光学基础试验

光学基础试验
光学基础试验

光学基础

【实验目的】

(1)掌握透镜成像的基本规律。

(2)学会基本光路的调整和分析方法。

(3)学会测薄透镜焦距的几种方法。

【实验原理】

1. 公式法测薄透镜的焦距

薄透镜是指透镜中心厚度比透镜焦距小得多的透镜。透镜分为两大类:一类是凸透镜,对光线起会聚作用,所以也叫会聚透镜;另一类是凹透镜,对光线起发散作用,也叫发散透镜。

在近轴(靠近光轴并且与光轴的夹角很小的光线)条件下,薄透镜成像规律用下面的公式表示:

111 f u v

uv f

u v ?

=+?

'?

?

?

'=

?

+?

(3.10.1)

式中f ' —— 焦距,凸透镜为正,凹透镜为负;

u —— 物距,实物为正,虚物为负;

v —— 像距,实像为正,虚像为负。

薄透镜成像时的物像关系也可从作图法得出。作图时利用“三条光线”:① 平行于主光轴的光线,经过透镜后通过透镜像方焦点;② 经过透镜光心的光线,方向不变;③ 经过物方焦点的光线,经透镜后与主光轴平行。有时还应作辅助光线。利用这些法则,便可对实验中的简单光路和物像关系用作图法画出来。薄透镜(会聚透镜)成像规律如表3.10.1所示。

表3.10.1 薄透镜(会聚透镜)成像规律表

2. 凸透镜焦距的测定

1)物距像距法

根据表3.10.1知,当实物作为光源时,其发散的光经会聚透镜后,在一定条件下成实像,故可以用白屏接收实像加以观察,通过测定物距和像距,利用式(3.10.1)即可算出透镜的焦距。光路如图3.10.1所示。

物距像距法测凸透镜焦距光路

图3.10.1 2)共轭法

调节物屏与白屏之间的距离L >4f ',如图3.10.2

所示。固定物体和像屏的位臵,则当凸透镜在物体与

像屏之间移动时,在像屏上都能得到两次清晰的实

像。当透镜在位臵O 1时,像屏上出现清晰放大的实

像,在位臵O 2时,为缩小的实像,而且这两个位臵

是对称的或是共轭的,即透镜在O 1位臵时的物距和

像距,分别是透镜在O 2时的像距和物距,所以称为

共轭法。运用物像的共轭对称性质,用式(3.10.1)

推出 22

4L e f L

-'= (3.10.2) 3)自准直法

如图3.10.3所示,当物放在透镜的物方焦平面上

时,由物发出的光A 经透镜后将成为平行光;如果在

透镜后面放一与透镜光轴垂直的平面反射镜,则平行

光经平面镜反射后将沿原来的路线反方向进行,并成

像A '于物平面上。调节透镜位臵,使像清晰,此时透

镜与物体之间的距离,就近似等于透镜的焦距f '。

3. 凹透镜焦距的测定

1)由辅助透镜成像求焦距

如图3.10.4所示,设物AB 臵于凸透镜的二倍焦距以外,成实像于A 'B ',而在凸透镜和A 'B '之间加上待测焦距的凹透镜L 2后,像A 'B '成了凹透镜的虚物,经L 2后,成像于A "B ",则A 'B '和A "B "相对于L 2来说是虚物体和实像。分别测出L 2到A 'B '和A "B "的距离,根据式(3.10.1)即可算出像方焦距f '2 。

共轭法测凸透镜焦距光路 图

3.10.2

自准直法测凸透镜焦距光路 图3.10.3

辅助透镜成像测凹透镜焦距

图3.10.4

???

?

?????

+=+=--=2222'222'212111)(v u v u f u v f d v u (3.10.3) 式中 v 1 —— 辅助凸透镜的像距;

u 2 —— 凹透镜的物距,是一虚物,为负值;

d —— 两透镜之间的距离;

f '2 —

— 待测凹透镜的像方焦距。 2)自准直法

如图3.10.5所示,物AB 发出的光经辅助透镜L 1后成实像于A 'B ',而加上待测焦距的凹透镜L 2后,若A 'B '恰好在凹透镜L 2的焦平面上,则从L 2出射的光成为平行光。在L 2后放一平面反射镜,该平行光经反射镜反射并再依次通过L 2和L 1,最后在物屏上成等大的实像A "B "。这时分别测出L 2的位臵及A 'B '的位臵,则二者之差就是凹透镜L 2的焦距。

自准直法测凹透镜焦距

图3.10.5 4. 光学系统的共轴调节

透镜成像公式只有在近轴光线的条件下才能成立,为了满足近轴条件,常选用较小的物体,并把它的中心点调到主光轴上,使入射到透镜的光线与主光轴的夹角很小,这一步骤称为共轴调节。

(1)粗调:利用目测判断,将光源和各光学元件的中心调成等高、光学元件的方位取向一致,达到使各光学元件的光轴大致重合的目的。

(2)细调:利用成像规律来判断。利用共轭法使物屏和像屏之间的距离大于4倍焦距时,移动透镜,在屏上会分别出现一个放大实像和一个缩小实像,改变透镜(或物)的高度,让物的某一点(一般选上端点或下端点)在成大像和成小像时的像点在屏上处于同一位臵,此时该物点必定在光轴上,而且光轴平行于导轨面。若开始该大、小像点不在同一位臵,则改变透镜高度使成大像时的该像点逐渐向成小像时的该像点靠近,直到成大、小像时该像点位臵都不改变,这就是常说的“大像追小像”。调好第一步后,再依次放上其他光学元件,逐一调节这些元件的高度,使得选定的物点经每个光学元件后成的像点的位臵在像屏上都不改变,这样可调好整个系统的共轴调节。

【实验内容】

1. 测凸透镜的焦距

(1)共轴调节。将光源、物屏、待测透镜和成像白屏依次放在光具座的导轨上,按照实验条件所述方法,调节各光学元件的光轴,使之共轴,并平行于导轨的基线(等高)。

(2)物距像距法测凸透镜焦距。让物与像屏之间的距离适当(保证能在像屏上成实像),移动待测透镜,使像屏上呈现物体的清晰像。记录物、透镜、像的位臵,将数据填入表3.10.2,根据式(3.10.1)即可算出f '。

(3)用共轭法测凸透镜的焦距。将物与像屏固定在物像间距大于4f '的位臵,读出它们的位臵读数,两者之间的距离为L,如图3.10.2所示,移动透镜,使屏上得到清晰的像,记录透镜的位臵。移动透镜至另一位臵,使屏上又得到清晰的像,再次记录透镜的位臵。两次透镜之间的距离为e,将数据填入表3.10.3中,由式(3.10.2)可求出f '。

(4)用自准直法测凸透镜焦距。按图3.10.3所示移动透镜并适当调整平面镜的方位,沿光轴方向可看到在物与光轴对称的位臵出现一倒立等大的实像(此时平面镜转动时其实像应跟随转动),调整透镜位臵,用消视差法使物与像对齐(无视差),测出物与透镜的位臵,二者之差即透镜焦距,将数据填入表3.10.4中。

【思考题】

(1)为什么要调节光学系统共轴?

