三相半波整流电路课程设计解读

三相半波整流电路课程设计解读
三相半波整流电路课程设计解读

课程设计说明书

三相半波整流电路课程设计

院、部:电气与信息工程学院

学生姓名:何俊儒

指导教师:桂友超职称副教授

专业:电气工程及其自动化

班级:电气本1103班

完成时间:2014年6月10日

摘要

随着时代的进步和科技的发展,拖动控制的电机调速系统在工农业生产、交通运输以及日常生活中起着越来越重要的作用,因此,对电机调速的研究有着积极的意义.长期以来,直流电机被广泛应用于调速系统中,而且一直在调速领域占居主导地位,这主要是因为直流电机不仅调速方便,而且在磁场一定的条件下,转速和电枢电压成正比,转矩容易被控制;同时具有良好的起动性能,能较平滑和经济地调节速度。因此采用直流电机调速可以得到良好的动态特性。

整流电路是出现最早的电力电子电路,将交流电变为直流电,电路形式多种多样。当整流负载容量较大,或要求直流电压脉动较小时,应采用三相整流电路。其交流侧由三相电源供电。三相可控整流电路中,最基本的是三相半波可控整流电路,应用最为广泛的是三相桥式全控整流电路、以及双反星形可控整流电路、十二脉波可控整流电路等,均可在三相半波的基础上进行分析。

由于直流电动机具有优良的起、制动性能,宜与在广泛范围内平滑调速。在轧钢机、矿井卷机、挖掘机、金属切削机床、造纸机、高层电梯等需要高性能可控硅电力拖动的领域中得到广泛应用。近年来交流调速系统发展很快,然而直流拖动控制系统毕竟在理论上和在时间上都比较成熟,而且从反馈闭环控制的角度来看,它又是交流拖动系统的基础,长期以来,由于直流调速拖动系统的性能指标优于交流调速系统。因此,直流调速系统一直在调速系统领域内占重要位置。国内三相半波可控整流电路技术不够熟练,设备不够先进。国外的三相半波可控整流电路设备完善技术比较熟练。

关键词:整流;三相半波可控整流电路;直流电动机

ABSTRACT

With the development of science and technology, motor speed control system of traction control in industrial and agricultural production, transportation and daily life plays a more and more important role, therefore, has a positivesignificance to the study of motor speed. For a long time, have been widely applied in DC motor speed control system, and has been leading in speed regulating field occupies the position, this is mainly because the DC motor not only convenient speed, but also in the field under certain conditions, and the armature voltage is proportional to the speed, torque is easy to control; at the same time, good starting performance, can adjust the speed is smooth and economic. The DC motor speed control can obtain good dynamic characteristics.

Rectifier circuit is a power electronic circuit of the earliest, the alternating current into direct current, circuit forms. When the rectifier load capacity is larger, or require the DC voltage ripple is small, should adopt the three-phase rectifier circuit. The AC side of a three-phase power supply. Three phase controlled rectifier circuit, the most fundamental is the three phase half wave controlled rectifier circuit, is the most widely used three-phase full bridge controlled rectifier circuit, and the double anti star rectifier circuit, the twelvewave controlled rectifier circuit, analysis can be based on half wave phase.

Because of the DC motor with excellent, braking performance, Yi and smoothin a broad range of speed. In the rolling mill, mine, widely used machine,excavator, metal cutting machine, paper machine, high-rise elevator need high performance silicon controlled electric drive field. In recent years the development of AC speed regulation system quickly, however, DC drive control system in theory and in time are relatively mature, but also from the feedback loop control perspective, it is a foundation, AC drive system for a long time,because of better performance than that of AC speed control system of DCdrive system. Therefore, DC speed control system has occupied an important position in the field of speed control system. The three phase half wave controlled rectifier circuit technology is not enough skilled, equipment not advanced. The three phase half wave controlled rectifier circuit equipment is perfect for more skilled.

Key words rectifier;three phase half wave controlled rectifier;DC motor

目录

1.设计任务 (5)

2.设计方案 (5)

3.总体电路设计 (6)

3.1主电路组成 (6)

4.各功能模块电路设计............................. 错误!未定义书签。

4.1触发电路的设计 (7)

4.2保护电路的设计 (8)

5.仿真实现....................................... 错误!未定义书签。

5.1脉冲波形仿真分析 (13)

5.2整流输出波形仿真分析 (14)

5.3晶闸管工作参数仿真分析 (15)

6.电路参数的确定 (15)

6.1续流电感及变压器参数确定 (16)

6.2晶闸管参数选择 (18)

7.总体电路分析 (18)

7.1整流电路分析 (19)

7.2主电路原理分析 (20)

8.元器件清单 (23)

9.心得体会 (24)

10.参考文献 (26)

1.设计任务

设计一三相半波整流电路,直流电动机负载,电机技术数据如下:

U nom=220V,I nom=308A,n nom=1000r/min,C e=0.196V min/r,R a=0.18。

(1)方案设计。

(2)完成主电路的原理分析,过主要元件的选择。

(3)触发电路保护电路的设计。

(4)利用MATLAB仿真软件建模并仿真,获取电压电流波形,对结果进行分析。

(5)撰写设计说明书。

2.设计方案

本文主要完成三相半波整流电路的设计,通过MATLAB软件的SIMULINK 模块建模并仿真,进而得到仿真电压电流波形。

分析采用三相半波整流电路反电动势负载电路,如图2.1所示。为了得到零线,变压器二次侧必须接成星形,而一次侧接成三角形,避免3次谐波流入电网。三个晶闸管分别接入a、b、c三相电源,它们的阴极连接在一起,称为共阴极接法,这种接法触发电路有公共端,连线方便。

图2.1 三相半波整流电路共阴极接法反电动势负载原理图直流电动机负载除本身有电阻、电感外,还有一个反电动势E。如果暂不考虑电动机的电枢电感时,则只有当晶闸管导通相的变压器二次电压瞬时值大于反电动势时才有电流输出。此时负载电流时断续的,这对整流电路和电动机负载的工作都是不利的,实际应用中要尽量避免出现负载电流断续的工作情况。

3.总体电路设计

3.1主电路组成

三相半波整流电路主要由变压器、半波整整流流晶闸管及各级保护电路组成。由于电网电压通常与直流电机工作的正常电压,存在差别所以通常在整流变换是需要对电网电压进行变压,此外为了减少整流电路的多次谐波,通常变压器需要三角形—Y接法,此外由于晶闸管在整流工作过程中存在过电压、过电流快速关断、快速导通的过程,所以需要在主电路中设置过电压、过电流以及缓冲电路,具体框图3.1如下:

图3.1 电路总框图

4.各功能模块电路设计

4.1触发电路的设计

如图4.1所示为触发电路。由三片集成触发电路芯片KJ004和一片集成双脉

冲发生器芯片KJ041形成六路双脉冲,再由六个晶体管进行脉冲放大,即构成

完整的。触发电路产生的触发信号用接插线与主电路各晶闸管相连接。该电路可

分为同步、锯齿波形成、移相、脉冲形成、脉冲分选及脉冲放大几个环节。

+15V

图4.1 三相半波整流电路触发电路

由于三相半波整流电路中晶闸管需要在不同的时候导通,而且要保持与三相

交流电频率保持一致,所以需要具体设计触发晶闸管的导通脉冲。

本设计中采用Kj004脉冲触发集成芯片实现,集成芯片具有可靠性高,技术

性能好,体积小,功耗低,调试方便等特点而受到广泛应用。其脉冲形成原理与

分立元件的锯齿波移相触发电路相似, 分为同步、锯齿波形成、移相、脉冲形

成、脉冲分选及脉冲放大几个环节其内部原理图见图4.2:

