函数发生器

函数发生器
函数发生器

一、设计题目

函数发生器的设计。

二、设计要求

设计一个智能函数发生器,能够以稳定的频率产生的递增的斜波、递减斜波、三角波、正弦波和方波。设置一个波形选择开关,通过此开关选择以上不同种类的输出波形。

三、设计作用与目的

各种电器设备要正常工作,常常需要各种波形信号的支持。电器设备中常用的信号有正弦波、矩形波、三角波和锯齿波等。在电器设备中,这些信号是由波形产生和变换电路来提供的。波形产生电路是一种不需外加激励信号就能将直流能源转化成具有一定频率、一定幅度和一定波形的交流能量输出电路,又称为振荡器或波形发生器。在生产实践和科技领域中有着广泛的应用。例如在通信、广播、电视系统中,都需要射频(高频)发射,在工业、农业、生物医学等领域内等等。波形发生器由时基电路,积分电路,差分放大电路三部分电路组成,时基电路产生方波,再通过积分电路将方波转化为三角波,最后由差分放大电路将三角波转化为正弦波,通过借助Multisim2011平台最各部分电路进行仿真,验证了该波形发生器方案的正确性、可用性。

四、所用设备及软件

本设计除了需要计算机,实验设备两款软件:作图软件Altim Desinger、仿真软件Multisium。简介如表1所示。

五、系统设计方案

三种波形都是比较简单且常见的波形,产生的方法由很多种,可以先产生方波,然后得到三角波和正弦波,也可以先得到正弦波,然后翻过来再输出另外两种波形;可以用集成芯片,同时也可以用运用各种元器件来实现振荡电路。

方案一:用分立元件组成的函数发生器。

方案二: 晶体管、运放IC等通用器件制作,更多的则是用专门的函数信号发生器IC产生。早期的函数信号发生器IC,如L8038、BA205、XR2207/2209等。

方案三:利用单片集成芯片的函数发生器。

方案四:利用专用直接数字合成DDS芯片的函数发生器。

方案五:由555定时器所构成的多谐振动器产生方波, 方波经过积分器的作用产生三角波,三角波在经过差分放大电路的非线性转换为正弦波。

5.1方案分析

方案一:频率不高,且工作不很稳定,不易调试

方案二:它们的功能较少,精度不高,频率上限只有300kHz,无法产生更高频率的信号,调节方式也不够灵活,频率和占空比不能独立调节,二者互相影响。方案三:虽能产生多种波形,达到较高的频率,且易于调试,但成本也相对比较高;

方案四:利用专用直接数字合成DDS芯片的函数发生器:能产生任意波形并达到很高的频率。但成本较高。

方案五:过程相对来说比较繁琐,但是思路很明亮,同时,555定时器所构成的多谐振动器产生方波是一种和常用的信号产生器,很具有实用价值,同时,也很容易买到,同时选用改进的555多谐振荡形式产生方波可以通过调节可调电阻的阻值来调节产生方波的频率,产生的方波经过积分器的作用产生三角波,三角波在经过差分放大电路的非线性转换为正弦波。差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强,可以有效地抑制零点漂移因此可将频率很低的三角波变换成正弦波。

本着可控、可稳、经济性的原则,第三种方案较实际。用改进过的555多谐振荡形式产生方波,经过积分器的作用产生三角波,三角波在经过差分放大电路的非线性转换为正弦波,电路的总原理图如附录3。

六、系统硬件设计

pH 5566t R R Cln20.7R R C

=+≈+()()图6.2方波发生电路图

6.1波形发生器电路的总框图

6.2方波发生电路

接通电源后,电容C4被充电,当上升到2Vcc 3

时,使Vo 为低电平,同时放电三极管T

导通,此时电容C4通过R5和T 放电,当c v 下降到

Vcc

3

时,Vo 翻转为高电平。这时电容C 放电所需时间为: PL

22 t

R Cln 0.7R C =≈;

当放电结束时,T 截止,Vcc 将通过R 5、R 6向电容C

充电,c v 由Vcc 上升到2Vcc

3

所需时间为:

当上升到

2Vcc

3

是,电路有翻转为低电平。如此周而复始,于是,在电路的输出端就得到一个周期性的矩形波。其震荡频率以及占空比为:

图6.1原理框图

6.3三角波发生电路

由积分器实现方波-三角波的转化发生电路如图6.4。

%100%

A

A B

R q R R =?+pH 56

11.43f C t t R 2R pL =

≈++

1

R 1

C 2

C i

U 2

R

如图6.5是一个由方波转换为三角波的电路图及其输出波形 当A 很大时,运放两输入端为"虚地",忽略流入放大器的电流, 令输入电压为Vi 输出为Vo ,流过电容C 的电流为i1则 ,

有: 0111-i v i dt v dt C CR

≈≈-?? 即输出电压与输入电压成积分关系,i v

当为固定值时

有:0i

v v t CR

≈-

上式表明输出电压按一定比例随时间作直线上升或下降。当i v

为矩形波时,

0v 便成

为三角波。此外,由于滤波电容的存在,滤除了其他波的干扰。提高了系统的抗干扰性。

6.4正弦波发生电路

由差分放大电路构成的正弦波发生电路图2.6。

分析表明,传输特性曲线的表达式:

v i

v 2

c 4

c 1R 2

R 4

R 5

R 6

R 7

R 8

R 10

R 1

V 2

V 3

V 4

V 6

C 7

C 1

P R 2P R 图6.6正弦波发生电路图

图6.5方波输出三角波

a i = 1+exp(-U /U )

I

c i

d t

I ——差分放大器的恒定电流; U t ——温度的电压当量,当室温为250C 时,U t ≈26mV 。 如果Uid 为三角波,设表达式为

()()

4U t T /4U t T

m id -=

(0<=t<=T/2)

()()4U t 3T /4U t T

m id -= (T/2<=t<=T)

式中 U m —三角波的幅度;

T —三角波的周期。

为使输出波形更接近正弦波:

(1)传输特性曲线越对称,线性区越窄越好。

(2)三角波的幅度Um 应正好使晶体管接近饱和区或截止区。

(3)如下图 2.7为实现三角波—正弦波变换的转化图。1R p 调节三角波的幅度,2P R 调整电路的对称性,其并联电阻RE2用来减小差分放大器的线性区。电容C6,C7为隔直电容,C7为滤波电容,以滤除谐波分量,改善输出波形。 隔直电容C6、C7要取得较大,因为输出频率很低,滤波电容视输出的波形而定,若含高次斜波成分较多,可取得较小,一般为几十皮法至0.1微法。8R =100k 欧与2P R =100k 欧姆相并联,以减小差分放大器的线性区

七、实验调试结果

7.1仿真调试工具

Multisim是美国国家仪器(NI)有限公司推出的以windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作,具有大量的PLC元件模型,可以仿真更复杂的数字电路,在保留了EWB形象直观等优点的基础上,增强了软件的仿真测试和分析功能,扩充了元件库中的元件的数目,使得仿真设计的结果更精确、更可靠、更具有实用性。

7.2方波发生电路仿真

方波发生电路核心元件是555定时器,通过改变滑动电位计,来改变输出波形的占空比,以及频率得到仿真波形图以及仿真数据表。

图7.1方波仿真图

表1:方波发生仿真数据

f(kHz) 2.822 3.326 2.325 2.324 2.271 2.271 Uo(V) 5.131 5.395 5.804 5.824 5.824 5.824

