杭电数电实验-数字电子技术第三版8章

杭电数电实验-数字电子技术第三版8章
杭电数电实验-数字电子技术第三版8章

14072119 王健

题目一:用74161构建十二进制加法计数器。用反馈清零法和反馈置数法原理图:

上面为反馈置数法,下面为反馈清零法。

仿真结果:

说明:上面为反馈置数法波形,下面方框为反馈清零法波形

如图,其反馈置数法从4计数到15,反馈清零法从0置数到11,都实现了十二进制

毛刺:

分析:在反馈清零法出现毛刺,且在DOUT由1变为0时,Q[2]出现一次翻转。因为反馈清零法在清零时有一个瞬间态,从1011计数变成1100时,瞬间从1100跳到0000。这是由电路构造决定的

题目二:用74160构建35位进制十位加法器

原理图:

仿真结果:

如图,其在计数到34时DOUT为高,之后回低电平,Q变为0,完成了35进制

题目三:设计一般模型的十进制加法计数器

原理图:

CNT10原件:

DFF4原件

实验原理图:

仿真结果:

如图,其在计数到1001时DOUT为高,之后回低电平,Q变为0,完成了10进制

数电实验2

深圳大学实验报告 课程名称:数字电子技术 实验项目名称:TTL、HC和HCT器件的参数测试学院:光电工程 专业:光电信息 指导教师: 报告人:刘恩源学号:2012170042 班级:2 实验时间: 实验报告提交时间:

一、实验目的与要求: 1、掌握TTL、HCT和HCT器件的传输特性。 2、熟悉万用表的使用方法。 二、实验仪器: 1、六反相器74LS04 1片 2、六反相器74HC04 1片 3、六反相器74HCT04 1片 4、万用表 三、实验原理: 非门的输出电压V O与输入电压V I的关系V O=f(V I)叫做电压传输特性,也叫做电压转移特性。它可以用一条曲线表示,叫做电压传输特性曲线。从传输特性曲线可以求出非门的下列参数: 1、输出高电平(V OH)。 2、输出低电平(V OL)。 3、输入高电平(V IH)。 4、输入低电平(V IL)。 5、门槛电平(V T)。 四、实验内容与步骤: 1、测试TTL器件74LS04一个非门的传输特性。 2、测试HC器件74HC04一个非门的传输特性。 3、测试HCT器件74HC04一个非门的传输特性。 注意:1、注意被测器件的引脚7和引脚14分别接地和接+5V。 2、将实验箱上直流信号源的输出端作为被测非门的输入电压。旋转电位器改变非门的 输入电压值。 1、3、按步长0.2V调整率改变非门的输入电压。首先用万用表监视非门输入电压,调 好输入电压后,再用万用表测试测量非门的输出电压,并记录下来。实验接线图由于74LS04、74HC04和74HCT04的逻辑功能相同,因此三个实验的接线图是一样的。 下面以第一个逻辑门为例,画出实验接线图(V I表示非门输入电压,电压表表示电压测试点)如下:

信号与系统实验总结1

实验总结 班级:10电子班学号:1039035 姓名:田金龙这学期的实验都有:信号的时域分析、线性时不变系统的时域分析、连续时间信号系统的频域分析、连续时间在连续时间信号的频域LTI系统的复频域分析、连续时间LTI系统的频域分析。在这学期的学习中学习了解到很多关于信号方面的处理方法加上硬件动手的实践能力,让我对课堂上所学到的知识有了更深层次的理解也加深了所学知识的印象。下面则是对每次实验的分析和总结: 实验一:信号的时域分析 在第一次试验中进行信号的时域分析还有的就是学会使用MATLAB软件来利用它实现一些相关的运算并且绘制出相关的信号图。在时域分析中掌握连续时间信号和离散时间信号的描述方法,并能够实现各种信号的时域变化和运算。了解单位阶跃信号和单位冲激信号的拓展函数,以便于熟悉这两种函数在之后的程序中的应用。在能够对简单信号的描述的前提下,通过一些简单的程序,实现信号的分析,时域反相,时域尺度变换和周期信号的描述。 clear, close all dt=0.01; t=-2:dt:2; x=u(t); plot(t,x) title('u signal u(t)') grid on 连续时间信号的时域分析后,则是离散时间信号的仿真。通过对连续时间信号的描述和对离散时间信号的描述,发现它们的不同之处在于对时间的定义和对函数的图形描述。在离散时间信号的图形窗口描述时,使用的是stem(n,x)函数。 在硬件实验中,使用一些信号运算单元,加法器,减法器,倍乘器,反相器,积分器和微分器。输入相应的简单信号,观察通过不同运算单元输出的信号。 实验二:线性时不变系统的时域分析 在线性时不变系统的时域分析中主要研究的就是信号的卷积运算,学会进行信号的卷积

