三角函数图象及应用

三角函数图象及应用
三角函数图象及应用

函数y=A sin(ωx+φ)的图象及应用1.y=A sin(ωx+φ)的有关概念

y=A sin(ωx+φ)(A>0,ω>0),x∈

[0,+∞)振幅周期频率相位初相A

T=

ω

f=

1

T=

ω

ωx+φφ

2.

如下表所示.

x 0-φ

ω

π

2

-φ

ω

π-φ

ω

2

-φ

ω

2π-φ

ω

ωx+φ0π

2

π

2

y=A sin(ωx+φ)0 A 0-A 0 3.函数

【思考辨析】

判断下面结论是否正确(请在括号中打“√”或“×”)

(1)作函数y =sin(x -π6)在一个周期的图象时,确定的五点是(0,0),(π2,1),(π,0),(3π

2,

-1),(2π,0)这五个点.( × )

(2)将函数y =3sin 2x 的图象左移π

4个单位长度后所得图象的解析式是y =3sin(2x +

π

4

).( × ) (3)函数y =sin(x -π4)的图象是由y =sin(x +π4)的图象向右移π

2个单位长度得到的.( √ )

(4)函数y =sin(-2x )的递减区间是(-3π4-k π,-π

4-k π),k ∈Z .( × )

(5)函数f (x )=sin 2x 的最小正周期和最小值分别为π,0.( √ )

(6)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T

2

.( √ )

1.(2014·)为了得到函数y =sin(2x +1)的图象,只需把函数y =sin 2x 的图象上所有的点( )

A .向左平行移动1

2个单位长度

B .向右平行移动1

2个单位长度

C .向左平行移动1个单位长度

D .向右平行移动1个单位长度 答案 A

解析 y =sin 2x 的图象向左平移12个单位长度得到函数y =sin 2(x +1

2)的图象,即函数y =

sin(2x +1)的图象.

2.(2013·)函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π

2)的部分图象如图

所示,则ω,φ的值分别是( ) A .2,-π

3

B .2,-π

6

C .4,-π

6

D .4,π

3

答案 A

解析 ∵34T =5π12-? ????

-π3,∴T =π,∴ω=2,

∴2×5π12+φ=2k π+π2,k ∈Z ,∴φ=2k π-π

3

,k ∈Z ,

又φ∈? ??

??-π2,π2,∴φ=-π

3,故选A.

3.设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π

3个单位长度后,所得的图象与

原图象重合,则ω的最小值等于( ) A.13 B .3

C .6

D .9

答案 C

解析 由题意可知,nT =π

3 (n ∈N *),

∴n ·2πω=π

3

(n ∈N *),

∴ω=6n (n ∈N *),∴当n =1时,ω取得最小值6.

4.设函数f (x )=3sin(ωx +φ)(ω>0,-π2<φ<π2)的图象关于直线x =2π

3对称,它的周期是π,

则下列说确的是________.(填序号) ①f (x )的图象过点(0,3

2

);

123③f (x )的一个对称中心是(5π

12

,0);

④将f (x )的图象向右平移|φ|个单位长度得到函数y =3sin ωx 的图象. 答案 ①③

解析 ∵周期为π,∴2π

ω

=π?ω=2,

∴f (x )=3sin(2x +φ),f (23π)=3sin(4π

3+φ),

则sin(4π

3

+φ)=1或-1.

又φ∈(-π2,π2),4π3+φ∈(5π6,11

6π),

∴4π3+φ=3π2?φ=π

6, ∴f (x )=3sin(2x +π6).

①:令x =0?f (x )=3

2

,正确.

②:令2k π+π2<2x +π6<2k π+3π

2,k ∈Z

?k π+π6

3

,k ∈Z .

63

即f (x )在(π6,23π)上单调递减,而在(π12,π

6)上单调递增,错误.

③:令x =5π

12?f (x )=3sin π=0,正确.

④:应平移π

12

个单位长度,错误.

题型一 函数y =A sin(ωx +φ)的图象及变换 例1 设函数f (x )=sin ωx +3cos ωx (ω>0)的周期为π.

(1)求它的振幅、初相;

(2)用五点法作出它在长度为一个周期的闭区间上的图象;

(3)说明函数f (x )的图象可由y =sin x 的图象经过怎样的变换而得到的. 解 (1)f (x )=sin ωx +

3cos ωx

=2(12sin ωx +32cos ωx )=2sin(ωx +π3),

又∵T =π,∴2π

ω

=π,即ω=2.

∴f (x )=2sin(2x +π

3

).

∴函数f (x )=sin ωx +

3cos ωx 的振幅为2,初相为π

3

.

(2)令X =2x +π

3,则y =2sin ?

????2x +π3=2sin X .

列表,并描点画出图象:

x

-π

6

π

12 π3

7π12

5π6

X 0 π2

π

3π2

y =sin X 0 1 0 -1 0

y =2sin ?

????

2x +π3

0 2 0 -2 0

(3)方法一 把y =sin x 的图象上所有的点向左平移π

3个单位长度,得到y =sin ? ????x +π3的图象,

再把y =sin ? ????x +π3的图象上的点的横坐标缩短到原来的1

2倍(纵坐标不变),得到y =

sin ? ????2x +π3的图象,最后把y =sin ? ????

2x +π3上所有点的纵坐标伸长到原来的2倍(横坐标不

变),即可得到y =2sin ?

????

2x +π3的图象.

方法二 将y =sin x 的图象上每一点的横坐标x 缩短为原来的1

2

倍,纵坐标不变,得到y =

sin 2x 的图象;再将y =sin 2x 的图象向左平移π

6个单位长度,得到y =sin 2? ??

??

x +π6=

sin ? ????2x +π3的图象;再将y =sin ? ????

2x +π3的图象上每一点的横坐标保持不变,纵坐标伸长为

原来的2倍,得到y =2sin ?

????

2x +π3的图象.

思维升华 (1)五点法作简图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,3

2π,2π来求出相应的x ,通过列表,计算得出五点坐

标,描点后得出图象.

(2)图象变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.

(1)把函数y =sin(x +π6)图象上各点的横坐标缩短到原来的1

2

(纵坐标不变),再将

图象向右平移π

3个单位长度,那么所得图象的一条对称轴方程为( )

A .x =-π

2

B .x =-π

4

C .x =π

8

D .x =π

4

(2)(2014·)将函数y =3sin(2x +π3)的图象向右平移π

2个单位长度,所得图象对应的函数( )

A .在区间[π

12,7π

12]上单调递减

B .在区间[π

12,7π

12

]上单调递增

C .在区间[-π6,π

3]上单调递减

D .在区间[-π6,π

3]上单调递增

答案 (1)A (2)B

解析 (1)将y =sin(x +π6)图象上各点的横坐标缩短到原来的1

2(纵坐标不变),得到函数y =

sin(2x +π6);再将图象向右平移π3个单位长度,得到函数y =sin[2(x -π3)+π6]=sin(2x -π

2),

故x =-π

2

是其图象的一条对称轴方程.