VT1VT2VT3VT4VT5VT6

图4.2 KJ004触发芯片内部原理图

触发电路的定相问题,触发电路应保证每个晶闸管触发脉冲与施加于晶闸管的交流电压保持固定、正确的相位关系其具体措施如下:

1.同步变压器原边接入为主电路供电的电网,保证频率一致。

2.触发电路定相的关键是确定同步信号与晶闸管阳极电压的关系。

3.同步信号负半周的起点对应于锯齿波的起点,通常使锯齿波的上升段为240?,上升段起始的30?和终了的30?线性度不好,舍去不用,使用中间的180?。

4.使U d=0的触发角α为90?。当α<90?时为整流工作,α>90?时为逆变工作。

5.将α=90?确定为锯齿波的中点,锯齿波向前向后各有90?的移相范围。于是α=90?与同步电压的300?对应,也就是α=0?与同步电压的210?对应。由图2-58及2.2节关于三相桥的介绍可知,α=0?对应于u a的30?的位置,则同步信号的180?与u a的0?对应。

4.2保护电路的设计

电力电子电路中保护电路包括过电压保护和过电流保护。

过电压保护一般采用RC过电压抑制电路,RC过电压抑制电路可接于供电变压器的两端或电力电子电路的直流侧。

过电流保护分为过载和短路两种情况,一般过电流保护措施常采用快速熔断器、直流快速熔断器和电流继电器。在本设计的保护电路中对变压器一次侧和二次侧分别加上熔断器对其进行保护,对电机加上一个过载保护熔断器,如图4.3所示。

图4.3 保护电路的设计

变压器接法:主电路整流变压器为D,y-11联结,同步变压器为D,y-11,5联结

具体外部电路实现见电路原理图部分。

4.2.1过电压保护电路设计

电力电子装置在实际工作中,由于工作环境的影响,可能存在过电压过电流运行的情况,所以我们在设计电路中要先考虑到这些因素并采取一定防御措施,一般情况下可能的过电压分为外因过电压和内因过电压。

1.外因过电压:操作过电压(由分闸、合闸等开关操作引起)

2.内因过电压:包括换向过电压和关断过电压

换相过电压:晶闸管或与全控型器件反并联的二极管在换相结束后不能立刻恢复阻断,因而有较大的反向电流流过,当恢复了阻断能力时,该反向电流急剧减小,会由线路电感在器件两端感应出过电压

关断过电压:全控型器件关断时,正向电流迅速降低而由线路电感在器件两

端感应出的过电压,对于晶闸管来说由于晶闸管的关断是考电网电压变化关断的所以不存在关断过电压。

外因过电压抑制措施中,RC 过电压抑制电路最为常见,典型联结方式见下图4.4,RC 过电压抑制电路可接于供电变压器的两侧(供电网一侧称网侧,电力电子电路一侧称阀侧),或电力电子电路的直流侧。

对于大容量电力电子装置可采用图4.5所示的反向阻断式RC 电路,本设计电路中考虑到直流电机工作电压较高,电流较大所以采用反向阻断式RC 过电压保护电路。

其工作原理为保护电路中,RC 电路对于电网电压有一定的钳位作用,使得电网中电压不至于发生剧烈变化,当电网电压发生大的变化是,电容的满充电效应会阻止电网电压变化,从而起到一直电网电压冲击的作用,但是电网电压长期较高时,电容充放电不足以抵消电网电压变化作用,从而失去保护效能。

图4.4 过电压抑制RC 电路 图4.5过电压抑制电路

4.2.2过电流保护电路设计

当电力电子装置所在电路发生短路或电机等负载出现过载时,就会出现过流现象。常用措施是采用快速熔断器、直流快速断路器和过电流继电器,通常情况下同时采用几种过电流保护措施,提高可靠性和合理性,电力电子装置相对于其他电路装置更为脆弱,所以电子电路通常作为第一保护措施,快熔仅作为短路时的部分区段的保护,直流快速断路器整定在电子电路动作之后实现保护,过电流继电器整定在过载时动作。

电力电子装置中最有效、应用最广的一种过电流保护措施,选择快熔时应考虑如下因素:

(1)电压等级根据熔断后快熔实际承受的电压确定

(2)电流容量按其在主电路中的接入方式和主电路联结形式确定 (3)快熔的I 2t 值应小于被保护器件的允许I 2t 值 (4)为保证熔体在正常过载情况下不熔化,应考虑其时间

电流特性

a)

b)图1-35

图1-36

2

电机工作中通常只会出现过载现象,本设计中采用熔断器保护,分别在电网侧和直流侧设置过流保护熔断器,实现过流保护。具体电路见附录中总电路图部分。

4.2.3缓冲电路的设计

电力电子装置,由于频繁开通或关断,因而会产生开通或关断的瞬间电压电流变化,这一过程通常会导致电力电子器件的老化或损坏,所以要设置缓冲电路,缓冲电路(吸收电路):是用来抑制器件的内因过电压、du/dt、过电流和,减小器件的开关损耗。

缓冲电路分为关断缓冲和开通缓冲,其中:

关断缓冲电路(抑制电路)——吸收器件的关断过电压和换相过电压,抑制du/dt,减小关断损耗

开通缓冲电路(di/dt抑制电路)——抑制器件开通时的电流过冲和di/dt,减小器件的开通损耗。

通常缓冲电路专指关断缓冲电路,将开通缓冲电路叫做di/dt抑制电路。对于三相半波整流电路,只需考虑开通缓冲电路即可。

具体设计为在晶闸管两端并联一个RC支路,抑制晶闸管开通瞬间的du/dt 作用。在整流电路中加入LRD并联支路来抑制开通过程中的di/dt。电路如图

图4.6与图4.7 所示。

图4.6 du/dt抑制电路图4.7 di/dt抑制电路

5.仿真实现

本设计电路中几乎所有元件都可以在MATLAB找到原型,但那是由于直流电机所需参数很多,而设计要求中所给条件,无法具体确定直流电机的所有参数,所以无法用直流电机直接仿真。但是在各种电路书中我们了解到,电机实际上可由带有电压源的电感和电阻代替,所以仿真部分我们把直流电机负载等效为电压源、电阻和电感的串联。

另外由于没有三相晶闸管的触发电路仿真模型,所以需要用脉冲发生器代替晶闸管的脉冲触发电路

仿真电路图见图5.1

图5.1 仿真原理图

5.1脉冲波形仿真分析

由于变压器所输送的电压,高于实际电机正常工作的电压,所以整流输出电压要适当的降压处理,利用晶闸管的单向导电性,适当调整触发角,使晶闸管延迟导通,从而当调整整流输出电压。如图5.2为触发角为30°时脉冲输出波形与输入电压波形比较图。

图5.2 对应各相输入电压波形与触发脉冲位置比较(正弦波分别为a、b、c三相)

在触发电路设计中我们知道,触发脉冲与输入电压是同频率的,设置触发脉冲到来时间,就可以设置晶闸管的导通时刻,但是触发脉冲时间上又有所限制,至少要在三相电压的自然换向点之后触发才能实现整流输出。即当触发角为0°时,脉冲触发初始时刻应该为30°。当α=30°事触发脉冲的初始角为60°。