杭电数字信号处理实验7

信号、系统与信号处理实验Ⅱ 实验报告 姓名:王健 学号:14072119 班级:14083413 上课时间:周五-六七八

实验名称:用双线性变换法设计IIR数字滤波器 一、实验目的 熟悉模拟巴特沃兹滤波器设计和用双线性变换法设计IIR数字滤波器的方法 二、实验原理与要求 实验原理 利用双线性变换法设计IIR数字滤波器,首先要设计出满足指标要求的模拟滤波器的传递函数Ha(s),然后由Ha(s)通过双线性变换可得要设计的IIR数字滤波器的系统函数H(z),如果给定的指标为数字滤波器的指标,直接利用模拟滤波器的低通原理,通过式子 到式子 的频率变换关系,可一步完成数字滤波器的设计。式中是低通模拟滤波器的截止频率 实验要求 (1)编写用双线性变换法设计的巴特沃兹低通IIR滤波器的程序,要求通带内频率低于,容许幅度误差在1dB之内,频率在到之间的阻带衰减大于10dB。 (2)用法设计的巴特沃兹低通IIR滤波器,要求使用buttord,butter和biliner函数,滤波器技术指标:取样频率为1Hz;通带内衰减小于1Db; 阻带临界频率0.3Hz,阻带内衰减大于25dB。 (3)以pi/64为取样间隔,在屏幕上打印出数字滤波器的频率区间[0 pi]上的幅频响应特性曲线。 (4)在屏幕上打印出H(z)的分子,分母多项式系数。 三、实验程序与结果 1. 用双线性变换法设计的巴特沃兹低通IIR滤波器的程序,要求通带内频率低于,容许幅度误差在1dB之内,频率在到之间的阻带衰减大于10dB。 clear;clc;close all; Rp=1; Rs=10; Fs=1; Ts=1/Fs

杭电《过程控制系统》实验报告

实验时间:5月25号 序号: 杭州电子科技大学 自动化学院实验报告 课程名称:自动化仪表与过程控制 实验名称:一阶单容上水箱对象特性测试实验 实验名称:上水箱液位PID整定实验 实验名称:上水箱下水箱液位串级控制实验 指导教师:尚群立 学生姓名:俞超栋 学生学号:09061821

实验一、一阶单容上水箱对象特性测试实验一.实验目的 (1)熟悉单容水箱的数学模型及其阶跃响应曲线。 (2)根据由实际测得的单容水箱液位的阶跃响应曲线,用相关的方法分别确定它们的参数。二.实验设备 AE2000型过程控制实验装置,PC机,DCS控制系统与监控软件。 三、系统结构框图 单容水箱如图1-1所示: Q2 图1-1、单容水箱系统结构图 四、实验原理 阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过调节器或其他操作器,手动改变对象的输入信号(阶跃信号),同时记录对象的输出数据或阶跃响应曲线。然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。 图解法是确定模型参数的一种实用方法。不同的模型结构,有不同的图解方法。单容水箱对象模型用一阶加时滞环节来近似描述时,常可用两点法直接求取对象参数。 如图1-1所示,设水箱的进水量为Q1,出水量为Q2,水箱的液面高度为h,出水阀

h1( t ) h1(∞ ) 0.63h1(∞) 0 T V 2固定于某一开度值。根据物料动态平衡的关系,求得: 在零初始条件下,对上式求拉氏变换,得: 式中,T 为水箱的时间常数(注意:阀V 2的开度大小会影响到水箱的时间常数),T=R 2*C ,K=R 2为单容对象的放大倍数,R 1、R 2分别为V 1、V 2阀的液阻,C 为水箱的容量系数。令输入流量Q 1 的阶跃变化量为R 0,其拉氏变换式为Q 1(S )=R O /S ,R O 为常量,则输出液位高度的拉氏变换式为: 当t=T 时,则有: h(T)=KR 0(1-e -1)=0.632KR 0=0.632h(∞) 即 h(t)=KR 0(1-e -t/T ) 当t —>∞时,h (∞)=KR 0,因而有 K=h (∞)/R0=输出稳态值/阶跃输入 式(1-2)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图1-2所示。当由实验求得图1-2所示的 阶跃响应曲线后,该曲线上升到稳态值的63%所对应时间,就是水箱的时间常数T ,该时间常数T 也可以通过坐标原点对响应曲线 图 1-2、 阶跃响应曲线

