负反馈放大电路实验

负反馈放大电路实验
负反馈放大电路实验

一、 实验目的

1.加深对负反馈放大电路放大特性的理解。

2.学习负反馈放大电路静态工作点的测试及调整方法。

二、实验仪器

1、实验箱(台)

2、示波器

3、毫伏表

4、数字万用表

5、信号发生器 二、实验原理

负反馈在电子电路中有着非常广泛的应用,虽然它使放大器的放大倍数降低,但能在多方面改善放大器的动态指标,如稳定放大倍数,改变输入、输出电阻,减小非线性失真和展宽通频带等。因此,几乎所有的实用放大器都带有负反馈。 负反馈放大器有四种组态,即电压串联,电压并联,电流串联,电流并联。本实验以电压串联负反馈为例,分析负反馈对放大器各项性能指标的影响。 1、图为带有负反馈的两级阻容耦合放大电路,在电路中通过Rf 把输出电压uo 引回到输入端,加在晶体管T1的发射极上,在发射极电阻RF1上形成反馈电压uf 。根据反馈的判断法可知,它属于电压串联负反馈。

主要性能指标如下:

1) 闭环电压放大倍数

V V V

Vf F A 1A A +=

其中 AV =UO /Ui — 基本放大器(无反馈)的电压放大倍数,即开环电压放大倍数。

1+AVFV — 反馈深度,它的大小决定了负反馈对放大器性能改善的程度。

(实验电路)

(基本放大电路:计算AV )

2) 反馈系数

F1f F1

V R R R F +=

3) 输入电阻

Rif =(1+AVFV )Ri

Ri — 基本放大器的输入电阻 4) 输出电阻

V VO O

Of F A 1R R +=

RO — 基本放大器的输出电阻

AVO — 基本放大器RL =∞时的电压放大倍数

2、本实验还需要测量基本放大器的动态参数,怎样实现无反馈而得到基本放大器呢?不能简单地断开反馈支路,而是要去掉反馈作用,但又要把反馈网络的影响(负载效应)考虑到基本放大器中去。为此:

1) 在画基本放大器的输入回路时,因为是电压负反馈,所以可将负反馈放大器的输出端交流短路,即令uO=0,此时 Rf相当于并联在RF1上。

2) 在画基本放大器的输出回路时,由于输入端是串联负反馈,因此需将反馈放大器的输入端(T1 管的射极)开路,此时(Rf+RF1)相当于并接在输出端。可近似认为Rf并接在输出端(“虚短”)。于是得到上图的基本放大电路,可求得AV。在测量电路中,为使电路进入深度负反馈状态,|1+AVFV|为几十到几百较好。

3)在深度反馈条件下,闭环增益可以很简单的由“虚短”“虚断”来求到。Vi*(Rf1+Rf)/Rf1=v0则Avf=V0/Vi=1+Rf/Rf1.其他几种反馈组态可以同样用这种方法求深度负反馈下的放大倍数。

四、实验内容及其操作步骤

1、调整静态工作点

连接α、α’点,使放大器处于反馈工作状态。经检查无误后接通电源。调整R P1、R P2(记录当前有效值),使V C1=( 6~7V )、V C2=(6~7V),测量各级静态工作点,填入表4-1中。断开电路测量并记录偏置电阻。

表4-1

2、观察负反馈对放大倍数的影响。

从信号源输出频率为1KHz的正弦波Vi,调整幅度以保证二级放大器的输出波形不失真为准。

输出端不接负载,分别测量电路在无反馈(α与α’断开,α’接地)与有反馈工作时(α与α’连接)空载下的输出电压V o,同时用示波器观察输出波形。注意波形是否失真,若失真,减小Vi。计算电路在无反馈与有反馈工作时的电压放大倍数A V,记入表4-2中。

表4-2

3、观察负反馈对放大倍数稳定性的影响。

R L=5.1K,改变电源电压将Vcc从12V变到10V。分别测量电路在无反馈与有反馈工作状态时的输出电压,注意波形是否失真,并计算电压放大倍数和稳定度。记入表4-3中。

表4-3

4、观察负反馈对波形失真的影响

电路无反馈(a与a′连接, a′接地),Vcc=12V,R L=5.1K,逐渐加大信号源的幅度,用示波器观察输出波形出现临界失真,用毫伏表测量V i 、V o和V oP-P值,记入表4-4中。

电路接入反馈(a与a′连接),其它参数不变,用毫伏表测量V i 、V o和V oP-P值,记入表4-4中。

逐渐加大信号源的幅度,用示波器观察输出波形出现临界失真,用毫伏表测量V i 、V o 和V oP-P值,记入表4-4中。

表4-4

实验5 负反馈放大电路2013.doc

一、实验目的 1.研究负反馈对放大电路性能的影响。 2.掌握负反馈放大电路性能的测试方法。 二、实验仪器 1.双踪示波器。 2.音频信号发生器。 3.数字万用表。 三、预习要求 1.认真阅读实验内容要求,估计待测量内容的变化趋势。 2.图3.1电路中晶体管β值为40,计算该放大电路开环和闭环电压放大倍数。四、实验内容 1.负反馈放大电路开环和闭环放大倍数的测试 (1)开环电路 图3.1反馈放大电路 ①按图接线,RF先不接入。 ②输入端接入Vi=1mV, f=1KHz的正弦波(注意:输入1mV信号采用输入端衰减法见实验二)。调整接线和参数使输出不失真且无振荡(参考实验二方法)。 ③按表3.1要求进行测量并填表。 ④根据实测值计算开环放大倍数和输出电阻ro。 (2) 闭环电路 ①接通Rf按(一)的要求调整电路。 ②按表3.1要求测量并填表,计算Avf。 ③根据实测结果,验证Avf≈土1/F。