(2)y =3sin(2x +π3)的图象向右平移π2个单位长度得到y =3sin[2(x -π2)+π3]=3sin(2x -2

3π).

令2k π-π2≤2x -23π≤2k π+π2得k π+π

12

≤x ≤k π+

7

12π,k ∈Z ,则y =3sin(2x -23π)的增区间为[k π+π12,k π+7

12

π],k ∈Z . 令k =0得其中一个增区间为[π

12,7

12

π],故B 正确.

画出y =3sin(2x -23π)在[-π6,π

3]上的简图,如图,可知y =3sin(2x

-23π)在[-π6,π

3]上不具有单调性,故C ,D 错误. 题型二 由图象求函数y =A sin(ωx +φ)的解析式

例2 (1)已知函数f (x )=2sin(ωx +φ)(其中ω>0,|φ|<π

2

)的最小正周期是π,且f (0)=

3,

则( )

A .ω=12,φ=π

6

B .ω=12,φ=π

3

C .ω=2,φ=π

6

D .ω=2,φ=π

3

(2)已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π

2,ω>0)的图象的一部分如

图所示,则该函数的解析式为____________. 答案 (1)D

(2)f (x )=2sin ?

????

2x +π6

解析 (1)∵f (x )(ω>0,|φ|<π

2)的最小正周期为π,

∴T =2π

ω

=π,ω=2.∵f (0)=2sin φ=

3,

即sin φ=32(|φ|<π2),∴φ=π

3

.

(2)观察图象可知:A =2且点(0,1)在图象上, ∴1=2sin(ω·0+φ),即sin φ=12.∵|φ|<π2,∴φ=π

6

.

又∵1112π是函数的一个零点,且是图象递增穿过x 轴形成的零点,∴11π12ω+π

6=2π,∴ω=

2.

∴f (x )=2sin ?

????

2x +π6.

思维升华 根据y =A sin(ωx +φ)+k 的图象求其解析式的问题,主要从以下四个方面来考虑:

①A 的确定:根据图象的最高点和最低点,即A =最大值-最小值

2;

②k 的确定:根据图象的最高点和最低点,即k =最大值+最小值

2;

③ω的确定:结合图象,先求出周期T ,然后由T =2π

ω

(ω>0)来确定ω;

④φ的确定:由函数y =A sin(ωx +φ)+k 最开始与x 轴的交点(最靠近原点)的横坐标为-

φ

ω

(即令ωx +φ=0,x =-φ

ω

)确定φ.

如图为y =A sin(ωx +φ)的图象的一段.

(1)求其解析式;

(2)若将y =A sin(ωx +φ)的图象向左平移π

6个单位长度后得y =f (x ),求f (x )的对称轴方程.

解 (1)由图象知A =

3,

以M ? ????π3,0为第一个零点,N ? ??

??

5π6,0为第二个零点.

列方程组?????

ω·π

3

+φ=0,ω·5π

6+φ=π,

解得?

????

ω=2,φ=-2π

3.

∴所求解析式为y =3sin ? ????

2x -2π3.

(2)f (x )=3sin ??????

2? ????x +π6-2π3

=3sin ?

????

2x -π3,

令2x -π3=π2+k π(k ∈Z ),则x =512π+k π

2

(k ∈Z ),

∴f (x )的对称轴方程为x =5

12π+k π

2 (k ∈Z ).

题型三 函数y =A sin(ωx +φ)的性质

例3 (2014·改编)已知函数f (x )=

3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图象关于直线x =π

3

称,且图象上相邻两个最高点的距离为π. (1)求ω和φ的值;

(2)当x ∈[0,π

2

]时,求函数y =f (x )的最大值和最小值.

解 (1)因为f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2π

T

=2.

又因f (x )的图象关于直线x =π

3对称,所以

2·π3+φ=k π+π

2,k ∈Z , 由-π2≤φ<π

2得k =0

所以φ=π2-2π3=-π6.

综上,ω=2,φ=-π

6

.

(2)由(1)知f (x )=

3sin(2x -π

6

),

当x ∈[0,π2]时,-π6≤2x -π6≤5

6π,

∴当2x -π6=π2,即x =π

3

时,f (x )最大=

3;

当2x -π6=-π6,即x =0时,f (x )最小=-3

2.

思维升华 函数y =A sin(ωx +φ)(A >0,ω>0)的性质

(1)奇偶性:φ=k π(k ∈Z )时,函数y =A sin(ωx +φ)为奇函数; φ=k π+π

2

(k ∈Z )时,函数y =A sin(ωx +φ)为偶函数.

(2)周期性:y =A sin(ωx +φ)存在周期性,其最小正周期为T =2π

ω

.

(3)单调性:根据y =sin t 和t =ωx +φ(ω>0)的单调性来研究,由-π2+2k π≤ωx +φ≤π

2+

2k π(k ∈Z )得单调增区间;由π2+2k π≤ωx +φ≤3π

2

+2k π(k ∈Z )得单调减区间.

(4)对称性:利用y =sin x 的对称中心为(k π,0)(k ∈Z )来解,令ωx +φ=k π(k ∈Z ),求得其对称中心.

利用y =sin x 的对称轴为x =k π+π2(k ∈Z )来解,令ωx +φ=k π+π

2

(k ∈Z )得其对称轴.

已知函数f (x )=A sin(ωx +φ)(x ∈R ,ω,A >0,0<φ<π

2

)的最大值为2,最小正

周期为π,直线x =π

6是其图象的一条对称轴.

(1)求函数f (x )的解析式;

(2)求函数g (x )=f (x -π

12)-f (x +π

12)的单调递增区间.

解 (1)∵最小正周期为π. ∴2π

ω

=π.

即ω=2.

又∵直线x =π

6是函数图象的一条对称轴,

∴2×π6+φ=k π+π

2,k ∈Z ,

即φ=k π+π

6

,k ∈Z .

又∵φ∈(0,π2),∴φ=π

6.

又∵A =2,

∴函数f (x )的解析式为f (x )=2sin(2x +π

6

).

(2)g (x )=f (x -π

12)-f (x +π

12

)

=2sin[2(x -π

12)+π6]-2sin[2(x +π12)+π

6]

=2sin 2x -2sin(2x +π3)=2sin(2x -π

3).

由2k π-π2≤2x -π3≤2k π+π

2

,k ∈Z 可得

k π-

π

12≤x ≤k π+5

12π,k ∈Z . 即函数g (x )的单调递增区间是

[k π-π

12,k π+5

12

π],k ∈Z .