Rp1(%)0 20 40 60 80 100

7.3 三角波发生电路仿真

三角波发生器主要由积分器组成,通过调节滑动电位计来改变三角波的输出幅度,

仿真波形如图7.2。

7.4正弦波发生电路仿真

正弦波发生电路由差分放大电路组成,RP2调节三角波的幅度,RP3调整电路的对称性,其并联电阻RE2用来减小差分放大器的线性区,通过测试得到如图7.3。

7.5总电路仿真波形

将三部分单独的模块组合在一起,然后调节个电位计,得到三种波形如图7.4

图7.2三角波仿真图

图7.3发生正弦波仿真图

7.6 设计中的问题及解决方法

函数发生器系统的设计一路走过来磕磕碰碰经历了不少,遇到了很多的意想不到的麻烦以及很多困惑,下面谈2个关键的问题。首先是555的原理问题,之前并没接触555处理器,开始在网上一搜资料发现555不是想象中的容易,为攻克此难关花了大量来的时间去搜集资料,学校的数字图书馆看了大量的文献以及期刊,以及问了好多同学,尽管现在还不是很清楚,但是基本原理心里有数了,其二是电路的仿真,由于开始参数没调对,而误以为是由于Multisim 一些设置没调好,一直花了大把的时间放在了Multisim 上学习,最后通过查阅大量的资料才知道是参数的设置的问题,当然也值得一提的是文档的排版问题,虽然之前对排版也接触不少,可是这设计的排版中还是遇到了许多问题,比如图片的格式设置中,总是出现图片拉不到自己要的位置等等,最后请教室友,在网上看了Word

的视频后终于把问题解决了。

图7.4 总电路仿真波形

八、设计心得

函数发生器有很宽的频率范围,使用范围很广,它是一种不可缺少的通用信号源。可以用于生产测试、仪器维修和实验室,还广泛使用在其它科技领域,如医学、教育、化学、通讯、地球物理学、工业控制、军事和宇航等。

波形发生器是产生方波,三角波,正弦波的函数发生器,整个电路由方波发生电路,三角波发生电路,正弦波发生电路组成,由555电路组成的多谐振荡器,接通电源后,产生一定频率和幅值的脉冲信号即方波,方波作为积分器的输入端再经过积分器的作用,将方波转化为三角波,最后三角波作为差分放大电路的输入端,利用差分放大器的传输特性曲线的非线性的原理,将三角波转化为正弦波,通过调节电路的个电位计,来控制波形的再可调范围内的幅值以及频率,同时为减小杂波的干扰,在各输入端都接入了滤波电容,最后将各个电路整合到一起,也就完成了一个简易函数发生器。

通过这次课程设计使我明白了自己专业知识还很欠缺。自己要学习的东西还很多,以前老是觉得自己什么东西都会,什么东西都容易懂,有点眼高手低。通过这次课程设计,我才明白有些东西自己想与自己去做事两码事,在这次的设计中也遇到了很多的问题,比如函数发生器的原理问题,之前并没接触555的具体运用,开始在网上一搜资料发现555不是想象中的容易,但正是这些难题成就了我的收获,通过解决这些难题过程中一方面提高了自己的自学能力以及思考能力解决问题能力,另一方面通过查资料请教学长开阔了自己的专业方面的见识,比如认识了555还有许多其他的用途以及原理,了解了555芯片在实际应用是如此的广泛,这也激发了我学习的动力和兴趣,当然学习无止境,这些知识、这些收获还是远远不够的,在今后的学习与课余中我将继续努力学习专业知识,为以后工作打下坚实的基础。

参考文献

[1]康华光.电子技术基础模拟部分(第五版)[M].北京:高等教育出版社,2005.

[2]康华光.电子技术基础数字部分(第五版)[M].北京:高等教育出版社,2005.

[3]唐赣,聂典.Multisim 10原理图仿真与PowerPCB 5.0.1印制电路板设计[M].北京:电子工业出版社,2009.

[4]韩雪涛,韩广兴,吴瑛.电子单元电路应用与实测技能演练[M].北京:电子工业出版社,2009.

[5]陈学平.《Atium Designer Summer 09》电路设计与制作:电子工业出版社,2012.

[5] http:// https://www.360docs.net/doc/9610933452.html,.

[6] https://www.360docs.net/doc/9610933452.html,.

[7] https://www.360docs.net/doc/9610933452.html,

附录1 波形发生器元件明细表

附录2 555定时器介绍

在数字电路中,常常需要一种不需外加触发脉冲就能够产生具有一定频率和幅度的矩形波的电路。由于矩形波中除基波外,还含有丰富的高次谐波成分,因此我们称这种电路为多谐振荡器。它常常用作脉冲信号源。多谐振荡器没有稳态,只具有两个暂稳态,在自身因素的作用下,电路就在两个暂稳态之间来回转换。

一、电路组成结构图如下图

NE555芯片由四部分组成:

(1)三个阻值5k Ω的电阻组成的分压器; (2)两个电压比较器C1和C2; V+>V-, o v =1;

V+

(3)基本RS 触发器;

(4)放电三极管V 及缓冲器G ;

二、各引脚的作用

1引脚:接地端,与地相接; 2引脚:触发输入端; 3引脚:输出端;