杭电_数字信号处理课程设计_实验5

实验5 IIR和FIR滤波器过滤信号的实现及比较:以心电信号为例 一、实验目的 1、探究心电信号的初步分析。心电信号(频率-般在0.05Hz ~100Hz范围)是一种基本的人体生理信号,体表检测人体心电信号中常带有工频干扰(50HZ)、基线漂移(频率低于0.5Hz)和肌电干扰等各种噪声。 2、为了得到不失真的原始心电信号,需要滤波预处理。设计数字低通滤波器、高通滤波器、带阻滤波器,用MATLAB软件对含噪心电信号分别进行高通、带阻和低通滤波等处理,将心电信号中的低频基线漂移、50Hz 工频高频和高频杂波进行滤除。 3、通过观察对含噪心电图信号的滤波作用,获得数字滤波的感性知识。 二、实验要求及内容 实验题目: 给定一组干净心电信号数据,数据文件存于C盘Ecg.txt。采样频率Fs = 500Hz。 1、编写程序读出心电信号,并在屏幕上打印出其波形。 2、产生模拟高斯白噪声信号,与干净心电混合,设计一个IIR低通滤波器和一个FIR 低通滤波器分别滤除心电信号中的白噪声干扰,调整白噪声信噪比大小,对滤波前后的心电信号的频谱进行分析比较。其中数字低通滤波器指标要求,通带截止频率Wp=0.1π,阻带截止频率 Ws=0.16π,阻带衰减不小于15 dB,通带衰减不大于1 dB。 要求:编写一个IIR低通滤波器和一个FIR低通滤波器仿真程序,在屏幕上打印出数字滤波器的频率区间[0, π]上的幅频响应特性由线(H(e^jw)) ;计算其对含噪心电信号的低通滤波响应序列,并在屏幕上打印出干净心电信号波形,含工频干扰的心电信号波形以及IIR低通滤波和FIR低通后的信号波形,并进行比较;同时对滤波前后的心电信号的频谱进行分析比较,并在屏幕上打印出滤波前后的心电信号的频谱,观察其变化。 3、产生模拟工频信号,与干净心电混合,设计一个带阻滤波器(50Hz 陷波器)滤除心电信号中的电源线干扰,调整工频幅度大小,对滤波前后的心电信号的频谱进行分析比较。其中带阻滤波器指标要求,通带下限频率Wp1=0.18π,阻带下截止频率Ws1=0.192 π,阻带上截止频率Ws2=0.208π,通带上限频率Wp2=0.22π,阻带衰减不小于15 dB, 通带衰减不大于1 dB。 要求:编写IIR带阻滤波器仿真程序,在屏幕上打印出数字滤波器的频率区间[0, π]上的幅频响应特性由线(H(e^jw ));计算其对含工频干扰的心电信号的带阻滤波响应序列,并在屏幕上打印出干净心电信号波形,含工频干扰的心电信号波形以及滤波后的信号波形,并进行比较;同时对滤波前后的心电信号的频谱进行分析比较,并在屏幕上打印出滤波前后的心电信号的频谱,观察其变化。 4、产生模拟基线漂移信号,与干净心电信号混合,设计一个高通滤波器滤除心电信号中的基线低频干扰,调整基线的幅度大小,对滤波前后的心电信号的频谱进行分析比较。其中,高通滤波器指标要求,通带截止频率Wp=0.0028π,阻带截止频率Ws=0.0012π,阻带衰减不小于15 dB,通带衰减不大于1 dB。 要求:编写IIR高通滤波器(或FIR高通滤波器)仿真程序,在屏幕上打印出数字滤波器的频率区间[0,π]上的幅频响应特性由线(H(e^jw);计算其对含基线低频干扰的心电信号的高通滤波响应序

数电实验 组合逻辑电路

实验报告 课程名称: 数字电子技术实验 指导老师: 成绩:__________________ 实验名称: 组合逻辑电路 实验类型: 设计型实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一.实验目的和要求 1. 加深理解典型组合逻辑电路的工作原理。 2. 熟悉74LS00、74LS11、74LS55等基本门电路的功能及其引脚。 3. 掌握组合集成电路元件的功能检查方法。 4. 掌握组合逻辑电路的功能测试方法及组合逻辑电路的设计方法。 5. 熟悉全加器和奇偶位判断电路的工作原理。 二.实验内容和原理 组合逻辑电路设计的一般步骤如下: 1.根据给定的功能要求,列出真值表; 2. 求各个输出逻辑函数的最简“与-或”表达式; 3. 将逻辑函数形式变换为设计所要求选用逻辑门的形式; 4. 根据所要求的逻辑门,画出逻辑电路图。 实验内容: 1. 测试与非门74LS00和与或非门74LS55的逻辑功能。 2. 用与非门74LS00和与或非门74LS55设计一个全加器电路,并进行功能测试。 专业: 电子信息工程 姓名: 学号: 日期: 装 订 线

3. 用与非门74LS00和与或非门74LS55设计四位数奇偶位判断电路,并进行功能测试。 三. 主要仪器设备 与非门74LS00,与或非门74LS55,导线,开关,电源、实验箱 四.实验设计与实验结果 1、一位全加器 全加器实现一位二进制数的加法,他由被加数、加数和来自相邻低位的进数相加,输出有全加和与向高位的进位。输入:被加数Ai,加数Bi,低位进位Ci-1输出:和Si,进位Ci 实验名称:组合逻辑电路 姓名:学号: 列真值表如下:画出卡诺图: 根据卡诺图得出全加器的逻辑函数:S= A⊕B⊕C; C= AB+(A⊕B)C 为使得能在现有元件(两个74LS00 与非门[共8片]、三个74LS55 与或非门)的基础上实现该逻辑函数。所以令S i-1=!(AB+!A!B),Si=!(SC+!S!C), Ci=!(!A!B+!C i-1S i-1)。 仿真电路图如下(经验证,电路功能与真值表相同):

信号与系统实验实验报告

信号与系统实验实验报 告 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

实验五连续系统分析一、实验目的 深刻理解连续时间系统的系统函数在分析连续系统的时域特性、频域特性及稳定性中的重要作用及意义,掌握根据系统函数的零极点设计简单的滤波器的方法。掌握利用MATLAB分析连续系统的时域响应、频响特性和零极点的基本方法。 二、实验原理 MATLAB提供了许多可用于分析线性时不变连续系统的函数,主要包含有系统函数、系统时域响应、系统频域响应等分析函数。 三、实验内容 1.已知描述连续系统的微分方程为,输入,初始状态 ,计算该系统的响应,并与理论结果比较,列出系统响应分析的步骤。 实验代码: a=[1 10]; b=[2]; [A B C D]=tf2ss(b,a); sys=ss(A,B,C,D); t=0: :5; xt=t>0; sta=[1]; y=lsim(sys,xt,t,sta); subplot(3,1,1); plot(t,y); xlabel('t'); title('系统完全响应 y(t)'); subplot(3,1,2); plot(t,y,'-b'); hold on yt=4/5*exp(-10*t)+1/5; plot(t,yt,' : r'); legend('数值计算','理论计算'); hold off xlabel('t'); subplot(3, 1 ,3); k=y'-yt; plot(t,k); k(1) title('误差');

