考研数学三部分重要知识点归纳仅推荐给中等数学水平的考生

考研数学三部分重要知识点归纳仅推荐给中等数学水平的考生
考研数学三部分重要知识点归纳仅推荐给中等数学水平的考生

高等数学部分易混淆概念 第一章:函数与极限

一、数列极限大小的判断 例1:判断命题是否正确. 若()n

n x y n N <>,且序列,n n x y 的极限存在,lim ,lim ,n n n n x A y B A B →∞

→∞

==<则

解答:不正确.在题设下只能保证A B ≤,

不能保证A B <.例如:11

,1

n n x y n n ==+,,n n x y n

n n n x y →∞

→∞

==.

例2.选择题 设n

n n x z y ≤≤,且lim()0,lim n n n n n y x z →∞

→∞

-=则( )

A .存在且等于零 B. 存在但不一定等于零 C .不一定存在 D. 一定不存在 答:选项C 正确 分析:若lim lim 0n

n n n x y a →∞

→∞

==≠,由夹逼定理可得lim 0n n z a →∞

=≠,故不选A 与D.

取11

(1),(1),(1)n n n n

n n x y z n n =--=-+=-,则n n n x z y ≤≤,且lim()0n n n y x →∞-=,但lim n n z →∞ 不

存在,所以B 选项不正确,因此选C . 例3.设,n

n x a y ≤≤且lim()0,{}{}n n n n n y x x y →∞

-=则与( )

A .都收敛于a B. 都收敛,但不一定收敛于a C .可能收敛,也可能发散 D. 都发散 答:选项A 正确. 分析:由于,n

n x a y ≤≤,得0n n n a x y x ≤-≤-,又由lim()0n n n y x →∞

-=及夹逼定理得

lim()0n n a x →∞

-=

因此,lim n

n x a →∞

=,再利用lim()0n n n y x →∞

-=得lim n n y a →∞

=.所以选项A .

二、无界与无穷大

无界:设函数

()f x 的定义域为D ,如果存在正数M ,使得

()f x M

x X D ≤?∈?

则称函数

()f x 在X 上有界,如果这样的M 不存在,就成函数()f x 在X 上无界;也就是说如果对于任

何正数M ,总存在1x X ∈,使

1()f x M >,那么函数()f x 在X 上无界.

无穷大:设函数

()f x 在0x 的某一去心邻域内有定义(或x 大于某一正数时有定义)

.如果对于任意给定的正数M (不论它多么大),总存在正数δ(或正数

X )

,只要x 适合不等式00x x δ<-<(或

x X >),对应的函数值()f x 总满足不等式

()f x M >

则称函数

()f x 为当0x x →(或x →∞)时的无穷大.

例4:下列叙述正确的是: ② ① 如果()f x 在0x 某邻域内无界,则0

lim ()x x f x →=∞

② 如果

lim ()x x f x →=∞,则()f x 在0x 某邻域内无界

解析:举反例说明.设

11()sin f x x x =,

令11

,,22

n n x y n n πππ==+,当n →+∞时,0,0n n x y →→,而

lim ()lim (2)2

n n n f x n π

π→+∞→+∞=+=+∞ lim ()0n n f y →+∞

=

()f x 在0x =邻域无界,但0x →时()f x 不是无穷大量,则①不正确.

由定义,无穷大必无界,故②正确. 结论:无穷大必无界,而无界未必无穷大.

三、函数极限不存在≠极限是无穷大

当0x x →(或x →∞)时的无穷大的函数

()f x ,按函数极限定义来说,极限是不存在的,但是为

了便于叙述函数的性态,我们也说“函数的极限是无穷大”.但极限不存在并不代表其极限是无穷大.

例5:函数10()0

010

x x f x x x x -

==??+>?

,当0x →时()f x 的极限不存在.

四、如果

lim ()0x x f x →=不能退出0

1

lim

()

x x f x →=∞ 例6:()0

x x f x x ?=?

?为有理数为无理数,则0lim ()0x x f x →=,但由于1

()

f x 在0x =的任一邻域的无理点均没有

定义,故无法讨论

1

()

f x 在0x =的极限. 结论:如果

lim ()0x x f x →=,且()f x 在0x 的某一去心邻域内满足()0f x ≠,则0

1

lim

()

x x f x →=∞.反之,

()f x 为无穷大,则

1

()

f x 为无穷小。 五、求函数在某点处极限时要注意其左右极限是否相等,求无穷大处极限要注意自变量取正无穷大和负无

穷大时极限是否相等。 例7.求极限10

lim ,lim x

x

x x e

e →∞

解:

lim ,lim 0x x x x e e →+∞

→-∞

=+∞=,因而x →∞时x e 极限不存在。

1100lim 0,lim x x x x e e →-

→=

==+∞,因而0x →时1x

e 极限不存在。

六、使用等价无穷小求极限时要注意:

(1)乘除运算中可以使用等价无穷小因子替换,加减运算中由于用等价无穷小替换是有条件的,故统一不用。这时,一般可以用泰勒公式来求极限。

(2)注意等价无穷小的条件,即在哪一点可以用等价无穷小因子替换 例8

:求极限0

x →

分析一:若将2

写成1)1)+,再用等价无穷小替换就会导致

错误。

分析二:用泰勒公式

22222211()122(1())22!

11()122(1())222!1

()

4

x x x x x x x x οοο-+++-+-++-=-+ 原式2221

()

144

x x x ο-+==-。

例9:求极限sin lim x x

x

π→

解:本题切忌将sin x 用x 等价代换,导致结果为1。

sin sin lim 0x x x πππ

→== 七、函数连续性的判断

(1)设

()f x 在0x x =间断,()g x 在0x x =连续,则()()f x g x ±在0x x =间断。而

2()(),(),()f x g x f x f x ?在0x x =可能连续。

例10.设

()1

x f x x ≠?=?

=?,()sin g x x =,则()f x 在0x =间断,()g x 在0x =连续,()()()sin 0f x g x f x x ?=?=在0x =连续。

若设

10()1

x f x x ≥?=?

