿态基准与定位参数,也可用于飞机自备、远距导航。 5、电子飞行仪表系统(EFIS) 33A与34N型飞机装备的就是电子飞行仪表系统,3T0型飞机装备的还就是旧式的机械式仪表。由于飞行仪表的电子化,逐渐淘汰老式的机械式仪表,而电子飞行仪表必须有相应的字符,符号等图形信号发生器,以提供阴极射线管CRT或液晶LCD显示。EFIS就就是起这个作用的电子式飞行仪表显示系统,它主要包括两台符号发生器(EFIS SG)与两套姿态指引仪(EADI)、两套水平状态指示器(EHSI)。

飞行管理系统介绍

飞行管理系统介绍 (二)、飞行管理系统的基本作用: 这套系统技术先进,设备量大,承担的任务多,其中最根本的功用就是: 1、实现飞行的自动化,大大减轻了飞行员的工作负担,减少人为操作所不可避免的差错与失误。 2、实现飞行全程的优化: (1)起飞阶段(TO)—根据飞机的全重与环境温度提供最佳目标推力。 (2)爬升降段(CLB)—提供最佳爬升剖面:包括爬升点,阶段爬升的设置,目标推力与目标空速的设定。 (3)巡航(CRZ)—提供最佳高度与巡航速度,以及大圆航线与导航系统的选择与自动调谐。 (4)下降阶段(DSE)—提供下降顶点,目标下降速度与分段,以充分利用飞机高度下降所得到的动能,并以最佳的高度,速度与距离转入进近阶段。 (5)进近(APP)—确定飞机在五边进近基准点时的高度、空速与距离。 飞行的优化不仅得到最合理的飞行路径,节省燃油与飞行时间,而且飞机机体的损耗率最少。 3、实现自动着陆 由于有两套自动驾驶通道,具有余度通道,借助仪表着陆系统可实现Ⅱ类气象标准的自动着陆(决断高度50英尺,跑道能见距离700英尺)与自动复飞。 二、FMC控制飞行过程工作概述 飞行过程可归纳为正常程序与辅助正常程序 1、正常程序 所谓正常程序就就是自动飞行的标准程序,可分为如下七个飞行阶段: (1)起飞TAKE OFF 在完成起飞前准备后,只要按压TO/GA开关,即开始起飞程序,此时推力杆自动前进到起飞目标N1值,当飞机滑跑达到60节时,F/D指令杆提供俯仰指令,起飞后400英尺RA高度以上,A/P衔接,同时选择L NA V(水平导航)与V

飞机飞行的原理图解

飞机飞行的原理图解 飞机是指具有一具或多具发动机的动力装置产生前进的推力或拉力,由机身的固定机翼产生升力,在大气层内飞行的重于空气的航空器。 飞机飞行原理: 1、飞机上升是根据伯努利原理,即流体(包括炝骱退流)的流速越大,其压强越小;流速越小,其压强越大。 2、飞机的机翼做成的形状就可以使通过它机翼下方的流速低于上方的流速,从而产生了机翼上、下方的压强差(即下方的压强大于上方的压强),因此就有了一个升力,这个压强差(或者说是升力的大小)与飞机的前进速度有关。 3、当飞机前进的速度越大,这个压强差,即升力也就越大。所以飞机起飞时必须高速前行,这样就可以让飞机升上天空。当飞机需要下降时,它只要减小前行的速度,其升力自然会变小,小于飞机的重量,它就会下降着陆了。

飞机的组成: 大多数飞机都是由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成。 机翼:主要功用是为飞机提供升力,以支持飞机在空中飞行,也起一定的稳定和操纵作用。在机翼上一般安装有副翼和襟翼。操纵副翼可使飞机滚,放下襟翼能使机翼升力系数增大。另外,机翼上还可安装发动机、起落架和油箱等。 1.机身:主要功用是装载乘员、旅客、武器、货物和各种设备,还可将飞机的其它部件如尾翼、机翼及发动机等连接成一个整体。