4引脚:D R 复位端,当D R 端接低电平是,时基电路不工作,此时无论TH 处何总电

附录2 图1.1电压比较器

IC

控制电压V 1

V I 阀值输入2

V I 阀值输入v O

放电端CC V 电源

D R 复位

v O

附录图二1.2 NE555原理图内部结构

IC v 1

I v 2

I v D

R cc v 0

v 0

v ′附录二图1.3 NE555电路符号

平,时基电路始终为“0”,该端不用时应接高电平;

5引脚:电压控制端,若此端接外电压,则可改变内部比较器的基准电压,当该端不用时,应将此端一只0.01μF 的电容接地,以防止干扰; 6引脚:阀值输入端; 7引脚:放电端;

8引脚:电源输入端,外接电源cc v ,双级型时基电路cc v 的范围是4.5~16V ,CMOS 型时基电路cc v 的范围为3~18V ,一般用5V ;

三、基本功能

当5脚悬空是,比较器C 1和C 2的基准电压分别为2

3cc V 和3

cc V ;

1I v 是比较器的C 1的信号输入端,称为阀值输入端;2I v 是比较器的C 2的信号输入端,称为触发输入端。如果控制电压端(5)外接电压IC v ,则比较器C 1和C 2的基准电压就变为IC v 和

2

IC

v 。比较器C 1和C 2输出控制SR 锁存器和放电三极管V 的状态 放电三极管V 为外接电路提供放电通路,在使用定时器是,该三极管的集电极(7)一般要接上拉电阻。

D R 为直接复位输入端,当为低电平时,不管其他的输入端的状态如何,输出端的

0v 即为低电平。

当1I v >2

3cc V ,2I v >3

cc V 时,比较器C 1输出低电平,比较器C 2输出高电平,简单SR 锁

存器Q 端置0,放电三极管V 导通,输出端0v 为低电平。

当1I v <2

3cc V ,2I v <3

cc V 时,比较器C 1输出高电平,比较器C 2输出低电平,简单SR 锁

存器Q 端置1,放电三极管V 截止,输出端0v 为高电平。

当1I v <2

3cc V ,2I v >3

cc V 时,,简单SR 锁存器R=1,S=1,锁存器状态不变,电路保持原状

态不变。

附录2表1.4 :555定时器功能表

函数发生器附录3:电路总原理图

17

简易函数信号发生器

课程设计任务书 (一)设计目的 1、掌握信号发生器的设计方法和测试技术。 2、了解单片函数发生器IC8038的工作原理和应用。 3、学会安装和调试分立元件与集成电路组成的多级电子电路小系统。 (二)设计技术指标与要求 1、设计要求 (1)电路能输出正弦波、方波和三角波等三种波形; (2)输出信号的频率要求可调; (3)拟定测试方案和设计步骤; (4)根据性能指标,计算元件参数,选好元件,设计电路并画出电路图; (5)在面包板上或万能板或PCB板上安装电路; (6)测量输出信号的幅度和频率; (7)撰写设计报告。 2、技术指标 频率范围:100Hz~1KHz 1KHz~10KHz; 输出电压:方波V P-P≤24V,三角波V P-P=6V,正弦波V P-P=1V;方波t r小于1uS。 (三)设计提示 1、方案提示: (1)设计方案可先产生正弦波,然后通过整形电路将正弦波变成方波,再由积分电路将方波变成三角波;也可先产生三角波-方波,再将三角波变成正弦波。 (2)也可用单片集成芯片IC8038实现,采用这种方案时要求幅度可调。 2、设计用仪器设备: 示波器,交流毫伏表,数字万用表,低频信号发生器,实验面包板或万能板,智能电工实验台。 3、设计用主要器件: (1)双运放NE5532(或747)1只(或741 2只)、差分管3DG100 4个、电阻电容若干; (2)IC8038、数字电位器、电阻电容若干。 4、参考书: 《电子线路设计·实验·测试》谢自美主编华中科技大学出版社 《模拟电子技术基础》康华光主编高等教育出版社 《模拟电子技术》胡宴如主编高等教育出版社 (四)设计报告要求 1、选定设计方案; 2、拟出设计步骤,画出设计电路,分析并计算主要元件参数值; 3、列出测试数据表格; 4、调试总结,并写出设计报告。 (五)设计总结与思考 1、总结信号发生器的设计和测试方法;

两款函数任意波形发生器产品简介

是德科技 30 MHz 函数/任意波形发生器 33521A 单通道函数/任意波形发生器 33522A 双通道函数/任意波形发生器 技术资料 ?????????????????? ?????????????????? ???? (alias-protected) ?????? ??

