模糊控制详细讲解实例

模糊控制详细讲解实例
模糊控制详细讲解实例

一、速度控制算法:

首先定义速度偏差-50 km/h ≤e (k )≤50km/h ,-20≤ec (i )= e (k )- e (k-1)≤20,阀值e swith =10km/h

设计思想:油门控制采用增量式PID 控制算法,刹车控制采用模糊控制算法,最后通过选择规则进行选择控制量输入。 选择规则:

e (k )<0 ① e (k )>- e swith and throttlr_1≠0 选择油门控制

② 否则:先将油门控制量置0,再选择刹车控制 0

刹车控制:刹车采用模糊控制算法

1.确定模糊语言变量

e 基本论域取[-50,50],ec 基本论域取[-20,20],刹车控制量输出u 基本论域取[-30,30],这里我将这三个变量按照下面的公式进行离散化:

)]2

(2[

b

a x a

b n y +--= 其中,],[b a x ∈,n 为离散度。

E 、ec 和u 均取离散度n=3,离散化后得到三个量的语言值论域分别为: E=EC=U={-3,-2,-1,0,1,2,3}

其对应语言值为{ NB,NM,NS,ZO, PS,PM,PB } 2.确定隶属度函数

E/EC 和U 取相同的隶属度函数即:

E EC U

(,5,1)(,3,2,0)(,3,1,1)u (,2,0,2)(,1,1,3)(,0,2,3)(,1,5)g x trig x trig x trig x trig x trig x g x ∧∧--??--?

?--?

=-??-?

??

?

说明:边界选择钟形隶属度函数,中间选用三角形隶属度函数,图像略 实际EC 和E 输入值若超出论域范围,则取相应的端点值。

3.模糊控制规则

由隶属度函数可以得到语言值隶属度(通过图像直接可以看出)如下表: 表1:E/EC 和U 语言值隶属度向量表

设置模糊规则库如下表: 表2:模糊规则表

3.模糊推理

由模糊规则表3可以知道输入E 与EC 和输出U 的模糊关系,这里我取两个例子做模糊推理如下:

if (E is NB) and (EC is NM) then (U is PB) 那么他的模糊关系子矩阵为:

1211U EC E R R R R ??=

其中,711)0,,0,5.0,1(0?==ΛP R E ,即表1中NB 对应行向量,同理可以得到,

712)0,,0,5.0,1,0(1?==ΛP R EC , 711)0,,0,5.0,1(0?==ΛP R U

7

72

10000

00000

005.05.00005.010

)0,,0,5.0,1,0()0,,0,5.0,1(????

??

????????

???=?=?ΛM M M M M M ΛΛΛ

ΛΛT

EC E R R

49121)0,,0,5.0,5.0,0,0,0,0,0,5.0,1,0(?=ΛEC E R

7

49121100000

00

05.05.00005.0100000

)0,,0,5.0,1()0,,5.0,1,0(????????????

??

???=?=?=Λ

M ΛM M M M ΛΛΛ

ΛΛT

U EC E R R R

if (E is NVB or NB) and (EC is NVB) then (U is PVB)

1112U EC E R R R R ??= 结果略

按此法可得到27个关系子矩阵,对所有子矩阵取并集得到模糊关系矩阵如下:

)27,,2,1(21ΛY ΛY Y ==i R R R R i

由R 可以得到模拟量输出为:

()U E EC R =?o

4.去模糊化

由上面得到的模拟量输出为1×7的模糊向量,每一行的行元素(u (z ij ))对应相应的离散变量z j ,则可通过加权平均法公式解模糊:

)21,,2,1()

()(210

21

Λ===

∑∑==j i z

u z z

u u i ij

i j

ij

从而得到实际刹车控制量的精确值u 。 油门控制:

油门控制采用增量式PID 控制,即:

)2()1()2()()()1()(-+---++++-=k e k k e k k k e k k k k u k u d d p d i p

只需要设置p k 、 i k 、d k 三个参数即可输出油门控制量。 二、程序实现及参数调节

clear all

%************************模糊算法 %/*********隶属度向量 *****%

P0=[1,0.5,0,0,0,0,0];%*********NB

P1=[0,1,0.5,0,0,0,0];%*********NM

P2=[0,0.5,1,0.5,0,0,0];%*********NS

P3=[0,0,0.5,1,0.5,0,0];%*********ZO

P4=[0,0,0,0.5,1,0.5,0];%*********PS

P5=[0,0,0,0,0.5,1,0];%*********PM

P6=[0,0,0,0,0,0.5,1];%*********PB

%***********语言值*****%

NB=-3;NM=-2;NS=-1;ZO=0;PS=1;PM=2;PB=3; %/*********模糊规则表*****%

Pg=[PB PB PM PM PS ZO ZO;

PB PM PM PS ZO ZO NS;

PM PM PS PS ZO NS NS;

PM PS PS ZO ZO NS NM;

PS PS ZO ZO ZO NS NM;

PS ZO ZO ZO NS NM NB;

ZO ZO ZO NS NM NM NB];

%/*********根据规则表计算模糊关系矩阵*****% R1_=dikaer(xbing(P0,P1),7,P0,7);

R1_=reshape(R1_,1,49);

R1=dikaer(R1_,49,P6,7);

R2_=dikaer(xbing(P2,P3),7,P0,7);

R2_=reshape(R2_,1,49);

R2=dikaer(R2_,49,P5,7);

R3_=dikaer(P0,7,P1,7);

R3_=reshape(R3_,1,49);

R3=dikaer(R2_,49,P6,7);

R4_=dikaer(xbing(P1,P2),7,P1,7); R4_=reshape(R4_,1,49);