三角函数图象与性质的综合问题

典例:(12分)已知函数f (x )=2

3sin(x 2+π4)·cos(x 2+π

4

)-sin(x +π).

(1)求f (x )的最小正周期.

(2)若将f (x )的图象向右平移π

6个单位长度,得到函数g (x )的图象,求函数g (x )在区间[0,π]

上的最大值和最小值.

思维点拨 (1)先将f (x )化成y =A sin(ωx +φ)的形式再求周期; (2)将f (x )解析式中的x 换成x -π

6,得g (x ),然后利用整体思想求最值.

规解答

解 (1)f (x )=2

3sin(x 2+π4)·cos(x 2+π

4

)-sin(x +π)=

3cos x +sin x [3分]

=2sin(x +π

3),[5分]

于是T =2π

1

=2π.[6分]

(2)由已知得g (x )=f (x -π6)=2sin(x +π

6),[8分]

∵x ∈[0,π],∴x +π6∈[π6,7π

6],

∴sin(x +π6)∈[-1

2,1],[10分]

∴g (x )=2sin(x +π

6

)∈[-1,2][11分]

故函数g (x )在区间[0,π]上的最大值为2,最小值为-1.[12分] 答题模板

解决三角函数图象与性质的综合问题的一般步骤

第一步:(化简)将f (x )化为a sin x +b cos x 的形式.

第二步:(用辅助角公式)构造f (x )=a 2+b 2·(sin x ·

a

a 2+

b 2

+cos x ·

b a 2+b 2

).

第三步:(求性质)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质.

第四步:(反思)反思回顾,查看关键点、易错点和答题规. 温馨提醒 (1)在第(1)问的解法中,使用辅助角公式

a sin α+

b cos α=a 2+b 2sin(α+φ)(其中tan φ=b

a

),或a sin α+b cos α=a 2+b 2

cos(α-φ)(其中tan φ=a

b

),在历年高考中使用频率是相当高的,几乎年年使用到、考查到,

应特别加以关注.

(2)求g (x )的最值一定要重视定义域,可以结合三角函数图象进行求解.

方法与技巧

1.五点法作图及图象变换问题

(1)五点法作简图要取好五个关键点,注意曲线凸凹方向;

(2)图象变换时的伸缩、平移总是针对自变量x 而言,而不是看角ωx +φ的变化. 2.由图象确定函数解析式

由函数y =A sin(ωx +φ)的图象确定A 、ω、φ的题型,常常以“五点法”中的第一个零点

? ??

??

-φω,0作为突破口,要从图象的升降情况找准第一个零点的位置.要善于抓住特殊量和特

殊点. 3.对称问题

函数y =A sin(ωx +φ)的图象与x 轴的每一个交点均为其对称中心,经过该图象上坐标为(x ,±A )的点与x 轴垂直的每一条直线均为其图象的对称轴,这样的最近两点间横坐标的差的绝对值是半个周期(或两个相邻对称中心的距离). 失误与防

1.由函数y =sin x 的图象经过变换得到y =A sin(ωx +φ)的图象,如:先伸缩,再平移时,要把x 前面的系数提取出来.

2.复合形式的三角函数的单调区间的求法.函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间的确定,基本思想是把ωx +φ看做一个整体.若ω<0,要先根据诱导公式进行转化. 3.函数y =A sin(ωx +φ)在x ∈[m ,n ]上的最值可先求t =ωx +φ的围,再结合图象得出y =A sin t 的值域.

A 组 专项基础训练 (时间:45分钟)

1.(2013·)将函数y =sin(2x +φ)的图象沿x 轴向左平移π

8个单位后,得到一个偶函数的图象,

则φ的一个可能取值为( ) A.3π4 B.π4 C .0 D .-π4 答案 B

解析 把函数y =sin(2x +φ)沿x 轴向左平移π

8个单位后得到函数y =sin 2? ??

??

x +φ2+π8=

sin ?

????2x +φ+π4为偶函数,则φ的一个可能取值是π

4.

2.(2013·)函数f (x )=sin x cos x +3

2cos 2x 的最小正周期和振幅分别是( )

A .π,1

B .π,2

C .2π,1

D .2π,2 答案 A

解析 f (x )=sin x cos x +3

2cos 2x

=12sin 2x +32

cos 2x =sin ?

????2x +π3.

所以最小正周期为π,振幅为1. 故选A.

3.已知函数f (x )=2sin(ωx +φ)(ω>0,且|φ|<π

2)的部分图象如图所示,

则函数f (x )的一个单调递增区间是( ) A .[-7π12,5π

12]

B .[-7π12,-π12

]

C .[-π12,7π

12]

D .[-π12,5π

12]

答案 D

解析 由函数的图象可得14T =23π-5

12π,

∴T =π,则ω=2.

又图象过点(5

12π,2),∴2sin(2×5

12π+φ)=2,

∴φ=-π

3+2k π,k ∈Z ,

∵|φ|<π2

.

∴取k =0,即得f (x )=2sin(2x -π

3

),

其单调递增区间为[k π-π

12,k π+5π

12],k ∈Z ,取k =0,即得选项D.

4.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<

φ<π2

)的图象如右图所示,则当t =

1

100

秒时,电流强度是( )

A .-5安

B .5安

C .5

3安

D .10安

高中数学三角函数的图象与性质题型归纳总结

三角函数的图象与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ω x +φ)或y =A cos(ω x +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4π C .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1- D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f = B .(0)0f = C .'(0)1f = D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数 D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数 D .π最小正周期为2的偶函数

三角函数的图像与性质

三角函数的图像与性质 1.三角函数中的值域及最值问题 a .正弦(余弦、正切)型函数在给定区间上的最值问题 (1)(经典题,5分)函数f (x )=sin ????2x -π4在区间????0,π 2上的最小值为( ) A .-1 B .- 22 C.22 D .0 答案:B 解析:∵x ∈????0,π2,∴-π4≤2x -π4≤3π 4,∴函数f (x )=sin ????2x -π4在区间????0,π2上先增后减.∵f (0)=sin ????-π4=-22, f ????π2=sin ????3π4=2 2, f (0)