由三相半波整流电路输出电压与输入电压关系公式我们可以知道,触发角愈大则输出电压愈小。当实际输出电压但与电机正常过坐的额定电压时,我们可以适当调整触发角,降低整流输出电压,反之则适当减小触发角,这样就可以通过调整触发角实现电机控制电压的调节。

此外由于三个晶闸管的阴极和阳极接在不同的输出电压相位上,所以一个周期内每个晶闸管的导通时刻是不同的,所以触发脉冲产生的时刻也不同,其中VT1最先导通VT2、VT3依次滞后120°,具体的波形我们可以从图5.2中看到。

5.2整流输出波形仿真分析

经过晶闸管三相半波整流输出后,输出电压电流变为直流。晶闸管要求在三相自然换向点以后进行触发,当负载为纯电阻性负载时输出电压与电流波形完全一致,由于本电路中所带负载为电动机负载,所以输出电压波形与输出电流波形不一致,具体输出波形与三相交流输出波形关系如图5.3所示。

从图中我们可以看到当触发角为30°时输出电压并没有负值但是最低电压降到了零(红色线为输出电压波形曲线),此时输出电压处于全部为正和出现负值的临界状态,当继续增大触发角时,我们就可以发现整流输出电压出现负值的结果如图5.3为触发角为60°时的输出波形。

图中黄色线为输出电流变化曲线,我们可以看到电流在初始刻为缓慢上升的,最终趋于水平,当整流电路接电动机负载时由于电机的阻抗作用,输出电流变化不大,并最终趋于水平,另外由于本电路设计时考虑到电流的连续性问题,即加入了续流电感,它同样可以对输出电流起到平波的作用。

图5.3 整流输出波形与三相交流输出波形关系

5.3晶闸管工作参数仿真分析

有晶闸管的工作特点我们可以知道,当晶闸管导通时,其两端电压为零,而此时流过晶闸管的电流即为负载电流值。当晶闸管截止时流过晶闸管的电流值为零,但是有与晶闸管接在两相电压之间所以要承受的最大电压是线电压峰值,图5.4为仿真波形图,可以看到晶闸管工作过程中的,电压、电流情形。

图5.4 晶闸管的工作时电压电流波形图(正弦波为ab间线电压)

6.电路参数的确定

根据所给的设计要求,首先计算出满足设计要求的电路参数。

6.1续流电感及变压器参数确定

根据电机的正常工作状态参数错误!未找到引用源。,可得正常工作条件下

直流电机反电动势为:

错误!未找到引用源。(6-1) 对于三相桥式半控整流带电动机负载的电路系统,为保证电流连续所需的主

回路电感量L(mH)为:

错误!未找到引用源。(6-2) 其中L--包括整流变压器的漏电感、电枢电感和平波电抗器的电感。前者数值都较小,有时可忽略。

Id的最小值Idmin一般去电动机额定电流的5%~10%。则有:

错误!未找到引用源。(6-3) 供电电源电压计算公式为

错误!未找到引用源。(6-4) 其中错误!未找到引用源。为变压器输出电压

错误!未找到引用源。为电机正常工作的反电动式即E= Unom

为触发角

错误!未找到引用源。为回路总电阻

错误!未找到引用源。为回路工作电流

由负载电机参数,Unom=220V,Inom=136A,R=0.5Ω考虑到电路中其他元器件的分压这里取R=1Ω则有:

错误!未找到引用源。(6-5)

变压器二次侧电流有效值:

错误!未找到引用源。(6-6)显然选用输出端电压大于304V的变压器,方可满足供电要求,联系实际应选择二次侧输出电压为380V的变压器。

由半波整流变压器一次测电流与二次侧电流关系错误!未找到引用源。可知(设变压器一次侧输入电压为400V)变压器额定输出电功率:

错误!未找到引用源。(6-7)

由输入端与输出端功率关系:知输入功率:

错误!未找到引用源。(6-8)实际整流输出电压,可根据触发角α来调整,由变压器数我们可以计算实际工作中的输出电压范围。而且晶闸管触发脉冲角度应该满足,在触发角α=0时所要求的最小度数,设晶闸管的触发脉冲角度为γ,则当α=0 时γ=30°此时半波整流电路中的输出电压最大。最大触发角α,设电路中电阻只有电机电阻即R=0.5则有上面的公式可知:

错误!未找到引用源。(6-9)

可以解得α=28°即电路中晶闸管的触发脉冲电路起始角γ最大为58°最小为30°。本设计中初步整定为γ=60°。

当γ=60时整流输出电压

错误!未找到引用源。(6-10) 所以回路总电流

错误!未找到引用源。(6-11)

由于电路实际工作中电阻值大于电机工作电阻所以实际工作电流值小于此值。由此可知续流电感值:

错误!未找到引用源。(6-12)

6.2晶闸管参数选择

根据晶闸管电流参数选择原则公式:

错误!未找到引用源。(6-13)

其中:考虑的安全裕量为2~3倍

错误!未找到引用源。为整流电路正常工作最大电流的有效值

错误!未找到引用源。为所选择晶闸管的工作电流参数即选择额定电流至少为:

错误!未找到引用源。(6-14) 的晶闸管作为本次设计电路的整流电路元件。

根据三相半波整流电路分析知道晶闸管承受的最大反相电压为变压器的二次线电压峰值的2.45倍,即晶闸管最大反向额定电压:

错误!未找到引用源。(6-15) 而晶闸管所承受的最大正向电压为输入电压的峰值电压:

错误!未找到引用源。(6-16)

7.总体电路分析

总电路图如图7.1所示

图7.1 电路总图7.1整流电路分析

图7-2半波整流电路基本原理图

三相半波整流电路部分电路如图7-1所示吗,其具体实现原理是,当三相正弦交流电压加在晶闸管上,由于晶闸管的单向导通特性,当晶闸管两端加上正向电压,且存在触发脉冲时晶闸管导通,整流输出端有电压输出,当正弦电压变负时晶闸管由于承受反向电压截止,输出端没有电压输出,。从而实现整流变化。在图示电路中当加在晶闸管两端的两相电压,阳极端相电压高于阴极时在触发脉冲的触发下,晶闸管就会导通。同理Q2、Q3也会在阳极电压高于阴极电压的时候触发导通,从而实现三相电压的整流。

根据触发角的不同可以适当调整输出电压,而且单相半波整流电路所带负载不同,其输出电压波形也存在差异,在阻感负载下,如果L值很大,id波形基本平直。电路有如下特点:

图7-3半波整流电路a=30°时波形

(1)a≤30?时:整流电压波形与电阻负载时相同。

(2)a>30?时(如a=60?时的波形如图7-2所示)。

u2过零时,VT1不关断,直到VT2的脉冲到来,才换流,——ud波形中出现负的部分。

id波形有一定的脉动,但为简化分析及定量计算,可将id近似为一条水平线。

阻感负载时的移相范围为90?。

若接电动机负载则相当于电压源与电感、电阻负载串联。

7.2主电路原理分析

主电路理论图如图2.1所示。假设将电路中的晶闸管换作二极管,并用VD 表示,该电路就成为三相半波不可控整流电路。此时,三个二极管对应的相电压中哪一个的值最大,则该相对应的二极管导通,并使另两相的二极管承受反压关断,输出整流电压即为该相的相电压。在相电压的交点处,均出现了二极管换相,即电流由一个二极管向另一个二极管转移,称这些交点为自然换相点。自然换相点是各相晶闸管能触发导通的最早时刻,将其作为计算各晶闸管触发角α的起点,即α=0。,要改变触发角只能是在此基础上增大它,即沿时间坐标轴向右移。