R4=dikaer(R4_,49,P5,7);

R5_=dikaer(P3,7,P1,7);

R5_=reshape(R5_,1,49);

R5=dikaer(R5_,49,P4,7);

R6_=dikaer(xbing(P0,P1),7,P2,7); R6_=reshape(R6_,1,49);

R6=dikaer(R6_,49,P5,7);

R7_=dikaer(xbing(P2,P3),7,P2,7); R7_=reshape(R7_,1,49);

R7=dikaer(R7_,49,P4,7);

R8_=dikaer(P0,7,P3,7);

R8_=reshape(R8_,1,49);

R8=dikaer(R8_,49,P5,7);

R9_=dikaer(xbing(P1,P2),7,P3,7); R9_=reshape(R9_,1,49);

模糊控制详细讲解实例

一、速度控制算法: 首先定义速度偏差-50 km/h ≤e (k )≤50km/h ,-20≤ec (i )= e (k )- e (k-1)≤20,阀值e swith =10km/h 设计思想:油门控制采用增量式PID 控制算法,刹车控制采用模糊控制算法,最后通过选择规则进行选择控制量输入。 选择规则: e (k )<0 ① e (k )>- e swith and throttlr_1≠0 选择油门控制 ② 否则:先将油门控制量置0,再选择刹车控制 0

模糊控制详细讲解实例之欧阳歌谷创作

一、速度控制算法: 欧阳歌谷(2021.02.01) 首先定义速度偏差-50 km/h≤e(k)≤50km/h,-20≤ec(i)=e(k)-e(k-1)≤20,阀值eswith=10km/h 设计思想:油门控制采用增量式PID控制算法,刹车控制采用模糊控制算法,最后通过选择规则进行选择控制量输入。 选择规则: e(k)<0 ①e(k)>-eswith and throttlr_1≠0 选择油门控制 ②否则:先将油门控制量置0,再选择刹车控制 0

E/EC和U取相同的隶属度函数即: 说明:边界选择钟形隶属度函数,中间选用三角形隶属度函数,图像略 实际EC和E输入值若超出论域范围,则取相应的端点值。 3.模糊控制规则 由隶属度函数可以得到语言值隶属度(通过图像直接可以看出)如下表: 表1:E/EC和U语言值隶属度向量表 设置模糊规则库如下表: 表2:模糊规则表 3.模糊推理 由模糊规则表3可以知道输入E与EC和输出U的模糊关系,这里我取两个例子做模糊推理如下: if (E is NB) and (EC is NM) then (U is PB) 那么他的模糊关系子矩阵为:

模糊控制规则表生成程序

模糊控制规则表生成程序 %偏差E的赋值表 E=[1.0 0.8 0.7 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.7 1.0 0.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.6 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 1.0 0.7 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.7 0.8 1.0]; %偏差变换率EC的赋值表 Ec=[1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0]; %输出U的赋值表 u=[1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0

模糊控制的应用实例与分析

模糊控制的应用 学院实验学院 专业电子信息工程 姓名 指导教师___________ 日期20门年9月20日 在自动控制中,包括经典理论和现代控制理论中有一个共同的特点,即控制器的综合设计都要建立在被控对象准确的数学模型(如微分方程等)

的基础上,但是在实际工业生产中,很多系统的影响因素很多,十分复杂。建立精确的数学模型特别困难,甚至是不可能的。这种情况下,模糊控制的诞生就显得意头重大,模糊控制不用建立数学模型,根据实际系统的输入输出的结果数据,参考现场操作人员的运行经验,就可对系统进行实时控制。模糊控制实际上是一种非线性控制,从属于智能控制的范畴。现代控制系统中的的控制能方便地解决工业领域常见的非线性、时变、在滞后、强耦合、变结构、结束条件苛刻等复杂问题。可编程控制器以其高可靠性、编程方便、耐恶劣环境、功能强大等特性很好地解决了工业控制领域普遍关心的可靠、安全、灵活、方便、经济等问题,这两者的结合,可在实际工程中广泛应用。 所谓模糊控制,其定义是是以模糊数学作为理论基础,以人的控制经验作为控制的知识模型,以模糊集合、模糊语言变量以及模糊逻辑推理作为控制算法的一种控制。模糊控制具有以下突出特点: ⑴模糊控制是一种基于规则的控制,它直接采用语言型控制规则,出发点 是现场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确的数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用 ⑵由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控 制对那些数学模型难以获取,动态特性不易掌握或变化非常显著的对象非常适用。

⑶基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同, 容易导致较大差异;但一个系统语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器。 ⑷模糊控制是基于启发性的知识及语言决策规则设计的,这有利于模拟人 工控制的过程和方法,增强控制系统的适应能力,使之具有一定的智能水平。 ⑸模糊控制系统的鲁棒性強,干扰和参数变化对控制效果的影响被大大减 弱,尤其适合于非线性、时变及纯滞后系统的控制。 由于有着诸多优点,模糊理论在控制领域得到了广泛应用。下面我们就以下示例介绍模糊控制在实际中的应用: 电机调速控制系统见图1,模糊控制器的输入变量为实际转速与转速给定值之间的差值e及其变化率仝,输出变量为电机的电压变化量u。图2为电机调试输出结果,其横坐标为时间轴,纵坐标为转速。当设定转速为2 OOOr / s时,电机能很快稳定运行于2 OOOr / s;当设定转速下降到1 OOOr / s时,转速又很快下降到1 OOOr / s稳定运 行。