(2)光学系统共轴调好的判断标准是什么?

(3)在用物距像距法测凸透镜焦距时,是选成放大的像还是选成缩小的像?依据何在?

(4)在用自准直法测凸透镜焦距时,移动透镜位臵时会发现在物屏上先后两次成像(其中只有一个是透镜的自准直像),哪一个是透镜的自准直像?怎样判断?另一个是怎样形成的?根据此现象在进行共轴调节时应注意什么?

(5)在用自准直法测凸透镜焦距时,为什么要保证平面镜转动时其实像跟随转动?

(6)如何根据视差判断物与像是否对齐?如果未对齐,应怎样调节?自准直法是否可用于进行共轴调节?若可以应注意什么?

微波光学实验 实验报告

近代物理实验报告 指导教师:得分: 实验时间:2009 年11 月23 日,第十三周,周一,第5-8 节 实验者:班级材料0705 学号200767025 姓名童凌炜 同组者:班级材料0705 学号200767007 姓名车宏龙 实验地点:综合楼503 实验条件:室内温度℃,相对湿度%,室内气压 实验题目:微波光学实验 实验仪器:(注明规格和型号) 微波分光仪,反射用金属板,玻璃板,单缝衍射板 实验目的: 1.了解微波分光仪的结构,学会调整并进行试验. 2.验证反射规律 3.利用迈克尔孙干涉仪方法测量微波的波长 4.测量并验证单缝衍射的规律 5.利用模拟晶体考察微波的布拉格衍射并测量晶格数 实验原理简述: 1.反射实验 电磁波在传播过程中如果遇到反射板,必定要发生反射.本实验室以一块金属板作为反射板,来研究当电磁波以某一入射角投射到此金属板上时所遵循的反射规律。 2.迈克尔孙干涉实验 在平面波前进的方向上放置一块45°的半透半反射版,在此板的作 用下,将入射波分成两束,一束向A传播,另一束向B传播.由于A,B 两板的全反射作用,两束波将再次回到半透半反板并达到接收装置 处,于是接收装置收到两束频率和振动方向相同而相位不同的相干 波,若两束波相位差为2π的整数倍,则干涉加强;若相位差为π的奇 数倍,则干涉减弱。 3.单缝衍射实验 如图,在狭缝后面出现的颜射波强度并不均匀,中央最强,同时也最 宽,在中央的两侧颜射波强度迅速减小,直至出现颜射波强度的最小 值,即一级极小值,此时衍射角为φ=arcsin(λ/a).然后随着衍射角的增

大衍射波强度也逐渐增大,直至出现一级衍射极大值,此时衍射角为 Φ=arcsin(3/2*λ/a ),随着衍射角度的不断增大会出现第二级衍射极小值,第二级衍射极大值,以此类推。 4. 微波布拉格衍射实验 当X 射线投射到晶体时,将发生晶体表面平面点阵散射和晶体内部平面点阵的散射,散射线相互干涉产生衍射条纹,对于同一层散射线,当满足散射线与晶面见尖叫等于掠射角θ时,在这个方向上的散射线,其光程差为0,于是相干结果产生极大,对于不同层散射线,当他们的光程差等于波长的整数倍时,则在这个方向上的散射线相互加强形成极大,设相邻晶面间距为d,则由他们散射出来的X 射线之间的光程差为CD+BD=2dsin θ,当满足 2dsin θ=K λ,K=1,2,3…时,就产生干涉极大.这就是布拉格公式,其中θ称为掠射角,λ为X 射线波长.利用此公式,可在d 已测时,测定晶面间距;也可在d 已知时,测量波长λ,由公式还可知,只有在 <2d 时,才会产生极大衍射 实验步骤简述: 1. 反射实验 1.1 将微波分光仪发射臂调在主分度盘180°位置,接收臂调为0°位置. 1.2 开启三厘米固态信号发射器电源,这时微安表上将有指示,调节衰减器使微安表指示满刻度. 1.3 将金属板放在分度小平台上,小分度盘调至0°位置,此时金属板法线应与发射臂在同一直线上, 1.4 转动分度小平台,每转动一个角度后,再转动接收臂,使接收臂和发射臂处于金属板的同义词,并使接收指示最大,记下此时接收臂的角度. 1.5 由此,确定反射角,验证反射定律,实验中入射角在允许范围内任取8个数值,测量微波的反射角并记录. 2. 迈克尔孙干涉实验 2.1 将发射臂和接收臂分别置于90°位置,玻璃反射板置于分度小平台上并调在45°位置,将两块金属板分别作为可动反射镜和固定反射镜. 2.2两金属板法线分别在与发射臂接收臂一致,实验时,将可动金属板B 移动到导轨左端,从这里开始使金属板缓慢向右移动,依次记录微安表出现的的极大值时金属板在标尺上的位置. 2.3 若金属板移动距离为L,极大值出现的次数为n+1则,L )2 ( λn ,λ=2L/n 这便是微波的波长,再令金属板反向移动,重复上面操作,最后求出两次所得微波波长的平均值. 3. 单缝衍射实验 3.1 预先调整好单缝衍射板的宽度(70mm),该板固定在支座上,并一起放到分度小平台上,单缝衍射板要和发射喇叭保持垂直, 3.2 然后从衍射角0°开始,在单缝的两侧使衍射角每改变1°,读一次表头读数,并记录.