2.尾翼:包括水平尾翼(平尾)和垂直尾翼(垂尾)。水平尾翼由固定的水平安定面和可动的升降沧槌伞4怪蔽惨碓虬括固定的垂直安定面和可动的方向舵。尾翼的主要功用是用来操纵飞机俯仰和偏转,以及保证飞机能平稳地飞行。 3.起落装置:飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。 4.动力装置:主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。

飞行管理系统

第16章飞行管理系统 16、1飞行管理系统概述 随着飞机性能得不断提高,要求飞行控制系统实现得功能越来越多,系统变得越来越复杂,从而迫使系统系统设计师们在可用得技术条件、任务与用户要求,飞机可用空间与动力,飞机得气动力特性及规范要求等诸因素得限制下,把许多分系统综合起来,实施有效得统一控制与管理。于就是便出现了新一代数字化、智能化、综合化得电子系统-飞行管理系统(FMSFlight Management System)。在1981年12月,飞行管理系统首次安装在B767型飞机上。此后生产得大中型飞机广泛采用飞行管理系统。 16、2飞行管理系统得组成与功能 16、2、1飞行管理系统得组成 飞行管理系统由几个独立得系统组成。典型得飞行管理系统一般由四个分系统组成,如图161,包括: (1)处理分系统-飞行管理计算机系统(FMCS),就是整个系统得核心; (2)执行分系统-自动飞行指引系统与自动油门,见自动飞行控制系统; (3)显示分系统-电子飞行仪表系统(EFIS),见仪表系统; (4)传感器分系统-惯性基准系统(IRS)、数字大气数据计算机(DADC)与无线电导航设备。 驾驶舱主要控制组件就是自动飞行指引系统得方式控制面板(AFDS MCP)、两部控制显示组件(CDU)、两部电子飞行仪表系统(EFIS)控制面板。主要显示装置就是CDU、电子姿态指引仪(EADI)、电子水平状态指示器(EHSI)与推力方式显示。各部分都就是一个独立得系统,既可以单独使用,又可以有多种组合形式。飞行管理系统一词得概念就是将这些独立得部分组成一个综合系统,它可提供连续得自动导航、指引与性能管理。

民用航空安全管理体系

第一章 民用航空安全管理体系 本章提示:安全是民航工作永恒的主题。敬爱的周恩来总理早在1957年10月5日就对民航工作作了重要批示,“保证安全第一,改善服务工作,争取飞行正常”。这一指示高度科学地概括了民航工作的特点,深刻地阐明了民航工作的基本内容,精辟地确定了航空运输质量的综合指标,成为民航工作的长期指导方针,对民航事业的发展起到了极为重要的指导作用。 学习本章课程目的是掌握民用航空安全管理体系(SMS)的内容,了解民用航空安全管理体系的发展和组成及国际相关民航组织对于安全管理的职权和职能。 ·