模糊控制程序实例学习资料

5.2.2.6 模糊控制器设计实例 1、单输入模糊控制器的设计 【例5.12】已知某汽温控制系统结构如图5.10所示,采用喷水减温进行控制。设计单输入模糊控制器,观察定值扰动和内部扰动的控制效果。 R = 图5.10 单回路模糊控制系统 按表5-2确定模糊变量E 、U 的隶属函数,按表5-3确定模糊控制规则,选择温度偏差e 、控制量u 的实际论域:[ 1.5,1.5]e u =∈-,则可得到该系统的单输入模糊控制的仿真程序如FC_SI_main.m 所示,仿真结果如图5.11所示。 设温度偏差e 、控制量u 的实际论域:[ 1.5,1.5]e u =∈-,选择e 、u 的等级量论域为 {3,2,1,0,1,2,3}E U ==---+++ 量化因子2) 5.1(5.13 2=--?= K 。 选择模糊词集为{NB,NS,ZO,PS,PB },根据人的控制经验,确定等级量E ,U 的隶属函数曲线如图5-8 所示。根据隶属函数曲线可以得到模糊变量E 、U 的赋值表如表5-3所示。 图5-8 E ,U 的隶属函数曲线 -3 -2 -1 1 2 3

依据人手动控制的一般经验,可以总结出一些控制规则,例如: 若误差E 为O ,说明温度接近希望值,喷水阀保持不动; 若误差E 为正,说明温度低于希望值,应该减少喷水; 若误差E 为负,说明温度高于希望值,应该增加喷水。 若采用数学符号描述,可总结如下模糊控制规则: 若E 负大,则U 正大; 若E 负小,则U 正小; 若E 为零,则U 为零; 若E 正小,则U 负小; 若E 正大,则U 负大。 写成模糊推理句: if E=NB then U=PB if E=NS then U=PS if E=ZO then U=ZO if E=PS then U=NS if E=PB then U=NB 由上述的控制规则可得到模糊控制规则表,如表5-4所示。 表5-4 模糊控制规则表 模糊控制规则实际上是一组多重条件语句,它可以表示从误差论域E 到控制量论域U 的模糊关系R 。 按着上述控制规则,可以得到该温度偏差与喷水阀门开度之间的模糊关系R : ()()()()() E U E U E U E U E U R E U NB PB NS PS ZO ZO PS NS PB NB - - =?=?????U U U U 计算模糊关系矩阵R 的子程序如F_Relation_1.m 所示。 %模糊关系计算子程序F_Relation_1.c function [R,mfe,mfu,ne,nu,Me]=F_Relation_1 %#############################输入模糊变量赋值表(表5-3)############################ ne=7;%等级量e 的个数 nu=7;%等级量u 的个数 Me=[0 0 0 0 0 0.5 1;0 0 0 0 1 0.5 0;0 0 0.5 1 0.5 0 0; 0 0.5 1 0 0 0 0;1 0.5 0 0 0 0 0]; Mu=Me; %##定义模糊变量及其语言值 1=PB,2=PS,3=O,4=NS,5=NB ,并输入模糊控制规则表(表5-4)## mfc=5;%模糊变量E 的语言值个数,控制规则表列数

选取一个模糊控制的实例讲解

选取一个模糊控制的实例讲解,有文章,有仿真,有详细的推导过程。 一.实验题目:基于模糊控制系统的单级倒立摆 二.实验目的与要求: 倒立摆是联结在小车上的杆,通过小车的运动能保持竖立不倒的一种装置,它是一个典型的非线性、快速、多变量和自然不稳定系统,但是我们可以通过对它施加一定的控制使其稳定。对它的研究在理论上和方法上都有其重要意义。倒立摆的研究不仅要追求增加摆的级数,而且更重要的是如何发展现有的控制方法。同时, 它和火箭的姿态控制以及步行机器 人的稳定控制有很多相似之处,由此研究产生的理论和方法对一般工业过程也有广泛用途。 本文研究了倒立摆的控制机理,用Lagrange 方法推导了一级倒立摆的数学模型,这为研究多级和其它类型的倒立摆甚至更高层次的控制策略奠定了一个良好的基础。对系统进行了稳定性、可控性分析,得出倒立摆系统是一个开环不稳定但可控的系统的结论。 本文主要研究用极点配置、最优控制和模糊控制方法对倒立摆进行稳定控制。最优控制方法是基于状态反馈,但能实现输出指标最优的一种控制方法,方法和参数调节较简单,有着广泛的应用。模糊控制有不依赖于数学模型、适用于非线性系统等优点,所以本文尝试了用模糊控制对倒立摆进行控制,以将先进的控制方法用于实际中。 同时,对倒立摆系统的研究也将遵循从建模到仿真到实控,软硬件结合的系统的控制流程。在这过程中,借助数学工具Matlab7及仿真软件Simulink,作了大量的仿真研究工作,仿真结果表明系统能跟踪输入,并具有较好的抗干扰性。最后对实验室的倒立摆装置进行了软、硬件的调试,获得了较好的控制效果。 三.实验步骤: 1.一级倒立摆系统模型的建立 在忽略了空气阻力、各种摩擦之后(这也是为了保证Lagrange 方程的建立),可 将一级倒立摆系统抽象为由小车和匀质杆组成的系统,本系统设定如下: 小车质量M;摆杆质量m,长为l;小车在x 轴上移动;摆与竖直方向夹角为θ,规定正方向如图所示;加在小车x 轴上的力为F;