实验结果: 结果分析: 理论值 y(t)=0. 8*exp(-10t)*u(t)+ 程序运行出的结果与理论预期结果相差较大误差随时间增大而变小,初始值相差最大,而后两曲线基本吻合,表明该算法的系统响应在终值附近有很高的契合度,而在初值附近有较大的误差。 2.已知连续时间系统的系统函数为,求输入分别为,, 时,系统地输出,并与理论结果比较。 a=[1,3,2,0]; b=[4,1]; sys=tf(b,a); t=0: :5; x1=t>0; x2=(sin(t)).*(t>0); x3=(exp(-t)).*(t>0); y1=lsim(sys,x1,t); y2=lsim(sys,x2,t); y3=lsim(sys,x3,t); subplot(3,1,1); plot(t,y1); xlabel('t'); title('X(t)=u(t)'); subplot(3,1,2); plot(t,y2); xlabel('t'); title('X(t)=sint*u(t)'); subplot(3, 1 ,3); plot(t,y3); xlabel('t'); title('X(t)=exp(-t)u(t)'); 实验结果: 结果分析: a=[1,3,2,0]; b=[4,1]; sys=tf(b,a); t=0: :5; x1=t>0; x2=(sin(t)).*(t>0); x3=(exp(-t)).*(t>0); y1=lsim(sys,x1,t); y2=lsim(sys,x2,t); y3=lsim(sys,x3,t); subplot(3,1,1); plot(t,y1,'-b');

数字信号处理实验报告(实验1_4)

实验一 MATLAB 仿真软件的基本操作命令和使用方法 实验容 1、帮助命令 使用 help 命令,查找 sqrt (开方)函数的使用方法; 2、MATLAB 命令窗口 (1)在MATLAB 命令窗口直接输入命令行计算3 1)5.0sin(21+=πy 的值; (2)求多项式 p(x) = x3 + 2x+ 4的根; 3、矩阵运算 (1)矩阵的乘法 已知 A=[1 2;3 4], B=[5 5;7 8],求 A^2*B

(2)矩阵的行列式 已知A=[1 2 3;4 5 6;7 8 9],求A (3)矩阵的转置及共轭转置 已知A=[1 2 3;4 5 6;7 8 9],求A' 已知B=[5+i,2-i,1;6*i,4,9-i], 求B.' , B' (4)特征值、特征向量、特征多项式 已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] ,求矩阵A的特征值、特征向量、特征多项式;

(5)使用冒号选出指定元素 已知:A=[1 2 3;4 5 6;7 8 9];求A 中第3 列前2 个元素;A 中所有列第2,3 行的元素; 4、Matlab 基本编程方法 (1)编写命令文件:计算1+2+…+n<2000 时的最大n 值;

(2)编写函数文件:分别用for 和while 循环结构编写程序,求 2 的0 到15 次幂的和。

5、MATLAB基本绘图命令 (1)绘制余弦曲线 y=cos(t),t∈[0,2π]

(2)在同一坐标系中绘制余弦曲线 y=cos(t-0.25)和正弦曲线 y=sin(t-0.5), t∈[0,2π] (3)绘制[0,4π]区间上的 x1=10sint 曲线,并要求: (a)线形为点划线、颜色为红色、数据点标记为加号; (b)坐标轴控制:显示围、刻度线、比例、网络线 (c)标注控制:坐标轴名称、标题、相应文本; >> clear;

2014年杭州电子科技大学数字电路复习大纲

杭州电子科技大学数字电路课程期末复习提纲 考试时间:6月17日9:00~11:00 题型:填空题(2分×10=20分);选择题(2分×10=20分);简答题(6分×5分=30分); 综合设计题(10分×3分=30分) 注意:数字电路期末复习提纲仅供参考用 一、数字逻辑基础 1.脉冲波形的基本参数,如f(T)、t W、占空比等的基本概念等 2.数制之间的相互转换。 3.二进制的基本概念:如那些是有权码(2421码等)、无权码(余3码、格雷码)等二、逻辑门电路 1.基本逻辑运算与逻辑符号。 2.门电路的描述:表达式、真值表、逻辑符号 3.门电路的正负逻辑概念及等效变换。 4.辅助门电路的工作特点:如OC门和三态门 三、组合逻辑电路的分析与设计 1.逻辑代数的基本定律和恒等式、基本法则,对偶、反演等。 2.逻辑函数的卡诺图化简 四、组合逻辑电路的分析与设计 1.组合逻辑电路的分析与设计 2.组合逻辑电路的竞争与冒险,掌握消除竞争冒险的基本方法,抗干扰措施 3.重点掌握74LS138译码器、74LS151/74LS153数据选择器的功能及应用。能分析电路并设计电路(实现函数发生器)。 五、触发器 1.掌握基本RS触发器的简单电路 2.触发器的类型及特点,重点掌握边沿触发器(D-FF/JK-FF)的功能,能分析时序图六、时序逻辑电路的分析和设计 1.时序逻辑电路的基本概念:特点、分类、描述方法(逻辑方程式、状态转换表、状态转换图/时序图)等 2.掌握时序逻辑电路的分析和设计。 七、常用时序逻辑功能器件 1.掌握74LS161、74LS160基本功能,并能用以设计构成任意进制的计数器、分频器。 2.掌握74LS194的功能 八、半导体存储器和可编程逻辑器件 1.RAM的基本结构、RAM的特点及其扩展(字、位) 2.ROM的种类及其特点,及其扩展。能用PROM实现函数发生器 3.了解可编程逻辑器件PLD的类型及编程阵列的特点。了解GAL的工作模式(P124)。 九、A/D、D/A 1.D/A转换器的特点、类型、主要技术指标:转换精度、转换速度、温度系数 2.A/D转换器的特点、类型及特点,技术指标