基础光学实验实验报告

基 础 光 学 实 验 姓名:许达学号:2120903018 应物21班

一.实验仪器 基础光学轨道系统,基础光学组合狭缝及偏振片,红光激光器及光圈支架,光传感器与转动传感器,科学工作室500或750接口,DataStudio软件系统 二.实验目的 1.通过该实验让学生了解并会运用实验器材,同时学会用计算机分析和处理实验数据。 2.通过该实验让学生了解基本的光学现象,并掌握其物理机制。三.实验原理 单缝衍射:当光通过单缝发生衍射,光强极小(暗点)的衍射图案由下式给出asinθ=mλ(m=1,2,3……),其中a是狭缝宽度,θ为衍射角度,λ是光波波长。 双缝干涉:当光通过两个狭缝发生干涉,从中央最大值(亮点)到单侧某极大值的角度由下式给出dsinθ=mλ(m=1,2,3……),其中d是狭缝间距,θ为从中心到第m级最大的夹角,λ是光波波长,m为级数。 光的偏振:通过第一偏振器后偏振电场为E0,以一定的角度β穿过第二偏振器,则场强变化为E0cosβ,由于光强正比于场强的平方,则,第二偏振器透过的光强为I=I0cos2β. 四.实验内容及过程

单缝衍射 单缝衍射光强分布图 如果设单缝与接收屏的距离为s,中央极强到光强极小点的距离为c,且sinθ≈tanθ=c/s,那么可以推得a=smλ/c.又在此次实验中,s=750mm,λ=6.5E(-4)mm,那么推得a=0.4875m/c,又由图可知:当m=1时,c=(88-82)/2=3mm,推得a=0.1625mm; 当m=2时,c=(91-79)/2=6mm,推得a=0.1625mm; 当m=3时,c=(94-76)/2=9mm,推得a=0.1625mm; 当m=4时,c=(96-74)/2=11mm,推得a=0.1773mm; 得到a的平均值0.1662mm,误差E=3.9%。 双缝干涉

人机交互技术实验五熟悉设计管理和游戏界面设计

重庆邮电大学移通学院学生实验报告 实验名称:熟悉设计管理和游戏界面设计 专业班级:数字媒体技术 02141401 姓名:罗钧 学号: 2014210xxx 实验日期:

实验五:熟悉设计管理和游戏界面设计 一、实验目的 (1)了解和熟悉人机界面设计过程管理的相关知识; (2)了解和评价游戏软件的人机交互设计,提高自己的评价能力,提高自己对设计水平的。 二、工具/准备工作 需要准备一台带有浏览器,能够访问因特网的计算机。 三、实验内容与步骤 1.概念理解 (1)成功的用户界面开发有4个支柱,它们能够帮助用户界面架构师将好的思想转化为成功的系统。经验表明,每个支柱都能在此过程中产生数量级的加速作用,并能促进建立优秀的系统。 请简单描述这4个支柱。 用户界面需求:软件项目的成败经常取决于所有用户和实现者之间理解的精确性和完整性。如果没有适当的需求定义,那就既不能确定正在解决什么问题,也不会知道何时能够完成。拟定用户界面需求是整个需求开发和管理过程的一部分,系统需求(硬件、软件、系统性能及可靠性等)必须清楚的加以陈述,任何处理用户界面的需求(输入/输出设备、功能、界面及用户范围等)都必须指明并达成共识。一个确定用户需求的成功方法是通过用户观察,监视正在行动的真实用户的背景和环境。 指南文档和过程:指南文档应考虑以下几方面。 1.词、图标和图形 2.屏幕布局问题 3.输入与输出设备 4.动作序列 5.培训 用户界面软件工具:设计交互系统的困难之一,是客户和用户可能对新系统并没有一个清晰的想法。由于在很多情况下交互系统都是新奇的,用户可能认识不到设计决策的用意。虽然打印出来的文稿对初步体验是有帮助的,但具有活动键盘和鼠标的屏幕展示却更为真实。菜单系统的原型可能用一两条活动路径来代替为最终系统预想的数千条路径。 专家评审和可用性测试:现在,网站的设计人员认识到,在将系统交付给客户使用之前,必须对组件进行很多小的和一些大的初步试验。除了各种专家评审方法外,与目标用户一起进行的测试、调查和自动化分析工具被证明是有价值的。其过程依可用性研究的目标、预期用户数量、错误和危害程度和投资规模而变化很大。 (2)请简单描述用户界面设计所涉及的法律问题 ①隐私问题 ②安全性和可靠性

物理光学实验题及答案

物理光学实验题及答案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

第三章光学(一)概述 光学的学生实验共有4个,它们分别是“光反射时的规律”、“平面镜成像的特点”、“色光的混合与颜料的混合”、“探究凸透镜成像的规律”。 (二)光学探究实验对技能的要求 1.明确探究目的、原理、器材和步骤。 2.会正确使用各种实验器材,知道它们的摆放要求。 3.知道各种器材在实验实践与探究能力指导 中的作用,并能根据实验原理、目的,选择除教科书规定仪器之外的其他器材完成实验。 4.会设计实验步骤并按合理步骤进行实验。 5会设计实验报告,会填写实验报告。 6.会正确记录实验数据。 7.会组装器材并进行实验。 8.明确要观察内容,会观察实验现象,并能解释实验中的一般问题。 9.会分析实验现象和数据,并归纳实验结果。 实验与探究能力培养 探究光反射时的规律 基础训练 1.为了探究光反射时的规律,小明进行了如图19所示的实验 (1)请在图19中标出反射角的度数。

(2)小明想探究反射光线与入射光线是否在同一平面内,他应如何操作 --————————————————————————————————。(3)如果让光线逆着OF的方向射向镜面,会发现反射光线沿着OE方向射出,这表明:————————————————————————————————。 图19 2.雨后天晴的夜晚,为了不踩到地上的积水,下列判断中正确的是()。 A.迎着月光走,地上暗处是水,背着月光走地上发亮处是水 B.迎着月光走,地上发亮处是水,背着月光走地上暗处是水 C.迎着月光走或背着月光走,都应是地上发亮处是水 D.迎着月光走或背着月光走,都应是地上暗处是水 探究平面镜成像的特点 基础训练 1.平面镜能成像是由于平面镜对光的————射作用,所称的想不能在光屏上 呈现, 是————像,为了探究平面镜成像的特点,可以用————代替平面镜,选用两只 相同的蜡烛是为了————。

光学仪器实验报告

常用光电仪器原理及使用 实验报告 班级:11级光信息1班 姓名:姜萌萌 学号:110104060016 指导老师:李炳新

数字存储示波器 一、实验目的 1、熟悉数字存储示波器的使用方法; 2、测量数字存储示波器产生方波的上升时间; 二、实验仪器 数字存储示波器 三、实验步骤 1、产生方波波形 ⑴、打开示波器电源阅读探头警告,然后按下OK。按下“DEFAULT SETUP”按钮,默认的电压探头衰减选项是10X。 ⑵、在P2200探头上将开关设定到10X并将探头连接到示波器的通道1上,然后向右转动将探头锁定到位,将探头端部和基线导线连接到“PROBE COMP”终端上。 ⑶、按下“AUTOSET”按钮,在数秒钟内,看到频率为1KHz 电压为5V峰峰值得方波。按两次CH1BNC按钮删除通道1,