模糊控制算法c程序

由于项目需要,需要模糊控制算法,之前此类知识为0,经过半个多月的研究,终于有的小进展。开始想从强大的互联网上搜点c代码来研究下,结果搜遍所有搜索引擎都搜不到,以下本人从修改的模糊控制代码,经过自己修改后可在,运行!输入e表示输出误差,ec表示误差变化率,经过测试具有很好的控制效果,对于非线性系统和数学模型难以建立的系统来说有更好的控制效果!现将其公开供大家学习研究! #include <> #include"" #define PMAX 100 #define PMIN -100 #define DMAX 100 #define DMIN -100 #define FMAX 100 /*语言值的满幅值*/ int PFF[4]={0,12,24,48}; /*输入量D语言值特征点*/ int DFF[4]={0,16,32,64}; /*输出量U语言值特征点*/ int UFF[7]={0,15,30,45,60,75,90}; /*采用了调整因子的规则表,大误差时偏重误差,小误差时偏重误差变化*/ /*a0=,a1=,a2=,a3= */ int rule[7][7]={ //误差变化率 -3,-2,-1, 0, 1, 2, 3 // 误差 {-6,-6,-6,-5,-5,-5,-4,}, // -3 {-5,-4,-4,-3,-2,-2,-1,}, // -2 {-4,-3,-2,-1, 0, 1, 2,}, // -1 {-4,-3,-1, 0, 1, 3, 4,}, // 0 {-2,-1, 0, 1, 2, 3, 4,}, // 1 { 1, 2, 2, 3, 4, 4, 5,}, // 2 { 4, 5, 5, 5, 6, 6, 6}}; // 3 /**********************************************************/ int Fuzzy(int P,int D) /*模糊运算引擎*/ { int U; /*偏差,偏差微分以及输出值的精确量*/ unsigned int PF[2],DF[2],UF[4]; /*偏差,偏差微分以及输出值的隶属度*/ int Pn,Dn,Un[4]; long temp1,temp2; /*隶属度的确定*/ /*根据PD的指定语言值获得有效隶属度*/

模糊控制程序设计报告

模糊控制程序设计报告 自研112班 麻世博 2201100387 题目:已知被控对象为0.51()101 s G s e s ?=+。假设系统给定为阶跃值r =30,采样时间为0.5s ,系统的初始值r(0)=0。试分别设计: (1)常规的PID 控制器; (2)常规的模糊控制器; 分别对上述2种控制器进行Matlab 仿真,并比较控制效果 解答: 1 常规PID 控制器的设计与SIMULINK 仿真 如图1所示,使用SIMULINK 工具对已知系统的PID 控制系统进行仿真。 图1 PID 控制系统的SIMULIK 仿真 其中PID 控制器为离散型,采样时间T=0.5s ,参数P=14,I=3,D=0。阶跃信号幅值为30,被控对象传递函数为0.51()101 s G s e s ?=+。 该系统的阶跃响应如图2。

图2 PID控制系统的输出 该控制系统上升时间T r=1.5s,调节时间T s=8s,超调量σ%=70%,没有稳态误差。 该系统中PID控制器的输出曲线如图3。 图3 PID控制器的输出曲线 输出最大值为465,最小值为-208。 2 模糊控制器的设计 在本文中,我通过MATLAB提供的模糊逻辑工具箱(Fuzzy Logic Toolbox)编辑隶属函数、控制规则,设计了一个双输入单输出的模糊控制器,如下图所示。

图4 模糊控制器概览 2.1 隶属度函数的确立。 选择偏差E和偏差变化率EC作为控制器的输入,控制量U为输出。取E、EC和U的模糊子集为{NB, NM, NS, ZO, PS, PM, PL} ,它们的论域为{-3, -2, -1, 0, 1, 2, 3}。在 MATLAB的命令窗口输入命令Fuzzy,进入模糊逻辑编辑窗口。取输入量E、EC的隶属函数为高斯型(gaussmf),输出U的隶属函数为三角形(trimf),如下图所示。 图5 输入模糊变量E的隶属度函数

模糊控制程序实例

5.2.2.6模糊控制器设计实例 1、单输入模糊控制器的设计 【例5.12】已知某汽温控制系统结构如图 5.10所示,采用喷水减温进行控制。设计单输入模糊控 制器,观察定值扰动和内部扰动的控制效果。 图5.10单回路模糊控制系统 按表5-2确定模糊变量E U的隶属函数,按表5-3确定模糊控制规则,选择温度偏差e、控制量u 的实际论域:e =u € [ —1.5,1.5],则可得到该系统的单输入模糊控制的仿真程序如FC_SI_main.m所示,仿真结果如图5.11所示。 设温度偏差e、控制量u的实际论域:e = u ? [-1.5,1.5],选择e、u的等级量论域为 E =U ={-3^2,-1,0, 1, 2, 3} 2汇3 量化因子K 1 2。 1.5 -(-1.5) 选择模糊词集为{NB,NS,ZO,PS,PB},根据人的控制经验,确定等级量E,U的隶属函数曲线如图 5-8所示。根据隶属函数曲线可以得到模糊变量E、U的赋值表如表5-3所示。 图5-8 E, U的隶属函数曲线

依据人手动控制的一般经验,可以总结出一些控制规则,例如: 若误差E为0,说明温度接近希望值,喷水阀保持不动;若误差明温度低于希望值,应该减少喷水; 若误差明温度高于希望值,应该增加喷水。 若采用数学符号描述,可总结如下模糊控制规则: 若E负大,则U正大; 若E负小,贝U U正小; 若E为零,则U为零; 若E正小,则U负小; 若E正大,则U负大。 写成模糊推理句: if E=NB then U=PB if E=NS then U=PS if E=Z0 then U=Z0 if E=PS then U=NS if E=PB then U=NB 由上述的控制规则可得到模糊控制规则表,如表5-4所示。 模糊控制规则实际上是一组多重条件语句,它可以表示从误差论域旦到控制量论域U的模糊关系R。 按着上述控制规则,可以得到该温度偏差与喷水阀门开度之间的模糊关系R: R=E U =(NB E PB U)U(NS E PS U)U(Z0E Z0U)U(PS E NS U)U(PB E NB U) 计算模糊关系矩阵R的子程序如F_Relation_1.m 所示。