知识讲解_三角函数的图象和性质_基础

正弦、余弦的图象和性质 编稿:李霞 审稿:孙永钊 【考纲要求】 1、会用“五点法”画出正弦函数、余弦函数的简图;熟悉基本三角函数的图象、定义域、值域、奇偶性、单调性及其最值;理解周期函数和最小正周期的意义. 2、理解正弦函数、余弦函数在区间[0,2]π的性质(如单调性、最大和最小值、与x 轴交点等),理解正切函数在区间(,)22 ππ -的单调性. 【知识网络】 【考点梳理】 考点一、“五点法”作图 在确定正弦函数sin y x =在[0,2]π上的图象形状时,最其关键作用的五个点是(0,0),( ,1)2 π , (,0)π,3( ,-1)2 π ,(2,0)π 考点二、三角函数的图象和性质 名称 sin y x = cos y x = tan y x = 定义域 x R ∈ x R ∈ {|,} 2 x x k k Z π π≠+ ∈ 值 域 [1,1]- [1,1]- (,)-∞+∞ 图象 奇偶性 奇函数 偶函数 奇函数 单调增区间: 单调增区间: 单调增区间: 应用 三角函数的图象与性质 正弦函数的图象与性质 余弦函数的 图象与性质 正切函数的 图象与性质

要点诠释: ①三角函数性质包括定义域、值域、奇偶性、单调性、周期性、最大值和最小值、对称性等,要结合图象记忆性质,反过来,再利用性质巩固图象.三角函数的性质的讨论仍要遵循定义域优先的原则,研究函数的奇偶性、单调性及周期性都要考虑函数的定义域. ②研究三角函数的图象和性质,应重视从数和形两个角度认识,注意用数形结合的思想方法去分析问题、解决问题. 考点三、周期 一般地,对于函数()f x ,如果存在一个不为0的常数T ,使得当x 取定义域内的每一个值时,都有 (+)=()f x T f x ,那么函数()f x 就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的 最小正数,叫做最小正周期(函数的周期一般指最小正周期). 要点诠释: 应掌握一些简单函数的周期: ①函数sin()y A x ω?=+或cos()y A x ω?=+的周期2T π ω = ; ②函数tan()y A x ω?=+的周期T πω = ; ③函数sin y x =的周期=T π;

三角函数图象性质一览表

三角函数图象性质一览表 正弦定理、余弦定理及应用 设ABC △的外接圆的半径是R ,内切圆的半径是r ,()c b a p ++=2 1 是半周长。 1、正弦定理: R C c B b A a 2sin sin sin ===,或 C B A c b a sin :sin :sin ::= 变式:A R a sin 2=;B R b sin 2=;C R c sin 2= R a A 2sin = ;R b B 2sin =;R c C 2sin = 2、余弦定理: A bc c b a cos 2222-+=; B ac c a b cos 2222-+=; C ab b a c cos 2222-+= 推论:bc a c b A 2cos 222-+=;ac b c a B 2cos 222-+=;ab c b a C 2cos 2 22-+= 3、面积公式:B ac A bc C ab S A B C sin 2 1 sin 21sin 21=== △ 变式:⑴C B A R abc R S A B C sin sin sin 241 2== △ ⑵()()()c p b p a p p S A B C ---=△(海伦秦九韶公式) 4、常用结论: ⑴B A B A b a sin sin >?>?> ⑵b a B A B A =?=?=sin sin ⑶若B A 2sin 2sin =,则B A B A =?=22或2 22π π=+?=+B A B A ⑷和诱导公式有关的变式: 2cos 2sin C B A =+;2cos 2sin B C A =+;2 cos 2sin A C B =+; 2sin 2cos C B A =+;2sin 2cos B C A =+;2sin 2cos A C B =+ ()C B A sin sin =+;()B C A sin sin =+;()A C B sin sin =+; ()C B A cos cos -=+;()B C A cos cos -=+;()A C B cos cos -=+ ⑸B c C b a cos cos +=;A c C a b cos cos +=;A b B a c cos cos += 5、注意两角和与差公式、二倍角公式和半角公式、辅助角公式的应用。 6、注意函数()?ω+=x A y sin 的知识在三角形中的应用: 比如求()??? ??+ =82 1sin 2πA x f ,?? ? ??∈4,0πA 的最大值。

三角函数的图象与性质

三角函数的图象与性质 1.(2020·全国Ⅰ卷)设函数f (x )=cos ? ? ???ωx +π6在[-π,π]的图象大致如图,则f (x )的 最小正周期为( ) A.10π 9 B.7π6 C.4π3 D.3π2 解析 由图象知π

解析 T =2π 1=2π,故①正确. 当x +π3=π2+2k π(k ∈Z ),即x =π 6+2k π(k ∈Z )时,f (x )取得最大值,故②错误. y =sin x 的图象 y =sin ? ?? ?? x +π3的图象,故③正确.故选B. 答案 B 3.(2019·全国Ⅱ卷)下列函数中,以π2为周期且在区间? ???? π4,π2单调递增的是( ) A.f (x )=|cos 2x | B.f (x )=|sin 2x | C.f (x )=cos|x | D.f (x )=sin|x | 解析 易知A ,B 项中函数的最小正周期为π 2;C 中f (x )=cos|x |=cos x 的周期为2π,D 中f (x )=sin|x |=?????sin x ,x ≥0, -sin x ,x <0,由正弦函数图象知,在x ≥0和x <0时,f (x ) 均以2π为周期,但在整个定义域上f (x )不是周期函数,排除C ,D. 又当x ∈? ????π4,π2时,2x ∈? ?? ?? π2,π, 则y =|cos 2x |=-cos 2x 是增函数,y =|sin 2x |=sin 2x 是减函数,因此A 项正确,B 项错误. 答案 A 4.(2020·江苏卷)将函数y =3sin ? ? ???2x +π4的图象向右平移π6个单位长度,则平移后的 图象中与y 轴最近的对称轴的方程是________. 解析 将函数y =3sin ? ? ???2x +π4的图象向右平移π6个单位长度,所得图象的函数解析式为y =3sin ?????? 2? ????x -π6+π4=3sin ? ????2x -π12.令2x -π12=k π+π2,k ∈Z ,得对称轴的方程为x =k π2+7π24,k ∈Z ,分析知当k =-1时,对称轴为直线x =-5π 24,与y 轴最近. 答案 x =-5π 24 5.(2020·北京卷)若函数f (x )=sin(x +φ)+cos x 的最大值为2,则常数φ的一个取值

三角函数的图象与性质

三角函数的图象与性质 ——正弦函数、余弦函数的性质 【教学目标】 1.理解正、余弦函数的定义域、值域、最值、周期性、奇偶性的意义; 2.会求简单函数的定义域、值域、最小正周期和单调区间; 3.掌握正弦函数的周期及求法。(n )si y A x ω?=+ 【教学重点】 正、余弦函数的性质。 【教学难点】 正、余弦函数性质的理解与应用。 【教学过程】 一、讲解新课: (1)定义域: 正弦函数、余弦函数的定义域都是实数集[或], R (,)-∞+∞分别记作: sin y x x ∈R =,cos ,y x x =∈R (2)值域 ,1sin 1x ≤≤--1cos 1 x ≤≤也就是说,正弦函数、余弦函数的值域都是。[ ]-1,1其中正弦函数,sin y x =x ∈R (1)当且仅当,时,取得最大值1。 x 2k 2π π=+k ∈Z (2)当且仅当,时,取得最小值。 x 2k 2π π=+k ∈Z 1-