2 第一节 中国民用航空安全管理体系 安全管理体系(Safety Management System,SMS)是国际民航组织倡导的管理安全的系 统化方法,它要求组织建立安全政策和安全目标。通过对组织内部的组织结构、责任制度、程序等一系列要素进行系统管理,形成以风险管理为核心的体系,并实现既定的安全政策和安全目标。 一、中国民航推行安全管理体系的背景 2005年3月,加拿大民航局局长到中国民航总局访问,期间介绍了加拿大开展SMS的情况和SMS的理念,帮助中国民航建立SMS,由此正式拉开了中国民航开展SMS研究的序幕。 2006年3月,国际民航组织理事会通过了对《国际民用航空公约》附件6《航空器运行》的第30次修订。该次修订增加了国家要求航空运营人实施安全管理体系的要求,并规定从2009年1月1日起,各缔约国应要求其航空运营人实施被局方接受的安全管理体系。 2006年,民航总局将SMS建设确立为民航安全“十一五”规划的工作重点之一,设立6个专业组,其中航空公司组由民航总局飞行标准司负责,总局航空安全办公室负责总体协调。局方整合各方力量,深入研究国际民航组织有关SMS的内涵和要求,向全民航宣传SMS的理念。编写SMS差异指南材料和指导手册,开展相关培训。选择海航、深航作为SMS试点单位。 2007年3月,总局颁发了《关于中国民航实施安全管理体系建设的通知》,在全行业进行SMS总体框架、系统要素和实施指南等相关知识的培训。同时,于10月份正式印发了《中国民航安全管理体系建设总体实施方案》。 2007年11月,总局飞行标准司根据SMS的要求提出对《大型飞机公共航空运输承运人运行合格审定规则》(CCAR121部)做相应修订,增加要求航空运营人建立安全管理体系、设立安全总监等条款;同时,下发了相应的咨询通告《关于航空运营人安全管理体系的要求》,并就CCAR121修订内容和咨询通告征求各航空公司的意见。 2008年,民航工作会上进一步明确:2008年是SMS“全面实施年”,要求航空公司要重点抓好安全质量管理系统、主动报告机制、飞行数据译码分析系统和风险评估系统的建设。

第一次如何乘坐飞机 坐飞机流程及注意事项

第一次如何乘坐飞机 ——坐飞机流程及注意事项 乘机手续的办理 1.拿着机票.身份证(非典期间多了个健康申报表)到指定柜台(一般一进侯机厅就可以看见一个大屏幕.上面显示有各个航班相对应的办理柜台号)交给办理人员.她(他)会给你换登机牌.问你有没有行李要托运.记住拿回来的东西里至少应有三样:身份证.机票.登机牌.别拉下了. 2.买保险(20元.不强制.看个人需要). 3.安全检查:到这里需要提供三样东西:身份证.机票.登机牌. 4.到指定登机口等着上飞机.注意广播通知.登机口号码在登机牌上有标明. 办理手续的注意事项 1.务必在飞机起飞前的半小时办好手续.因此.最好根据情况提前到机场.特别是黄金周.春运等人巨多的时候.有的机 场非常严格.到时间了不让办就是不让办.比如北京机场. 2.喜欢靠窗户位置的朋友可以在换登机牌的时候让办理人员给你安排一个靠窗位置.一般都没有问题.除非你去得很晚.位置都安排给别人了.

3.托运行李时有的机场会收一个保险费.10元左右.比 如福州机场,如果你的行李箱没锁.有的机场会强制你花5块钱买把小锁.比如广州机场. 4.带着水果刀时最好放在行李中托运.不然90%可能会 给没收掉.另外.小动物不能带上飞机.要托运也要有检疫证明.比较麻烦.盆栽植物.花卉类的可以. 游客不能夹带易燃.易爆.腐蚀.有毒放射性物品.可聚合物质. 磁性物质及其他危险物品.旅客不得携带中华人民共和国和运 输过程中有关国家法律.政府命令和规定禁止出境.入境或过境的物品及其他限制运输的物品.旅客乘飞机不得携带武器.利器和凶器.交通行李内不得装有货币.珠宝.金银制品.票证.有价 证券和其他物品. 5.托运的凭证一般贴在机票上.到达并取出行李后.会有工作人员检查托运凭证和行李上的标签是否相对应.小心别拿 错别人的.把自己的丢了. 6.航班延误或取消 一般只要飞机晚点.在吃饭时间的.机场都会提供免费饮料或餐食(似乎晚上的比中午的更易得到照顾).如果晚上的飞机告知 当天不能飞了.就得看情况了.是飞机维修.航班调配等的原因.机场会提供食宿.由于天气.突发事件.空中交通管制等原因.就只能退票或改签了.这种情况机场是不管吃住的.