2.负反馈对失真的改善作用 (1)将图3.1电路开环,逐步加大Vi 的幅度,使输出信号出现失真(注意不要过份失真)记录失真波形幅度。 (2)将电路闭环,观察输出情况,并适当增加Vi 幅度,使输出幅度接近开环时失真波形幅度。 (3)若RF=3K 不变,但RF 接入1V1的基极,会出现什么情况?实验验证之。 出现截止失真! (4)画出上述各步实验的波形图。 3.测放大电路频率特性 (1)将图3.1电路先开环,选择Vi 适当幅度( 频率为 1KHz)使输出信号在示波器上有满幅正弦波显示; (2)保持输入信号幅度不变逐步增加频率,直到波形减小为原来的70%,此时,信号频率即为放大电路fH 。 ‘ (3)条件同上,但逐渐减小频率,测得fL 。 (4)将电路闭环,重复1~3步骤,并将结果填入表3.2。 表3.2

负反馈电路实验报告

负反馈放大器 一.实验目的 加深理解放大电路中引入负反馈的方法和负反馈对放大器各项指标的影响。 二.实验原理 负反馈在电子电路中的作用:改善放大器的动态指标,如稳定放大倍数,改变输入输出电阻,减小非线性失真和展宽通频带,但同时也会使放大器的放大倍数降低。 负反馈的几种状态:电压串联,电压并联,电流串联,电流并联。 本实验以电压串联为例,分析负反馈对放大器指标的影响。 1.下图为带有电压串联负反馈的两极阻容耦合放大器电路,在电路中通过Rr把输出电压Uo引回到输入端,家在晶体管T1的发射极上,在发射极电阻Rf1上形成反馈电压Uf。主要性能指标如下: (1)闭环电压放大倍数Ar=Av/1+AvFv ,Av为开环放大倍数。

图1为带有电压串联负反馈的两极阻容耦合放大器 (2)反馈系数Fv=RF1/Rf+RF1 (3)输入电阻R1f=(1+AvFv)Rf Rf 为基本放大器的输入电阻 (4)输出电阻Rof=Ro/(1+AvoFv) Ro 为基本放大器的输出电阻Avo为基本放大器Rl=∞时的电压放大倍数。2.本实验还需测量放大器的动态参数,即去掉图1的反馈作用,得到基本放大器电路如下图2 图2基本放大器 三.实验设备与器件 模拟实验箱,函数信号发生器,双踪示波器,交流伏安表,数字万用表。 四.实验内容 1.静态工作点的测量 条件:Ucc=12V,Ui=0V用直流电压表测第一级,第二级的静态工作点。

Us(V) UE(V) Uc(V) Ic(mA) 第一 级 2.81 2.14 7.33 2.00 第二 级 2.72 2.05 7.35 2.00 表3—1 2.测量基本放大器的各项性能指标 实验将图2改接,即把Rf断开后风别并在RF1和RL 上。 测量中频电压放大倍数Av,输入输出电阻Ri和Ro。(1)条件;f=1KH,Us=5mV的正弦信号,用示波器监视输出波形,在输出波形不失真的情况下用交流毫伏表测量Us,Ui,UL计入3—2表 基本放大器Us(mV) Ui(m V) UL(V ) Uo(V) Av Rf(K Ω) Ro(K Ω) 5.0 0.5 0.25 0.48 500 1.11 2.208 负反馈放大器Us(mV) Ui(m V) UL(V ) Uo(V) Avf Rif(K Ω) Rof(K Ω) 5.0 2.3 0.14 0.20 87 8.52 1.028 表3—2 (2)保持Us不变,,断开负载电阻RL,测量空载时的输出电压Uo计入3—2表

负反馈放大电路实验报告

实验二 由分立元件构成的负反馈放大电路 一、实验目的 1.了解N 沟道结型场效应管的特性和工作原理; 2.熟悉两级放大电路的设计和调试方法; 3.理解负反馈对放大电路性能的影响。 二、实验任务 设计和实现一个由N 沟道结型场效应管和NPN 型晶体管组成的两级负反馈放大电路。结型场效应管的型号是2N5486,晶体管的型号是9011。 三、实验内容 1. 基本要求:利用两级放大电路构成电压并联负反馈放大电路。 (1)静态和动态参数要求 1)放大电路的静态电流I DQ 和I CQ 均约为2mA ;结型场效应管的管压降U GDQ < - 4V ,晶体管的管压降U CEQ = 2~3V ; 2)开环时,两级放大电路的输入电阻要大于90kΩ,以反馈电阻作为负载时的电压放大倍数的数值 ≥ 120; 3)闭环电压放大倍数为10s o sf -≈=U U A u 。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ。 图1 电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C 1~C 3容量为10μF ,C e 容量为47μF 。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f ,见图2,理由详见“五 附录-2”。 图2 两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。 3.3k ?

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) ? b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, 4.2s R k ≈Ω,使得静态工作点满足:I DQ 约为2mA ,U GDQ < - 4V 。记录并计算电路参数及静态工作点的相关数据(I DQ ,U GSQ ,U A ,U S 、U GDQ )。 实验中,静态工作点调整,实际4s R k =Ω 第二级电路:通过调节R b2,240b R k ≈Ω,使得静态工作点满足:I CQ 约为2mA ,U CEQ = 2~3V 。记录电路参数及静态工作点的相关数据(I CQ ,U CEQ )。 实验中,静态工作点调整,实际241b R k =Ω c. 动态参数的调试 输入正弦信号U s ,幅度为10mV ,频率为10kHz ,测量并记录电路的电压放大倍数 s o11U U A u =、s o U U A u =、输入电阻R i 和输出电阻R o 。 o1U s U o U 1u A

模电实验七负反馈放大电路实验报告

实验七负反馈放大电路 一、班级:姓名:学号:实验目的 1. 加深对负反馈放大电路的认识。 2.加深理解放大电路中引入负反馈的方法。 3. 加深理解负反馈对放大电路各项性能指标的影响。 二、实验仪器及器件 仪器及器件名称型号数量 +12V直流稳压电源DP8321 函数信号发生器DG41021 示波器MSO2000A1 数字万用表DM30581 晶体三极管90132 电阻器若干 电容器若干三、实验原理 图7-1为带有负反馈的两级阻容耦合放大电路。 图7-1 负反馈放大电路 1、闭环电压增益