杭电通信系统课程设计报告实验报告

通信系统课程设计实验报告 XX:田昕煜 学号:13081405 班级:通信四班 班级号:13083414 基于FSK调制的PC机通信电路设计

一、目的、容与要求 目的: 掌握用FSK调制和解调实现数据通信的方法,掌握FSK调制和解调电路中相关模块的设计方法。初步体验从事通信产品研发的过程. 课程设计任务:设计并制作能实现全双工FSK调制解调器电路,掌握用Orcad Pspice、Protel99se进行系统设计及电路仿真。 要求:合理设计各个电路,尽量使仿真时的频率响应和其他参数达到设计要求。尽量选择符合标称值的元器件构成电路,正确完成电路调试。 二、总体方案设计 信号调制过程如下: 调制数据由信号发生器产生(电平为TTL,波特率不超过9600Baud),送入电平/幅度调整电路完成电平的变换,再经过锁相环(CD4046),产生两个频率信号分别为30kHz和40kHz(发“1”时产生30kHz方波,发“0”时产生40kHz方波),再经过低通滤波器2,变成平滑的正弦波,最后通过线圈实现单端到差分信号的转换。

信号的解调过程如下: 首先经过带通滤波器1,滤除带外噪声,实现信号的提取。在本设计中FSK 信号的解调方式是过零检测法。所以还要经过比较器使正弦信号变成方波,再经过微分、整流电路和低通滤波器1实现信号的解调,最后经过比较器使解调信号成为TTL电平。在示波器上会看到接收数据和发送数据是一致的。 各主要电路模块作用: 电平/幅度调整电路:完成TTL电平到VCO控制电压的调整; VCO电路:在控制电压作用下,产生30KHz和40KHz方波; 低通2:把30KHz、40KHz方波滤成正弦波; 线圈:完成单端信号和差分信号的相互转换; 带通1:对带外信号抑制,完成带信号的提取; 限放电路:正弦波整形成方波,同时保留了过零点的信息; 微分、整流、脉冲形成电路:完成信号过零点的提取; 低通1:提取基带信号,实现初步解调; 比较器:把初步解调后的信号转换成TTL电平 三、单元电路设计原理与仿真分析 (1)带通1(4阶带通)-- 接收滤波器(对带外信号抑制,完成带信号的提取) 要求通带:26KHz—46KHz,通带波动3dB; 阻带截止频率:fc=75KHz时,要求衰减大于10dB。经分析,二级四阶巴特沃斯带通滤波器来提取信号。 具体数值和电路见图1仿真结果见图2。

数字信号处理实验及参考程序

数字信号处理实验实验一离散时间信号与系统及MA TLAB实现 1.单位冲激信号: n = -5:5; x = (n==0); subplot(122); stem(n, x); 2.单位阶跃信号: x=zeros(1,11); n0=0; n1=-5; n2=5; n = n1:n2; x(:,n+6) = ((n-n0)>=0); stem(n,x); 3.正弦序列: n = 0:1/3200:1/100; x=3*sin(200*pi*n+1.2); stem(n,x); 4.指数序列 n = 0:1/2:10; x1= 3*(0.7.^n); x2=3*exp((0.7+j*314)*n); subplot(221); stem(n,x1); subplot(222); stem(n,x2); 5.信号延迟 n=0:20; Y1=sin(100*n); Y2=sin(100*(n-3)); subplot(221); stem(n,Y1); subplot(222); stem(n,Y2);

6.信号相加 X1=[2 0.5 0.9 1 0 0 0 0]; X2=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7]; X=X1+X2; stem(X); 7.信号翻转 X1=[2 0.5 0.9 1]; n=1:4; X2=X1(5-n); subplot(221); stem(n,X1); subplot(222); stem(n,X2); 8.用MATLAB计算序列{-2 0 1 –1 3}和序列{1 2 0 -1}的离散卷积。a=[-2 0 1 -1 3]; b=[1 2 0 -1]; c=conv(a,b); M=length(c)-1; n=0:1:M; stem(n,c); xlabel('n'); ylabel('幅度'); 9.用MA TLAB计算差分方程 当输入序列为时的输出结果。 N=41; a=[0.8 -0.44 0.36 0.22]; b=[1 0.7 -0.45 -0.6]; x=[1 zeros(1,N-1)]; k=0:1:N-1; y=filter(a,b,x); stem(k,y) xlabel('n'); ylabel('幅度') 10.冲激响应impz N=64; a=[0.8 -0.44 0.36 0.22];