33500 系列函数/任意波形发生器 实现更出色的精度和灵活性?わょ??????????????????わ???????????????????????????? Keysight 33500 ????/??????????????????????????????????????????????????⒔????? 10 ???????????????????????????????????? 主要特性 —30 MHz ??????? ??????????? —???? 40 ps???????? 0.04%???????????—250 MSa/s ???? 16 ??? ????????????????? —????????????????????????????????? —??? 33522A ?????勚??????ㄩ? —?㈨ 1 MSa ??▌╈????㈨ 16 MSa ▌╈???▌╈???? ???? —?? LXI C ??? —????????????? TFT ?????????????????????????? —??? BenchL ink Waveform Builder Pro ????????????信号保真度 ???????????????? ??????????????? ??????????????? ??????????????? ????? 33500 ????/??? ??????????????? ??????? 40 ps ?⒔??? ???/??????? 10 ???? ??????????? 16 ??? ???? 0.04% ???????? ▕ 250 MSa/s (16 ?) ??????? ????????????▌╈?? ????????????⒋??? ???????????????? ???????????? 灵活的信号生成 33521A ? 33522A ???????? ??????????????? ? (DTMF) ????? 33522A ??? ?????????????ㄩ?? ???????勚???????? ??????????????(? ???????) ??????⒋? ???????????????? ???????????⒋??? 逐点波形 33500??????????? ???????????? (alias- protected) ?????????? ?????????????? ???33521A ? 33522A ??? ? 30 MHz ???????⒋?? ??????????????? ??????????????? ???????????????? ??????????????? ???????????????? ????????? 用户界面 ????????????? TFT ? ???????????????? ???????????????? ?????? 33500 ?????? LXI C ??????? USB 2.0 ? 10/100 Base-T ???????????㎡? ???? PC ?????????? ???????????????? ?? GPIB ????????? 可选 33503A BenchLink Waveform Builder Pro 软件 Benchlink Waveform Builder Pro ? ??????????????? ??????????????? ??? Microsoft Windows ???? ???????????????? ???????????????? ??????????????? ???????????????? ?╖????????㎡???? ??????????????? ??????????????? BenchLink Waveform Builder Pro? ???????????????? ???????????????? ?????╱????????? ㎡??????????????? ??????????????? ??? 30 ??????????? https://www.360docs.net/doc/9610933452.html,/? nd/33503

函数发生器实验报告.

2010暑假实习报告 班级: 指导老师: 姓名: 学号: 时间:2010.6.25~2010.7.11

一 实习内容:函数发生器 一个电路同时产生正弦波、三角波、方波。 要求:1 正弦波幅度不小于1V ; 三角波不小于5V ; 方波不小于14V ; 2 频率可调 范围分为三段: 10HZ —100HZ ;100HZ —1KHZ ;1KHZ —10KHZ 。 二 所用仪器设备: 万用表,稳压电源,示波器,信号发生器,电烙铁,剪刀,镊子。 函数发生器设计电路图 v o1 +12V 13 12 4 R 3 20k Ω –12V 47k Ω 10k Ω R 2 2 R 1 10k Ω 1 RP 2 R 4 5.1k Ω 100k Ω 7 6 R 5 10k Ω A 1 A 2 9 4 C 1 10μF + + S C 2 1μF +12V v o2 10 + C 3 470μF RP 3 47k Ω + C 4 470μF R B1 6.8k Ω T 1 R C1 10k Ω +12V R C2 10k Ω C 6* 0.1μF C 5 + 470μF v o3 R B2 T 2 6.8k Ω 100Ω RP 4 R E2 100Ω R E3 2k Ω T 3 T 4 R E4 2k Ω R 8k Ω BG319 –12V μA747 1 2 μA747 1 2 –12V RP 1 A 1 A 2 * - + – +