当三个晶闸管的触发角为0°时,相当于三相半波不可控整流电路的情况。增大α值,将脉冲后移,整流电路的工作情况相应的发生变化。 设变压器二次侧电压有效值为220V ,则相电压交点处的电压

2sin30=155.54V 。。 若反电动势小于155.54V 时,整流电路相当于工作在阻感负载情况下nnom=1000r/min (因为在自然换相点处晶闸管导通,负载电压等于相电压)。 根据任务书所给电机参数,当电机空载转速为,且稳定运行时,反电动势为E 196nom e n C V

=?=。

晶闸管的触发角为0°时,波形图如图7.3所示,从上到下波形依次是三相交流电压波形,触发脉冲波形,负载电压波形,晶闸管电压波形。

图7.4 触发角为0°时的波形

三相半波可控整流电路实验

实验七三相半波可控整流电路的研究一.实验目的 了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻—电感性负载时的工作。 二.实验线路及原理 三相半波可控整流电路用三只晶闸管,与单相电路比较,输出电压脉动小,输出功率大,三相负载平衡。不足之处是晶闸管电流即变压器的二次电流在一个周期内只有1/3时间有电流流过,变压器利用率低。 实验线路见图4-9。 三.实验内容 1.研究三相半波可控整流电路供电给电阻性负载时的工作。 2.研究三相半波可控整流电路供电给电阻—电感性负载时的工作。 四.实验设备及仪表 1.MCL系列教学实验台主控制屏。 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。 3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ) 4.MEL—03组件(900Ω,0.41A)或自配滑线变阻器. 5.双踪示波器。 6.万用电表。 五.注意事项 1.整流电路与三相电源连接时,一定要注意相序。 2.整流电路的负载电阻不宜过小,应使I d不超过0.8A,同时负载电阻不宜过大,保证I d超过0.1A,避免晶闸管时断时续。 3.正确使用示波器,避免示波器的两根地线接在非等电位的端点上,造成短路事故。

六.实验方法 1.按图接线,未上主电源之前,检查晶闸管的脉冲是否正常。 (1)打开MCL—18电源开关,给定电压有电压显示。 (2)用示波器观察MCL-33(或MCL-53,以下同)的双脉冲观察孔,应有间隔均匀,幅度相同的双脉冲 (3)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1”脉冲超前“2”脉冲600,则相序正确,否则,应调整输入电源。 (4)用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V—2V的脉冲。 2.研究三相半波可控整流电路供电给电阻性负载时的工作 合上主电源,接上电阻性负载,调节主控制屏输出电压U uv、U vw、U wv,从0V调至110V: (a)改变控制电压U ct,观察在不同触发移相角α时,可控整流电路的输出电压U d=f (t)与输出电流波形i d=f(t),并记录相应的U d、I d、U ct值。 (b)记录α=90°时的U d=f(t)及i d =f(t)的波形图。 (c)求取三相半波可控整流电路的输入—输出特性U d/U2=f(α)。 (d)求取三相半波可控整流电路的负载特性U d=f(I d) 注:如您选购的产品为MCL—Ⅲ、Ⅴ,无三相调压器,直接合上主电源。以下均同3.研究三相半波可控整流电路供电给电阻—电感性负载时的工作 接入MCL—33的电抗器L=700mH,,可把原负载电阻Rd调小,监视电流,不宜超过0.8A(若超过0.8A,可用导线把负载电阻短路),操作方法同上。 (a)观察不同移相角α时的输出U d=f(t)、i d=f(t),并记录相应的U d、I d值,记录α=90°时的U d=f(t)、i d=f(t),U vt=f(t)波形图。 (b)求取整流电路的输入—输出特性U d/U2=f(α)。 七.实验报告 1.绘出本整流电路供电给电阻性负载,电阻—电感性负载时的U d= f(t),i d= f(t)及U vt= f(t)(在α=90°情况下)波形,并进行分析讨论。 2.根据实验数据,绘出整流电路的负载特性U d=f(I d),输入—输出特性U d/U2=f(α)。 八.思考 1.如何确定三相触发脉冲的相序?它们间分别应有多大的相位差? 2.根据所用晶闸管的定额,如何确定整流电路允许的输出电流?

三相桥式全控整流电路课程设计.

目录 1. 绪论 (1) 2. 主电路设计及原理 (2) 2.1总体框架图 (2) 2.2三相桥式全控整流电路的原理 (2) 2.3 实验内容 (5) 3. 单元电路设计 (7) 3.1 主电路 (7) 3.2 触发电路 (7) 3.3 保护电路 (8) 3.4 硬件电路PCB版图 (11) 3.4.1 顶层视图 (11) 3.4.2 底层视图 (12) 3.4.3 顶层覆盖图 (12) 3.4.4 3D视图 (13) 4 .电路分析与仿真 (14) 4.1 带电阻负载的波形分析 (14) 4.2 三相桥式全控整流电路定量分析 (16) 4.2.1 仿真模型图 (19) 4.2.2 仿真实验结论 (19) 5. 结论 (20) 6. 参考文献 (22) 7. 附录 (23)

第一章绪论 整流电路技术在工业生产上应用极广。如调压调速直流电源、电解及电镀的直流电源等。整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。 整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。 把交流电变换成大小可调的单一方向直流电的过程称为可控整流。整流器的输入端一般接在交流电网上。为了适应负载对电源电压大小的要求,或者为了提高可控整流装置的功率因数,一般可在输入端加接整流变压器,把一次电压U1,变成二次电压U2。由晶闸管等组成的全控整流主电路,其输出端的负载,我们研究是电阻性负载、电阻电感负载(如直流电动机的励磁绕组,滑差电动机的电枢线圈等)。以上负载往往要求整流能输出在一定范围内变化的直流电压。为此,只要改变触发电路所提供的触发脉冲送出的早晚,就能改变晶闸管在交流电压U2一周期内导通的时间,这样负载上直流平均值就可以得到控制。

三相半波桥式(全波)整流及六脉冲整流电路

三相半波桥式(全波)整流及六脉冲整流电路 1. 三相半波整流滤波 当功率进一步增加或由于其他原因要求多相整流时,三相整流电路就被提了出来。图1所示就是三相半波整流电路原理图。在这个电路中,三相中的每一相都和单独形成了半波整流电路,其整流出的三个电压半波在时间上依次相差120o 叠加,并且整流输出波形不过0点,其最低点电压 式中Up——是交流输入电压幅值。 并且在一个周期中有三个宽度为120o的整流半波。因此它的滤波电容器的容量可以比单相半波整流和单相全波整流 时的电容量都小。 图1 三相半波整流电路原理图 2. 三相桥式(全波)整流滤波 图2所示是三相桥式全波整流电路原理图。图3是它们的整流波形图。图3(a)是三相交流电压波形;图3(b)是三相半波整流电压波形图;图3(c)是三相全波整流电压波形图。在输出波形图中,N粗平直虚线是整流滤波后的平均输出电压值,虚线以下和各正弦波的交点以上(细虚线以上)的小脉动波是整流后未经滤波的输出电压波形。