07杭电信号与系统期末试题

2007信号卷 一.填空题(每小题3分,10小题,共30分) 1.信号)3 π cos()4πsin()(t t t f +=的基本周期是 。 2.信号)()(n u n x =的功率是 。 3.=+?∞ -ττδd )1(t 。 4.信号)()(t u t f =的傅里叶变换为 。 5.信号)()(n u n x =的算子表示为 。 6.{}{}=-*--2012 112 。 7.已知LTI 系统方程)()()(2)(d d t u t t r t r t +=+δ且1)0(=-r ,则=+)0(r 。 8.无失真传输系统)1(2)(-=t e t r ,其冲激响应为=)(t h 。 9.信号)()1()(t u t t f +=的拉氏变换为 。 10.已知)21(232 3)(22<<+-+=z z z z z X ,则=)(n x 。 解答:1.24;2.0.5 ;3.)1(+t u ;4.ωωδj 1)(π+;5.)(1 n E E δ-; 6.{}21304--;7.2;8.)1(2-t δ;9. )0(12>+σs s ; 10.())1(27)(5)(----n u n u n n δ 二.画图题(每小题5分,4小题,共20分) 1.信号)(t f 的波形如题图2-1,画出)42(+t f 的波形。 题图2-1 解: 2.已知周期函数)(t f 半个周期的波形如题图2-2,根据下列条件画出)(t f 在一个周期()10T t <≤ 的波 形。(1))(t f 是偶函数; (2))(t f 是奇函数。

题图2-2 解:(1)()t f 是偶函数,则()()t f t f =-,波形对称于纵轴。 题图2-12 ① 对褶得()t f 1 ②将()t f 1向右平移1T 得()t f 2 ③取10T -的波形得到()t f 在一 个周期()10T t <≤ 的波形。如图(1)所示。 图(1) (2))(t f 是奇函数,波形对称于原点。过程与(1)相似,如图(2)。 图(2) 3.已知系统的传输算子233 )(2+++=p p p p H ,画出并联结构的信号流图。 解:p p p p p p p p p p H 2 11 1122112233)(2+- ++=+-++=+++= 4.系统方程为)1()2(3)1(2)(-=-+-+n x n y n y n y ,画出信号流图。 解:23211)(E E E E H ++=

杭州电子科技大学数字电路期末考试试卷及答案

8. 如图所示电路,若输入CP 脉冲的频率为100KHZ ,则输出Q 的频率为_____D_____。 A . 500KHz B .200KHz C . 100KHz D .50KHz 13.给36个字符编码,至少需要____6______位二进制数。 19.T 触发器的特性方程是___n n Q T Q ⊕=+1_____,当T=1时,特性方程为___n n Q Q =+1_____,这时触发器可以用来作___2分频器_____。 20.构造一个十进制的异步加法计数器,需要多少个 __4____触发器。计数器的进位Cy 的频率与计数器时钟脉冲CP 的频率之间的关系是____1﹕10_________。 21.(本题满分6分)用卡诺图化简下列逻辑函数 ∑ =)15,14,13,12,10,9,8,2,1,0(),,,(m D C B A F 解:画出逻辑函数F 的卡诺图。得到 D B D A C B C A AB F ++++= 22. (本题满分8分)电路如图所示,D 触发器是正边沿触发器,图中给出了时钟CP 及输入K 的波形。 (1)试写出电路次态输出1+n Q 逻辑表达式。(2)画出Q Q ,的波形。

由出真值表写出逻辑函数表达式,并化简 )(B A C C A C B A BC A C B A C B A F ⊕+=++ += 画出逻辑电路图 四、综合应用题(每小题10分,共20分) 25.3-8译码器74LS138逻辑符号如图所示,S1、2S 、3S 为使能控制端。试用两片74LS138构成一个4-16译码器。要求画出连接图说明设计方案。 装 订

杭电通信系统课程设计实验报告

通信系统课程设计实验报告 姓名:田昕煜 学号: 13081405 班级:通信四班 班级号: 13083414

基于FSK调制的PC机通信电路设计 一、目的、内容与要求 目的: 掌握用FSK调制和解调实现数据通信的方法,掌握FSK调制和解调电路中相关模块的设计方法。初步体验从事通信产品研发的过程. 课程设计任务:设计并制作能实现全双工FSK调制解调器电路,掌握用Orcad Pspice、Protel99se进行系统设计及电路仿真。 要求:合理设计各个电路,尽量使仿真时的频率响应和其他参数达到设计要求。尽量选择符合标称值的元器件构成电路,正确完成电路调试。 二、总体方案设计 信号调制过程如下: 调制数据由信号发生器产生(电平为TTL,波特率不超过9600Baud),送入电平/幅度调整电路完成电平的变换,再经过锁相环(CD4046),产生两个频率信号分别为30kHz和40kHz(发“1”时产生30kHz方波,发“0”时产生40kHz方波),再经过低通滤波器2,变成平滑的正弦波,最后通过线圈实现单端到差分信号的转换。 信号的解调过程如下: 首先经过带通滤波器1,滤除带外噪声,实现信号的提取。在本设计中FSK 信号的解调方式是过零检测法。所以还要经过比较器使正弦信号变成方波,再经过微分、整流电路和低通滤波器1实现信号的解调,最后经过比较器使解调信号成为TTL电平。在示波器上会看到接收数据和发送数据是一致的。 各主要电路模块作用: 电平/幅度调整电路:完成TTL电平到VCO控制电压的调整; VCO电路:在控制电压作用下,产生30KHz和40KHz方波; 低通2:把30KHz、40KHz方波滤成正弦波; 线圈:完成单端信号和差分信号的相互转换;