纸飞机飞行原理

For personal use only in study and research; not for commercial use 纸飞机飞行原理 纸飞机要飞得远、飞得快,有几点要注意:? 1)要尽量折得两边对称,如果不对称得话,飞机容易转弯,就飞不远了;? 2)翅膀和机身的比例要恰当。机身小翅膀大,飞机升力是够了,但重心上抬,投出去的飞机容易发飘;机身大翅膀小,重心过于下移,飞机就像飞镖一样,惯性十足,但却失去了飞行滑翔的行程,仿佛是扔出去的纸团。正确合理的翅膀和机身比例要根据纸飞机的形状和纸张的质地决定,多试几次就能找到最佳比例;? 3)注意前后的平衡。机头太重,飞机容易一头扎在地上;机头太轻,又容易造成机头上翘,导致失速。通过调整纸飞机的外形,或用纸条或胶带进行适当的加载(如果允许的话)可以调节飞机的平衡;? 4)最后说一点,纸飞机的投掷也很有讲究:不要侧风投飞,不然容易被刮偏;顺风投掷也没有足够的动力;最好是迎着不太强的正面逆风投掷,投出的角度稍大于水平角度,约15度左右,飞机要平稳向前送出,到最后一刻才自然脱手,那样飞得最远。 纸飞机的原理 2、机头不能太重,否则一下就载下去了;? 3、机头不宜太尖。阻力小,速度快,在空中停留的时间自然就短;? 4、机翼适当大一些,这与空气中的浮力成正比;? 5、后翼两侧向上折一下,但注意适度;如果迎面有微风吹来,有时还能向上飞;? 6、折时两边尽量对称,如果是开阔地,可以适当将左或右侧重一点点,使飞机在空中盘旋,可以一定程度上增加飞机在空中的滞留时间。? 7、折完后将两侧机翼向上,形成一定度数的v字夹角,注意不要太向上,稍有一点就行了。之后检查机翼两侧是否对称;? 8、先试飞,观察飞行情况做调整。(比如:飞起来机头向前一点一点的,说明机头轻了)?

机场和航空公司安全的重要性

机场和航空公司安全的重要性安全是民用航空永恒的主题,保障航空安全是民用航空生存和发展 的基础,也是民航政府管理部门的重要职能。民用航空是一个庞大 的系统,从航空器的生产制造、运行使用到各类保障,每一个系统 和环节,安全始终是第一位的。作为一种交通工具,飞机已被越来 越多的人接纳和选择,选择的理由是快捷方便和优质的服务。飞机 的特性和优势更符合现代社会的要求,因而也就有着更大的发展空间,但我们发展航空事业的同时,永远要关注并且永远被置于最基 本最重要的位置的就是安全。下面我简单论述一下航空公司和机场 安全管理问题。 一、关于航空公司安全管理问题 航空公司安全管理涉及范围广泛,有指挥控制安全管理、飞行技术 安全管理、航空器维修维护安全管理、客舱安全管理、地面运行保 障安全管理,任何一个环节发生问题,都可能会导致事故的发生。 因此,在航空安全管理理论方面,存在着一个多米诺骨牌连锁理论,就是说航空安全管理各环节均为多米诺骨牌的一环,抽掉其中任何 一环,都将造成其他环节的崩溃。

众所周知,品牌是现代企业的灵魂,是优秀企业存在和延续的价值 支柱。卓越的品牌在为航空公司树立良好社会形象的同时,也为航 空公司带来实际的利益。事实上,航空公司在自身品牌文化建设中,一个最核心的要素就是必须高度重视航空安全管理。 世界一些着名航空公司,在品牌文化建设上不遗余力地下工夫,在建设品牌要素过程中,则以安全管理为切入点,把安全管理的特色、特点作为竞争要素之一,融入品牌建设中,从而在市场竞争中,取得优势地位。高度重视安全管理,对航空企业发展具有重要意义,有的航空公司因一次空难或重大事故,品牌形象受到毁损,甚至走 向倒闭和破产的边缘;有的则依靠过硬的安全管理赢得旅客广泛赞誉。如澳大利亚快达航空公司自1920年成立以来已连续安全飞行90多年,仅靠安全这张竞争牌,该航空公司就拥有了一大批忠实的旅客。相反,美国瓦卢航空公司因1996年发生了一起空难,不得不在 重组中更名。欧盟2008年11月14日发布了一起公告,全球有194 家航空公司因安全问题被列入“黑名单”,禁止飞入欧洲空域,可 见航空安全是航空企业进入市场的最基本的通行证。 航空服务业的产品从本质上讲区别不大,如何在激烈的竞争中突围 而出,则取决于不同航空公司在旅客心目中建立的品牌形象及声誉,而在这其中,安全则常常扮演了“一票否决权”的重要角色。所以,