-

()()1f x f x =≡在0x =均连续。

(2)“

()f x 在0x 点连续”是“()f x 在0x 点连续”的充分不必要条件。

分析:由“若

lim ()x x f x a →=,则0

lim ()x x f x a →=”可得“如果0

0lim ()()x x f x f x →=,则

0lim ()()x x f x f x →=”

,因此,()f x 在0x 点连续,则()f x 在0x 点连续。再由例10可得,()f x 在0x 点连续并不能推出

()f x 在0x 点连续。

(3)()x ?在0x x =连续,()f u 在00()u u x ?==连续,则(())f x ?在0x x =连续。其余结论均

不一定成立。

第二章 导数与微分

一、函数可导性与连续性的关系

可导必连续,连续不一定可导。 例11.()f x x =在0x =连读,在0x =处不可导。

二、

()f x 与()f x 可导性的关系

(1)设

0()0f x ≠,()f x 在0x x =连续,则()f x 在0x x =可导是()f x 在0x x =可导的充要条

件。

(2)设

0()0f x =,则0()0f x '=是()f x 在0x x =可导的充要条件。

三、一元函数可导函数与不可导函数乘积可导性的讨论

设()()()F x g x x ?=,()x ?在x a =连续,但不可导,又()g a '存在,则()0g a =是()F x 在x a =可导的充要条件。

分析:若()0g a =,由定义

()()()()()()()()

()lim

lim lim ()()()x a x a x a F x F a g x x g a a g x g a F a x g a a x a x a x a

????→→→---''====---

反之,若()F a '存在,则必有()0g a =。用反证法,假设()0g a ≠,则由商的求导法则知()

()()

F x x g x ?=在x a =可导,与假设矛盾。

利用上述结论,我们可以判断函数中带有绝对值函数的可导性。 四、在某点存在左右导数时原函数的性质

(1)设

()f x 在0x x =处存在左、右导数,若相等则()f x 在0x x =处可导;若不等,则()f x 在

0x x =连续。

(2)如果

()f x 在(,)a b 内连续,0(,)x a b ∈,且设00lim ()lim (),x x x x f x f x m →+

→-

''==则()f x 在

0x x =处必可导且0()f x m '=。

若没有如果

()f x 在(,)a b 内连续的条件,即设00lim ()lim ()x x x x f x f x a →+

→-

''==,则得不到任何结论。

例11.

2

()0

x x f x x

x +>?=?

≤?,显然设00lim ()lim ()1x x f x f x →+→-''==,但0lim ()2x f x →+=,

0lim ()0x f x →-

=,因此极限0

lim ()x f x →不存在,从而()f x 在0x =处不连续不可导。

第三章 微分中值定理与导数的应用

一、若

lim (),(0,lim ()x x f x A A f x →+∞

→+∞

'=≠∞=∞可以取), 则

lim ()0x f x A →+∞

'=≠,不妨设0A >,则0,()2

A

X x X f x '?>≥>

时,,再由微分中值定理 ()()()()

(,(,))f x f X f x X x X X x ξξ'=+->∈

()()()()lim ()2

x A

f x f X x X x X f x →+∞

?

≥+

->?=+∞

同理,当0A <时,

lim ()x f x →+∞

=-∞

lim (),0,()1x f x X x X f x →+∞

''=+∞??>≥>时,,再由微分中值定理

()()()()

(,(,))f x f X f x X x X X x ξξ'=+->∈

()()()()lim ()x f x f X x X x X f x →+∞

?

≥+->?=+∞

同理可证

lim ()x f x →+∞

'=-∞时,必有lim ()x f x →+∞

=-∞

第八章 多元函数微分法及其应用

8.1多元函数的基本概念 1.

ε?,

12

,0

δδ?,使得当

01

x x δ-,

02

y y δ-且

0,0(,)()

x y x y ≠时,有

(,)f x y A ε-,那么00

lim (,)x x y y f x y A →→=成立了吗?

成立,与原来的极限差异只是描述动点

(,)p x y 与定点000(,)p x y 的接近程度的方法不一样,这里采

用的是点的矩形邻域, ,而不是常用的圆邻域,事实上这两种定义是等价的. 2. 若上题条件中0,0(,)()x y x y ≠的条件略去,函数(,)f x y 就在0,0()x y 连续吗?为什么?

如果0,0(,)()x y x y ≠条件没有,说明0,0()f x y 有定义,并且00(,)x y 包含在该点的任何邻域内,由

此对

ε?,都有

(,)f x y A ε

-,从而

0,0()

A f x y =,因此我们得到

00

lim (,)x x y y f x y A →→=0,0()f x y =,即函数在0,0()x y 点连续.

3. 多元函数的极限计算可以用洛必塔法则吗?为什么?

不可以,因为洛必塔法则的理论基础是柯西中值定理.

8.2 偏导数 1. 已知

2(,)y f x y e x y +=,求(,)f x y

令x y u +=,y

e v =那么解出x ,y 得ln ln y v

x u v =??=-?

,

所以22(,)(,).(,)(ln ).ln f u v x u v y u v u v v ==- 或者2(,)(ln ).ln f u v u v y =-

8.3全微分极其应用

1.写出多元函数连续,偏导存在,可微之间的关系 偏导数x f ', y f '连续?Z 可微? (,)Z f x y =连续? (,)f x y 极限存在 偏导数

x f ', y f '连续?偏导数x f ', y f '存在

2. 判断二元函数

(,)f x y

=0,00,0(,)()0(,)()

x y x y x y x y ≠≠?

在原点处是否可微.

对于函数

(,)f x y ,先计算两个偏导数:

00(,0)(0,0)00

(0,0)lim lim 0x x x f x f f x

x ?→?→?--'===??

0(0,)(0,0)00

(0,0)lim

lim 0y x x f y f f y y

?→?→?--'===??

000

5

22

6

(,)(0,0)(0,0)(0,0)lim

lim

()()x x x x y y y y f x y f f x f y

x y

x y →→→→''??--?-???=???+???

令y

k x ?=?,则上式为213

5550

0226

6

3

()lim

lim 0(1)(1)

x x k x k x k x

k ?→?→?=

?=+?+

因而(,)f x y 在原点处可微.

8.4多元复合函数的求导法则 1. 设(

)xy

z

f x y

=+,f 可微,求dz .