图2 三相桥式全波整流电路原理图 由图1和图2可以看出,三相半波整流电路和三相桥式全波整流电路的结构是有区别的。 (1)三相半波整流电路只有三个整流二极管,而三相全波整流电路中却有六只整流二极管; (2) 三相半波整流电路需要输入电源的中线,而三相全波整流电路则不需要输入电源的中线。 由图3可以看出三相半波整流波形和三相全波整流电路则不需要输入电源的中线。 图3 三相整流的波形图 ①三相半波整流波形的脉动周期是120o而三相全波整流波形的脉动周期是60o; ②三相半波整流波形的脉动幅度和输出电压平均值:三相半波整流波形的脉动幅度是: (1) 式中U——脉动幅度电压;Up是正弦半波幅值电压,比如有效值为380V的线电压, 其半波幅值电压为: (2)

三相可控整流电路课程设计

二.三相晶闸管全控整流电路原理说明 2.1主电路原理说明 晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。编号如图示,晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6 。 带电阻负载时的工作情况 晶闸管触发角α=0o时的情况:此时,对于共阴极组的3个晶闸管,阳极所接交流电压值最高的一个导通。而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。此时电路工作波形如图所示。 α=0o时,各晶闸管均在自然换相点处换相。由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。从相电压波形看,以变压器二次侧的中点n为参考点,共阴极组晶闸管导通时,整流输出电压 ud1为相电压在正半周的包络线;共阳极组导通时,整流输出电压ud2为相电压在负半周的包络线,总的整流输出电压ud = ud1-ud2是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。将波形中的一个周期等分为6段,每段为60度,如图2-18所示,每一段中导通的晶闸管及输出整流电压的情况如下表所示。由该表可见,6个晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。 时段 1 2 3 4 5 6 共阴极组中 导通的晶闸 管 VT1 VT1 VT3 VT3 VT5 VT5 共阳极组中 导通的晶闸 管 VT6 VT2 VT2 VT4 VT4 VT6 整流输出电 压ud ua-ub=uab ua-uc=uac ub- uc=ubc ub- ua=uba uc- ua=uca uc-ub=ucb

单相桥式整流电路课程设计报告..

电力电子课程设计报告

目录 一、设计任务说明 (3) 二、设计方案的比较 (4) 三、单元电路的设计和主要元器件说明 (6) 四、主电路的原理分析 (9) 五、各主要元器件的选择: (12) 六、驱动电路设计 (14) 七、保护电路 (16) 八、元器件清单 (21) 九、设计总结 (22) 十、参考文献 (23)

一、设计任务说明 1.设计任务: 1)进行设计方案的比较,并选定设计方案; 2)完成单元电路的设计和主要元器件说明; 3)完成主电路的原理分析,各主要元件的选择; 4)驱动电路的设计,保护电路的设计; 5)利用仿真软件分析电路的工作过程; 2.设计要求: 1)单相桥式相控整流的设计要求为: 负载为感性负载,L=700mH,R=500Ω 2)技术要求: A.电网供电电压为单相220V; B.电网电压波动为5%——10%; C.输出电压为0——100V;

二、设计方案的比较 单相桥式整流电路有两种方式,一种是单相桥式全控整流电路,一种是单相桥式半控整流电路。主要方案有三种: 方案一: 采用单相桥式全控整流电路,电路图如下: 对于这个电路,每一个导电回路中有两个晶闸管,即用两个晶闸管同时导通以控制导电的回路,不需要续流二极管,不会出现失控现象,整流效果好,波形稳定。变压器二次绕组不含直流分量,不会出现变压器直流磁化的问题,变压器利用率高。 方案二: 采用单相桥式半控整流电路,电路图如下: 相较于单相桥式全控整流电路,对每个导电回路进行控制,只需一个晶闸管,而另一个用二极管代替,这样使电路连接简便,且

降低了成本,降低了损耗。但是若无续流二极管,当α突然增大到180°或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使d U成为正弦半波,级半周期d U为正弦波,另外半周期d U为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形,即失控现象。因此该电路在实际应用中需要加设续流二极管。 综上所述:单相桥式半控整流电路具有线路简单、调整方便的优点。但输出电压脉动冲大,负载电流脉冲大(电阻性负载时),且整流变压器二次绕组中存在直流分量,使铁心磁化,变压器不能充分利用。而单相桥式全控整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。因此选择方案一的单相桥式全控整流电路。

三相半波整流电路论文设计

电力电子技术课程设计 题目:三相半波整流电路的设计 作者:伟龙 学号: 指导教师:宁 专业班级:13级电气工程及其自动化本科2班 工业学院 2015年12月21日

目录 一、目录 (1) 二、引言 1.1 什么是电力电子技术 (2) 1.2 整流电路的应用领域及分类 (2) 三、设计目的及意义 (3) 四、设计的要求和容 4.1 三相半波整流电路电阻负载原理组成 (3) 4.2 三相半波整流电路电阻负载原理图 (4) 4.3 三相半波整流电路原理波形分析 (4) 4.4 三相半波整流电路的保护电路 (6) 五、三相半波整流电路数量计算 5.1 输出值的计算 (7) 5.2 晶闸管电流有效值 (8) 5.3 晶闸管额定电流 (8) 六、Matlab软件电脑仿真原理图 6.1 电阻负载Matlab原理图仿真 (8) 6.2 阻感负载Matlab原理图仿真 (9) 6.3 电阻负载Matlab波形图仿真 (9) 七、心得体会 (11) 八、参考文献 (12) 九、致 (12)

二、引言 2.1 什么是电力电子技术 电力电子技术是建立在电子学、电工原理和自动控制三大学科上的新兴学科。因它本身是大功率的电技术,又大多是为应用强电的工业服务的,故常将它归属于电工类。电力电子技术的容主要包括电力电子器件、电力电子电路和电力电子装置及其系统。电力电子器件以半导体为基本材料,最常用的材料为单晶硅;它的理论基础为半导体物理学;它的工艺技术为半导体器件工艺。近代新型电力电子器件量应用了微电子学的技术。电力电子电路吸收了电子学的理论基础,根据器件的特点和电能转换的要求,又开发出许多电能转换电路。这些电路中还包括各种控制、触发、保护、显示、信息处理、继电接触等二次回路及外围电路。利用这些电路,根据应用对象的不同,组成了各种用途的整机,称为电力电子装置。这些装置常与负载、配套设备等组成一个系统。电子学、电工学、自动控制、信号检测处理等技术常在这些装置及其系统量应用。 2.2 整流电路的应用领域及分类 工业中广泛使用的整流电路的目的是把国家电网中的交流电能转换为直流电能。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用 当整流负载容量较大,或要求直流电压脉动较小、易滤波时,应采用三相整流电路。由于电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路实现电能和变换和控制,而构成的一门完整的学科。故其学习方法与电子技术和控制技术有很多相似之处,因此要学好这门课就必须做好实验和课程设计,又因为整流电路应用非常广泛,在三相可控整流电路中,最基本的是三相半波可控整流电路,应用最为广泛的是三相桥式全控整流电路,双反星形可控整流电路以及十二脉波可控整流电路等,均可在三相半波可控整流电路的基础上进行分析,因此本次我们要做的实践是三相半波可控整流电路。

电力电子课程设计三相可控整流电路

目录 第1章概述 (2) 第2章方案确定 (3) 2.1原始数据 (3) 2.2设计任务 (3) 2.3设计要求 (3) 2.4方案分析 (3) 2.5方案选择 (4) 第3章电路设计 (5) 3.1主电路 (5) 3.2触发电路 (9) 3.3保护电路 (10) 3.4控制电路 (13) 第4章主电路元件计算及选择 (14) 4.1变压器参数计算 (14) 4.2电力电子器件电压、电流等定额计算 (15) 4.3平波电抗器电感值的计算 (16) 4.4电容滤波的电容计算 (16) 第5章设计总结与体会 (18) 参考文献 (19) 附录 (20)