航空术语缩写简表

航空术语缩写简表 A/THR 自动推力 咨询通告 AC 交流电 ACARS 通讯寻址和报告系统 ACD 适航符合性文件 ACJ 咨询通告-联合 ADIRU 大气数据基准组件 ADR 大气数据基准 ADS-B 广播式自动相关监视(ADS-B)ADS-C 合约式自动相关监视(ADS-C) AFM 飞机飞行手册 AGL 离地高 AIME 独立监控推断 AINS 飞机信息网络系统 ALT 高度 AMC 可接受的符合方式 AMJ 咨询资料包 AMM 飞机维修手册 ANSU 飞机网络伺服组件 AOA 迎角 AOC

航空公司运行控制AP 自动驾驶 APU 辅助动力装置 AR 所需授权 ARINC 航路无线电INC ASD 加速停止距离ASDA 可用加速停止距离ASI 空速指示器 ATA 航协 ATC 空中交通管制ATSU 空中交通服务组件AWO 所有天气操作 BC 背航道 BSCU 刹车和转弯控制组件CAA 民航管理局 CDL 构型偏差清单CDLS 驾驶舱门锁系统CFR 联邦规章代码 CG 重心 CIS 独联体 CLB 爬升 CMP 构型维护和程序CPDLC

管制员飞行员数据链通讯CS 运行规范 CSM/G 恒速马达发电机 CWY 净空道 D-ATIS 数字式自动终端服务 DA 决断高度 DC 直流电 DCL 离场指令 DGAC 民航总局 DH 决断高 DMC 显示管理计算机 DME 测距仪 DNA 国家适航 DNAR 国家的适航条例 DO 文件指令 显示组件 DU 文件单元 EASA 欧洲航空安全局 ECAM 飞机电子中央监控 ED EUROCAE文件 EDTO 延长改航时间运行 EFIS 电子飞行仪表系统EGPWS 增强型近地警告系统