V V V VF F A 1A A += i O V V V A = ——基本放大器(无反馈)的电压增益,即开环电压增益。 1+A V F V ——反馈深度,它的大小决定了负反馈对放大电路性能改善的程度。 2、反馈系数 F1 f F1 V R R R F += 3、输入电阻 R if = (1+A V F V )R i R i ——基本放大器的输入电阻 4、输出电阻 V VO O Of F A 1R R += R o ——基本放大器的输出电阻 A vo ——基本放大器∞=L R 时的电压增益 图7-2 四、 实验内容及实验步骤

1、测量静态工作点 按图7-1连接实验电路,取V CC=+12V,V i0,用直流电压表分别测量第一级、第二级的静态工作点,记入表7-1。 表7-1 2、测试基本放大电路的各项性能指标 将实验电路图按图7-2改接开环状态,即把R f断开后分别并在R F1和R L上,其它连线不动。 1) 测量中频电压增益A V,输入电阻R i和输出电阻R o。 ①以f=1KHz,V S约5mV正弦信号输入放大器,用示波器监视输出波形v o,在v o不失真的情况下,用交流毫伏表测量V S,V i,V L,记入表7-2。 表7-2 ②保持V S不变,断开负载电阻R L (注意,R f不要断开),测量空载时的输出电压V o,记入表7-2。 2)测量通频带 接上R L,保持1)中的V S不变,然后增加和减小输入信号的频率,找出上、下限频率f H和f L,记入表7-3。 3、测试负反馈放大器的各项性能指标 将实验电路恢复为图7-1的负反馈放大电路。适当加大V S(约10mV),在输出波形不失真的条件下,测量负反馈放大器的A Vf、R if和R of,记入表7-2;测量f Hf和f Lf,记入表7-3。 表7-3

负反馈放大器

电工电子实验报告 学生姓名: 学生学号: 系别班级: 报告性质: 课程名称:电工电子实验实验项目:负反馈放大器实验地点: 实验日期: 成绩评定: 教师签名:

实验四 负反馈放大器 一、实验目的 加深理解放大电路中引入负反馈的方法和负反馈对放大器各项性能指标的影响。 二、实验原理 负反馈在电子电路中有着非常广泛的应用,虽然它使放大器的放大倍数降低,但能在多方面改善放大器的动态指标,如稳定放大倍数,改变输入、输出电阻,减小非线性失真和展宽通频带等。因此,几乎所有的实用放大器都带有负反馈。 负反馈放大器有四种组态,即电压串联,电压并联,电流串联,电流并联。本实验以电压串联负反馈为例,分析负反馈对放大器各项性能指标的影响。 1、图4-1为带有负反馈的两级阻容耦合放大电路,在电路中通过R f 把输出电压u o 引回到输入端,加在晶体管T 1的发射极上,在发射极电阻R F1上形成反馈电压u f 。根据反馈的判断法可知,它属于电压串联负反馈。 主要性能指标如下 1) 闭环电压放大倍数 V V V Vf F A 1A A += 其中 A V =U O /U i — 基本放大器(无反馈)的电压放大倍数,即开环电压放大 倍数。

图4-1 带有电压串联负反馈的两级阻容耦合放大器 2) 反馈系数 F1 f F1 V R R R F += 3) 输入电阻 R if =(1+A V F V )R i R i — 基本放大器的输入电阻 4) 输出电阻 V VO O Of F A 1R R += R O — 基本放大器的输出电阻 A VO — 基本放大器R L =∞时的电压放大倍数 1) 在画基本放大器的输入回路时,因为是电压负反馈,所以可将负反馈放大器的输出端交流短路,即令u O =0,此时 R f 相当于并联在R F1上。 2) 在画基本放大器的输出回路时,由于输入端是串联负反馈,因此需将反馈放大器的输入端(T 1 管的射极)开路,此时(R f +R F1)相当于并接在输出端。可近似认为R f 并接在输出端.

负反馈放大电路实验报告

实验二由分立元件构成的负反馈放大电路 一、实验目的 1?了解N沟道结型场效应管的特性和工作原理; 2?熟悉两级放大电路的设计和调试方法; 3?理解负反馈对放大电路性能的影响。 二、实验任务 设计和实现一个由N沟道结型场效应管和NPN型晶体管组成的两级负反馈放大电路。结型场效应管的型号是2N5486,晶体管的型号是9011。 三、实验内容 1.基本要求:利用两级放大电路构成电压并联负反馈放大电路。 (1)静态和动态参数要求 1)放大电路的静态电流I DQ和I CQ均约为2mA结型场效应管的管压降U G DQ< - 4V ,晶体管的管压降U C EQ= 2?3V; 2)开环时,两级放大电路的输入电阻要大于90k Q,以反馈电阻作为负载时的电压放大倍数的数值 >120 ; 3)闭环电压放大倍数为A usf二U°,.U s、-10。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R模拟信号源的内阻;R为反馈电阻, 取值为100 k Q o Rt 图1电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中%选择910k Q, R1、R2应大于100k Q; G?G容量为10疔,C e容量为47犷。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R,见图2,理由详见五附录一2”。 i㈡ R T 井肘成大电谿 图2两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, R^^4.2kQ ,使得静态工作点满足:I D 哟为2mA U G DQ < -4V 。记录并计算电路参数及静态工作点的相关数据( I DQ , U G SQ LA ,U S 、U G D Q 。 实验中,静态工作点调整,实际 -4k '1 第二级电路:通过调节 氐,&2 : 40^ 1 ,使得静态工作点满足:I CQ 约为2mA U C EQ = 2? 3V 。记录电路参数及静态工作点的相关数据( | CQ L C EQ )。 实验中,静态工作点调整,实际 R b ^41k 11 c. 动态参数的调试 输入正弦信号 U S ,幅度为 10mV 频率为10kHz ,测量并记录电路的电压放大倍数 A1 =U °1 -U s 、A =U o.. U s 、输入电阻R 和输出电阻R °o XSC1 Rf1 100k| ?