2

2

2

22

()()()

()()()()(

)()()()xy xy xy x y d xy xyd x y dz f d f x y x y x y x y xy y xy y

f dx f dy

x y x y x y x y +-+''==++++''=+++++

8.5隐函数的求导

1. 设(,)x x y z =,(,)y y x z =,(,)z z x y =都是由方程(,,)0F x y z =所确定的具有连续偏导数

的函数,证明

..1x y z

y z x

???=-???. 对于方程

(,,)0F x y z =,如果他满足隐函数条件.例如,具有连续偏导数且0x F '≠,则由方程

(,,)0F x y z =可以确定函数(,)x x y z =,即x 是y ,z 的函数,而y ,z 是自变量,此时具有偏导

数y x F x

y F '?=-

?',z x F x z

F '?=-?'

同理,

z y F y

z F '?=-?'

,所以

..1x y z

y z x

???=-???.

8.6多元函数的极值及其求法 1.设

(,)f x y 在点000(,)p x y 处具有偏导数,若(,)0x f x y '=,(,)0y f x y '=则函数(,)f x y 在该点

取得极值,命题是否正确?

不正确,见多元函数极值存在的充分必要条件.

2.如果二元连续函数在有界闭区域内有惟一的极小值点,且无极大值,那么该函数是否在该点取得最小值? 不一定,对于一元函数来说上述结论是成立的,但对于多元函数,情况较为复杂,一般来说结论不能简单的推广。

例如,二元函数(,)Z

f x y =22333x y x =+-,22(16)x y +≤

由二元函数极值判别法:

2630z

x x x

?=-=?,解得 10x =,22x =, 60z

y y

?==?, 解得 0y = 故得驻点1

(0,0)M =,2(2,0)M =

2266z

A x x

?==-?,20z B x y ?=

=??, 226z C y ?==?

236(1)AC B x -=-

由于 2

(0,0)

0AC B -,2

(2,0)

0AC B -,

以及

(0,0)

0A ,所以1(0,0)M =,是函数的惟一极小值点,但是(4,0)16

(0,0)f f =-,

(0,0)f 不是(,)f x y 在D 上的最小值.

第十一章 无穷级数

11.1常数项级数的概念和性质

1. 若通项0n

a →

,则级数

2121

1

211

11()2n n n n n n n

n a n

=∞

=∞

==≤

+∑收敛,这种说法是否正确?否

2. 若级数

1

n

n a

=∑加括号后所成的新级数发散,则原级数必定发散,而加括号后所的级数收敛,则无

法判定原级数的敛散性,这种说法是否正确?正确

11.2常数项级数的审敛法 1. 若级数

1n

n u

=∑收敛,则级数

21

n

n u

=∑一定收敛。判断这句话是否正确?

不正确,如1

n

n ∞

=2

1

n

u n

=

2. 若正项级数

1

n n a ∞

=∑

收敛,判断级数1

n ∞

=的敛散性。

收敛

211()2n a n ≤+,由于1n n a ∞=∑收敛,211

n n

∞=∑

收敛,于是

1

n ∞

=收敛。

3. 收敛则一定绝对收敛,绝对收敛不一定收敛。

1、行列式

1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;

2. 代数余子式的性质:

①、ij A 和ij a 的大小无关;

②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-

4. 设n 行列式D :

将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2

1(1)

n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)2

2(1)n n D D -=-;

将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;

将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:

①、主对角行列式:主对角元素的乘积;

②、副对角行列式:副对角元素的乘积(1)2

(1)

n n -? -;

③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2

(1)n n -? -;

⑤、拉普拉斯展开式:

A O A C A

B C

B O B

==、

(1)m n C

A O

A A

B B O

B C

==-

⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;

6. 对于n 阶行列式A ,恒有:1(1)n

n

k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;

7. 证明0A =的方法:

①、A A =-; ②、反证法;

③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;

2、矩阵

1.

A 是n 阶可逆矩阵:

?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =只有零解;

?n b R ?∈,Ax b =总有唯一解; ?A 与E 等价;

?A 可表示成若干个初等矩阵的乘积;

?A 的特征值全不为0; ?T A A 是正定矩阵;

?A 的行(列)向量组是n R 的一组基; ?A 是n R 中某两组基的过渡矩阵;

2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;

3.

1**111**()()()()()()T T T T A A A A A A ----=== ***

111()()()T T T

AB B A AB B A AB B A ---===

4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;

5. 关于分块矩阵的重要结论,其中均A 、B 可逆:

若12

s A A A A ?? ?

?= ? ??

?

,则: Ⅰ、12

s A A A A =;

Ⅱ、1111

2

1s A A A A ----?? ?

?= ? ? ??

?

; ②、1

11A O A O O B O B ---??

??

=

? ?????

;(主对角分块) ③、1

11

O A O B B O A O ---??

??= ? ?????

;(副对角分块) ④、11111A C A A CB O B O

B -----??

-??=

? ?????

;(拉普拉斯) ⑤、1111

1A O A O C B B CA B -----??

??= ? ?-????

;(拉普拉斯) 3、矩阵的初等变换与线性方程组

1. 一个m n ?矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:

r

m n

E O

F O

O ???

= ???; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;

对于同型矩阵A 、B ,若()()r A r B A B = ? ; 2. 行最简形矩阵:

①、只能通过初等行变换获得; ②、每行首个非0元素必须为1;

③、每行首个非0元素所在列的其他元素必须为0;

3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)

①、若(,)(,)r

A E E X ,则A 可逆,且1X A -=;

②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)c

A B E A B - ~ ; ③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)r

A b E x ,则A 可逆,且1x A b -=;

4. 初等矩阵和对角矩阵的概念:

①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;

②、12

n ??

?

?Λ= ? ??

?

λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,i

λ乘A 的各列元

素;

③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1

111111-???? ? ?

= ? ? ? ?????

④、倍乘某行或某列,符号(())E i k ,且11

(())(())E i k E i k

-=,例如:

11

11(0)11k k k -????

?

? ?=≠ ? ? ? ???

?

?

; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:

1

11

11(0)11k k k --???? ? ?=≠ ? ? ? ?????

; 5. 矩阵秩的基本性质:

①、0()min(,)m n r A m n ?≤≤;

②、()()T r A r A =; ③、若A

B ,则()()r A r B =;

④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)

⑧、如果A 是m n ?矩阵,B 是n s ?矩阵,且0AB =,则:(※)

Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);

Ⅱ、()()r A r B n +≤

⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;

6. 三种特殊矩阵的方幂:

①、秩为1的矩阵:一定可以分解为列矩阵(向量)?行矩阵(向量)的形式,再采用结合律;

②、型如101001a c b ??