按下CH2BNC按钮显示通道2,重复第二步和第三步。 2、自动测量 ⑴、按下“MUASURE”按钮,查看测量菜单。 ⑵、按下顶部的选项按钮,显示“测量1菜单”。 ⑶、按下“类型”“频率”“值”读书将显示测量结果级更新信息。 ⑷、按下“后退”选项按钮。 ⑸、按下顶部第二个选项按钮;显示“测量2菜单”。 ⑹、按下“类型”“周期”“值”读数将显示测量结果与更新信息。 ⑺、按下“后退”选项按钮。 ⑻、按下中间选项按钮;显示“测量3菜单”。 ⑼、按下“类型”“峰-峰值”“值”读数将显示测量结果与更新信息。 ⑽、按下“后退”选项按钮。 ⑾、按下底部倒数第二个按钮;显示“测量4菜单”。⑿、按下“类型”“上升时间”“值”读数将显示测量结果与更新信息。

LCR测试仪 一、实验目的 1、熟悉LCR测试仪的使用方法; 2、了解LCR测试仪的工作原理; 3、精确测量一些电阻,电感,电容的值; 二、实验仪器 LCR测试仪,电阻,电容,电感等元件 三、LCR测试原理 根据待测元器件实际使用的条件和组合上的差别,LCR 测量仪有两种检测模式,串联模式和并联模式。串联模式以检测元器件Z为基础,并联模式以检测元器件的导纳Y为基础,当用户将测出流过待测元件的电流I,数字电压表将测出待测元件两端的电压V,数字鉴相器将测出电压V和电流I 之间的相位角 。检测结果被储存在仪器内部微型计算机的

人机交互实验报告及实验结果

中北大学软件学院 实验报告 专业软件工程 课程名称人机交互 学号 姓名 辅导教师何志英成绩 实验日期2012/3/13实验时间19:00-22:00

1实验名称 试验一:最新人机交互技术 2、实验目的 了解最新人机交互的研究内容 3、实验内容 通过网络查询最新人机交互相关知识。 (1)在百度中找到“最新人机交互视频”的相关网页,查看视频。 (2)什么是Kinect技术。 (3)人机交互技术在各个领域的应用。 4、测试及结果 (1)已在百度中查看“最新人机交互视频”的相关网页。 (2)Kinect是微软在2010年6月14日对XBOX360体感周边外设正式发布的名字。 (3)人机交互技术已成为解决医疗、教育、科研、环保等各类重大社会问题不可或缺的重要工具 5、心得 通过此实验,我了解人机交互技术在社会各个行业的重大作用。辅导教师何志英成绩 实验日期2012/3/13实验时间19:00-22:00 1、实验名称 实验二:立体视觉 2、实验目的 掌握立体视觉的原理

3、实验要求 通过网络查询立体视觉相关知识。 (1)在虚拟环境是如何实现立体视觉? (2)3D和4D电影的工作原理。 4、测试及结果 (1)实物虚化的视觉跟踪技术使用从视频摄像机到x-y平面阵列,周围光或者跟踪光在图像投影平面不同时刻和不同位置上的投影,计算被跟踪对象的位置和方向。 视点感应必须与显示技术相结合,采用多种定位方法(眼罩定位、头盔显示、遥视技术和基于眼肌的感应技术)可确定用户在某一时刻的视线。例如将视点检测和感应技术集成到头盔显示系统中,飞行员仅靠“注视”就可在某些非常时期操纵虚拟开关或进行飞行控制 (2) 4D电影是在3D立体电影的基础上加环境特效模拟仿真而组成的新型影视产品。所谓4D电影,也叫四维电影;即三维的立体电影和周围环境模拟组成四维环境。观众在看立体电影时,顺着影视内容的变化,可实时感受到风暴、雷电、下雨、撞击、喷洒水雾、拍腿等身边所发生与立体影象对应的事件,4D的座椅是具有喷水、喷气、振动、扫腿等功能的,以气动为动力的。环境模拟仿真是指影院内安装有下雪、下雨、闪电、烟雾等特效设备,营造一种与影片内容相一致的环境。 5、心得 通过本次试验,我明白了立体视觉以及3D、4D电影的工作原理。

傅里叶光学实验报告

实验原理:(略) 实验仪器: 光具座、氦氖激光器、白色像屏、作为物的一维、二维光栅、白色像屏、傅立叶透镜、小透镜 实验内容与数据分析 1.测小透镜的焦距f 1 (付里叶透镜f 2=45.0CM ) 光路:激光器→望远镜(倒置)(出射应是平行光)→小透镜→屏 操作及测量方法:打开氦氖激光器,在光具座上依次放上扩束镜,小透镜和光屏,调节各光学元件的相对位置是激光沿其主轴方向射入,将小透镜固定,调节光屏的前后位置,观察光斑的会聚情况,当屏上亮斑达到最小时,即屏处于小透镜的焦点位置,测量出此时屏与小透镜的距离,即为小透镜的焦距。 112.1913.2011.67 12.3533 f cm ++= = 0.7780cm σ= = 1.320.5929 p A p t t cm μ=== 0.68P = 0.0210.00673 B p B p t k cm C μ?==?= 0.68P = 0.59cm μ== 0.68P = 1(12.350.59)f cm =± 0.68P =

2.利用弗朗和费衍射测光栅的的光栅常数 光路:激光器→光栅→屏(此光路满足远场近似) 在屏上会观察到间距相等的k 级衍射图样,用锥子扎孔或用笔描点,测出衍射图样的间距,再根据sin d k θλ=测出光栅常数d (1)利用夫琅和费衍射测一维光栅常数; 衍射图样见原始数据; 数据列表: sin || i k Lk d x λλ θ= ≈ 取第一组数据进行分析: 2105 13 43.0910******* 4.00106.810d m ----????==?? 210 523 43.0910******* 3.871014.110d m ----????==?? 2105 33 43.0910******* 3.95106.910d m ----????==?? 210 543 43.0910******* 4.191013.010 d m ----????==?? 554.00 3.87 3.95 4.19 10 4.0025104 d m m --+++= ?=? 61.3610d m σ-=? 忽略b 类不确定度:

基础性实验:趣味光学实验汇总

光学基础性趣味实验 目录 实验1 光与彩虹(人造彩虹) (2) 实验2 人造彩虹2 (3) 实验3 光的折射实例 (5) 实验4 自制放大镜 (6) 实验5 红外线实验的设计 (7) 实验6 多功能小孔成像仪的制作 (8) 实验7 自制针孔眼镜——小孔成像的应用 (9) 实验8 镜子中有无数个镜子 (10) 实验9 日食和月食的演示 (11) 实验10 制作针孔照相机 (12) 实验11 用激光器演示光的直线传播 (13) 实验12 全反射现象观察......................................... 14错误!未定义

实验1 光与彩虹(人造彩虹) 思考:你用什么办法能制作出与空中彩虹颜色一样的彩虹? 实验准备:清水1盆、平面镜1个 实验操作: 1.取一小盆并加入2/3的水,再把镜子斜放于盆内; 2.使镜面对着阳光,在水盆对面的墙上就能看到美丽的彩虹。 实验中的科学:将镜子插入水中时,在对面的墙上就能看到美丽的彩虹。它是光的折射作用,实验表明:白光通过三棱镜后就会分解为红、橙、黄、绿、蓝、靛、紫等七种颜色的光,这就是光的色散。这里镜面左侧的水就好像一个三棱镜,因而光射出水面后就会发生色散,形成彩虹。 创新:想一想,还有什么办法,可以制造出美丽的彩虹?