而余弦函数,cos y x =x ∈R 当且仅当,时,取得最大值1,时,取得最小值。 2x k π=k ∈Z (21)x k π=+k ∈Z 1-(3)周期性 由,()知: sin(2)sin x k x π+=cos(2)cos x k x π+=k ∈Z 正弦函数值、余弦函数值是按照一定规律不断重复地取得的。 一般地,对于函数,如果存在一个非零常数,使得当取定义域内的每一个值()f x T x 时,都有,那么函数f(x)就叫做周期函数,非零常数叫做这个函数的周()()f x T f x +=T 期。 由此可知,,,…,,,…(且)都是这两个函数的周期。2π4π2π-4π-2k πk ∈Z 0k ≠对于一个周期函数 ,如果在它所有的周期中存在一个最小的正数,那么这个最小正()f x 数就叫做 的最小正周期。()f x 注意: 1.周期函数定义域,则必有,且若则定义域无上界;则定义域x ∈M x T M +∈0T >0T <无下界; 2.“每一个值”只要有一个反例,则就不为周期函数(如) ()f x ()()001f x t f x +3.往往是多值的(如,,,…,,,…都是周期)周期中最T sin y x =2π4π2π-4π-T 小的正数叫做的最小正周期(有些周期函数没有最小正周期) ()f x 根据上述定义,可知:正弦函数、余弦函数都是周期函数,(且)都是它的2k πk ∈Z 0k ≠周期,最小正周期是2π (4)奇偶性 由sin()sin x x -=-可知:为奇函数 ()cos x cosx -=sin y x =为偶函数 cos y x =∴正弦曲线关于原点O 对称,余弦曲线关于y 轴对称

三角函数的图像和性质(1)

第2章第3节 三角函数的图像和性质(1) 主备人: 审核人: . 班级 姓名 . 【教学目标】 ① 了解三角函数的周期性. ② 能画出y =sinx ,y =cosx ,y =tanx 的图象,并能根据图象理解正弦函数、余弦函数在[0,2π], 正切函数在? ?? ??-π2,π2上的性质. ③ 了解三角函数 y =Asin (ωx+φ)的实际意义及其参数A 、ω、φ对函数图象变化的影响. 【重点难点】 1.重点:能画出y =sinx ,y =cosx ,y =tanx 的图象,并能根据图象理解正弦函数、余弦函数在[0, 2π],正切函数在? ?? ??-π2,π2上的性质. 2.难点:y =sinx ,y =cosx ,y =tanx 性质的熟练运用。 【教学过程】 一. 基础自测: 1. 函数13sin()24y x π=+ 的最小正周期为______________; 2.函数21sin -= x y 的定义域为 . 3.函数)4cos(2π +=x y 的单调减区间为 . 三.典型例题 例1.求下列函数的定义域: (1)tan 4y x π??=- ??? ; (2)y =

例2.求下列函数的值域 (1)2()sin 2,[ ,]63f x x x ππ=∈; (2)2()64sin cos f x x x =--; (3)2sin 1sin 2x y x += -; (4)sin cos 2sin cos 2,y x x x x x R =+++∈ 例3.已知函数sin(2)3y x π =+,求(1)周期; (2)当x 分别为何值时函数取得最大值,最小值;(3)单调增区间,单调减区间;(4)对称轴、对称中心. 例4.设函数的最小正周期为. (Ⅰ)求的值.(Ⅱ)若函数的图像是由的图像向右平移 个单位长度得到,求的单调增区间. 22()(sin cos )2cos (0)f x x x x ωωωω=++>23 πω()y g x =()y f x =2 π()y g x =

三角函数的图像与性质练习题

. 三角函数的图像与性质练习题 正弦函数、余弦函数的图象 A组 1.下列函数图象相同的是() A. y= sin x 与 y=sin(x+ π) B.y= cos x 与 y= sin - C.y= sin x 与 y=sin( -x) D.y=- sin(2π+x )与 y= sin x 解析 :由诱导公式易知 y= sin- = cos x,故选 B . 答案 :B 2.y= 1+ sin x,x∈[0,2π]的图象与直线y= 2 交点的个数是 () A.0 B.1 C.2 D.3 解析 :作出 y= 1+ sin x 在 [0,2 π]上的图象 ,可知只有一个交点. 答案 :B 3.函数y= sin(-x),x∈[0,2π]的简图是() 解析 :y=sin( -x)=- sin x,x∈ [0,2 π]的图象可看作是由y= sin x,x∈ [0,2 π]的图象关于 x 轴对称得到的 ,故选B. 答案 :B 4.已知cos x=- ,且x∈[0,2π],则角x等于() A. 或 B.或 C.或 D.或 解析 :如图 :

由图象可知 ,x=或. 答案 :A 5.当x∈[0,2π]时,满足sin-≥ -的x的取值范围是() A. B. C. D. 解析 :由 sin -≥ - ,得cos x≥ - . 画出 y=cos x,x∈ [0,2 π],y=- 的图象 ,如图所示 . ∵cos = cos =- ,∴当 x∈ [0,2 π]时 ,由 cos x≥- ,可得 x∈. 答案 :C 6.函数y= 2sin x与函数y=x图象的交点有个. 解析 :在同一坐标系中作出函数 y= 2sin x与 y=x 的图象可见有3个交点. 答案 :3 7.利用余弦曲线,写出满足cos x>0,x∈ [0,2 π]的 x 的区间是. 解析 :画出 y= cos x,x∈ [0,2 π]上的图象如图所示 . cos x>0 的区间为 答案 : 8.下列函数的图象:①y= sin x-1;② y=| sin x|;③y=- cos x;④ y=;⑤y=-.其中与函数y= sin x 图象形状完全相同的是.(填序号 )

三角函数的图像与性质优秀教案

三角函数图像与性质复习 教案目标: 1、掌握五点画图法,会画正余弦、正切函数图象以及相关的三角函数图象及性质。 2、深刻理解函数的定义和正弦、余弦、正切函数的周期性。 重点:五点作图法画正余弦函数图象,及正余弦函数的性质,及一般函数) sin(?ω+=x A y 的图象。 难点:一般函数)sin(?ω+=x A y 的图象与性质。 【教案内容】 1、引入: 有个从未管过自己孩子的统计学家,在一个星期六下午妻子要外出买东西时,勉强答应照看一下4个年幼好动的孩子。当妻子回家时,他交给妻子一张纸条,上写:“擦眼泪11次;系鞋带15次;给每个孩子吹玩具气球各5次,每个气球的平均寿命10秒钟;警告孩子不要横穿马路26次;孩子坚持要穿过马路26次;我还想再过这样的星期六0次。” 2、三角函数知识体系及回忆正余弦函数的概念和周期函数: 正弦函数: 余弦函数: 周期函数: 注意: 最小正周期: 一般函数)sin(?ω+=x A y 中:A 表示 ,ω表示 及频率: ,相位: 。 正切函数: 3、三角函数的图象:

值域:tan ;tan .2 2 22 x x x x x x π π π π < → →+∞>- →-→-∞当且时,当且时, 单调性:对每一个k Z ∈,在开区间(,)22 k k π π ππ- +内,函数单调递增. 对称性:对称中心:( ,0)()2 k k Z π ∈,无对称轴。 五点作图法的步骤: (由诱导公式画出余弦函数的图象) 【例题讲解】

例1 画出下列函数的简图 (1)1sin y x =+[0,2]x π∈(2)cos y x =-[0,2]x π∈ (3)2sin y x =[0,2]x π∈ 例2 (1)方程lg sin x x =解得个数为( ) A. 0 B. 1 C. 2 D. 3 (2)3[, ]22x ππ ∈- 解不等式3 sin 2 x ≥- 4([,])33x ππ∈- 例3已知函数()cos(2)2sin()sin()3 4 4 f x x x x π π π =-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程; (Ⅱ)求函数()f x 在区间[,]122 ππ - 上的值域。 例4已知函数()sin(),f x A x x R ω?=+∈(其中0,0,02 A π ω?>><< )的周期为π, 且图象上一个最低点为2( ,2)3 M π -. (Ⅰ)求()f x 的解读式;(Ⅱ)当[0, ]12 x π∈,求()f x 的最值. 例5写出下列函数的单调区间及在此区间的增减性: (1)1tan()26 y x π=-;(2)tan(2)4y x π =-. 【过手练习】 1、函数sin(2)3 y x π =+ 图像的对称轴方程可能是() A .6x π =- B .12 x π =- C .6x π = D .12 x π = 2、已知函数)0)(sin(2>+=ωφωx y 在区间[0,2π]的图像 如下,那么ω=() A. 1 B. 2 C. 1/2 D. 3 1 3、函数()cos 22sin f x x x =+的最小值和最大值分别为

三角函数的图像与性质

第三节三角函数的图象与性质[备考方向要明了] 考什么怎么考 1.能画出y=sin x,y=cos x,y=tan x的图象, 了解三角函数的周期性. 2.理解正弦函数、余弦函数在区间[0,2π]上的 性质(如单调性、最大值和最小值以及与x轴 的交点等),理解正切函数在区间???? - π 2, π 2内 的单调性. 1.以选择题或填空题的形式考查三角函数的 单调性、周期性及对称性.如2012年新课标 全国T9等. 2.以选择题或填空题的形式考查三角函数的 值域或最值问题.如2012年湖南T6等. 3.与三角恒等变换相结合出现在解答题中.如 2012年北京T15等. [归纳·知识整合] 正弦函数、余弦函数、正切函数的图象和性质 函数y=sin x y=cos x y=tan x 图象 定义域R R? ? ? x??x≠ π 2+kπ,k ∈Z} 值域[-1,1][-1,1]R 单调性 递增区间: ? ? ? ? 2kπ- π 2,2kπ+ π 2(k∈Z) 递减区间: ? ? ? ? 2kπ+ π 2,2kπ+ 3 2 π(k∈Z) 递增区间:[2kπ-π,2kπ] (k∈Z) 递减区间:[2kπ,2kπ+π] (k∈Z) 递增区间: ? ? ? ? kπ- π 2,kπ+ π 2(k∈ Z)

[探究] 1.正切函数y =tan x 在定义域内是增函数吗? 提示:不是.正切函数y =tan x 在每一个区间????k π-π2,k π+π 2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数. 2.当函数y =A sin(ωx +φ)分别为奇函数和偶函数时,φ的取值是什么?对于函数y =A cos(ωx +φ)呢? 提示:函数y =A sin(ωx +φ),当φ=k π(k ∈Z )时是奇函数,当φ=k π+π 2(k ∈Z )时是偶函 数;函数y =A cos(ωx +φ),当φ=k π(k ∈Z )时是偶函数,当φ=k π+π 2 (k ∈Z )时是奇函数. [自测·牛刀小试] 1.(教材习题改编)设函数f (x )=sin ????2x -π 2,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π 2的奇函数 D .最小正周期为π 2 的偶函数 解析:选B ∵f (x )=sin(2x -π 2)=-cos 2x , ∴f (x )是最小正周期为π的偶函数. 2.(教材习题改编)函数y =4sin x ,x ∈[-π,π]的单调性是( ) A .在[-π,0]上是增函数,在[0,π]上是减函数

三角函数的图象与性质

三角函数的图象与性质 一、选择题 1.在函数①y =cos|2x |,②y =|cos x |,③y =cos ? ? ???2x +π6,④y = tan ? ? ???2x -π4中,最小正周期为π的所有函数为( ) A.①②③ B.①③④ C.②④ D.①③ 解析 ①y =cos|2x |=cos 2x ,最小正周期为π; ②由图象知y =|cos x |的最小正周期为π; ③y =cos ? ? ???2x +π6的最小正周期T =2π2=π; ④y =tan ? ? ???2x -π4的最小正周期T =π2,因此选A. 答案 A 2.(2017·石家庄模拟)函数f (x )=tan ? ? ???2x -π3的单调递增区间是( ) A.?????? k π2-π12,k π2+5π12(k ∈Z) B.? ???? k π2-π12,k π2+5π12(k ∈Z) C.? ?? ???k π-π12,k π+ 5π12(k ∈Z) D.? ? ???k π+π6,k π+ 2π3(k ∈Z) 解析 由k π-π2<2x -π3<k π+π2(k ∈Z),解得k π2-π12<x <k π2+ 5π 12(k ∈Z),所以函数y =tan ? ????2x -π3的单调递增区间是? ???? k π2-π12,k π2+5π12(k ∈Z),故选B. 答案 B 3.(2017·成都诊断)函数y =cos 2x -2sin x 的最大值与最小值分别为( ) A.3,-1 B.3,-2 C.2,-1 D.2,-2 解析 y =cos 2x -2sin x =1-sin 2x -2sin x =-sin 2x -2sin x +1, 令t =sin x ,则t ∈[-1,1],y =-t 2-2t +1=-(t +1)2+2,

三角函数的图像与性质题型归纳总结

三角函数的图像与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ωx +φ)或y =A cos(ωx +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4πC .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1-D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f =B .(0)0f =C .'(0)1f =D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数D .π最小正周期为2的偶函数

三角函数的图像与性质

一、选择题 1.函数y =sin 2x +sin x -1的值域为( ) A .[-1,1] B .[-5 4,-1] C .[-5 4,1] D .[-1,5 4 ] [答案] C [解析] 本题考查了换元法,一元二次函数闭区间上的最值问题,通过sin x =t 换元转化为t 的二次函数的最值问题,体现了换元思想和转化的思想,令t =sin x ∈[-1,1],y =t 2 +t -1,(-1≤t ≤1),显然-5 4 ≤y ≤1,选C. 2.(2011·山东理,6)若函数f (x )=sin ωx (ω>0)在区间[0,π 3]上单调递增, 在区间[π3,π 2 ]上单调递减,则ω=( ) A .3 B .2 C.32 D.2 3 [答案] C [解析] 本题主要考查正弦型函数y =sin ωx 的单调性 依题意y =sin ωx 的周期T =4×π3=43π,又T =2π ω, ∴2πω=43π,∴ω=32 .