?

? ???

的矩阵:利用二项展开式;

项展开

0111

1110

()n n

n

n m n m

m

n n n n

m m n m

n

n

n

n

n

n m a b C a C a b C a

b C a b

C b C a b -----=+=++

++

++=∑; 注:Ⅰ、()n a b +展开后有1n +项;

Ⅱ、0(1)(1)!

1123!()!

--+=

=

==-m n

n n n n n n m n C C C m m n m

Ⅲ、组合的性质:1

1

110

2---+-===+==∑n

m n m

m m m r

n

r r n n n n n

n

n n r C C C C C C

rC nC ;

③、利用特征值和相似对角化: 7. 伴随矩阵:

①、伴随矩阵的秩:*

()()1

()10()1

n

r A n r A r A n r A n = ??

==-??<-?

; ②、伴随矩阵的特征值:*1*(,)A

A

AX X A A A A X X λλ

λ

- == ? =

③、*1A A A -=、1

*n A A

-=

8. 关于A 矩阵秩的描述:

①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)

②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;

9. 线性方程组:Ax b =,其中A 为m n ?矩阵,则:

①、m 与方程的个数相同,即方程组Ax b =有m 个方程;

②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:

①、对增广矩阵B 进行初等行变换(只能使用初等行变换);

②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;

11. 由n 个未知数m 个方程的方程组构成n 元线性方程:

①、1111221121122222

1122n n n n m m nm n n

a x a x a x

b a x a x a x b a x a x a x b +++= ??+++= ????+++=?;

②、111211121

22

22212

n n m m mn m m a a a x b a a a x b Ax b a a a x b ?????? ??? ? ??? ?

=?= ??? ?

??? ???????

(向量方程,A 为m n ?矩阵,m 个方程,n 个未知数)

③、()1212

n n x x a a a x β?? ? ?= ? ???(全部按列分块,其中12n b b b β?? ? ?= ? ???

); ④、1122n n a x a x a x β+++=(线性表出)

⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)

4、向量组的线性相关性

1.

m 个n 维列向量所组成的向量组A :12,,

,m ααα构成n m ?矩阵12(,,,)m A =ααα;

m 个n 维行向量所组成的向量组B :12,,

,T T

T

m βββ构成m n ?矩阵12T T T m B βββ??

? ?= ? ? ???

含有有限个向量的有序向量组与矩阵一一对应;

2. ①、向量组的线性相关、无关 0Ax ?=有、无非零解;(齐次线性方程组)

②、向量的线性表出 Ax b ?=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ?=是否有解;(矩阵方程)

3. 矩阵m n A ?与l n B ?行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;

(101P 例14) 4. ()()T r A A r A =;(101P 例15) 5.

n 维向量线性相关的几何意义:

①、α线性相关

?0α=; ②、,αβ线性相关 ?,αβ坐标成比例或共线(平行);

③、,,αβγ线性相关 ?,,αβγ共面;

6. 线性相关与无关的两套定理:

若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;

若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为

对偶)

若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :

若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减)

简言之:无关组延长后仍无关,反之,不确定;

7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二

版74P 定理7);

向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示

AX B ?=有解;

()(,)r A r A B ?=(85P 定理2)

向量组A 能由向量组B 等价()()(,)r A r B r A B ? ==(85P 定理2推论)

8. 方阵A 可逆?存在有限个初等矩阵12,,,l P P P ,使12

l A P P P =;

①、矩阵行等价:~r

A B PA B ?=(左乘,P 可逆)0Ax ?=与0Bx =同解 ②、矩阵列等价:~c

A B AQ B ?=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ?=(P 、Q 可逆); 9. 对于矩阵m n A ?与l n B ?:

①、若A 与B 行等价,则A 与B 的行秩相等;

②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;

③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C ???=,则:

①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;

②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)

11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证

明;

①、0ABx = 只有零解0Bx ? =只有零解;

②、0Bx = 有非零解0ABx ? =一定存在非零解; 12. 设向量组12:,,,n r r B b b b ?可由向量组12:,,,n s s A a a a ?线性表示为:(110P 题19结论)

1212(,,

,)(,,

,)r s b b b a a a K =(B AK =)

其中K 为s r ?,且A 线性无关,则B 组线性无关()r K r ?=;(B 与K 的列向量组具

有相同线性相关性)

(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)

注:当r s =时,K 为方阵,可当作定理使用;

13. ①、对矩阵m n A ?,存在n m Q ?,m AQ E = ()r A m ?=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ?,存在n m P ?,n PA E = ()r A n ?=、P 的行向量线性无关; 14. 12,,,s ααα线性相关

?存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)

?1212(,,

,)0s s x x

x ααα?? ? ?= ? ???

有非零解,即0Ax =有非零解;

?12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;

15. 设m n ?的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:

()r S n r =-; 16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线

性无关;(111P 题33结论)

5、相似矩阵和二次型

1. 正交矩阵T A A E ?=或1T A A -=(定义),性质:

①、A 的列向量都是单位向量,且两两正交,即1(,1,2,

)0

T i j i j a a i j n i j

=?==?

≠?;

②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a

11b a =;

1222111[,]

[,]

b a b a b b b =-

121121112211[,][,]

[,]

[,][,]

[,]

r r r r r r r r r b a b a b a b a b b b b b b b b b ----=-

---

;

3. 对于普通方阵,不同特征值对应的特征向量线性无关;

对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ?A 经过初等变换得到B ;

?=PAQ B ,P 、Q 可逆; ()()?=r A r B ,A 、B 同型;

②、A 与B 合同 ?=T C AC B ,其中可逆; ?T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-?=P AP B ; 5. 相似一定合同、合同未必相似;

若C 为正交矩阵,则T C AC B =?A B ,(合同、相似的约束条件不同,相似的更严格);

6. A 为对称阵,则A 为二次型矩阵;

7. n 元二次型T x Ax 为正定:

A ?的正惯性指数为n ;

A ?与E 合同,即存在可逆矩阵C ,使T C AC E =; A ?的所有特征值均为正数; A ?的各阶顺序主子式均大于0; 0,0ii a A ?>>;(必要条件)