数字信号处理实验

实验六: 用FFT对信号作频谱分析 一、实验目的 1.了解双音多频信号的产生、检测、包括对双音多频信号进行DFT时的参数选择等。 2.初步了解数字信号处理在是集中的使用方法和重要性。 3.掌握matlab的开发环境。 二、实验原理与方法 1、引言 双音多频(Dual Tone Multi Frequency, DTMF)信号是音频电话中的拨号信号,由美国AT&T贝尔公司实验室研制,并用于电话网络中。这种信号制式具有很高的拨号速度,且容易自动监测识别,很快就代替了原有的用脉冲计数方式的拨号制式。这种双音多频信号制式不仅用在电话网络中,还可以用于传输十进制数据的其它通信系统中,用于电子邮件和银行系统中。这些系统中用户可以用电话发送DTMF信号选择语音菜单进行操作。DTMF信号系统是一个典型的小型信号处理系统,它要用数字方法产生模拟信号并进行传输,其中还用到了D/A变换器;在接收端用A/D变换器将其转换成数字信号,并进行数字信号处理与识别。为了系统的检测速度并降低成本,还开发一种特殊的DFT算法,称为戈泽尔(Goertzel)算法,这种算法既可以用硬件(专用芯片)实现,也可以用软件实现。下面首先介绍双音多频信号的产生方法和检测方法,包括戈泽尔算法,最后进行模拟实验。下面先介绍电话中的DTMF信号的组成。在电话中,数字0~9的中每一个都用两个不同的单音频传输,所用的8个频率分成高频带和低频带两组,低频带有四个频率:679Hz,770Hz,852Hz和941Hz;高频带也有四个频率:1209Hz,1336Hz,1477Hz和1633Hz.。每一个数字均由高、低频带中各一个频率构成,例如1用697Hz和1209Hz两个频率,信号用表示。这样8个频率形成16种不同的双频信号。具体号码以及符号对应的频率如表10.6.1所示。表中最后一列在电话中暂时未用。DTMF信号在电话中有两种作用,一个是用拨号信号去控制交换机接通被叫的用户电话机,另一个作用是控制电话机的各种动作,如播

数电实验课程总结报告

数电实验课程总结报告 不知不觉,一个学期已经过去,数电实验这门课也即将结束。回顾这个学期以来在数电实验课程中的学习,我发现自己既收获了很多,也付出了很多。 数电实验是一门结合理论并有所创新的课程。实验一——数字集成电路功能与特性测试让我熟悉了几个常用芯片74LS247、74LS163与74LS00。一方面数电理论课正好进行到这部分的内容,这次实验的学习让我更好的理解理论课的知识。另一方面,在接下来的实验三中,我需要用到其中的芯片与显示电路,这为接下来的实验做好了铺垫。实验二开始我们就与FPGA接触了。作为一个电子信息工程专业的学生,今后的研究与学习肯定会需要使用到FPGA,所以实验二与实验三的实际应用意义是很大的。 经过简单的熟悉QuartusII软件后,我们开始了最为重要的实验三——多功能数字钟的设计。可以说,实验三是本课程的核心所在。实验三耗时一个多月,我们经历了一个完整的开发周期。从数字钟功能设想到方案论证,再到软件编写与硬件焊接,再到最后的整机测试。我投入了大量的时间与精力,最后做出了集闹钟、报时、校时、秒表、倒计时、日期显示、12——24小时制转换等功能的多功能数字钟。在数字钟设计的过程中,我遇到了很多的问题。一开始我是用的是纯VHDL语言编写的方案开发数字钟,可是随着功能逐渐增多,我发现语言编写并不能很容易的加减功能。而且一旦在仿真中发现问题,我很难从源文件中查找出问题所在。于是在离验收日期只有一个星期的时候,我毅然选择了推到重来,放弃已有的程序,重新使用顶层原理图加底层VHDL语言的方案开发。后来的结果证明,这种方案不仅思路清晰,易于增减功能、检查错误,也能在一定程度上节约内部资源。最后,我花了4个晚上重新编写好软件程序,花了一个晚上焊接硬件并组装调试。这次成功的经验大大提升了我的信心,也让我懂得了敢于放弃,不怕重来的道理。 总的来说,本次数电实验课程让我收获很多。我会在今后的学习中更加努力。 最后,感谢老师一个学期以来的教导,祝老师身体健康,万事如意!

杭电信号与系统实验离散时间系统的时域分析

《信号、系统与信号处理实验I》 实验报告 实验名称:离散时间系统的时域分析 姓名: 学号: 专业:通信工程 实验时间 杭州电子科技大学 通信工程学院

一、实验目的 1.通过matlab 仿真一些简单的离散时间系统,并研究它们的时域特性。 2.掌握利用matlab 工具箱求解LTI 系统的单位冲激响应。 二、实验内容 1、离散时间系统的时域分析 1.1 线性与非线性系统 假定系统为y[n]-0.4y[n-1]=2.24x[n]+2.49x[n-1](2.9) 输入三个不同的输入序列x1[n]、x2[n]和,计算并求出相应的三个输出,并判断是否线性。x[n]=a x1[n]+b x2[n] clear all; n=0:40; a=2;b=-3; x1=cos(2*pi*0.1*n); x2=sin(2*pi*0.4*n); x=a*x1+b*x2; num=[2.24 2.49]; den=[1 -0.4]; y1=filter(num.den,x1); y2=filter(num.den,x2); y=filter(num.den,x); yt=a*y1+b*y2; d=y-yt;%计算差值输出d[n] subplot(3,1,1) stem(n,y); ylabel(‘振幅’); subplot(3,1,2) stem(n,yt); ylabel(‘振幅’); subplot(3,1,3) stem(n,d); ylabel(‘振幅’); title(‘差信号’) (1)假定另一个系统为y[n]=x[n]+3.2x[n-2],修改以上程序,通过绘出的图形判断该系统是否线性系统。 1.2 时变与时不变系统 根据(2.9)的系统,产生两个不同的输入序列x[n]和x[n-D],根据输出判断是否时不变系统。 clear all; n=0:40; a=2;b=-3; D=10; x=cos(2*pi*0.1*n); xd=[zeros(1,D) x]; num=[2.24 2.49]; den=[1 -0.4]; y=filter(num.den,x); yd=filter(num.den,xd); d=y-yd(1+D:41+D);%计算差值输d[n] subp lot(3,1,1) stem(n,y); ylabel(‘振幅’); title(‘输出y[n]’);grid; subplot(3,1,2)

数字信号处理实验——维纳滤波器设计..