实验2 人造彩虹2 准备材料:水、一个玻璃杯、一张白纸。 实验步骤: 1.在玻璃杯中装满水,把杯子拿到阳光可以照射到的窗台上;2.把纸放到阳光透过杯子投射进来的地方,这样在纸上就可以看到彩虹的色彩。 实验中的科学: 光线被水折射了,因而投射到纸上的颜色是阳光被分解之后的颜色,原理跟天空中彩虹的形成是一样的。当阳光以40到42度的角度照射空中的水珠时,阳光通过水珠时发生折射,投射到空中形成了彩虹。 知识问答:彩虹为什么总是弯曲的? 想象你看着东边的彩虹,太阳在从背后的西边落下。白色的阳光(彩虹中所有颜色的组合)穿越了大气,向东通过了你的头顶,碰到了从暴风雨落下的水滴。当一道光束碰到了水滴,会有两种可能:一是光可能直接穿透过去,或者更有趣的是,它可能碰到水滴的前缘,在进入时水滴内部产生弯曲,接着从水滴后端反射回来,再从水滴前端离开,往我们这里折射出来。这就是形成彩虹的光。 水滴对光的反射,折射加色散形成彩虹。色散后不同色光出射的方向不同,对一个水滴出射的光我们只有站在特定的观察点上才能看见特定的颜色光,而我们平时是站在固定的观察点上去看空中多个水滴,这样,不同水滴中出射的同一种色光能够到达眼睛,这些水滴

光学基础学习报告

光学基础学习报告 一、教学内容: 光电镜头是用来作为光电接收器(CCD,CMOS )的光学传感器元件。 光学特性参数: 1、 焦距EFL (学名f ’) 是指主面到相应焦点的距离(如图1.1) 图1.1 每个镜片都有前后两个主面-前主面和后主面(放大率为1的共轭面)。相应的也有两个焦点-前焦和后焦。 凸透镜:双凸;平凸;正弯月(如图1.1) 图1.2 凹透镜:双凹;平凹;负弯月 图 1.3

折射率实际反映的是光在物质中传播速度与真空中速度的比值关系。 薄透镜:)]1()1[()1('12 1R R n f -?-== Φ Φ—透镜光焦距; f ’—焦距; n —折射率; R 1,R 2-两球面曲率半径 厚透镜:2 1221)1()]1()1[()1('1R nR d n R R n f -+ -?-==Φ d -中心厚度 干涉仪与光距座可以量测f ’,R1,R2,d →利用上述的公式可以计算出n 值,从而来确定所用材料。 A 、 EFL 增加,TOTR (光学总长)增加;要降低TOTR 就必须降低EFL ,但EFL 降低, 像高就要降低 B 、 EFL 与某些象差相关 C 、 EFL 上升将使F/NO 增大 D 、 EFL ,FOV (视场角)和IMA (像高)三者间有关系 tanFOV ?=EFL IMA -铁三角关系 EFL 的增大(减小)会使像高变大(小),为了保持像高,就必须要增大(减小)FOV ,然而FOV 的增大会使得REL (相对照度)的数值增大。 2、 BFL 后焦距(学名后截距) 图2.1 3、 F 数(F/NO ) D f NO F '/= f ’-FEL D 入-入瞳直径 入瞳为光阑经其前方光学镜片所成的像,反映进入光学系统的光线 A 、 与MTF 相关,F/NO ↑,则MTF ↑;反之下降 B 、 与景深相关,F/NO ↑,则景深↑,反之下降 C 、 与象差相关,F/NO ↑,则象差↓,反之增加 D 、 与光通量相关,F/NO ↑,则光通量↓,反之增加 对于光电镜头,F/NO 最大在2.8~3.5之间(经验值)允许有±5%的误差,在物方有照

典型光学系统试验

\ 本科实验报告 课程名称:应用光学实验姓名:韩希 学部:信息学部系:信息工程专业:光电 学号:3110104741 指导教师:蒋凌颖 实验报告

课程名称: 应用光学实验 指导老师 成绩:__________________ 实验名称:典型光学系统实验 实验类型: 同组学生姓名: 蒋宇超、陈晓斌 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 深入理解显微镜系统、望远镜系统光学特性及基本公式; 掌握显微镜系统、望远镜系统光学特性的测量原理和方法。 二、实验内容和原理 (1)望远镜特性的测定 测定望远镜的入瞳直径D 、出瞳直径D ’和出瞳距错误!未找到引用源。;测定望远镜的视觉放大率Γ;测定望远镜的物方视场角错误!未找到引用源。,像方视场角错误!未找到引用源。;测定望远镜的最小分辨角φ。 对于望远镜系统来说,任意位置物体的放大率是常数,此值由物镜焦距错误!未找到引用源。和目镜焦距错误!未找到引用源。确定,其视觉放大率可表示为 (2) 显微镜视场及显微物镜放大率的测定 显微物镜的放大率是指横向放大率 式中 y ——标准玻璃刻尺上一对刻线的距离(物)(格值0.01mm ); y ′——由测微目镜所刻得的像高。 (3)显微物镜数值孔径的测定 显微物镜的数值孔径为错误!未找到引用源。,其中n 为物方介质的折射率,u 为物方半孔径角。若在空气中n=1,则错误!未找到引用源。。 数值孔径通常用数值孔径计来测定,数值孔径计的结构如图5示,其主要元件是一块不太厚的玻璃半圆柱体,沿直径方向的侧面是与上表面成45度角的斜面,从侧面入射的光线在斜面上全反射,上表面上有两组刻度沿圆周排列。其外圈刻度为数值孔径(即角度的正弦值), 专业: 光电信息工程 姓名: 韩希 学号: 3110104741 日期:2013年6月15日 地点:紫金港东四605