考研数学公式大全(考研必备)

高等数学公式篇 ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 导数公式: 基本积分 a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222????+-+--=-+++++=+-= ==-C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n ln 22)ln(221 cos sin 22222 2222222 22 2 22 2 π π

考研数学知识点总结

考研数学考点与题型归类分析总结 1高数部分 1.1高数第一章《函数、极限、连续》 求极限题最常用的解题方向: 1.利用等价无穷小; 2.利用洛必达法则 型和 ∞ ∞ 型直接用洛必达法则 ∞ 0、0∞、∞1型先转化为 型或 ∞ ∞ 型,再使用洛比达法则; 3.利用重要极限,包括1 sin lim = → x x x 、e x x x = + → 1 ) 1( lim、e x x x = + ∞ → ) 1(1 lim; 4.夹逼定理。 1.2高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》 第三章《不定积分》提醒:不定积分?+ =C x F dx x f) ( ) (中的积分常数C容易被忽略,而考试时如果在答案中少写这个C会失一分。所以可以这样加深印象:定积分?dx x f) (的结果可以写为F(x)+1,1指的就是那一分,把它折弯后就是?+ =C x F dx x f) ( ) (中的那个C,漏掉了C也就漏掉了这1分。 第四章《定积分及广义积分》解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下限上做文章: 对于?-a a dx x f) (型定积分,若f(x)是奇函数则有?-a a dx x f) (=0; 若f(x)为偶函数则有?-a a dx x f) (=2?a dx x f ) (; 对于?20)( π dx x f型积分,f(x)一般含三角函数,此时用x t- = 2 π 的代换是常用方法。 所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利用性质0 = ?-a a奇函数、? ?= - a a a0 2偶函数 偶函数。在处理完积分上下限的问题后就使用第三章不定积分的套路化方法求解。这种思路对于证明定积分等式的题目也同样有效。 1.3高数第五章《中值定理的证明技巧》 用以下逻辑公式来作模型:假如有逻辑推导公式A?E、(A B)?C、(C D E)?F,由这样一组逻辑关系可以构造出若干难易程度不等的证明题,其中一个可以是这样的:条件给出A、B、D,求证F。 为了证明F成立可以从条件、结论两个方向入手,我们把从条件入手证明称之为正方向,把从结论入手证明称之为反方向。 正方向入手时可能遇到的问题有以下几类:1.已知的逻辑推导公式太多,难以从中找出有用的一个。如对于证明F成立必备逻辑公式中的A?E就可能有A?H、A?(I K)、(A B) ?M等等公式同时存在,

考研数学公式大全(考研同学必备)

考研数学公式(全) ·平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边,

·三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A

考研数学知识点总结(不看后悔)

考研英语作文万能模板考研英语作文万能模板函数 极限数列的极限特殊——函数的极限一般 极限的本质是通过已知某一个量自变量的变化趋势去研究和探索另外一个量因变量的变化趋势 由极限可以推得的一些性质局部有界性、局部保号性……应当注意到由极限所得到的性质通常都是只在局部范围内成立 在提出极限概念的时候并未涉及到函数在该点的具体情况所以函数在某点的极限与函数在该点的取值并无必然联系连续函数在某点的极限等于函数在该点的取值 连续的本质自变量无限接近因变量无限接近导数的概念 本质是函数增量与自变量增量的比值在自变量增量趋近于零时的极限更简单的说法是变化率 微分的概念函数增量的线性主要部分这个说法有两层意思一、微分是一个线性近似二、这个线性近似带来的误差是足够小的实际上任何函数的增量我们都可以线性关系去近似它但是当误差不够小时近似的程度就不够好这时就不能说该函数可微分了不定积分导数的逆运算什么样的函数有不定积分 定积分由具体例子引出本质是先分割、再综合其中分割的作用是把不规则的整体划作规则的许多个小的部分然后再综合最后求极限当极限存在时近似成为精确 什么样的函数有定积分 求不定积分定积分的若干典型方法换元、分部分部积分中考虑放到积分号后面的部分不同类型的函数有不同的优先级别按反对幂三指的顺序来记忆 定积分的几何应用和物理应用高等数学里最重要的数学思想方法微元法 微分和导数的应用判断函数的单调性和凹凸性 微分中值定理可从几何意义去加深理解 泰勒定理本质是用多项式来逼近连续函数。要学好这部分内容需要考虑两个问题一、这些多项式的系数如何求二、即使求出了这些多项式的系数如何去评估这个多项式逼近连续函数的精确程度即还需要求出误差余项当余项随着项数的增多趋向于零时这种近似的精确度就是足够好的考研英语作文万能模板考研英语作文万能模板多元函数的微积分将上册的一元函数微积分的概念拓展到多元函数 最典型的是二元函数 极限二元函数与一元函数要注意的区别二元函数中两点无限接近的方式有无限多种一元函数只能沿直线接近所以二元函数存在的要求更高即自变量无论以任何方式接近于一定点函数值都要有确定的变化趋势 连续二元函数和一元函数一样同样是考虑在某点的极限和在某点的函数值是否相等导数上册中已经说过导数反映的是函数在某点处的变化率变化情况在二元函数中一点处函数的变化情况与从该点出发所选择的方向有关有可能沿不同方向会有不同的变化率这样引出方向导数的概念 沿坐标轴方向的导数若存?诔浦际?通过研究发现方向导数与偏导数存在一定关系可用偏导数和所选定的方向来表示即二元函数的两个偏导数已经足够表示清楚该函数在一点沿任意方向的变化情况高阶偏导数若连续则求导次序可交换 微分微分是函数增量的线性主要部分这一本质对一元函数或多元函数来说都一样。只不过若是二元函数所选取的线性近似部分应该是两个方向自变量增量的线性组合然后再考虑误差是否是自变量增量的高阶无穷小若是则微分存在 仅仅有偏导数存在不能推出用线性关系近似表示函数增量后带来的误差足够小即偏导数存在不一定有微分存在若偏导数存在且连续则微分一定存在 极限、连续、偏导数和可微的关系在多元函数情形里比一元函数更为复杂 极值若函数在一点取极值且在该点导数偏导数存在则此导数偏导数必为零