实验一 维纳滤波 1. 实验内容 设计一个维纳滤波器: (1) 产生三组观测数据,首先根据()(1)()s n as n w n =-+产生信号()s n ,将其加噪,(信噪比分别为20,10,6dB dB dB ),得到观测数据123(),(),()x n x n x n 。 (2) 估计()i x n ,1,2,3i =的AR 模型参数。假设信号长度为L ,AR 模型阶数为N ,分析实验结果,并讨论改变L ,N 对实验结果的影响。 2. 实验原理 滤波目的是从被噪声污染的信号中分离出有用的信号来,最大限度地抑制噪声。对信号进行滤波的实质就是对信号进行估计。滤波问题就是设计一个线性滤波器,使得滤波器的输出信号()y n 是期望响应()s n 的一个估计值。下图就是观测信号的组成和信号滤波的一般模型。 观测信号()()()x n s n v n =+ 信号滤波的一般模型 维纳滤波解决从噪声中提取信号的滤波问题,并以估计的结果与真值之间的误差均方值最小作为最佳准则。它根据()()(),1, ,x n x n x n m --估计信号的当前 值,它的解以系统的系统函数()H z 或单位脉冲()h n 形式给出,这种系统常称为最佳线性滤波器。 维纳滤波器设计的任务就是选择()h n ,使其输出信号()y n 与期望信号()d n 误差的均方值最小。

假设滤波系统()h n 是一个线性时不变系统,它的()h n 和输入信号都是复函数,设 ()()()h n a n jb n =+ 0,1, n = 考虑系统的因果性,可得到滤波器的输出 ()()()()()0 *m y n h n x n h m x n m +∞ ===-∑ 0,1, n = 设期望信号()d n ,误差信号()e n 及其均方误差()2 E e n ???? 分别为 ()()()()()e n d n y n s n y n =-=- ()()()()()()22 2 0m E e n E d n y n E d n h m x n m ∞=?? ????=-=--????? ????? ∑ 要使均方误差为最小,需满足: ()() 2 0E e n h j ?????=? 整理得()()0E x n j e n *??-=??,等价于()()0E x n j e n * ??-=?? 上式说明,均方误差达到最小值的充要条件使误差信号与任一进入估计的输入信号正交,这就是正交性原理。 将()()0E x n j e n * ??-=??展开,得 ()()()()00m E x n k d n h m x m +∞ *** =????--=?? ???? ?∑ 整理得 ()()()0 dx xx m r k h m r m k +∞ *=-=-∑ 0,1,2, k = 等价于()()()()()0 dx xx xx m r k h m r k m h k r k +∞ ==-=*∑ 0,1,2, k = 此式称为维纳-霍夫(Wiener-Holf )方程。解此方程可得到最优权系数 012,,, h h h ,此式是Wiener 滤波器的一般方程。 定义

数电实验报告

学生实验实习报告册 学年学期:2019 -2020 学年?春?秋学期 课程名称:数字电路与逻辑设计实验A 实验项目:基于FPGA的数字电子钟的设计与实现 姓名:康勇 学号:2018211580 学院和专业:计算机科学学院计算机科学与技术专业 班级:04911801 指导教师:罗一静 重庆邮电大学教务处制

1.系统顶层模块设计 本项目分为四个模块,分别为分频模块、计时模块、数码管动态显示模块、按键消抖模块。功能包括:基本时钟功能,整点报时功能,手动校时功能,秒表功能,小数点分割时分秒功能等。 设计思路如下: 图表 1数字时钟系统顶层模块设计思路 设计结果: 图表2数字时钟系统顶层模块设计电路图 2.分频模块电路设计及仿真 (1)模块功能

将输入的频率为50MHz的时钟信号利用74390通过2、5、100分频,对输入信号进行逐级分频。 (2)设计思路 图表3分频模块电路设计思路 (3)设计结果(电路) 图表4分频模块电路设计图 图表5模100电路图 (4)测试结果 图表6模100仿真图 图表7模5仿真图

图表8模2仿真图 3.计时模块设计及仿真 本模块主要功能是实现电子时钟计数功能。 图表9计时模块顶层设计电路图 3.1分、秒计时模块(模60计数) (1)模块功能(计数、进位) 电子时钟的分钟位和秒钟位均采用模60计数; 计数功能:从0到59; 进位功能:当计数记到59的时候,输出一个进位信号。 (2)设计思路 模60计数器可以通过一个模6计数器和一个模10计数器组成,由分钟位和秒位的特性可知,可以用模10计数器为个位,模6计数器为十位。当个位到9后,向十位进一。本模块使用器件74160。 计数功能:74160是十进制同步计数器(异步清零),为实现计数功能,首先将74160的LDN 反,CLRN反,ENT,ENP接高位,再接入时钟脉冲信号CLK,即可完成下图左侧(个位)模

相关文档
最新文档