第1章概述 目前,各类电力电子变换器的输入整流电路输入功率级一般采用不可控整流或相控整流电路。这类整流电路结构简单,控制技术成熟,但交流侧输入功率因数低,并向电网注入大量的谐波电流。据估计,在发达国家有60%的电能经过变换后才使用,而这个数字在本世纪初达到95%。 电力电子技术在电力系统中有着非常广泛的应用。据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。电力系统在通向现代化的进程中,电力电子技术是关键技术之一。可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。 而电能的传输中,直流输电在长距离、大容量输电时有很大的优势,其送电端的整流阀和受电端的逆变阀都采用晶闸管变各种电子装置一般都需要不同电压等级的直流电源供电。通信设备中的程控交换机所用的直流电源以前用晶闸管整流电源,现在已改为采用全控型器件的高频开关电源。大型计算机所需的工作电源、微型计算机内部的电源现在也都采用高频开关电源。在各种电子装置中,以前大量采用线性稳压电源供电,由于高频开关电源体积小、重量轻、效率高,现在已逐渐取代了线性电源。因为各种信息技术装置都需要电力电子装置提供电源,所以可以说信息电子技术离不开电力电子技术。近年发展起来的柔性交流输电(FACTS)也是依靠电力电子装置才得以实现的。

三相半波可控整流电路

三相半波可控整流电路

1. 电阻负载 (1) 工作原理 三相半波可控整流电路如图1 a) 所示。为得到零线,变压器二次侧必须接成星形,而一次侧接成三角形,避免3次谐波电流流人电网。三个晶闸管分别接入a、b、c三相电源,它们的阴极连接在一起,称为共阴极接法,这种接法触发电路有公共端,连线方便。 假设将电路中的晶闸管换作二极管,并用VD表示,该电路就成为三相半波不可控整流电路,以下首先分析其工作情况。此时,三个二极管对应的相电压中哪一个的值最大,则该相所对应的 二极管导通,并使另两相的二极管承受反压关断,输出整流电压即为该相的相电压,波形如图1 d) 所示。在一个周期中,器件工作情况如下:在ωt1~ωt2期 间,α相电压最高,VD1导通,u d= u a;在ωt2~ωt3期间,b 相电压最高, VD2导通,u d= u b;在ωt3~ωt4期间,c 相电压最高,VD3导通,u d= u c。此后,在下一周期相当于ωt1的位置即ωt4时刻,VD1又导通,重复前一周期的工作情况。如此,一周期中VD1、VD2、VD3轮流导通,每管各导通120o。u d波形为三个相电压在正半周期的包络线。 在相电压的交点ωt1、ωt2、ωt3处,均出现了二极管换相,即电流由一个二极管向另一个二极管转移,称这些交点为自然换相点。对三相半波可控整流电路而言,自然换相点是各相晶闸管能触发导通的最早时刻,将其作为计算各晶闸管触发角α的起点,即α=0o,要改变触发角只能是在此基础上增大,即沿时间坐标轴向右移。若在自然换相点处触发相应的晶闸管导通,则电

路的工作情况与以上分析的二极管整流工作情况一样。由单相可控整流电路可知,各种单相可控整流电路的自然换相点是变压器二次电压u2的过零点。 当α= 0o时,变压器二次侧 a 相绕组和晶闸管VT1的电流波形如图1 e) 所示,另两相电流波形形状相同,相位依次滞后120o,可见变压器二次绕组电流有直流分量。 图1 f) 是VT1两端的电压波形,由3段组成:第1段, VT1导通期间,为一管压降,可近似为u VT1=0;第2段,在VT1关断后,,VT2导通期间,u VT1= u a-u b = u ab ,为一段线电压;第3段,在VT3导通期间,u VT1= u a-u c = u ac 为另一段线电压。即晶闸管电压由一段管压降和两段线电压组成。由图可见, α= 0o时,晶闸管承受的两段线电压均为负值,随着α增大,晶闸管承受的电压中正的部分逐渐增多。其他两管上的电压波形形状相同,相位依次差120o。 增大α值,将脉冲后移,整流电路的工作情况相应地发生变化。 图2 是α=30o时的波形。从输出电压、电流的波形可看出,这时负载电流处于连续和断续的临界状态,各相仍导电120o。 如果α >30o,例如α =60o时,整流电压的波形如图3 所示,当导通一相的相电压过零变负时,该相晶闸管关断。此时下一相晶闸管虽承受正电压,但它的触发脉冲还未到,不会导通,因此输出电压电流均为零,直到触发脉冲出现为止。这种情况下,负载电流断续,各晶闸管导通角为90o,小于120o 若α角继续增大,整流电压将越来越小,α=150o时,整流输出电压为零。故电阻负载时α角的移相范围为150o。 (2) 负载电压 整流电压平均值的计算分两种情况: 1) α≤30o时,负载电流连续,有 当α= 0 时,U d最大,为U d= U d0=1.17U2. 2) α >30o时,负载电流断续,晶闸管导通角减小,此时有

单相桥式全控整流电路课程设计

南京工程学院 课程设计说明书(论文) 题目单相桥式全控整流电路 , 课程名称电力电子技术课程设计 院 (系、部、中心)电力工程学院 专业电气工程与自动化 (智能建筑电气) 班级智能081 学生姓名朱玲丽 学号 07 ^ 设计地点 指导教师李先允廖德利 设计起止时间:2010 年12月27日至2011年1月7日

目录 任务书........................................................错误!未定义书签。第1章课程设计目的与要求.....................................错误!未定义书签。课程设计目的..................................................错误!未定义书签。课程设计的预备知识............................................错误!未定义书签。课程设计要求.................................................错误!未定义书签。第2章课程设计方案的选择.....................................错误!未定义书签。整流电路......................................................错误!未定义书签。元器件的选择..................................................错误!未定义书签。 晶闸管....................................................错误!未定义书签。 可关断晶闸管.............................................错误!未定义书签。第3章主电路的设计...........................................错误!未定义书签。系统总设计框图................................................错误!未定义书签。系统主体电路原理及说明........................................错误!未定义书签。原理图的分析..................................................错误!未定义书签。第4章辅助电路的设计.........................................错误!未定义书签。驱动电路的设计................................................错误!未定义书签。 触发电路..................................................错误!未定义书签。保护电路的设计................................................错误!未定义书签。 主电路的过电压保护电路设计...............................错误!未定义书签。 主电路的过电流保护电路设计................................错误!未定义书签。 电流上升率、电压上升率的抑制保护..........................错误!未定义书签。第五章元器件和电路参数计算...................................错误!未定义书签。. 晶闸管的基本特性............................................错误!未定义书签。 静态特性..................................................错误!未定义书签。 动态特性..................................................错误!未定义书签。晶闸管基本参数................................................错误!未定义书签。 晶闸管的主要参数说明......................................错误!未定义书签。 晶闸管的选型..............................................错误!未定义书签。 变压器的选取..............................................错误!未定义书签。性能指标分析:................................................错误!未定义书签。元器件清单....................................................错误!未定义书签。第六章系统仿真...............................................错误!未定义书签。第七章设计总结...............................................错误!未定义书签。