傅立叶光学实验报告

实验报告 陈杨 PB05210097 物理二班 实验题目: 傅里叶光学实验 实验目的: 加深对傅里叶光学中的一些基本概念与理论的理解,验证阿贝成像理论,理解透镜成像过程,掌握光学信息处理的实质,进一步了解透镜孔径对分辨率的影响。 实验原理: 1、傅里叶光学变换 二维傅里叶变换为:??+-=?=dxdy vy ux i y x f v u F )](2exp[),()}y ,x (f {),(π ( 1 ) 1()[(,)]x y g x F a f f -=, ''x y x f f y f f λλ??=????????=???? 复杂的二维傅里叶变换可以用透镜来实现,叫光学傅里叶变换。 2、阿贝成像原理 由于物面与透镜的前焦平面不重合,根据傅立叶光 学的理论可以知换(频谱),不过只有一个位相因子 的差别,对于一般情况的滤波处理可以不考虑。这个光路的优道在透镜的后焦平面上得到的不就是物函数的严格的傅立叶变点就是光路简单,就是显微镜物镜成像的情况—可以得到很大的象以便于观察,这正就是阿贝当时要改进显微镜的分辨本领时所用的光路。

3、空间滤波 根据以上讨论:透镜的成像过程可瞧作就是两次傅里叶变换,即从空间函数(,)g x y 变为频谱函数(,)x y a f f ,再变回到空间函数(,)g x y ,如果在频谱面上放一不同结构的光阑,以提取某些频段的信息,则必然使像上发生相应的变化,这样的图像处理称空间滤波。 实验内容: 1、测小透镜的焦距f1 (付里叶透镜f2=45、0CM)、 光路:直角三棱镜→望远镜(倒置)(出射应就是平行光)→小透镜→屏。(思考:如何测焦距?) 夫琅与费衍射: 光路:直角三棱镜→光栅→墙上布屏(此光路满足远场近似) (1)利用夫琅与费衍射测一维光栅常数; 光栅方程:dsin θ=k λ 其中,k=0,±1, ±2, ±3,… 请自己选择待测量的量与求光栅常数的方法。(卷尺可向老师索要) 记录一维光栅的衍射图样、可瞧到哪些级?记录 0级、±1级、±2级光斑的位置; (2)记录二维光栅的衍射图样、 3、观察并记录下述傅立叶频谱面上不同滤波条件的图样或特征; 光路:直角三棱镜→光栅→小透镜→滤波模板(位于空间频谱面上)→墙上屏 思考:空间频谱面在距小透镜多远处?图样应就是何样? (1)一维光栅:(滤波模板自制,一定要注意戴眼镜保护;可用一张纸,一根

光学实验报告 (一步彩虹全息)

光学设计性实验报告(一步彩虹全息) 姓名: 学号: 学院:物理学院

一步彩虹全息 摘要彩虹全息是用激光记录全息图, 是用白光再现单色或彩色像的一种全息技术。彩虹全息术的关键之处是在成像光路( 即记录光路) 中加入一狭缝, 这样在干板上也会留下狭缝的像。本文研究了一步彩虹全息图的记录和再现景象的基本原理、一步彩虹全息图与普通全息图的区别和联系、一步彩虹全息的实验光路图,探讨了拍摄一步彩虹全息图的技术要求和注意事项,指出了一步彩虹全息图的制作要点, 得出了影响拍摄效果的佳狭缝宽度、最佳狭缝位置及曝光时间对彩虹全息图再现像的影响。 关键词:一步彩虹全息;狭缝;再现 1 光学实验必须要严密,尽可能地减少实验所产生的误差; 2 实验仪器 防震全息台激光器分束镜成像透镜狭缝干板架光学元件架若干干板备件盒洗像设备一套线绳辅助棒扩束镜2个反射镜2个 3 实验原理 3.1 像面全息图 像面全息图的拍摄是用成像系统使物体成像在全息底板上,在引入一束与之相干的参考光束,即成像面全息图,它可用白光再现。再现象点的位置随波长而变化,其变化量取决于物体到全息平面的距离。 像面全息图的像(或物)位于全息图平面上,再现像也位于全息图上,只是看起来颜色有变化。因此在白光照射下,会因观察角度不同呈现的颜色亦不同。 3.2 彩虹全息的本质 彩虹全息的本质是要在观察者与物体的再现象之间形成一狭缝像,使观察者通过狭缝像来看物体的像,以实现白光再现单色像。若观察者的眼睛在狭缝像附近沿垂直于狭缝的方向移动,将看到颜色按波长顺序变化的再现像。若观察者的眼睛位于狭缝像后方适当位置, 由于狭缝对视场的限制, 通过某一波长所对应的狭缝只能看到再现像的某一条带, 其色彩与该波长对应, 并且狭缝像在空间是连

光学实验报告

建筑物理 ——光学实验报告 实验一:材料的光反射比、透射比测量实验二:采光系数测量 实验三:室内照明实测 实验小组成员: 指导老师: 日星期二3月12年2013日期: 实验一、材料的光反射比和光透射比测量

一、实验目的与要求 室内表面的反射性能和采光口中窗玻璃的透光性能都会直接或间接的影响室内光环境的好坏,因此,在试验现场采光实测时,有必要对室内各表面材料的光反射比,采光口中透光材料的过透射比进行实测。 通过实验,了解材料的光学性质,对光反射比、透射比有一巨象的数值概念,掌握测量方法和注意事项。 二、实验原理和试验方法 (一)、光反射比的实验原理、测量内容和测量方法 光反射比测量方法分为直接测量方法和间接测量法,直接测量法是指用样板比较和光反射比仪直接得出光反射比;间接法是通过被测表面的照度和亮度得出漫反射面的光反射比。下面是间接测量法。 1.实验原理 (1)用照度计测量: P是投射到某一材料表面反射出来的光通量与被该光源的光通量的比值,根据光反射比的定义:光反射比即: φφP=P/因为测量时将使用同一照度计,其受光面积相等, 且,所以对于定向反射的表面,我们可以用上述代入式,整理后得: P=EE P/对于均匀扩散材料也可以近似的用上述式。 可知只要测出材料表面入射光照度E和材料反射光照度Ep,即可计算出其反射比。 (2)用照度计和亮度计测量 用照度计和亮度计分别测量被测表面的照度E和亮度L后按下式计算 πL/EP= 2;被测表面的亮度,cd/m式中:L---E—被测表面的照度,lx 。 2.测量内容 要求测量室内桌面、墙面、墙裙、黑板、地面的光反射比。每种材料面随机取3个点测量3次,然后取其平均值。 3.测量方法 ①将照度计电源(POWER)开关拨至“ON”,检查电池,如果仪器显示窗出现“BATT”字样,则需要换电池; ②将光接收器盖取下,将其光敏表面放在待测处,再将量程(RANGE)开关拨至适当位置,例如,拨在×1挡,测量的仪器显示值乘以量程因子即为测量结果。另有一种自动量程照度计,数字显示中的小数点随照度的大小不同而自动移位,只需将所显示的数字乘以量程因子即为测量结果(单位:lx)。有的照度计为自动量程,直接读取照度计数字即为测量结果。 ③在稳定光源下,将光接收器背面紧贴被测表面,测其入射照度E;然后将光接收器感光面对准被测表面的同一位置,逐渐平移光接收器平行离开测点,照度值逐渐增大并趋于稳定(约300mm左右),读;ρ,即可计算出光反射比Ep取反射照度值 ④测量时尽量缩短入射照度和反光照度间的时间间隔,并尽可能的保持周围光环境的一致性。