模糊控制程序实例

5. 226模糊控制器设计实例 1、单输入模糊控制器的设计 【例5.12]己知某汽温控制系统结构如图 5. 10所示,采用喷水减温进行控制。设计单输入模糊控 图5. io单回路模糊控制系统 按表5-2确定模糊变量E U的隶属函数,按表5-3确定模糊控制规则,选择温度偏差e、控制量u 的实际论域:e u [ 1. 5, 1. 5],则可得到该系统的单输入模糊控制的仿真程序如FC_SI_main. m所示,仿真结果如图5. 11所示。 设温度偏差e、控制量u的实际论域:e u [ 1.5, 1.5],选择e、u的等级量论域为 E U { 3, 2, 1,0, 1, 2, 3} 量化因子K 2 3 1. 5 ( 1. 5) 选择模糊词集为{NB,NS,Z0,PS,PB},根据人的控制经验,确定等级量E, U的隶属函数曲线如图5-8所示。根据隶属函数曲线可以得到模糊变量E、U的赋值表如表5-3所示。 图5-8 E, U的隶属函数曲线 r 0.51 (t 500) 制器,

依据人手动控制的一般经验,可以总结出一些控制规则,例如:若误差E 为0,说明温度接近希望值,喷水阀保持不动;若 误差 若误差 明温度低于希望值,应该减少喷水; 明温度高于希望值,应该增加喷水。 若采用数学符号描述,可总结如下模糊控制规则: 若E 负大, 若E 负小, 若E 为零, 若E 正小, 若E 正大, 则U 正大; 贝U U 正小; 则U 为零; 则U 负小; 则U 负大。 写成模糊推理句: if E=NB then U 二PB if E=NS then U 二PS if E=Z0 then U=Z0 if E=PS then U=NS if E=PB then U 二NB 由上述的控制规则可得到模糊控制规则表,如表 5-4所示。 表5-4模糊控制规则表 模糊控制规则实际上是一组多重条件语句,它可以表示从误差论域 旦到控制量论域U 的模糊关系 按着上述控制规则,可以得到该温度偏差与喷水阀门开度之间的模糊关系 R : (NB E PB U ) U (NS E PS U ) U (Z0E ZO U ) U (PS E NS U ) U (PB E NB C ) 计算模糊关系矩阵R 的子程序如F_Relation_l. m 所示。

模糊控制的应用实例与分析资料讲解

模糊控制的应用实例 与分析

模糊控制的应用 学院实验学院 专业电子信息工程 姓名 指导教师 日期 2011 年 9 月 20 日

在自动控制中,包括经典理论和现代控制理论中有一个共同的特点,即控制器的综合设计都要建立在被控对象准确的数学模型(如微分方程等)的基础上,但是在实际工业生产中,很多系统的影响因素很多,十分复杂。建立精确的数学模型特别困难,甚至是不可能的。这种情况下,模糊控制的诞生就显得意义重大,模糊控制不用建立数学模型,根据实际系统的输入输出的结果数据,参考现场操作人员的运行经验,就可对系统进行实时控制。模糊控制实际上是一种非线性控制,从属于智能控制的范畴。现代控制系统中的的控制能方便地解决工业领域常见的非线性、时变、在滞后、强耦合、变结构、结束条件苛刻等复杂问题。可编程控制器以其高可靠性、编程方便、耐恶劣环境、功能强大等特性很好地解决了工业控制领域普遍关心的可靠、安全、灵活、方便、经济等问题,这两者的结合,可在实际工程中广泛应用。 所谓模糊控制,其定义是是以模糊数学作为理论基础,以人的控制经验作为控制的知识模型,以模糊集合、模糊语言变量以及模糊逻辑推理作为控制算法的一种控制。模糊控制具有以下突出特点: (1)模糊控制是一种基于规则的控制,它直接采用语言型控制规则,出发点是 现场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确的数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用 (2)由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控制 对那些数学模型难以获取,动态特性不易掌握或变化非常显著的对象非常适用。

模糊控制设计例题

3-4 已知某一加炉炉温控制系统,要求温度保持在600℃恒定。目前此系统采用人工控制方式,并有以下控制经验 (1) 若炉温低于600℃,则升压;低得越多升压越高。 (2) 若炉温高于600℃,则降压;高得越多降压越低。 (3) 若炉温等于600℃,则保持电压不变。 设模糊控制器为一维控制器,输入语言变量为误差,输出为控制电压。两个变量的量化等级为七级、取五个语言值。隶属度函数根据确定的原则任意确定。试按常规模糊逻辑控制器的设计方法设计出模糊逻辑控制表。 模糊控制器选用的系统的实际温度T 与温度给定值T d 的误差d e T T =-作为输入语言变量,把控制加热装置的供电电压u 选作输出语言变量。

模糊输出量隶属度函数 控制规则 规则1、如果误差e 是NB ,则控制U 为NB; 规则2、如果误差e 是NS ,则控制U 为NS; 规则3、如果误差e 是ZE ,则控制U 为ZE; 规则4、如果误差e 是PS ,则控制U 为PS; 规则5、如果误差e 是PB ,则控制U 为PB; 由上可得 (3)0.4 PS μ= 10.4U PS = (3)1PB μ= 21 U PB = 120.4 1 U U U PS PB =+=+ 控制输出:00.4500.435150 46.66670.40.41 v ?+?+?==++ 误差(2)1PS μ= 11U PS =(2)0.3PS μ= 20.3 U PB =