故选C(亦利用y =sin x 的单调区间来求解) 3.(文)函数f (x )=2sin x cos x 是( ) A .最小正周期为2π的奇函数 B .最小正周期为2π的偶函数 C .最小正周期为π的奇函数 D .最小正周期为π的偶函数 [答案] C [解析] 本题考查三角函数的最小正周期和奇偶性. f (x )=2sin x cos x =sin2x ,最小正周期T =2π 2=π, 且f (x )是奇函数. (理)对于函数f (x )=2sin x cos x ,下列选项中正确的是( ) A .f (x )在(π4,π 2)上是递增的 B .f (x )的图像关于原点对称 C .f (x )的最小正周期为2π D .f (x )的最大值为2 [答案] B [解析] 本题考查三角函数的性质.f (x )=2sin x cos x =sin2x ,周期为π,最大值为1,故C 、D 错;f (-x )=sin(-2x )=-2sin x ,为奇函数,其图像关 于原点对称,B 正确;函数的递增区间为???? ??k π-π4,k π+π4,(k ∈Z)排除A. 4.函数y =sin2x +a cos2x 的图像关于直线x =-π 8对称,则a 的值为 ( )

三角函数的图像与性质 教案

三角函数的图象与性质   教学目标 1.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质. .熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、 2 重点难点 重点是通过复习,能运用四种三角函数的性质研究复合三角函数的性质及图象的特点,特别是三角函数的周期性,是需要重点明确的问题. 难点是,在研究复合函数性质时,有些需要先进行三角变换,把问题转化到四种三角函数上,才能进行研究,这就增加了问题的综合性和难度. 教学过程 三角函数的图象与性质是三角函数的核心问题,要熟练、准确地掌握.特别是三角函数的周期性,反映了三角函数的特点,在复习“三角函数的性质与图象”时,要牢牢抓住“三角函数周期性”这一内容,认真体会周期性在三角函数所有性质中的地位和作用.这样才能把性质理解透彻. 一、三角函数性质的分析 .三角函数的定义域 1 函数y=cotx的定义域是x≠π或(kπ,kπ+π)(k∈Z),这两种表示法都需要掌握.即角x不能取终边在x轴上的角. (2)函数y=secx、y=cscx的定义域分别与y=tanx、y=cotx相同. 求下列函数的定义域: 例1

π](k∈Z) . 形使函数定义域扩大. 到.注意不要遗漏.

. (3)满足下列条件的x的结果,要熟记(用图形更便于记住它的结果)

是 [ ] 所以选C. 2.三角函数的值域 (1)由|sinx|≤1、|cosx|≤1得函数y=cscx、y=secx的值域是 |cscx|≥1、|secx|≥1. (2)复合三角函数的值域问题较复杂,除了代数求值域的方法都可以适用外,还要注意三角函数本身的特点,特别是经常需要先进行三角变换再求值域.

知识讲解_三角函数的图象和性质_基础

高考复习正弦、余弦的图象和性质 【考纲要求】 1、会用“五点法”画出正弦函数、余弦函数的简图;熟悉基本三角函数的图象、定义域、值域、奇偶性、单调性及其最值;理解周期函数和最小正周期的意义. 2、理解正弦函数、余弦函数在区间[0,2]π的性质(如单调性、最大和最小值、与x 轴交点等),理解正切函数在区间(,)22 ππ -的单调性. 【知识网络】 【考点梳理】 考点一、“五点法”作图 在确定正弦函数sin y x =在[0,2]π上的图象形状时,最其关键作用的五个点是(0,0),( ,1)2 π, (,0)π,3( ,-1)2 π ,(2,0)π 考点二、三角函数的图象和性质 名称 sin y x = cos y x = tan y x = 定义域 x R ∈ x R ∈ {|,} 2 x x k k Z π π≠+ ∈ 值 域 [1,1]- [1,1]- (,)-∞+∞ 图象 奇偶性 奇函数 偶函数 奇函数 单 单调增区间: 单调增区间: 单调增区间: 应用 三角函数的图象与性质 正弦函数的图象与性质 余弦函数的 图象与性质 正切函数的 图象与性质

要点诠释: ①三角函数性质包括定义域、值域、奇偶性、单调性、周期性、最大值和最小值、对称性等,要结合图象记忆性质,反过来,再利用性质巩固图象.三角函数的性质的讨论仍要遵循定义域优先的原则,研究函数的奇偶性、单调性及周期性都要考虑函数的定义域. ②研究三角函数的图象和性质,应重视从数和形两个角度认识,注意用数形结合的思想方法去分析问题、解决问题. 考点三、周期 一般地,对于函数()f x ,如果存在一个不为0的常数T ,使得当x 取定义域内的每一个值时,都有 (+)=()f x T f x ,那么函数()f x 就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的 最小正数,叫做最小正周期(函数的周期一般指最小正周期). 要点诠释: 应掌握一些简单函数的周期: ①函数sin()y A x ω?=+或cos()y A x ω?=+的周期2T π ω = ; ②函数tan()y A x ω?=+的周期T πω = ; ③函数sin y x =的周期=T π;