初二物理光学实验题专项练习【含答案】

初二物理光学实验题专项练习 一、光的反射定律 实验序号入射光线入射角反射角 1 AO 50°50° 2 CO 40°40° 3 EO 20°20° 1.如图1所示为研究光的反射规律的实验装置,其中O点为入射点,ON为法线,面板上每一格对应的角度均为10°.实验时,当入射光为AO时,反射光为OB;当入射光为CO时,反射光为OD;当入射光为EO时,反射光为OF.请完成下列表格的填写. 分析上述数据可得出的初步结论是:当光发生反射时,反射角等于入射 角. 2、如图2是探究光的反射规律的两个步骤 (1) 请你完成以下表格的填写。

实验序号入射角反射角 1 50°50 2 40°40° 3 20°20° (2)实验中,纸板应_“垂直”)__于平面镜。(填“平行”或“垂直”) (3)由甲图我们可以得到的结论是:_____当光发生反射时,反射角等于入 射角 ____; (4)由乙图我们可以得到的结论是:___当光发生反射时,反射光线和入射 光线、法线在同一平面内___。 (5)如果光线沿BO的顺序射向平面镜,则反射光线____会_____(填“会”或“不会”)与OA重合,说明了______当光发生反射时,_光路是可逆的 _ ____。 3、如图3在研究光的反射定律实验中,第一步:如图3A改变入 射光线的角度,观察反射光线角度是怎样改变?实验结论是:_当光发生反射时,反射角等于入射角;第二步:如图3B把纸张的右半面向前折或向后折,观察是否还能看到反射光线,实验结论是:看不到,说明当光发生反射时,反射光线和入射光线、法线在同一平面内。

4、如图4所示,课堂上,老师用一套科学器材进行“研究光的反射定律” 的实验演示,其中有一个可折转的光屏,光屏在实验中的作用是:(写出两条) ①显示光的传播路径,②探究反射光线、入射光线、法线是否共面 实验序号入射角反射角 1 15°75° 2 30°60° 3 45°45° (2)根据光的反射定律,如果入射角为20o,则反射角的大小是 20o。 (3)课后,某同学利用同一套实验器材,选择入射角分别为15o、30o、45o 的三条光线进行实验,结果得到了不同的数据,如图所示。经检查,三次试验中各 角度的测量值都是准确的,但总结的规律却与反射定律相违背。你认为其中的原因 应该是将反射光线与反射面(或镜面)的夹角作为反射角。 5、为了探究光反射时的规律,小明进行了如图5所示的实验。 ⑴请在图5中标出反射角的度数。

光学全息照相实验报告

光学全息照相实验报告

实验II 光学全息照相 光学全息照相是利用光波的干涉现象,以干涉条纹的形式,把被摄物表面光波的振幅和位相信息记录下来,它是记录光波全部信息的一种有效手段。这种物理思想早在1948年伽柏(D.Gabor)即就已提出来了,但直到1960年,随着激光器的出现,获得了单色性和相干性极好的光源时,才使光学全息照相技术的研究和应用得到迅速地发展。光学全息照相在精密计量、无损检测、遥感测控、信息存储和处理、生物医学等方面的应用日益广泛,另外还相应出现了微波全息,X光全息和超声全息等新技术,全息技术已发展成为科学技术上的一个新领域。 本实验通过对三维物体进行全息照相并再现其立体图像,了解全息照相的基本原理及特点,学习拍摄方法和操作技术,为进一步学习和开拓应用这一技术奠定基础。 实验目的

了解光学全息照相的基本原理和主要特点; 学习静态光学全息照相的实验技术; 观察和分析全息全图的成像特性。 仪器用具 全息台、He —Ne 激光器及电源、分束镜、全反射镜、扩束透镜、曝光定时器、全息感光底版等。 基本原理 全息照片的拍摄 全息照相是利用光的干涉原理将光波的振幅和相位信息同时记录在感光板上的过程.相干光波可以是平面波也可以是球面波,现以平面波为例说明全息照片拍摄的原理。如图1所示,一列波函数为t i ae y πυ21=、振幅为a 、频率为υ、波长为λ 的平面单色光波作为参考光垂直入射到感光板上。另一列同频率、波函数为t i r T t i Be be y πυλπ222==??? ??-的相 干平面单色光波从物体出发,称为物光,以入射角θ同时入射到感光板上,物光与参考光产生干涉,在感光板上形成的光强分布为 ax ab b a I cos 222++= (1)

人机交互实验报告

中北大学软件学院实验报告 专业:软件工程 方向:电子商务 课程名称:人机交互基础教程 班级:1021010C01 学号: 姓名: 辅导教师:李玉蓉 2012年2月制

成绩: 实验时间年月日时至时学时数 1.实验名称 最新人机交互技术 2.实验目的 了解最新人机交互的研究内容 3.实验内容 通过网络查询最新人机交互相关知识。 1、在百度中找到“最新人机交互视频”的相关网页,查看视频。 2、什么是eTable 。 3、人机交互技术在各个领域的应用 4. 实验原理及流程图

成绩: 5.实验过程或源代码 Etable是一种多功能电脑桌,集时尚、实用、经济于一“桌”,无论是居家卧室,还是出差旅途,都可以提供一个舒适、惬意的网上时光,部件有:多角度调节桌面、2个风扇、1个USB插口、1个活动USB插头、鼠标垫、桌腿可调节长度。 人机交互技术的发展极大地促进了计算机的快速发展和普及,已经在制造业、教育、娱乐、军事和日常生活等领域得到 广泛应用。在制造业用于产品设计、装配仿真等各个环节;在 教育中用于研发沉浸式的虚拟世界系统,供学者学习;在军事 方面头显示器等的出现给军事训练提供了极大地方便;在娱乐 中3d和4d电影的拍摄都应用到此技术;体育方面用于体育训 练和报道等;生活中,触屏手机,人脸识别技术等都用到人机 交互技术。 6.实验结论及心得 通过在网上查阅有关近期最新人机交互的视频和网页,我对人机交互的发展及在各方面的应用有了初步了解和认识

实验时间年月日时至时学时数1.实验名称 立体视觉 2.实验目的 掌握立体视觉的原理 3.实验内容 通过网络查询立体视觉相关知识。 1. 在虚拟环境是如何实现立体视觉? 2. 3D和4D电影的工作原理。 4.实验原理及流程图