120.3 1 U U U PS PB =+=+ 精确化 控制输出:00.340140 400.31 v ?+?==+ (1)0.1ZE μ= 10.1 U ZE = (1)0.4PS μ= 20.4 U PS = 120.1 0.4 U U U ZE PS =+=+ 控制输出:00.4350.4500.1350.125 400.40.40.10.1 v ?+?+?+?==+++ (1)0.4N S μ-= 10.4 U N S = 20.1U ZE = 120.1 0.4 U U U ZE N S =+=+ 00.4100.4250.1250.135 200.40.40.10.1 v ?+?+?+?= =+++ (2)0.3NB μ-= 10.3 U N B = (2)1N S μ-= 21U N S = 120.3 1 U U U N B N S =+=+ 控制输出:00.320120 200.31 v ?+?==+ (3)1N S μ-= 11 U N B =(3)0.4NS μ-= 20.4 U N S = 120.4 1 U U U N B N S =+=+ :00.4250.410110 13.33330.40.41 v ?+?+?==++ 因此模糊逻辑控制表

选取一个模糊控制的实例讲解

一.实验题目:基于模糊控制系统的单级倒立摆 二.实验目的与要求: 倒立摆是联结在小车上的杆,通过小车的运动能保持竖立不倒的一种装置,它是一个典型的非线性、快速、多变量和自然不稳定系统,但是我们可以通过对它施加一定的控制使其稳定。对它的研究在理论上和方法上都有其重要意义。倒立摆的研究不仅要追求增加摆的级数,而且更重要的是如何发展现有的控制方法。同时, 它和火箭的姿态控制以及步行机器人的稳定控制有很多相似之处,由此研究产生的理论和方法对一般工业过程也有广泛用途。 本文研究了倒立摆的控制机理,用Lagrange 方法推导了一级倒立摆的数学模型,这为研究多级和其它类型的倒立摆甚至更高层次的控制策略奠定了一个良好的基础。对系统进行了稳定性、可控性分析,得出倒立摆系统是一个开环不稳定但可控的系统的结论。 本文主要研究用极点配置、最优控制和模糊控制方法对倒立摆进行稳定控制。最优控制方法是基于状态反馈,但能实现输出指标最优的一种控制方法,方法和参数调节较简单,有着广泛的应用。模糊控制有不依赖于数学模型、适用于非线性系统等优点,所以本文尝试了用模糊控制对倒立摆进行控制,以将先进的控制方法用于实际中。 同时,对倒立摆系统的研究也将遵循从建模到仿真到实控,软硬件结合的系统的控制流程。在这过程中,借助数学工具 Matlab7及仿真软件Simulink,作了大量的仿真研究工作,仿真结果表明系统能跟踪输入,并具有较好的抗干扰性。最后对实验室的倒立摆装置进行了软、硬件的调试,获得了较好的控制效果。 三.实验步骤: 1.一级倒立摆系统模型的建立 在忽略了空气阻力、各种摩擦之后(这也是为了保证Lagrange 方程的建立),可 将一级倒立摆系统抽象为由小车和匀质杆组成的系统,本系统设定如下: 小车质量 M;摆杆质量m,长为l;小车在x 轴上移动;摆与竖直方向夹角为θ,规定正方向如图所示;加在小车x 轴上的力为F; 拉格朗日算子 L 是系统动能Ec 和势能Ep 之差,拉格朗日方程由拉格朗日算子L

基于模糊控制算法的温度控制系统的设计(DOC)

本科生毕业论文(设计) 调研报告 题目:基于模糊控制算法的 温度控制系统的设计学生姓名: 学号: 专业班级: 指导教师: 完成时间:年月日

基于模糊控制算法的温度控制系统的设计 一、主要目标任务: 综合运用所学知识,如《模拟电子技术》、《数字电子技术》、《自动控制原理》、《微机原理》、《单片机原理与应用》,设计一个基于模糊控制算法的温度控制系统。 1)对以前所学知识进行系统的复习,全面的综合并将其联贯。 2)学会了独立的分析和解决问题和进行相关社会调查的能力 3)学会了查阅文献的方法和培养查阅文献的良好习惯。 4)提高专业相关外文的阅读、翻译能力。提高专业英语水平。 5)提高编写程序的水平,优化软件结构。提高电脑绘图水平。 二、技术性能指标: 1)温度控制在0~100度(水温),误差为±0.5。C。 2)恒温控制。 3)LED实时显示系统温度。并通过键盘输入给定温度 三、简要工作原理 以AT89C51单片机为模糊控制器,结合温度传感变送器,A/D转换器、LED显示器、静态电子开关等,设计出一个基于模糊控制算法的温度控制系统。 在系统中,温度传感变送器获得温度的感应电压,转变成1~5V的标准电压信号,再由A/D转换器转换成数字信号进入单片机内部。单片机将给定电压的A/D转换结果与测量电压的结果相比较,得出偏差量。然后跟据模糊控制算法得出控制量。在执行器中由开关频率较高的静态电子开关完成,采用模拟的PWM控制方法,改变同一个周期中电子开关的闭合时间。 从而调节加热开关的导通时间,以达到控制效果的目的。 四、课题文献综述 1、《动力锅炉燃烧系统的模糊控制策略》 1)作者:刘向杰、柴天佑、刘红波 2)摘要:基于模糊控制策略给出了锅炉系统新的控制方法。工业锅炉的主要动态包括非线性、非最小相位特征、不稳定性、时滞和负荷干扰,采 用传统控制方法难以实施有效的控制。运用GPE(Gausian partition with evenly spaced midpoints)模糊控制系统对锅炉对象的主汽压进行研究和 实时控制,模糊控制器能够克服许多干扰因素,产生良好的控制效果, 最后给出了模糊控制同传统方法的比较结果。 3)模糊控制器的应用 本文的线性推理规则表示:IF error is Ej and rate is Rj THEN output is U(i+j)。Ei代表着一个误差模糊,Rj代表一个误差变化率模糊集,U(i+j)代表着一个输出量模糊集。 4)实施结果 上述控制策略用于现场实际对象,尽管现场运行存在很大的干扰,主