考研数学公式大全数三

导数公式: 基本积分表: 三角函数的有理式积分: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1 )(log ln )(csc )(csc sec )(sec csc )(sec )(22='='?-='?='-='='2 2 2 2 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +-='+='--='-='??????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 22222 222C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222?????++-=-+-+--=-+++++=+-===-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 2 2222222 2222222 22222 2 020π π

2019考研数学知识点总结

2019考研数学三知识点总结 考研数学复习一定要打好基础,对于重要知识点一定要强化练习,深刻巩固。整合了考研数学三在高数、线性代数及概率各部分的核心知识点、考察题型及重要度。 2019考研数学三考前必看核心知识点 科目大纲章节知识点题型 高等数学函数、极限、 连续 等价无穷小代换、洛必达法则、泰勒展开式求函数的极限 函数连续的概念、函数间断点的类型判断函数连续性与间断点的类型 一元函数微 分学 导数的定义、可导与连续之间的关系 按定义求一点处的导数,可导与连 续的关系 函数的单调性、函数的极值讨论函数的单调性、极值 闭区间上连续函数的性质、罗尔定理、拉格 朗日中值定理、柯西中值定理和泰勒定理 微分中值定理及其应用 一元函数积 分学 积分上限的函数及其导数变限积分求导问题 定积分的应用用定积分计算几何量 多元函数微 积分学 隐函数、偏导数、全微分的存在性以及它们 之间的因果关系 函数在一点处极限的存在性,连续 性,偏导数的存在性,全微分存在 性与偏导数的连续性的讨论与它们 之间的因果关系 二重积分的概念、性质及计算二重积分的计算及应用 无穷级数 级数的基本性质及收敛的必要条件,正项级 数的比较判别法、比值判别法和根式判别 法,交错级数的莱布尼茨判别法 数项级数敛散性的判别 常微分方程 一阶线性微分方程、齐次方程,微分方程的 简单应用 用微分方程解决一些应用问题 线性行列式行列式的运算计算抽象矩阵的行列式

代数 矩阵 矩阵的运算求矩阵高次幂等 矩阵的初等变换、初等矩阵与初等变换有关的命题 向量向量组的线性相关及无关的有关性质及判 别法 向量组的线性相关性线性组合与线性表示判定向量能否由向量组线性表示 线性方程组齐次线性方程组的基础解系和通解的求法求齐次线性方程组的基础解系、通 解 矩阵的特征值和特征向 量实对称矩阵特征值和特征向量的性质,化为 相似对角阵的方法 有关实对称矩阵的问题相似变换、相似矩阵的概念及性质相似矩阵的判定及逆问题 二次型 二次型的概念求二次型的矩阵和秩合同变换与合同矩阵的概念判定合同矩阵 概率论与数理统计随机事件和 概率 概率的加、减、乘公式事件概率的计算 随机变量及 其分布 常见随机变量的分布及应用常见分布的逆问题 多维随机变 量及其分布 两个随机变量函数的分布二维随机变量函数的分布随机变量的独立性和不相关性随机变量的独立性 随机变量 的数字特征 随机变量的数学期望、方差、标准差及其性 质,常用分布的数字特征 有关数学期望与方差的计算 大数定律和 中心极限定 理 大数定理用大数定理估计、计算概率 数理统计的 基本概念 常用统计量的性质求统计量的数字特征 参数估计点估计、似然估计点估计与似然估计的应用

考研数学公式大全(免费)

高等数学公式篇·平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, ·三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2)

考研数学知识点总结

2 0 19 考研数学三知识点总结 考研数学复习一定要打好基础,对于重要知识点一定要强化练习,深刻巩固。整合了考研数学三在高数、线性代数及概率各部分的核心知识点、考察题型及重要度。 2019考研数学三考前必看核心知识点

知识点口诀,掌握解题技巧 1、函数概念五要素,定义关系最核心

分段函数分段点,左右运算要先行。 变限积分是函数,遇到之后先求导。 奇偶函数常遇到,对称性质不可忘。 单调增加与减少,先算导数正与负。 正反函数连续用,最后只留原变量。 一步不行接力棒,最终处理见分晓。 极限为零无穷 小,乘有限仍无穷小。 幂指函数最复杂,指数对数一起上。 、待定极限七类型,分层处理洛必达。 、数列极限洛必达,必须转化连续型。 、数列极限逢绝境,转化积分见光明。 、无穷大比无穷大,最高阶项除上下。 、 n 项相加先合并,不行估计上下界。 、变量替换第一宝,由繁化简常找它。 、递推数列求极限,单调有界要先证, 两边极限一 起上,方程之中把值找。 、函数为零要论证,介值定理定乾坤。 、切线斜率是导数,法线斜率负倒数。 、可导可微互等价,它们都比连续强。 、有理函数要运算,最简分式要先行。 、高次三角要运算,降次处理先开路。 、导数为零欲论证,罗尔定理负重任。 23 、函数之差化导数,拉氏定理显神通。 2、 3、 4、 5、 6、 7、 8、 9、 10 11 12 13 14 15 16 17 18 19 20 21 22

24、导数函数合(组合)为零,辅助函数用罗尔。 25、寻找En无约束,柯西拉氏先后上。 26、寻找En有约束,两个区间用拉氏。 27、端点、驻点、非导点,函数值中定最值。 28、凸凹切线在上下,凸凹转化在拐点。 29、数字不等式难证,函数不等式先行。 30、第一换元经常用,微分公式要背透。 31、第二换元去根号,规范模式可依靠。 32、分部积分难变易,弄清u、v是关键。 33、变限积分双变量,先求偏导后求导。 34、定积分化重积分,广阔天地有作为。 35、微分方程要规范,变换,求导,函数反。 36、多元复合求偏导,锁链公式不可忘。 37、多元隐函求偏导,交叉偏导加负号。 38、多重积分的计算,累次积分是关键。 39、交换积分的顺序,先要化为重积分。 40、无穷级数不神秘,部分和后求极限。 41、正项级数判别法,比较、比值和根值。 42、幕级数求和有招,公式、等比、列方程。 2019考研数学各科核心考点梳理

考研数学140分-必背公式大全

全国硕士研究生统一入学考试 数学公式大全 导数公式: 基本积分表: 三角函数的有理式积分: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