立式光学仪实验报告doc

立式光学仪实验报告 篇一:光学实验报告 建筑物理 ——光学实验报告实验一:材料的光反射比、透射比测量实验二:采光系数测量 实验三:室内照明实测实验小组成员:指导老师:日期:XX年12月3日星期二实验一、材料的光反射比和光透射比测量 一、实验目的与要求室内表面的反射性能和采光口中窗玻璃的透光性能都会直接或间接的影响室内光环境的好坏,因此,在试验现场采光实测时,有必要对室内各表面材料的光反射比,采光口中透光 材料的过透射比进行实测。通过实验,了解材料的光学性质,对光反射比、透射比有一巨象的数值概念,掌握测量方法和注意事项。 二、实验原理和试验方法 (一)、光反射比的实验原理、测量内容和测量方法光反射比测量方法分为直接测量方法和间接测量法,直接测量法是指用样板比较和光反 射比仪直接得出光反射比;间接法是通过被测表面的照度和亮度得出漫反射面的光反射比。 下面是间接测量法。

1. 实验原理 (1)用照度计测量:根据光反射比的定义:光反射比p是投射到某一材料表面反射出来的光通量与被该光源的光通量的比值,即: p=φp/φ 因为测量时将使用同一照度计,其受光面积相等,且,所以对于定向反射的表面,我们 可以用上述代入式,整理后得:p=ep/e 对于均匀扩散材料也可以近似的用上述式。可知只要测出材料表面入射光照度e和材料反射光照度ep,即可计算出其反射比。(2) 用照度计和亮度计测量 用照度计和亮度计分别测量被测表面的照度e和亮度l 后按下式计算 p=πl/e 式中:l---被测表面的亮度,cd/m2; e—被测表面的照度,lx 。 2.测量内容要求测量室内桌面、墙面、墙裙、黑板、地面的光反射比。每种材料面随机取3个点测量3次,然后取其平均值。 3.测量方法 ①将照度计电源(power)开关拨至“on”,检查电池,如果仪器显示窗出现“batt”字 样,则需要换电池;

光学仪器实验报告

燕山大学 常见光学仪器原理及使用实验报告 L.C.R测试仪 紫外可见分光度计 傅立叶光谱仪 阿贝折射仪 干涉显微镜 数字存储示波器 学院(系): 年级专业: 学号: 学生姓名: 指导教师:

实验一LCR测试仪 一.实验目的 LCR测试仪能准确并稳定地测定各种各样的元件参数,主要是用来测试电感、电容、电阻的测试仪。它具有功能直接、操作简便等特点,能以较低的预算来满足生产线质量保证、进货检验、电子维修业对器件的测试要求。 二.实验仪器 LCR测试仪 三.实验原理 Vx与Vr均是矢量电压表,Rr是理想电阻。自平衡电桥的意思是:当DUT(Device Under Test)接入电路时,放大器的负反馈配置自动使得OP输入端虚地。Vx准确测定DUT两端电压(DUT的Low电位是0),Vr与Rr测得DUT电流Ix,由此可计算Zx。 LCR测试原理图 HP4275的测试端Hp,Hc,Lp,Lc(下标c代表current, 下标p代表Potentail),Guard(接地)的配置可导致测试的误差的差异。 提高精度的方法是: 1,Hp,Lp,Hc,Lc尽量接近DUT; 2,减小测试电流Ix 的回路面积&磁通量(关键是分析Ix,要配合使用Guard与Cable最小化回路面积);3,使用Gurard与Cable构建地平面中断信号线间的电场连接,虽然会增加信号线的对地电容(对地电容不影响测试结果),但是会减少信号线的互容。

LCR测试原理图 Guard与Cable的对地寄生阻抗(Zhg,Zlg) 不影响测试结果,电桥平衡时Zlg的两端电压是0,流向Rr的电流不会被Zlg分流,Zhg的分流作用不影响Hp的电压测量。 LCR测试原理图 四.实验步骤 LCR测试仪一般用于测试电感和电容。测量步骤如下: 1.设置测试频率。 2.测试电压或者电流水平。 3.选择测试参数,比如Z、Q、LS(串联电感)、LP(并联电感)、CS(串联电感)、CP(并联电容)、D等。 4.仪器校准,校准主要进行开路、短路校准,高档的仪器要进行负载校准 5.选择测试夹具。 6.夹具补偿。 7.将DUT放在夹具上开始测试。

大学物理光学实验报告材料

实验十:光栅衍射 一、实验目的 1.观察光线通过光栅后的衍射光谱。 2.学会用光栅衍射测定光波波长的方法。 3.学会用光栅衍射原理测定光栅常数。 4.进一步熟悉分光计的调整和使用方法。 二、实验仪器 分光计 光栅 钠光灯 平面反射镜 三、实验原理 光栅是有大量的等间隔、等宽度的狭缝平行放置组成的一种光学元件。设狭缝宽度(透光部分)为a ,不透光部分为b ,则a b +为光栅常数。 设单色光垂直照射到光栅上,光透过各个狭缝后,向各个方向发生衍射,衍射光经过透镜后会聚后相互干涉,在焦平面上形成一系列的被相当宽的暗区分开的明亮条纹。 衍射光线与光栅平面的夹角称为衍射角。设衍射角为θ的一束衍射光经透镜会聚到观察屏的点。在P 点出现明条纹还是暗条纹决定于这束衍射光的光程差。 由于光栅是等宽、等间距,任意两个相邻缝的衍射光的光程差是相等的,两个相邻狭缝的衍射光的光程差为()sin a b θ+,如果光程差为波长的整数倍,在P 点就出现明条纹,即 ()sin a b k θλ+=± (0,1,2,)k = 这就是光栅方程。 从上式可知,只要测出某一级的衍射角,就可计算出波长。 四、实验步骤 1、调整分光计。 使望远镜、平行光管和载物台都处于水平状态, 平行光管发出平行光。 2、安置光栅 将光栅放在载物台上,让钠光垂直照射到光栅上 。 可以看到一条明亮而且很细的零级光谱,左右转动望远 镜观察第一、二级衍射条纹。 3.测定光栅衍射的第一、二级衍射条纹的衍射角θ,并记录。 五、数据记录 ()

'111[()θθθ=-(右边读数)+'11()θθ-(右边读数)]/4 '222[()θθθ=-(右边读数)+'22()θθ-(右边读数)]/4 六、数据处理 将上表中的1θ、2θ分别代入光栅方程()sin a b k θλ+=计算出6个波长,(1 300 a b mm += ) 1λ= 2λ= 3λ= 4λ= 5λ= 6λ= 计算平均波长:λ= 绝对误差:λ?= (取平均波长与6个波长的差中的最大者) 相对误差:100%E λλ λ ?= ?= 结果表示:()nm λλλ=±?= nm 。 七、思考题

相关文档
最新文档