模糊控制程序一阶延时

语言变量X ,Y ,Z 的隶属度函数. 设计带有纯延迟的一阶惯性环节(假设T=6,=0.02): G(s)=s e s 6102.0+ 的模糊控制器,观察仿真结果。 编程如下: %被控系统建模 num=1; den=[6,1]; [a1,b,c,d]=tf2ss(num,den);%传递函数转换到状态空间 x=[0]; %系统参数 T=0.01;h=T ; td=0.02 ; N=1000; nd=td/T;%系统纯延迟 R=ones(1,N);%参考输入 %定义输入和输出变量及隶属度函数

a=newfis('Simple'); a=addvar(a,'input','e',[-4 4]); a=addmf(a,'input',1,'NB','trimf',[-4,-4,-2]); a=addmf(a,'input',1,'NS','trimf',[-4,-2,0]); a=addmf(a,'input',1,'ZO','trimf',[-2,0,2]); a=addmf(a,'input',1,'PS','trimf',[0,2,4]); a=addmf(a,'input',1,'PB','trimf',[2,4,4]); a=addvar(a,'input','de',[-4 4]); a=addmf(a,'input',2,'NB','trimf',[-4,-4,-2]); a=addmf(a,'input',2,'NS','trimf',[-4,-2,0]); a=addmf(a,'input',2,'ZO','trimf',[-2,0,2]); a=addmf(a,'input',2,'PS','trimf',[0,2,4]); a=addmf(a,'input',2,'PB','trimf',[2,4,4]); a=addvar(a,'output','u',[-4 4]); a=addmf(a,'output',1,'NB','trimf',[-4,-4,-2]); a=addmf(a,'output',1,'NS','trimf',[-4,-2,0]); a=addmf(a,'output',1,'ZO','trimf',[-2,0,2]); a=addmf(a,'output',1,'PS','trimf',[0,2,4]); a=addmf(a,'output',1,'PB','trimf',[2,4,4]); %模糊规则矩阵 rr=[5 5 4 4 3 5 4 4 3 3 4 4 3 3 2 4 3 3 2 2 3 3 2 2 1]; r1=zeros(prod(size(rr)),3);k=1; for i=1:size(rr,1) for j=1:size(rr,2) r1(k, : )=[i, j, rr(i, j)]; k=k+1; end end [r , s]=size(r1); r2=ones(r,2); rulelist=[r1,r2]; a=addrule(a,rulelist); %采用模糊控制器的二阶系统仿真 e=0;de=0; ke=30;kd=5;ku=1; for k=1:N %输入变量变换至论域 e1=ke*e; de1=kd*de; if e1>=4

模糊控制程序实例

5.226模糊控制器设计实例 1、单输入模糊控制器的设计 【例5.12】已知某汽温控制系统结构如图 5.10所示,采用喷水减温进行控制。设计单输入模糊控 制器,观察定值扰动和内部扰动的控制效果。 图5.10单回路模糊控制系统 按表5-2确定模糊变量E U的隶属函数,按表5-3确定模糊控制规则,选择温度偏差e、控制量u 的实际论域:e u [ 1.5,1.5],则可得到该系统的单输入模糊控制的仿真程序如FC_SI_main.m所示,仿真结果如图5.11所示。 设温度偏差e、控制量u的实际论域:e u [ 1.5,1.5],选择e、u的等级量论域为 E U { 3, 2, 1,0, 1, 2, 3} 量化因子K 2 3 1.5 ( 1.5) 选择模糊词集为{NB,NS,ZO,PS,PB},根据人的控制经验,确定等级量E,U的隶属函数曲线如图 5-8所示。根据隶属函数曲线可以得到模糊变量E、U的赋值表如表5-3所示。 图5-8 E, U的隶属函数曲线

依据人手动控制的一般经验,可以总结出一些控制规则,例如: 若误差E为0,说明温度接近希望值,喷水阀保持不动;若误差明温度低于希望值,应该减少喷水; 若误差明温度高于希望值,应该增加喷水。 若采用数学符号描述,可总结如下模糊控制规则: 若E负大,则U正大; 若E负小,贝U U正小; 若E为零,则U为零; 若E正小,则U负小; 若E正大,则U负大。 写成模糊推理句: if E=NB then U=PB if E=NS then U=PS if E=Z0 then U=Z0 if E=PS then U=NS if E=PB then U=NB 由上述的控制规则可得到模糊控制规则表,如表5-4所示。 表模糊控制规则表 模糊控制规则实际上是一组多重条件语句,它可以表示从误差论域旦到控制量论域的模糊关系R。 按着上述控制规则,可以得到该温度偏差与喷水阀门开度之间的模糊关系R: R E U (NB E PB U)U(NS E PS U)U(Z0E Z0U)U(PS E NS U)U(PB E NB U ) 计算模糊关系矩阵R的子程序如F_Relation_1.m 所示。

模糊控制详细讲解实例

一、速度控制算法: 欧阳学文 首先定义速度偏差50 km/h≤e(k)≤50km/h,20≤ec(i)=e(k)e(k1)≤20,阀值eswith=10km/h 设计思想:油门控制采用增量式PID控制算法,刹车控制采用模糊控制算法,最后通过选择规则进行选择控制量输入。 选择规则: e(k)<0 ①e(k)>eswith and throttlr_1≠0 选择油门控制 ②否则:先将油门控制量置0,再选择刹车控制 0