考研数学(一)知识点汇总

1:数列极限 手册P13 1.01:求极限时候,函数中有阶乘且趋近于无穷大,要用级数法,即证明函数是收敛的(可以用根值,比值),故趋近于无穷大为0. 1.02:已知0x lim ()x f x A ->=,则()f x A α=+,0 x lim 0x α->= 1.1:奇+奇=奇,偶+偶=偶, ()==奇偶奇奇,(奇)偶,偶偶偶 1.2:f(x)为周期函数,0x =(t)dt x F f ?(),不一定是周期函数,但是f (x )如果是奇函数,这个就成立了。且为奇函 数时候。00(t)dt (t)dt x x f f -=?? 1.3:判断函数有无上下界,用绝对值放缩或导数最大最小,文登P3 1.305:奇函数的原函数一定是偶函数。 1.31:()lim ()n f x g x ->∞ =,一般把g (x )给分段 1.4:证明连续:00->0 lim[f(x +)-f(x )]x x ?? 1.5: 22sin(1)(1)sin[(1)]n n n n ππ+=-+-这个让原本不是交错级数的变成了交错级数。 1.6: xlny=xln (y-1+1),于是等价无穷小于x (y-1)前提是y 趋近于1

1.7:20f(x)-g(x),0....o x 37 式出现可以对二者使用迈克劳林,然后消去相同项,注意不能消去()文登P 1.8:测试函数: (1)x 大于0,为1,小于0为-1 (有界不收敛) (2)x=sinn ,y=1/n (x 发散,y 收敛,无穷大时xy=0) (3)x (n )在n 为奇数时为n ,为偶数时为0,y (n )反过来,xy 都是无界,但是xy=0 1.9:文登P26.1.55 P23.1.49 1.91:证连续就是要证,左值=右值=等于该点值,证可导是左导数等于右导数即可。 1.92:看到导数大于小于0的时候,不仅有递增递减,还可以写出导数的极限表达式,然后利用保号性可以通过极限分式下半部的正负性决定上半部的正负性。注意在x0的左右两个领域内,0x x -正负不一,而决定 0()()f x f x -的正负, 模拟卷1.1 1.93:对于一阶导数的方程,由一阶导数方程的24b ac -<0知道一阶导数恒大于0或者恒小于0,知原函数恒增或恒减 模拟卷1.4 1.94:不连续点求导用极限求 模拟卷3.9 2:收敛数列三性质(唯一性,有界性,保号性)手册P14 3:函数极限 手册P15

考研高数各章重点总结

一、一元函数微分学 求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论; 利用洛比达法则求不定式极限; 讨论函数极值,方程的根,证明函数不等式; 利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足……”,此类问题证明经常需要构造辅助函数; 几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间; 利用导数研究函数性态和描绘函数图形,求曲线渐近线。 二、一元函数积分学 计算题:计算不定积分、定积分及广义积分; 关于变上限积分的题:如求导、求极限等; 有关积分中值定理和积分性质的证明题; 定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等; 综合性试题。 三、函数、极限与连续 求分段函数的复合函数; 求极限或已知极限确定原式中的常数; 讨论函数的连续性,判断间断点的类型; 无穷小阶的比较; 讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。 四、向量代数和空间解析几何

计算题:求向量的数量积,向量积及混合积; 求直线方程,平面方程; 判定平面与直线间平行、垂直的关系,求夹角; 建立旋转面的方程; 与多元函数微分学在几何上的应用或与线性代数相关联的题目。 五、多元函数的微分学 判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续; 求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数; 求二元、三元函数的方向导数和梯度; 求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习; 多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,考生在复习时要引起注意。 六、多元函数的积分学 二重、三重积分在各种坐标下的计算,累次积分交换次序; 第一型曲线积分、曲面积分计算; 第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用; 第二型(对坐标)曲面积分的计算,高斯公式及其应用; 梯度、散度、旋度的综合计算; 重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。数学一考生对这部分内容和题型要引起足够的重视。 七、无穷级数 判定数项级数的收敛、发散、绝对收敛、条件收敛;

考研数学公式大全(考研必备,免费下载)

高等数学公式篇· 平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, ·三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·si nβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·si nβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tan β·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tan γ·tanα) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B ·倍角公式: sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1 -2sin^2(α)

考研数学:高数重要公式总结(基本积分表)

凯程考研 历史悠久,专注考研,科学应试,严格管理,成就学员! 考研数学:高数重要公式总结(基本积 分表) 考研数学中公式的理解、记忆是最基础的,其次才能针对具体题型进行基础知识运用、正确解答。凯程小编总结了高数中的重要公式,希望能帮助考研生更好的复习。 其实,考研数学大多题目考查的还是基础知识的运用,难题异题并不多,只要大家都细心、耐心,都能取得不错的成绩。考研生加油哦!

凯程考研 历史悠久,专注考研,科学应试,严格管理,成就学员! 凯程考研: 凯程考研成立于2005年,具有悠久的考研辅导历史,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。 凯程考研的宗旨:让学习成为一种习惯; 凯程考研的价值观:凯旋归来,前程万里; 信念:让每个学员都有好最好的归宿; 使命:完善全新的教育模式,做中国最专业的考研辅导机构; 激情:永不言弃,乐观向上; 敬业:以专业的态度做非凡的事业; 服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。 特别说明:凯程学员经验谈视频在凯程官方网站有公布,同学们和家长可以查看。扎扎实实的辅导,真真实实的案例,凯程考研的价值观:凯旋归来,前程万里。 如何选择考研辅导班: 在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。 师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经

考研数学数列极限内容概括及考点总结

考研数学数列极限内容概括及考点总结 来源:文都教育 数列极限的概念和判断极限存在的夹逼准则和单调有界准则也是考研数学的重要考点,下面文都考研数学教研室老师为大家总结了数列极限部分的知识和考点题型,希望对同学们有帮助。 一、数列极限 1. 数列极限的定义 设{}n a 为一数列,若存在常数A ,对任意的0>ε,总存在0>N ,当N n >时,有ε<-||A a n ,称A 为数列{}n a 的极限,或称数列 {}n a 收敛于A ,记为A a n n =∞ →lim 。 2. 收敛数列的性质 (1)收敛数列极限存在且唯一. (2)收敛数列必为有界数列. (3)收敛数列的保号性. 3. 极限存在准则 (1)夹逼准则 如果数列{}{}{},,n n n a b c 满足下列条件: 从某项起,即0n N ?∈,当0n n >时有,n n n c b a ≤≤,且A c a n n n n ==∞ →∞ →lim lim , 则A b n n =∞ →lim 。 (2)单调有界准则 单调增加(或单调减少)且有上界(或有下界)的数列{}n x 必有极限。 【注】此准则只给出了极限的存在性,并未给出极限是多少。此时一般是在判定了“极限存在”以后通过数列的递推表示,在等式两边取极限得到。 4. 重要结论