负反馈放大电路实验报告

负反馈放大电路实验报告

3)闭环电压放大倍数为10s o sf -≈=U U A u 。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ。 图1 电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C 1~C 3容量为10μF ,C e 容量为47μF 。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f ,见图2,理由详见“五 附录-2”。 图2 两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。 3.3k ?

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) ? b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, 4.2 s R k ≈Ω,使得静态工作点满足:I DQ约为2mA,U GDQ < - 4V。记录并计算电路参数及静态工作点的相关数据(I DQ,U GSQ,U A,U S、U GDQ)。 实验中,静态工作点调整,实际4 s R k =Ω

第二级电路:通过调节R b2,2 40b R k ≈Ω,使得静态工作点满足:I CQ 约为2mA ,U CEQ = 2~3V 。记录电路参数及静态工作点的相关数据(I CQ ,U CEQ )。 实验中,静态工作点调整,实际2 41b R k =Ω c. 动态参数的调试 输入正弦信号U s ,幅度为10mV ,频率为10kHz ,测量并记录电路的电压放大倍数 s o11U U A u = 、s o U U A u =、输入电阻R i 和输出电阻R o 。 电压放大倍数:(直接用示波器测量输入输出电压幅值) o1 U s U o U 1 u A 输入电阻: 测试电路:

实验3 负反馈放大电路

实验3 负反馈放大电路 一、实验目的 1. 研究负反馈对放大器性能的影响。 2. 掌握负反馈放大器性能的测试方法。 3. 巩固示波器、信号发生器、交流毫伏表等常用电子仪器的使用方法。 二、实验仪器 1. 模拟电路实验仪。 2. 双踪示波器。 3. 交流毫伏表。 4. 信号发生器。 5. 多功能计数器。 6. 数字万用表。 三、预习要求 l. 认真阅读实验内容,图3.1电路中晶体管β值为120,计算该放大器开环和闭环电压放大倍数。 说明:计算开环电压放大倍数时,要考虑反馈网络对放大器的负载效应。对于第一级电路该负载效应相当于C F、R F与lR7并联,由于lR7≤R F,所以C F、R F的作用可略去。对于第二级电路该负载效应相当于C F、R F与lR7串联后作用在输出端,由于lR7≤R F,所以近似看成第二级接有内部负载C F、R F。

2. 计算如图 3.1所示电路的级间反馈系数F。 图3.1 负反馈放大电路

3. 熟悉放大器频率特性测量方法。 1. 算 U in =100mV 、f=1kHz ,在实验箱上加衰减电阻,出电阻r o 。 输出电阻r o 的计算公式如下:四、实验内容 负反馈放大器开环和闭环放大倍数的测试(1)开环电压放大倍数和输出电阻的测量与计① 按图接线,R F 先不接入。 ② 输入端接入正弦波信号源,使V i =1mV ,调整接线和工作点使输出信号不失真且无振荡。 ③ 按表3.1要求进行测量并填表。 ④ 根据实测值计算开环放大倍数和输L OL O o R )1V V ( r ?= 式中:U o 是输出空载时的输出电压,U oL 是接入负载R L 时的输出电压。 l )的要求调整电路。 系数),讨论负反馈电路的带负载能力表3.1 R L (K ?)V i (mV )(mV )A V (A Vf ) r o (2)闭环电路 ① 接通R F ,按(② 按表3.1要求测量并填表,计算A vf 。③ 根据实测结果,验证A vf ≈1/F (F 为反馈。 V o ∞ 1 开环 1 K5 1 ∞ 1 闭环 1 K5 1

模电实验报告负反馈放大电路

实验三负反馈放大电路 一、实验目的 1、研究负反馈对放大器放大倍数的影响。 2、了解负反馈对放大器通频带和非线性失真的改善。 3、进一步掌握多级放大电路静态工作点的调试方法。 二、实验仪器 1、双踪示波器 2、信号发生器 3、万用表 三、预习要求 1、认真阅读实验内容要求,估计待测量内容的变化趋势。 2、图3-1电路中晶体管β值为120.计算该放大器开环和闭环电压放大倍数。 3、放大器频率特性测量方法。 说明:计算开环电压放大倍数时,要考虑反馈网络对放大器的负载效应。对于第一级电路,该负载效应相当于C F、R F与1R6并联,由于1R6≤Rf,所以C F、R F 的作用可以略去。对于第二季电路,该负载效应相当于C F、R F与1R6串联后作用在输出端,由于1R6≤Rf,所以近似看成第二级内部负载C F、R F。 4、在图3-1电路中,计算级间反馈系数F。 四、实验内容 1、连接实验线路 如图3-1所示,将线连好。放大电路输出端接Rp4,1C6(后面称为R F)两端,构成负反馈电路。

2、调整静态工作点 方法同实验二。将实验数据填入表3-1中。 表3-1 3、负反馈放大器开环和闭环放大倍数的测试 (1)开环电路 ○1按图接线,R F先不接入。 ○2输入端接如Ui=1mV,f=1kHZ的正弦波。调整接线和参数使输出不是真且无震荡。 ○3按表3-2要求进行测量并填表。 ○4根据实测值计算开环放大倍数和输出电阻R0。 (2)闭环电路 ○1接通R F,按(1)的要求调整电路。 ○2调节Rp4=3KΩ,按表3-2要求测量并填表,计算A uf和输出电阻R0。 ○3改变Rp4大小,重复上述实验步骤。 ○4根据实测值验证A uf≈1/F。讨论负反馈电路的带负载能力。