E、ec和u均取离散度n=3,离散化后得到三个量的语言值论域分别为: E=EC=U={3,2,1,0,1,2,3} 其对应语言值为{NB,NM,NS,ZO,PS,PM,PB} 2.确定隶属度函数 E/EC和U取相同的隶属度函数即: 说明:边界选择钟形隶属度函数,中间选用三角形隶属度函数,图像略 实际EC和E输入值若超出论域范围,则取相应的端点值。 3.模糊控制规则 由隶属度函数可以得到语言值隶属度(通过图像直接可以看出)如下表: 表1:E/EC和U语言值隶属度向量表 设置模糊规则库如下表: 表2:模糊规则表

U E EC —NB NM NS ZO PS PM PB NB PB PB PM PM PS ZO ZO NM PB PM PM PS ZO ZO NS NS PM PM PS PS ZO NS NS ZO PM PS PS ZO ZO NS NM PS PS PS ZO ZO ZO NS NM PM PS ZO ZO ZO NS NM NB PB ZO ZO ZO NS* NM NM NB 3.模糊推理 由模糊规则表3可以知道输入E与EC和输出U的模糊关系,这里我取两个例子做模糊推理如下: if (E is NB) and (EC is NM) then (U is PB) 那么他的模糊关系子矩阵为: 其中,,即表1中NB对应行向量,同理可以得到, , if (E is NVB or NB) and (EC is NVB) then (U is PVB) 结果略 按此法可得到27个关系子矩阵,对所有子矩阵取并集得到模糊关系矩阵如下: 由R可以得到模拟量输出为: 4.去模糊化

模糊控制算法研究

《智能控制》 课程设计报告 专业:自动化 班级:学号: 学生: 时间:13年12月30日~13年1月3日 ―――――――以下指导教师填写―――――分项成绩:出勤设计报告 总成绩: 指导教师:

设计报告要求和成绩评定 1 报告容 设计任务书(设计计划),正文,参考资料。 设计任务书(设计计划)由学生所在系安排指导教师编写,容包括设计地点、时间、安排和设计容和要求等。 正文容一般包括:(1)设计简述(设计时间、设计地点,设计方式等);(2)设计容叙述;(3)设计成品(图纸、表格或计算结果等);(4)设计小结和建议。 参考资料包括参考书和现场技术资料等。 2 书写用纸 A4复印纸;封面、设计任务书要求双面打印。 3 书写要求 正文容手工双面或单面书写,字迹清楚,每页20行左右,每行30字左右,排列整齐;页码居中写在页面下方;纸面上下左右4侧边距均为2厘米。 公式单占一行居中书写;插图要有图号和图题,图号和图题书写在插图下方;表格要有表号和表题,表号和表题在表格上方书写;物理量单位和符号、参考文献引用和书写以及图纸绘制要符合有关标准规定;有关细节可参考我院《毕业设计成品规》。 4 装订 装订顺序:封面,设计任务书,正文及参考资料,封底;左边为装订边,三钉装订,中间钉反向装订。 5 成绩评定 设计成绩一般由出勤(10分)、报告书写规性及成品质量(50分)、考核(40分)三

部分成绩合成后折合为优秀(90-100分)、良好(80-89分)、中(70-79分)、及格(60-69分)或不及格(60分以下)。设计考核可采取笔试、机试或其它合适的方式;不参加考核或不交报告者成绩为零分。 模糊控制算法研究 一、课程设计的目的: 1. 通过本次课程设计,进一步了解模糊控制的基本原理、模糊模型的建立和模 糊控制器的设计过程。 2. 提高学生有关控制系统的程序设计能力; 3. 熟悉Matlab语言以及在智能控制设计中的应用。 二、课程设计的基本容:

湘潭大学模糊控制2005秋试题答案

一、(10分)简要解释下列概念 [每小题2分] 1 语言变量 2 模糊逻辑 3 模糊等价关系 4 T-S 模糊模型 5自适应模糊控制 答: 1.语言变量是指用自然语言中的词来表示变量,如正大、正中、正小等,通常可以表示为五元体(X,X (T ),U,G,M ) 2.研究模糊命题的逻辑称为模糊逻辑。 3.把具有自反性、对称性和传递性的模糊关系,称为模糊等价关系。 4.模糊模型是指描述系统特性的一组模糊条件语句,T-S 模糊模型的语句形式为: 1122:,,i i i i i i i m m R ifx A x A x A ===L %%% %% then 01122i i m m y p p x p x p x =++++L 5.自适应模糊控制是在普通模糊控制器加入了一个自适应环节,用以改善和提高其性能,这种控制器具有控制和学习功能,分别是通过两个反馈实现的。 二、(10分)填空 [每空1分] 1. 模糊控制通过引入模糊_逻辑变量__及其它们之间构成的___模糊关系_, 进行_模糊推理_,从而使微机控制进入那些基于_传统控制___无法控制的禁区,以便对复杂非线性对象实现__精确有效__的控制。 2. 二值逻辑的运算法则是_布尔代数_,它可表示为({0,1},∧,∨,C ); 而模糊逻辑的运算法则是模糊代数,它可表示为([0,1],∧,∨,C )。 它们的主要区别在于后者不再满足补余律。 三、(10分)在论域{}123,45,,,U x x x x x =上定义两个模糊集合分别为 123450.2/0.5/1/0.5/0.2/A x x x x x =++++% 23450.3/0.6/0.8/1/B x x x x =+++% 求:0.5,,,c A B A B A B U I %%%%%% 答:

相关文档
最新文档