(1)若lim lim n n n n a a a a →∞ →∞ =?=. (2)lim 0lim 0 n n n n a a →∞ →∞ =?=. (3)221lim lim ,lim n n n n n n a a a a a a -→∞ →∞ →∞ =?==. 【考点一】数列极限的概念与性质 例1设 ().lim 0,n n n n n x a y y x a →∞ ≤≤-=且为常数,则数列 {}n x 和{}n y ( ) 。 (A )都收敛于a (B )都收敛,但不一定收敛于a (C )可能收敛,也可能发散 (D )都发散 例2设 (){}{} .lim 0,,n n n n n n n n x a y y x x y →∞ ≤≤-=且和 {}n a 均为数列,则lim n n a →∞ ( )。 (A )存在且等于0 (B )存在但不一定等于0 (C )一定不存在 (D )不一定存在 【考点二】(1)单调有界数列必有极限. (2)单调递增且有上界的数列必有极限,单调递增且无上界的数列的极限为+∞. (3)单调递减且有下界的数列必有极限,单调递减且无下界的数列的极限为-∞. 例1 设()()1103,31,2, n n n x x x x n +<<=-=,证明:数列{}n x 极限存在,并求此极限 例2 设 ()2 0110,20,1,2, n n n x x x x n +-<<=+=,证明:数列{}n x 极限存在,并求此极限 【考点三】夹逼准则 【思路提示】在使用夹逼准则时,需要对通项进行“缩小”和“放大”,要注意:“缩小”应该是尽可能的大,而“放大”应该是尽可能的小,在这种情况下,如果仍然“夹不住”那么就说明夹逼准则不适用,改方法。 【考点四】数列连加和的极限 例1. 求极限 111 lim 1111212n n →∞ ? ?+++ ?++++ +??

考研高等数学知识点总结

高等数学知识点总结 导数公式: 基本积分表: 三角函数的有理式积分: 222 2 12211cos 12sin u du dx x tg u u u x u u x +==+-=+= , , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +- ='+= '--='-='? ?????????+±+ =±+=+=+= +-=?+=?+-== +==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 2 2 2 2 2 2 2 2 C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+= -++-=-+=++-=++=+=+-=? ???????arcsin ln 21ln 21 1csc ln csc sec ln sec sin ln cos ln 2 2 2 22 22 2 ? ????++ -= -+-+--=-+++++=+-= == -C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 2 2 ln 2 2)ln(2 21cos sin 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0π π

最新考研数学三大纲(官方版)汇总

2014考研数学三大纲 (官方版)

2014考研数学(三)考试大纲 考试科目:高等数学、线性代数、概率论与数理统计 考试形式和试卷结构 一、试卷满分及考试时间 试卷满分为150分,考试时间为180分钟. 二、答题方式 答题方式为闭卷、笔试. 三、试卷内容结构 高等教学约56% 线性代数约22% 概率论与数理统计22% 四、试卷题型结构 试卷题型结构为: 单选题 8小题,每题4分,共32分 填空题 6小题,每题4分,共24分 解答题(包括证明题) 9小题,共94分 高等数学 一、函数、极限、连续 考试内容 函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数 和隐函数基本初等函数的性质及其图形初等函数函数关系的建立

数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限: 0sin lim 1x x x →= 1lim 1x x e x →∞??+= ??? 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求: 1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念. 5.了解数列极限和函数极限(包括左极限与右极限)的概念. 6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法. 7.理解无穷小量的概念和基本性质,掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系. 8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学 考试内容 导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 平面曲线的切线与法线 导数和微分的四则运算 基本初等函数的导数 复合函数、

考研数学公式大全

高等数学公式篇 ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 ·三角函数恒等变形公式·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·倍角公式:si n(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] 三角函数的有理式积分: 22 2212211cos 12sin u du dx x tg u u u x u u x +==+-=+= , , ,  一些初等函数: 两个重要极限: 和差角公式: ·和差化积公式: ·正弦定理:R C c B b A a 2sin sin sin ===·余弦定理: C ab b a c cos 2222 -+= 反三角函数性质: arcctgx arctgx x x -= -= 2 arccos 2 arcsin π π 高阶导数公式——莱布尼兹(Leibniz )公式: ) () ()()2()1()(0)()() (!)1()1(!2)1() (n k k n n n n n k k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+ '+==---=-∑ a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arc c os 11 )(arc sin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '2 sin 2sin 2cos cos 2cos 2cos 2cos cos 2sin 2cos 2sin sin 2cos 2sin 2sin sin β αβαβαβ αβαβαβ αβαβαβ αβ αβα-+=--+=+-+=--+=+α ββαβαβαβ αβαβ αβαβαβ αβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±?= ±?±= ±=±±=±1 )(1)(sin sin cos cos )cos(sin cos cos sin )sin( x x arthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x x x x x x x -+= -+±=++=+-==+= -= ----11ln 21) 1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)1 1(lim 1sin lim 0==+=∞→→e x x x x x x

考研数学三部分重要知识点归纳(仅推荐给中等数学水平的考生)

高等数学部分易混淆概念 第一章:函数与极限 一、数列极限大小的判断 例1:判断命题是否正确. 若()n n x y n N <>,且序列,n n x y 的极限存在,lim ,lim ,n n n n x A y B A B →∞ →∞ ==<则 解答:不正确.在题设下只能保证A B ≤, 不能保证A B <.例如:11 ,1 n n x y n n ==+,,n n x y n ,那么函数()f x 在X 上无界. 无穷大:设函数 ()f x 在0x 的某一去心邻域内有定义(或x 大于某一正数时有定义) .如果对于任意给定的正数M (不论它多么大),总存在正数δ(或正数 X ) ,只要x 适合不等式00x x δ<-<(或 x X >),对应的函数值()f x 总满足不等式

相关文档
最新文档