实验3负反馈放大器

实验三、负反馈放大器 一、实验目的: 加深理解放大电路中引入负反馈的方法和负反馈对放大器各项性能指标的影响。 二、实验原理 负反馈在电子电路中有着非常广泛的应用,虽然它使放大器的放大倍数降低,但能在多方面改善放大器的动态指标,如稳定放大倍数,改变输入、输出电阻,减小非线性失真和展宽通频带等。因此,几乎所有的实用放大器都带有负反馈。 负反馈放大器有四种组态,即电压串联,电压并联,电流串联,电流并联。本实验以电压串联负反馈为例,分析负反馈对放大器各项性能指标的影响。 1、图3-1为带有负反馈的两级阻容耦合放大电路,在电路中通过R f 把输出电压u o 引回到输入端,加在晶体管T 1的发射极上,在发射极电阻R F1上形成反馈电压u f 。根据反馈的判断法可知,它属于电压串联负反馈。 主要性能指标如下 1) 闭环电压放大倍数 V V V Vf F A 1A A += 其中 A V =U O /U i — 基本放大器(无反馈)的电压放大倍数,即开环电压放大倍数。 1+A V F V — 反馈深度,它的大小决定了负反馈对放大器性能改善的程度。 图3-1 带有电压串联负反馈的两级阻容耦合放大器 2) 反馈系数 F1 f F1 V R R R F += 3) 输入电阻: R if =(1+A V F V )R i R i — 基本放大器的输入电阻 4) 输出电阻: R O — 基本放大器的输出电阻 A VO — 基本放大器R L =∞时的电压放大倍数 三、实验内容 1、 测量静态工作点: 按图3-1连接实验电路,在输入端接入f =1KHZ ,U S 约5-15mV 左右的正弦信号,用示波器的CH1、CH2分别在输入和输出端监测信号的u S 和 u O ,调节电路中的RW1和RW2,使u O 不失真,此时的静态工作点基本处于正常的放大状态。取U CC =+12V ,U i =0,用直流电压表分别测量第一级、第二级的静态工作点,记入表3-1。 V VO O Of F A 1R R +=

模电实验报告 七 负反馈放大电路

模电实验报告 实验七 负反馈放大电路 姓名: 学号: 班级: 院系: 指导老师: 2016年

目录 实验目的: (2) 实验器件与仪器: (2) 实验原理: (2) 实验内容: (4) 实验总结: (5) 实验:负反馈放大电路 实验目的: 1.进一步了解负反馈放大器性能的影响。 2.进一步掌握放大器性能指标的测量方法。 实验器件与仪器: 1. 实验原理: 放大器中采用负反馈,在降低放大倍数的同时,可以使放大器的某些性能大大改善。所谓负反馈,就是以某种方式从输出端取出信号,再以一定方式加到输入回路中。若所加入的信号极性与原输入信号极

性相反,则是负反馈。 根据取出信号极性与加入到输入回路的方式不同,反馈可分为四类:串联电压反馈、串联电流反馈、并联电压反馈与并联电流反馈。如图3-1所示。 从网络方框图来看,反馈的这四种分类使得基本放大网络与反馈网络的联接在输入、输出端互不相同。 从实际电路来看,反馈信号若直接加到输入端,是并联反馈,否则是串联反馈,反馈信号若直接取自输出电压,是电压反馈,否则是电流反馈。 1.负反馈时输入、输出阻抗的影响 负反馈对输入、输出阻抗的影响比较复杂,不同的反馈形式,对阻抗的影响也不一样,一般而言,凡是并联负反馈,其输入阻抗降低;凡是串联负反馈,其输入阻抗升高;设主网络的输入电阻为R i ,则串联负反馈的输入电阻为 R if =(1+FA V )R i 设主网络的输入电阻为R o ,电压负反馈放大器的输出电阻为 R of = F A R V O +1 可见,电压串联负反馈放大器的输入电阻增大(1+A V F )倍,而输出电阻则下降到1/(1+A V F )倍。 2.负反馈放大倍数和稳定度 负反馈使放大器的净输入信号有所减小,因而使放大器增益下降,但却改善了放大性能,提高了它的稳定性。 反馈放大倍数为 A vf = F A A V V +1(A v 为开环放大倍数) 反馈放大倍数稳定度与无反馈放大器放大倍数稳定度有如下关系: Vf Vf A A ?= V V A A ?? F A V +11 式中?A V f/A V f 称负反馈放大器放大倍数的稳定度。V V A A /?称无反

多级负反馈放大器的研究实验报告

多级负反馈放大器的研究 一.实验目的 (1)掌握用仿真软件研究多级负反馈放大电路。 (2)学习集成运算放大器的应用,掌握多级集成运算放大器的工作特点。 (3)研究负反馈对放大器性能的影响,掌握负反馈放大器性能指标的测试方法。 1)测试开环和闭环的电压放大倍数、输入电阻、输出电阻、反馈网络的电压反馈系数和通频带; 2)比较电压放大倍数、输入电阻、输出电阻和通频带在开环和闭环时的差别; 3)观察负反馈对非线性失真的改善。 二.实验原理 1.基本概念 在电子电路中,将输出量的一部分或全部通过一定的电路形式作用到输入回路,用来影响其他输入量的措施称为反馈。 若反馈的结果使净输入量减小,则称之为负反馈;反之,称之为正反馈。 实验电路如下图所示,该放大电路有两级运放构成的反向比例器组成,在末级的输出端引入了反馈网络Cf,Rf2,和Rf1,构成了交流电压串联负反馈电路。 2.放大器的基本参数 1)开环参数 将反馈支路的A点与P点断开,与B点相连,便可得到开环时的放大电路。由此可测出开环时放大电路的电压放大倍数Av、输入电阻Ro、反馈网路的电压反馈系数Fv和通频带BW,即

()1' 1 2.51o v i i i i N o o L o f v o H L BW V A V V R R V V V R R V V F V f f ?=?? ? ? =? - ????? ?=--? ???? ? ?=?? ?=-??? 2)闭环参数:通过开环时放大电路的电压放大倍数Av 、输入电阻Ri 、输入电阻Ro 、反馈网 络的电压反馈系数Fv 和上下限频率,可以计算求得多级负反馈放大电路的闭环电压放大倍数Avf 、输入电阻Rif 、输出电阻Rof 和通频带BWf 的理论值,即 负反馈放大电路的闭环特性的实际测量值为:

负反馈放大电路性能测试实验报告

电压串联负反馈放大电路 一、实验目的 1.加深理解负反馈对放大电路性能的影响 2.掌握放大电路开环与闭环特性的测试方法 二、预习要求 1.复习电压串联负反馈的有关章节,熟悉电压串联负反馈电路的工作原理以及对放大电路性能的影响。 2.估算图3.1所示电路在有反馈和无反馈时的电压放大倍数的大小。设==50,Rp=60K。 3.估算图3.1所示电路在有反馈和无反馈时的输入电阻和输出电阻。 4.自拟实验记录表格。 三、实验元、器件 模拟电子线路实验箱一台双踪示波器一台 万用表一台连线若干 其中,模拟电子线路实验箱用到信号发生器、直流稳压电源模块,

元器件模组以及“电压串联负反馈放大电路”模板。 四、实验原理与参考电路 1.参考电路如图3-1所示。 负反馈有四种类型:电压串联负反馈,电压并联负反馈,电流串联负反馈,电流并联负反馈。本实验电路由两级共射放大电路引入电压串联负反馈,构成负反馈放大器。其中反馈电阻RF=10KΩ。 2.电压串联负反馈对放大器性能的影响 (1)引入负反馈降低了电压放大系数 式中,是反馈系数,,是放大器

不引入级间反馈时的电压放大倍数(即,但要考虑反馈网络阻抗的影响),其值可由图3-2所示的交流等效电路求出。 设,则有 式中:第一级交流负载电阻 第二级交流负载电阻 从式中可知,引入负反馈后,电压放大倍数比没有负反馈时的电压放大倍数降低了()倍,并且 愈大,放大倍数降低愈多。

(2)负反馈可提高放大倍数的稳定性 该式表明:引入负反馈后,放大器闭环放大倍数的相对变化 量比开环放大倍数的相对变化量减少了(1 AF)倍,即闭环增益的稳定性提高了(1 AF)倍。 (3)负反馈可扩展放大器的通频带 引入负反馈后,放大器闭环时的上、下截止频率分别为: 可见,引入负反馈后,向高端扩展了倍,从而加宽了通频带。 (4)负反馈对输入阻抗、输出阻抗的影响

实验5负反馈放大电路

图 5.1反馈放大电路 实验五 负反馈放大电路 一、实验目的 1.研究负反馈对放大电路性能的影响。 2.掌握负反馈放大电路性能的测试方法。 二、实验仪器 1.双踪示波器。 2.函数信号发生器。 3.数字万用表、指针万用表。 三、预习要求 1.认真阅读实验内容要求,估计待测量内容的变化趋势。 2.图5.1电路中晶体管β值为40,计算该放大电路开环和闭环电压放大倍数。 四、实验内容 1.负反馈放大电路开环和闭环放大倍数的测试 (1)准备工作 检查导线、仪器仪表探头、元器件好坏。函数信号发生器产生幅度100mV,频率1KHz 的正弦波,预接入到A 点。 示波器设置:Y1通道交流耦合、刻度50mV/格;Y2通道交流耦合、刻度1~2V/格;X 轴500微秒/格;同步触发Y2通道。Y1通道观测A 点(V A 衰减100倍为V i ),Y2通 道观测V O 。 (2)开环电路( Y2刻度设为1V/格) ①按图接线,R F 先不接入。 ②输入端V i =lmV (V A =100mV )、f=lKHz 的正弦波(注意:V A 衰减100倍为V i )。如果有需要,调整参数使输出信号波形不失真且无振荡。 ③按表5.1要求进行测量并填表。Y 1、Y 2均读取峰峰值V PP ,Y2通道的峰峰值即V 0。 ④根据实测值计算开环放大倍数和输出电阻r 0。 (3)闭环电路 (Y2刻度设为10mV/格) ①接入R F ,按(2)的要求调整电路。 ②按表5.1要求测量并填表,计算A vf 。 ③根据实测结果,验证A vF ≈F 1。 表5.1 R L (K Ω) V i (mV) V 0(mV) A V 开环增益/(A v f )闭环增益 开环 ∞ 1 1K5 1 闭环 ∞ 1 1K5 1 2.测量开环和闭环时的输入和输出电阻 断开图5.1中R 2,R 3串联680K 的可调电位器1R P 后再接入到V 1的基极,函数信号发生器输出10mV,1KHz 的正弦波到A 点。示波器Y1、Y2通道分别观测V A (V i )、V o ,Y1的刻度为5mV/格,Y2的刻度根据输出信号的幅度设置,开环时刻度值大,闭环时刻度值小。调节电位器1R P 使Vo 波形无明显失真即可。 按照实验一的方法分别测量开环和闭环时的输入和输出电阻 |?

负反馈放大器实验报告

电工电子实验报告 学生姓名:朱光耀 学生学号:201324122225 系别班级:13电气2 报告性质: 课程名称:电工电子实验实验项目:负反馈放大器实验地点:实验楼206 实验日期:11月23号 成绩评定: 教师签名:

实验四 负反馈放大器 一、实验目的 加深理解放大电路中引入负反馈的方法和负反馈对放大器各项性能指标的影响。 二、实验原理 负反馈在电子电路中有着非常广泛的应用,虽然它使放大器的放大倍数降低,但能在多方面改善放大器的动态指标,如稳定放大倍数,改变输入、输出电阻,减小非线性失真和展宽通频带等。因此,几乎所有的实用放大器都带有负反馈。 负反馈放大器有四种组态,即电压串联,电压并联,电流串联,电流并联。本实验以电压串联负反馈为例,分析负反馈对放大器各项性能指标的影响。 1、图4-1为带有负反馈的两级阻容耦合放大电路,在电路中通过R f 把输出电压u o 引回到输入端,加在晶体管T 1的发射极上,在发射极电阻R F1上形成反馈电压u f 。根据反馈的判断法可知,它属于电压串联负反馈。 主要性能指标如下 1) 闭环电压放大倍数 V V V Vf F A 1A A += 其中 A V =U O /U i — 基本放大器(无反馈)的电压放大倍数,即开环电压放大 倍数。

图4-1 带有电压串联负反馈的两级阻容耦合放大器 2) 反馈系数 F1 f F1 V R R R F += 3) 输入电阻 R if =(1+A V F V )R i R i — 基本放大器的输入电阻 4) 输出电阻 V VO O Of F A 1R R += R O — 基本放大器的输出电阻 A VO — 基本放大器R L =∞时的电压放大倍数 1) 在画基本放大器的输入回路时,因为是电压负反馈,所以可将负反馈放大器的输出端交流短路,即令u O =0,此时 R f 相当于并联在R F1上。 2) 在画基本放大器的输出回路时,由于输入端是串联负反馈,因此需将反馈放大器的输入端(T 1 管的射极)开路,此时(R f +R F1)相当于并接在输出端。可近似认为R f 并接在输出端.