三相桥式整流电路实验报告

实验报告 实验名称三相桥式全控整流电路实验课程名称电力电子技术 院系部:专业班级:学生姓名:学号:同组人:实验台号:指导教师:成绩:实验日期: 华北电力大学

实验一、三相桥式全控整流电路实验 一、实验目的 1.熟悉三相桥式全控整流电路的接线、器件和保护情况。 2.明确对触发脉冲的要求。 3.掌握电力电子电路调试的方法。 4.观察在电阻负载、电阻电感负载情况下输出电压和电流的波形。 二、实验类型 本实验为验证型实验,通过对整流电路的输出波形分析,验证整流电路的工作原理和输入与输出电压之间的数量关系。 三、实验仪器 1.MCL-III教学实验台主控制屏。 2.MCL—33组件及MCL35组件。 3.二踪示波器 4.万用表 5.电阻(灯箱) 四、实验原理 实验线路图见后面。主电路为三相全控整流电路,三相桥式整流的工作原理可参见“电力电子技术”的有关教材。 五、实验内容和要求 1.按图接好主回路。 2.接好触发脉冲的控制回路。将给定器输出Ug接至MCL-33面板的Uct端,将MCL-33 面板上的Ublf接地。 打开MCL-32的钥匙开关,检查晶闸管的脉冲是否正常。 (1)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o的幅度相同的双脉冲。 (2)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1”脉冲超前“2”脉冲600,则相序正确,否则,应调整输入电源。 (3)用万用表记录α=0O、30O、60O、90O、120O时对应的Uct(Ug)的值。在做下 3.三相桥式全控整流电路 (1)电路带电阻负载(灯箱)的情况下:调节Uct(Ug),使α在30o~90o范围内,用示波器观察记录α=30O、60O、90O时,整流电压u d=f(t),晶闸管两端电压u VT=f(t)的波形,并用万用表记录相应的Ud和交流输入电压U2数值。

最新三相桥式全控整流电路课程设计

三相桥式全控整流电路课程设计

电力电子技术课程设计说明书三相桥式全控整流电路 系、部:电气与信息工程系 专业:自动化

目录 第1章绪论 0 1. 电子技术的发展趋势 (1) 2. 本人的主要工作 (2) 第2章主电路的设计及原理 (2) 1. 总体框图 (3) 2. 主电路的设计原理 (3) 2.1带电阻负载时 (5) 2.2阻感负载时 (7) 3. 触发电路 (8) 4. 保护电路 (9) 5. 参数计算 (10) 5.1 整流变压器的选择 (10) 5.2 晶闸管的选择 (11) 5.3 输出的定量分析 (11) 第3章 MATLAB的仿真 (13) 1. MA TLAB仿真软件的简介 (13) 2. 仿真模拟图 (13) 3. 仿真结果 (13) 第4章结束语 (16) 参考文献 (17) 第1章绪论

1. 电子技术的发展趋势 当今世界能源消耗增长十分迅速。目前,在所有能源中电力能源约占40%,而电力能源中有40%是经过电力电子设备的转换才到使用者手中。预计十年后,电力能源中的80%要经过电力电子设备的转换,电力电子技术在21世纪将起到更大作用。 电力电子技术是利用电力电子器件对电能进行控制和转换的学科。它包括电力电子器件、变流电路和控制电路三个部分,是电力、电子、控制三大电气工程技术领域之间的交叉学科。随着科学技术的发展,电力电子技术由于和现代控制理论、材料科学、电机工程、微电子技术等许多领域密切相关,已逐步发展成为一门多学科相互渗透的综合性技术学科。 电力电子技术作为一门高技术学科,由于其在节能、减小环境污染、改善工作条件等方面有着重要的作用,现在已广泛的应用于传统工业(例如:电力、机械、交通、化工、冶金、轻纺等)和高新技术产业(例如:航天、现代化通信等)。下面着重讨论电力电子技术在电力系统中的一些应用。 在高压直流输电(HVDC)方面的应用 直流输电在技术方面有许多优点:(1)不存在系统稳定问题,可实现电网的非同期互联;(2)可以限制短路电流;(3)没有电容充电电流;(4)线路有功损耗小;(5)输送相同功率时,线路造价低;(6)调节速度快,运行可靠;(7)适宜于海下输电。随着大功率电子器件(如:可关断的晶闸管、MOS控制的晶闸管、绝缘门极双极性三极管等)开断能力不断提高,新的大功率电力电子器件的出现和投入应用,高压直流输电设备的性能必将进一步得以改善,设备结构得以简化,从而减少换流站的占地面积、降低工程造价。 在柔性交流输电系统(FACTS)中的应用 20世纪80年代中期,美国电力科学研究院(EPRI)N.G.Hingorani博士首次提出柔性交流输电技术的概念。近年来柔性交流输电技术在世界上发展迅速,已被国内外一些权威的输电工作者预测确定为“未来输电系统新时代的三项支持技术(柔性输电技术、先进的控制中心技术和综合自动化技术)之一”。现代电力电子技术、控制理论和通讯技术的发展为FACTS的发展提供了条件。采用IGBT

三相半波可控整流电路__课程设计..

《电力电子技术课程》课程设计说明书 课程名称:三相半波可控整流电路设计 学院:电气与信息工程学院 专业:电气工程及其自动化 学生姓名:黄亚娟 学号: 10401240302 指导教师:曹志平 时间: 2013年6月9日

摘要 整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。 关键词:整流,变压,触发,晶闸管,额定。

目录 摘要 (2) 目录 (3) 引言 (4) 一、三相半波整流电路原理分析 (4) 1.1.1 纯电阻性半波整流电路原理组成 (4) 1.2.1主电路设计 (4) 1.3.1 电路原理波形分析 (5) 二、三相半波整流电路数量分析 (7) 2.1.1 输出值的计算 (7) 2.2.1晶闸管的有效值 (8) 三、器件额定参数计算 (8) 3.1.1 变压器参数 (8) 3.2.1 晶闸管参数 (8) 3.3.1 变压器容量 (8) 3.4.1 晶闸管额定电压 (8) 3.5.1 晶闸管额定电流 (8) 四、MATLAB软件介绍 (9) 五、MATLAB软件电脑仿真………………………………………………… 1 1 5.1.1 MATLAB软件运用电脑仿真电路模型 (11) 5.2.1纯阻性负载三相半波可控整流电路仿真图像 (11) 5.3.1 仿真结果和实际原理分析比较 (12) 六、心得体会 (12) 七、参考文献 (13) 八致谢 (14)

三相半波可控整流电路

《电力电子技术》课程设计说明书三相半波可控整流电路 学院:电气与信息工程学院 学生姓名:XXX 指导教师:XXX 职称副教授 专业:电气工程及其自动化 班级:XXXX班 学号: 完成时间:2015年06月

摘要 三相整流电路有三相半波整流电路、三相桥式半控整流电路和三相桥式全控整流电路,由于整流电路涉及到交流信号、直流信号以及触发信号,同时包含晶闸管、电容、电感、电阻等多种元件,采用常规电路分析方法显得相当繁琐,高压情况下实验也难顺利进行。Matlab提供的可视化仿真工具Simtlink可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。 本文主要介绍三相半波可控整流电路的主电路、触发电路和保护电路的原理及电路仿真图,输入电压为三相交流线电压380V,通过降压变压器后由晶闸管转换为直流。触发电路控制晶闸管的导通,通过调节脉冲的触发角可得到不同的输出电压。本文利用Simulink对三相半波整流电路进行建模,对不同控制角、故障情况下进行了仿真分析,在触发角的调节范围为97°~150°时输出电压为0~100V。既进一步加深了三相半波整流电路的理论,同时也为现代电力电子实验教学奠定良好的实验基础。 关键词:三相半波整流电路;晶闸管;MATLAB仿真