三角函数的图象与性质

三角函数的图象与性质(1) 教学目标 1、能借助正弦函数画出正弦函数的图象,并在此基础上由诱导公式画出余弦函数的图象; 2、借助图象理解正弦函数、余弦函数的性质. 重点难点 重点:正弦函数、余弦函数的图象及其性质; 难点:借助正弦函数画出正弦函数的图象. 教学过程 ]2,0[,sin π∈=x x y 的图象→R x x y ∈=,sin 的图象→余弦函数的图象→五点作图法 问题情境 学习函数我们需要研究它的图象和性质。借助三角函数线,我们已经得到了正弦、余弦函数的哪些性质? “为了更加直观地研究三角函数的性质,可以先作出它们的图象.”怎样作出正弦函数的图象? 学生活动 问题1:直接作出y = sinx ,x ∈ R 的图象有困难,我们该怎么作图呢? 根据周期性,可以先作出y = sinx ,x ∈ [0,2π]的图象,再由周期性得到整个图象. 问题2:描点法的基本步骤是什么?在[0,2π]上需要找几个点? ————列表描点连线。 比比看 ,看谁画的最快,最准确! 归纳出1、列表描点法 建构数学 (一)正弦函数的图像 问题3:如何比较精确的作出这些点并且可以准确的反映函数的变化趋势呢?利用正弦线可以实现吗? ————演示几何描点法和电脑描点法。 基本步骤详细化:(2、几何描点法) 先作单位圆,把⊙O1十二等分(当然分得越细,图象越精确); 十二等分后得对应于0,6π, 3π,2π ,…2π等角,并作出相应的正弦线; 将x 轴上从0到2π一段分成12等份(2π≈6.28),若变动比例,今后图象将相应“变形”; 取点,平移正弦线,使起点与轴上的点重合; 描图(连接)得y=sinx x ∈[0,2π];

三角函数的图象与性质知识点汇总

三角函数的图象与性质 、知识网络 基弃变换 三、知识要点 (一)三角函数的性质 1、定义域与值域 2、奇偶性 (1)基本函数的奇偶性奇函数:y = sinx , y = tanx ; 偶函数:y= cosx. (2) -'’ 一 -‘:型三角函数的奇偶性 (i)g (x)=* (x€ R) g (x )为偶函数 ' 二二—「二: O卫址1(徴 + ? =/win(-徴+@)(x亡卫)U sin ocrcos(p= 0(x白应) cos (p二 0 o(p= jt/r-hy e 7) 由此得 同理,旨(对二話乞山(伽+洌0€丘)为奇函数O 寻炉=七兀3€2). (ii)u'■■ ' '''「:;::「' ■?■. 八为偶函数' ..为奇函数

O S (<3X + 炉)+丘 的周期为 竺 kl 7T y = / tan (阪 + + 上丿=/cot (血+饲 + 上 的周期为 (2)认知 -I ' ' : " '型函数的周期 7T -;1 1 - - ■ : - 1 的周期为 门; 71 均同它们不加绝对值时的周期相同,即对 J 的解析式施加绝对值后, y = sin z|+|co3J : 的最小正周期为

必修4三角函数的图像与性质

§1.4.1正弦函数、余弦函数的图象 学习目标:1.能借助正弦线画出正弦函数的图象,并在此基础上由诱导公式画出余弦函数的图象. 2.能熟练运用“五点法”作图. 学习重点:运用“五点法”作图 学习难点:借助于三角函数线画y=sinx的图象 学习过程: 一、情境设置 遇到一个新的函数,画出它的图象,通过观察图象获得对它的性质的直观认识是研究函数的基本方法,那么,一般采用什么方法画图象? 二、探究研究 问题1. 在直角坐标系内把单位圆十二等分,分别画出对应角的正弦线. 问题2. 在相应坐标系内,在x轴表示12个角(实数表示),把单位圆中12个角的正弦线进行右移. 问题3. 通过刚才描点(x0,sinx0),把一系列点用光滑曲线连结起来,能得到什么? 问题4. 观察所得函数的图象,五个点在确定形状是起关键作用,哪五个点? 问题5.如何作y=sinx,x∈R的图象(即正弦曲线)? 问题6.用诱导公式cosx=________(用正弦式表示),y=cosx的图象(即余弦曲线)怎样得到? 问题7. 关键五个点.三、例题精讲 例1:用“五点法”画下列函数的简图 (1)y=1+sinx ,x∈[]π2,0 (2) y=-cosx,x∈[]π2,0 思考:(1)从函数图象变换的角度出发,由y=sinx,x∈[]π2,0的图象怎样得到y=1+sinx ,x∈[]π2,0的图像?由y=cosx,x∈[]π2,0的图象怎样得到y=-cosx, ,x∈[]π2,0的图像? 四、巩固练习 1、在[0,2π]上,满足 1 sin 2 x≥的x取值范围是( ). A.0, 6 π ?? ?? ?? B.5, 66 ππ ?? ?? ?? C.2, 63 ππ ?? ?? ?? D.5, 6 π π ?? ?? ?? 2、 用五点法作) y=1-cosx, x∈[]π2,0的图象. 3、结合图象,判断方程x sinx=的实数解的个数. 五、课堂小结 在区间] 2,0 [π上正、余弦函数图象上起关键作用的五个点分别是它的最值点及其与坐标轴的交点(平衡点).函数的图象可通过描述、平移、对称等手段得到. 六、当堂检测 1、观察正弦函数的图象,以下4个命题: (1)关于原点对称(2)关于x轴对称(3)关于y轴对称(4)有无数条对称轴其中正确的是

高中数学《三角函数的图像和性质》教案

基础梳理 1.“五点法”描图 (1) y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (3 (0,0), ( ,1) ,(π,0), 2 , 1) ,(2π,0). 2 (2) y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1), 0) ,(π,-1), (3 0) ,(2π,1). ( , , 2 2 2.三角函数的图象和性质 [-1,1] [-1,1] R

(k+0)k ∈Z , 2( k 0)k ∈Z , 2 单调增区间 [2k-2k+k ∈Z; , ] 2 2 单调减区间 [2k+2k+3 k ∈Z , ] 2 2 单调增区间 (k-k+k ∈Z , ) 2 2

) ) 1 . 函数 y = cos(x + ,x ∈R ( ). 双基自测 3 A .是奇函数 B .是偶函数 C. 既不是奇函数也不是偶函数 D .既是奇函数又是偶函数 y = - x ) 2. 函数 tan( 4 的定义域为( ). {x | x ≠ k - A . 4 ∈ Z } B .{x | x ≠ 2k - , k ∈ Z } 4 C .{x | x ≠ k + 4 ∈ Z } D .{x | x ≠ 2k + 4 ∈ Z } 3. y = sin(x - 的图象的一个对称中心是( ). 4 A .(-π,0) B . (- 3 C . (3 4 D. ,0) 2 ( ,0) 2 4. 函数 f (x )=cos (2x + 的最小正周期为 . ) 6 考向一 三角函数的周期 【例 1】?求下列函数的周期: y = - x ) (1) sin( 3 2 ;(2) y = tan(3x - ) 6 考向二 三角函数的定义域与值域 (1) 求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解. (2)求解三角函数的值域(最值)常见到以下几种类型的题目: ①形如 y =a sin 2x +b sin x +c 的三角函数,可先设 sin x =t ,化为关于 t 的二次函数求值域(最值); ②形如 y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设 t =sin x ±cos x ,化为关于 t 的二次函数求值域(最值). , k , k , k ,0)

相关文档
最新文档