实验七 负反馈放大电路实验报告

实验.七负反馈放大电路 班级:自动化一班 学号: 姓名:李振昌 一、实验目的 1. 加深对负反馈放大电路的认识。 2.加深理解放大电路中引入负反馈的方法。 3. 加深理解负反馈对放大电路各项性能指标的影响。 二、实验仪器及器件 三、实验原理

图7-1为带有负反馈的两级阻容耦合放大电路。 图7-1 负反馈放大电路 1、闭环电压增益 i O V V V A = ——基本放大器(无反馈)的电压增益,即开环电压增益。 1+A V F V ——反馈深度,它的大小决定了负反馈对放大电路性能改善 的程度。 2、反馈系数 3、输入电阻 R if = (1+A V F V )R i R i ——基本放大器的输入电阻 4、输出电阻 R o ——基本放大器的输出电阻 A vo ——基本放大器∞=L R 时的电压增益 图7-2 四、 实验内容及实验步骤 1、测量静态工作点 按图7-1连接实验电路,取V CC =+12V ,V i 0,用直流电压表分别测量第一级、第二级的静态工作点,记入表7-1。 表7-1

2、测试基本放大电路的各项性能指标 将实验电路图按图7-2改接开环状态,即把R f断开后分别并在R F1和R L上,其它连线不动。 1) 测量中频电压增益A V,输入电阻R i和输出电阻R o。 ①以f=1KHz,V S约5mV正弦信号输入放大器,用示波器监视输出波形v o,在v o不失真的情况下,用交流毫伏表测量V S,V i,V L,记入表7-2。 表7-2 ②保持V S不变,断开负载电阻R L (注意,R f不要断开),测量空载时的输出电压V o,记入表7-2。 2)测量通频带 接上R L,保持1)中的V S不变,然后增加和减小输入信号的频率,找出上、下限频率f H和f L,记入表7-3。 3、测试负反馈放大器的各项性能指标 将实验电路恢复为图7-1的负反馈放大电路。适当加大V S(约10mV),在输出波形不失真的条件下,测量负反馈放大器的A Vf、R if和R of,记入表7

负反馈放大器实验报告

实验2.4 负反馈放大电路 一、实验目的 加深理解放大电路中引入负反馈的方法和负反馈各项性能指标的影响。 二、实验原理 放大器中采用负反馈,在降低放大倍数的同时,可以使放大器的某些性能大大改善。所谓负反馈,就是以某种方式从输出端取出信号,再以一定方式加到输入回路中。若所加入的信号极性与原输入信号极性相反,则是负反馈。 根据取出信号极性与加入到输入回路的方式不同,反馈可分为四类:串联电压反馈、串联电流反馈、并联电压反馈与并联电流反馈。 下图为带有电压串联负反馈的两极阻容耦合放大器电路,在电路中通过Rr把输出电压Uo引回到输入端,家在晶体管T1的发射极上,在发射极电阻Rf1上形成反馈电压Uf。 主要性能指标如下: (1)闭环电压放大倍数Ar=Av/1+AvFv ,Av为开环放大倍数。 (2)反馈系数 Fv=RF1/Rf+RF1 (3)输入电阻 R1f=(1+AvFv)Rf Rf 为基本放大器的输入电阻 (4)输出电阻 Rof=Ro/(1+AvoFv) Ro 为基本放大器的输出电阻 Avo为基本放大器Rl=∞时的电压放大倍数。 三、实验设备与器件 模拟实验箱,函数信号发生器,双踪示波器,交流伏安表,数字万用表。 四、实验内容 1、静态工作点的测量 按图连接好电路,取Ucc=+12V,Ui=0V,用直流电压表分别测量第一级、第二级的静态工作点,记入表格中:

测得的结果如图:

记入表格中: U B(V) U E(V) U C(V) 第一级 2.49 1.746 8.218 第二级 2.801 2.047 7.124 2、测量基本放大器的各项性能指针 1、减小电压放大倍数的验证 按上图连接电路,设置信号发生器参数为F=1KHz,U=30Mv,选择正弦波形,由示波器读出波形: A、无负反馈放大电路放大倍数仿真结果:

实验四 负反馈放大电路(有数据)

实验四 负反馈放大电路 一、实验目的 1.研究负反馈对放大电路性能的影响。 2.掌握负反馈放大电路性能的测试方法。 二、实验仪器 1.双踪示波器。 2.音频信号发生器。 3.数字万用表。 三、实验电路原理 电路原理如图4-1所示。反馈网络由ef f f R C R 、、构成,在放大电路引入了典雅串联 负反馈,反馈信号是 f U 。在该实验中已经测量了基本放大电路的有关性能参数,观察负 反馈对放大电路性能的影响,验证有关的电路理论。 图4-1中,反馈系数为: f ef ef f uu R R R U U F +≈ = (4-1) 反馈放大电路的电压放大倍数uuf A 、输入电阻 if R 、输出电阻 of R 、下限频率 Lf f 、上限频 率 Hf f 与基本放大电路的有关参数的关系分别如下: uu uu uu uuf A F A A += 1 (4-2) 图 4.1