目录 1 设计目的及要求 (1) 1.1 设计目的 (1) 1.2 设计要求 (1) 1.2.1 设计课题 (1) 1.2.2 设计内容 (1) 2 主电路设计 (2) 2.1 主电路原理分析 (2) 2.2 触发角分析 (3) 2.3 主要元器件选择 (3) 2.3.1 晶闸管参数计算与选择 (3) 2.3.2 触发电路芯片选择 (3) 3 触发电路的设计 (5) 4 保护电路的设计 (6) 4.1 过压保护 (6) 4.1.1 过压的原因 (6) 4.1.2 过压保护的措施 (6) 4.2 过流保护 (6) 4.2.1 过流的原因 (6) 4.2.2 过流保护的措施 (7) 4.3 保护电路选择 (7) 5 MATLAB仿真 (8) 5.1 仿真软件MATLAB介绍 (8) 5.1.1 MATLAB简介 (8) 5.1.2 Simulink简介 (8) 5.1.3 Simulink启动与退出 (9) 5.2 MATLAB仿真模型 (10) 5.3 MATLAB仿真结果及分析 (10) 心得体会 (12)

电力电子三相桥式全控整流电路课程设计讲解

三相桥式全控整流电路的设计 摘要:整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。 关键词:整流变压触发过电压保护电路。 1前言 整流电路技术在工业生产上应用极广。如调压调速直流电源、电解及电镀的直流电源等。整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。 整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。 把交流电变换成大小可调的单一方向直流电的过程称为可控整流。整流器的输入端一般接在交流电网上。为了适应负载对电源电压大小的要求,或者为了提高可控整流装置的功率因数,一般可在输入端加接整流变压器,把一次电压U1,变成二次电压

单相半波可控整流电路实验

单相半波可控整流电路实验

————————————————————————————————作者:————————————————————————————————日期:

重庆三峡学院 实验报告 课程名称电力电子技术 实验名称单相半波可控整流电路实验 实验类型验证学时 2 系别电信学院专业电气工程及自动化 年级班别2015级2班开出学期2016-2017下期 学生姓名袁志军学号201507144228 实验教师谢辉成绩 2017 年 4 月 30 日

填写说明 1、基本内容 (1)实验序号、名称(实验一:xxx);(2)实验目的;(3)实验原理;(4)主要仪器设备器件、药品、材料;(5)实验内容; (6)实验方法及步骤(7)数据处理或分析讨论 2、要求: (1)用钢笔书写(绘图用铅笔) (2)凡需用坐标纸作图的应使用坐标纸进行规范作图 实验三单相半波可控整流电路实验 一、实验目的 (1)掌握单结晶体管触发电路的调试步骤和方法。 (2)掌握单相半波可控整流电路在电阻负载及电阻电感性负载时的工作。 (3)了解续流二极管的作用。 二、实验所需挂件及附件 型号备注 序 号 1 DJK01 电源控制屏该控制屏包含“三相电源输出”,“励磁电源”等几个 模块。 2 DJK02 晶闸管主电路该挂件包含“晶闸管”,以及“电感”等几个模块。 3 DJK03-1 晶闸管触发 该挂件包含“单结晶体管触发电路”模块。 电路 4 DJK06 给定及实验器 该挂件包含“二极管”等几个模块。 件 5 D42 三相可调电阻 6 双踪示波器自备 7 万用表自备 三、实验线路及原理 将DJK03-1挂件上的单结晶体管触发电路的输出端“G”和“K”接到DJK02挂件面板上的反桥中的任意一个晶闸管的门极和阴极,并将相应的触发脉冲的钮子开关关闭(防止误触发),图中的R负载用D42三相可调电阻,将两个900Ω接成并联形式。二极管VD1和开关S1均在DJK06挂件上,电感L d在DJK02面板上,有100mH、200mH、700mH 三档可供选择,本实验中选用700mH。直流电压表及直流电流表从DJK02挂件上得到。 四、实验方法 (1)单结晶体管触发电路的调试 将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V,用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用双踪示波器观察单结晶体管触发电路中整流输出的梯形波电压、锯齿波电压及单结晶体管触发电路输出电压等波形。调节移相电位器RP1,观察锯齿波的周期变化及输出脉冲波形的移相范围能否在30°~170°范围内移动?

三相全控桥式整流电路

课程设计任务书 学生姓名:专业班级:自动化0602班 指导教师:工作单位:自动化学院 题目:三相桥式全控整流电路的设计(带反电动势负载) 初始条件: 1.反电动势负载,E=60V,电阻R=10Ω,电感L无穷大使负载电流连续; 2.U2=220V,晶闸管触发角α=30°; 3.其他器件如晶闸管自己选取。 要求完成的主要任务:(包括课程设计工作得及其技术要求,以及说明书撰写待具体要求) 1.主电路的设计及原理说明; 2.触发电路设计,每个开关器件触发次序及相位分析; 3.保护电路的设计,过流保护,过电压保护原理分析; 4.各参数的计算(输出平均电压,输出平均电流,输出有功功率计算,输出波形分析); 5.应用举例; 6.心得小结。 时间安排: 7月6日查阅资料 7月7日方案设计 7月8日- 9日馔写电力电子课程设计报告 7月10日提交报告,答辩 指导教师签名:年月日 系主任(或责任教师)签名:年月日

摘要 整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。 关键词:整流,变压,触发,过电压,保护电路。

基于Simulink的三相半波可控整流电路仿真

基于Simulink的三相半波可控整流电路仿真 一、实验目的: 通过Simulink进行三相半波可控整流电路仿真模型的建立,进一步理解其电路原理。并观察在不同负载情况下,改变晶闸管控制角α对电路输出的影响。 二、实验原理: 三相半波可控整流电路如图1所示。电路由三相交流电源、晶闸管、负载及触发电路组成。改变晶闸管的控制角可以调节输出直流电压和电流的大小。此次仿真实验过程分为建立仿真模型、设置模型参数和观察仿真结果。 图1 三、实验记录: (一)建立仿真模型: 在Simulink中将电路元件按相半波可控整流电路的原理图连接起来组成仿真电路。如图2所示。 图2 (二)设置模型参数: 设置三相电源电压幅值为220V,频率为50Hz,晶闸管采用脉冲触发器间隔120°交替触发,负载阻性时取R=5Ω,阻感负载时取R=5Ω,L=。 (四)模型仿真结果: 1、电阻负载(R=5Ω) (1)α=0° 波形一:三相电压;波形二:三相电流;波形三:负载电流;波形四:负载电压;波形五:VT1两端电压;波形六:触发脉冲。

(2)α=30° 波形一:三相电压;波形二:三相电流;波形三:负载电流;波形四:负载电压;波形五:VT1两端电压;波形六:触发脉冲。 (3)α=60° 波形一:三相电压;波形二:三相电流;波形三:负载电流;波形四:负载电压;波形五:VT1两端电压;波形六:触发脉冲。

2、阻感负载(R=5Ω,L=0.02H) (1)α=0° 波形一:三相电压;波形二:三相电流;波形三:负载电流;波形四:负载电压;波形五:VT1两端电压;波形六:触发脉冲。 (2)α=30° 波形一:三相电压;波形二:三相电流;波形三:负载电流;波形四:负载电压;波形五:VT1两端电压;波形六:触发脉冲。

相关文档
最新文档