模型飞机飞行原理

第一章空气动力学基本知识 空气动力学是一门专门研究物体与空气作相对运动时作用在物体上的力的一门科学。随着航空科学事业的发展,飞机的飞行速度、高度不断提高,空气动力学研究的问题越来越广泛了。航模爱好者在制作和放飞模型飞机的同时,必须学习一些空气动力学基本知识,弄清楚作用在模型飞机上的空气动力的来龙去脉。这将有助于设计、制作、放飞和调整模型飞机,并提高模型飞机的性能。 第一节什么是空气动力 当任何物体在空气中运动,或者物体不动,空气在物体外面流过时(例如风吹过建筑物),空气对物体都会有作用力。由于空气对物体作相对运动,在物体上产生的这种作用力,就称为空气动力。 空气动力作用在物体上时,不是只作用在物体上的一个点或一个部分,而是作用在物体的整个表面上。空气动力表现出来的形式有两种,一种是作用在物体表面上的空气压力,压力是垂直于物体表面上的。另一种虽然也作用在物体表面上,可是却与物体表面相切,称为空气与物体的摩擦力。物体在空气中运动时所受到的空气作用力就是这两种力的总和。 作用在物体上的空气压力也可以分两种,一种是比物体前面的空气压力大的压力,其作用方向是从外面指向物体表面(图1-1),这种压力称为正压力。另一种作用在物体表面的压力,比物体迎面而来的空气压力小,压力方向是从物体表面指向外面的,这种压力称为负压力,或吸力(图1-1)。空气对物体的摩擦力与物体对空气之间相对运动的方向相反。这些力量作用在物体上总是使物体向气流流动的方向走。如果是空气不动,物体在空气中运动,那么空气 摩擦力便是与物体运动的方向相反,阻止物体向 前运动。 很明显,空气动力中由于粘性产生的空气摩 擦力对模型飞机飞行是有害的。可是空气作用在 模型上的压力又怎样呢?总的看来,空气压力对模 型的飞行应该说是有利的。事实上模型飞机或真 飞机之所以能够克服本身的重量飞起来,就是因图1-1作用在机翼上的压强分布 为机翼上表面产生很强的负压力,下表面产生正压力,由于机翼上、下表面压力差,就使模型或真飞机飞起来。可是作用在物体上的压力也并不是完全有利的。一般物体前面的压力大,后面的压力小,由于物体前后压力差便会阻碍物体前进,产生很多困难。只有物体的形状适当才可以获得最大的上、下压力差和最小的前后压力差,也就是通常所说的最大的升力和最小的阻力。所以空气压力对于物体的运动有

飞行运行手册

第7章目录 7 各机型的性能7-2 7.1 ACN 7-2 7.2 各机型的风速限制7-3 7.3 7.3.1 7.3.2 7.3.3 飞机的分类 按飞机最大起飞全重分 根据国际民航组织关于运输飞机进近分类的规定分类 本公司所属飞机分类(CCAR-121FS.3) 7-5 7-5 7-5 7-5 7.4 起飞爬升梯度与爬升率的换算7-6 7.5 下降下降梯度与下降率的换算7-6 7.6 7.6.1 7.6.2 7.6.3 7.6.4 7.6.5 飞机性能使用限制 概述 涡轮发动机驱动的飞机的起飞性能限制 涡轮发动机驱动的飞机的航路限制——单台发动机不工作 着陆分析 涡轮发动机驱动飞机的着陆限制——备降机场 7-9 7-9 7-9 7-9 7-10 7-11

7.各机型的性能7.1ACN ACN一览表

7.2 我公司机型的风速限制: 7.2.1 波音737-700/800最大起飞/着陆风速限制: Array 7.2.3风速限制 B737-700/800 B737-700/800

注: 1. 在阵风比较大的情况下侧风限制标准以稳定风的侧风分量为标准。距跑道入口标高200英尺以下,若机载设备探测侧风分量或塔台报告稳定风分量超过侧风限制标准,必须立即复飞。 2. 若使用不对称反推,在湿或污染的跑道上侧风指南减小5 KTs 。 3. 在滑溜跑道上,侧风能力取决于道面条件、飞机载荷和飞行员的技术。 4. 使用自动油门着陆时,V 目标=Vref+5,不做风值修正。 5. 使用人工油门着陆时,V 目标 =Vref +风值修正值。 6. 风修正值=1/2稳定顶风分量+(阵风值-全稳定风值) 7. 注:风速单位为海里/小时(1米/秒≈2海里/小时); 8. 风修正值最大为20KTs ,最小为5KTs ; 9. 风向以着陆跑道方向为基准。 10. 当按照非正常检查单调整着陆速度时,如不使用自动油门,则必须对风进行修正(方法同4)。 注:风速限制是以开始进近或最终进近阶段时塔台报告的地面风为基础的。如果 ND(导航显示)上显示的风分量超出了对自动着陆时的风速限制,但塔台报告地面风却在限制之内,则AP(自动驾驶仪)可以保持接通状态。如果塔台报告的地面风大于上述限制,只能进行不用自动着陆的CATI(I 类)自动进近。

相关文档
最新文档