i uu uu if R A F R )1(+= (4-3) uu uu of A F R R += 10 (4-4) uu uu L Lf A F f f += 1 (4-5) H uu uu Hf f A F f )1(+= (4-6) 反馈深度为: uu uu A F +1,对负反馈来说, uu uu A F +1>1 其中, H L uu f f R R A 、、、、0i 分别为基本共射放大电路的电压放大倍数、输入电阻、 输出电阻、下限频率、上限频率。可见,电压串联负反馈使得放大电路的电压放大倍数的绝对值减小,输入电阻增大,输出电阻减小;负反馈还对放大电路的频率特性产生影响,使得电路的下限频率降低、上限频率升高,起到扩大通频带,改善频响特性的作用。 此外,电压串联负反馈还能提高放大电路的电压放大倍数的稳定性,减小非线性失真。这些都是可以通过试验来验证。 基本放大电路的电压放大倍数的性对变化量与负反馈放大电路的电压放大倍数的电压放大倍数的相对量的关系表示如下: uu uu uu uuf uuf A dA A F A dA ?+= uu 11 (4-7) 四、实验内容及结果分析 1.负反馈放大电路开环和闭环放大倍数的测试 (1) 开环电路 ①按图接线,R F 先不接入。 ②输入端接入V i =lmV f=lKHz 的正弦波(注意:输入lmV 信号采用输入端衰减法见实验一)。调整接线和参数使输出不失真且无振荡(参考实验二方法)。 ③按表4.1要求进行测量并填表。 ④根据实测值计算开环放大倍数。 表4.1

负反馈放大器仿真实验报告

负反馈放大器仿真实验报告 实验名称负反馈放大器日期2014.姓名专业船舶电子电气工程 一、实验目的 1、熟悉、掌握Multisim软件的使用 2、掌握负反馈接入前后对电路的放大倍数、输入电阻、输出电阻等各项性能指标的影 响。 3、了解负反馈接入前后电路的频率特性和fL、fH值,以及输出开始出现失真时的输入 信号幅度。 二、实验原理 电路图 图4-1 带有电压中联负反馈的两级组容耦合放大器

电路图 图4-2 基本放大器 三极管两级放大器及负反馈电路原理: 1、T1发射极电流的分配关系 当输入电压为Vi 时,考虑交流通路,T1发射极电位为Vi ,根据基尔霍夫电流定律, s f e i i i =+(式1)。 e i 非常小,可认为s f i i ≈(式2)。 而 2、负反馈电阻f R 的作用 f R 起到稳定输出电压的作用。输出电压是e i 以T1、T2原来的增益放大之后的大小。当Vo 增大时,f i 增大,e i 减小,进而Vo 减小;当Vo 减小时,f i 减小,e i 增大,进而Vo 增大。f R 起到负反馈的作用。 3、电路的增益 将式3、式4带入式2,可得到电路增益的近似值 ) (式)(式43i s i s f i o f R v i R v v =-= S f S V R R R A +≈

三、实验过程 三极管两级放大器及负反馈电路的仿真结果1、静态工作点 仿真数据截图 2、测试基本放大器的各项性能指标 (1)增益的仿真结果

信号源Us截图: 输入信号Ui截图: 输出波形U L(有负载),U O(空载,即R L断开)截图 (2)测量通频带 波特仪显示结果截图:

实验八 负反馈放大电路

实验八 负反馈放大电路 一、实验目的 1.研究负反馈对放大电路性能的影响。 2.掌握负反馈放大电路性能的测试方法。 二、实验仪器 1.双踪示波器。 2.音频信号发生器。 3.数字万用表。 4.模拟电路实验箱 三、预习要求 1.认真阅读实验内容要求,估计待测量内容的变化趋势。 2.设图8.1电路晶体管β值为40,计算该放大电路开环和闭环电压放大倍数。 此电路为电压串联负反馈,负反馈会减小放大倍数,会稳定放大倍数,会改变输入输出电阻,展宽频带,减小非线性失真。而电压串联负反馈会增大输入电阻,减小输出电阻。公式如下: AF f f f AF f A dA AF A dA AF A A L Lf H Hf f f f +=+=+=+= 1,)1(,11,1 AF R R r AF r O Of i if += +=1,)1(// 分析图8.1,与两级分压偏置电路相比,增加了R 6, R 6引入电压交直流负反馈,从而加大了输入电阻,减小了放大倍数。此外R 6与R F 、 C F 形成了负反馈回路,从电路上分析, 323.031 1 66==+≈ = F O f R R R V V F 。 四、实验内容 1.负反馈放大电路开环和闭环放大倍数的测试 (1) 开环电路 ①按图接线,R F 先不接入。 ②输入端接入V i =lmV f=lKHz 的正弦波(注意:输入lmV 信号采用输入端衰减法)。调整接线和参数使输出不失真且无振荡。 ③按表3.1要求进行测量并填表。 ④根据实测值计算开环放大倍数和输出电阻r 0。

图 8.1反馈放大电路 (2).闭环电路 ①接通R F和C F,调整接线和参数使输出不失真且无振荡。 ②按表8.1要求测量并填表,计算A vf。 1。 ③根据实测结果,验证A vf≈ F 表8.1 注:闭环时为方便观察,可适当加大输入幅值。 2.负反馈对失真的改善作用 (1)将图3.1电路开环,逐步加大V i的幅度,使输出信号出现失真(注意不要过份失真)记录失 真波形幅度。 (2)将电路闭环,观察输出情况,并适当增加V i幅度,使输出幅度接近开环时失真波形幅度。 闭环后,引入负反馈,减小失真度,改善波形失真。 (3)若R F=3K不变,但R F接入1V1的基极,会出现什么情况?实验验证之。 (4)画出上述各步实验的波形图。 3.测放大电路频率特性 (1)将图8.1电路先开环,选择V i适当幅度,保持不变并调节频率使输出信号在示波器上有最 大显示。 (2)保持输入信号幅度不变逐步增加频率,直到波形减小为原来的70%,此时信号频率即为放 大电路f H。 (3)条件同上,但逐渐减小频率,测得f L。 (4)将电路闭环,重复1~3步骤,并将结果填入表8.2。 当频率f在4KHz-10KHz间,输出信号最大(无论开环、闭环),应以此为最大值进行测量。测出的f Hf和f H相比,基本符合公式,但f Lf和f L相比相差较大,估计是必须考虑三极管的低频特性和几个大电容的影响。 表8.2 五、实验报告: 1.将实验值与理论值比较,分析误差原因。 2.根据实验内容总结负反馈对放大电路的影响。

相关文档
最新文档