测量结果记录与分析 体会:本次函数发生器是我们第九组在本次暑假实习中最成功的一次实习,我和同组的搭档马银超小心地焊接,认真的连线,积极学习74L S 191, 74L S 192, 74L S 74 芯片的内部构造以更深入地理解电路的工作原理,当我们完成整个焊接的工作时,就迫不及待地想要测试,我 电容波形 0.1u 0.01u 1u 方波 幅度 18V 幅度 19V 幅度 20V 最小频率3.5KHZ 最小频率35HZ 最小频率30HZ 最大频率8.5KHZ 最大频率1.2KHZ 最大频率1.1HZ 三角 波 幅度 3-9V 幅度5-11.5V 幅度4.5-16.5V 最小频率1.5KHZ 最小频率55HZ 最小频率16HZ 最大频率7.5KHZ 最大频率1.6KHZ 最大频率85HZ 正弦波 幅度0.2-0.98V 幅度1.3-4.5V 幅度1.5-4.1V 最小频率2.1KHZ 最小频率29HZ 最小频率17HZ 最大频率11KHZ 最大频率 0.96KHZ 最大频率81HZ

国产函数、任意波形发生器大比拼

国产函数、任意波形发生器大比拼 典型的DDS原理框图如图所示。 其实质是数模转换,仍然要遵循奈奎斯特采样定理。即输出的频率不超过采样率的一半,事实上商用的采用DDS技术的函数/任意波形发生器由于受到低通滤波器设计以及杂散分布的影响限制,输出波形的最高频率均不超过采样率的40%。相对于直接模拟频率合成,锁相频率合成,其优点如下: ·频率分辨率高。若时钟频率不变,DDS频率分辨率仅由相位累加器位数来决定,也就是理论上的值越大,就可以得到足够高的频率分辨率。目前,大多数DDS的分辨率在1Hz数量级,许多都小于1mHz甚至更小,这是其他频率合成器很难做到的。 ·工作频带较宽。根据Nyquist定律,只要输出信号的最高频率分辨率分量小于或等于fclk/2就可以实现。而实际当中由于受到低通滤波器设计以及杂散分布的影响限制,仅能做到40% fclk左右。 ·超高速频率转换时间。DDS是一个开环系统,无任何反馈环节,这种结构使得DDS的频率转换时间极短。DDS 的频率转换时间可达到纳秒数量级,比使用其它的频率合成方法都要小几个数量级。 ·相位变化连续。改变DDS输出频率,实际上改变的是每一个时钟周期的相位增量,相位函数的曲线是连续的,只是在改变频率的瞬间其频率发生了突变,因而保持了信号相位的连续性。 ·具有任意输出波形的能力。只要ROM中所存的幅值满足并且严格遵守Nyquist定律,即可得到输出波形。例如三角波、锯齿波和矩形波。 ·具有调制能力。由于DDS是相位控制系统,这样也就有利于各种调制功能。 同时DDS合成技术也有一些固有的缺点,如下: ·杂散分量丰富。这些杂散分量主要由相位舍位、幅度量化和DAC的非理想特性所引起。因为在实际的DDS电路中,为了达到足够小的频率分辨率,通常将相位累加器的位数取大。但受体积和成本的限制,即使采用先进的存储方法,ROM的容量都远小于此,因此在对ROM寻址时,只是用相位累加器的高位去寻址,这样不可避免地引起误差,即相位舍位误差。另外,一个幅值在理论上只能用一个无限长的二进制代码才能精确表示,由于ROM的存储能力,只采用了有限比特代码来表示这一幅值,这必然会引起幅度量化误差。另外,DAC的有限分辨率以及非线性也会引起误差。所以对杂散的分析和抑制,一直是国内外研究的特点,因为它从很大程度上决定了DDS的性能。 ·频带受限。由于DDS内部DAC和ROM的工作速度限制,使得DDS输出的最高频率有限。目前市场上采用CMOS、TTL等工艺制作的DDS芯片工作频率一般在几十MHz至几百MHz左右。但随着高速GaAs器件的出现,频带限制已明显改善,芯片工作频率可达到2GHz范围左右。 以上摘自:《现代DDS的研究进展与概述》一文,https://www.360docs.net/doc/9610933452.html,/event/emag/20080226.htm。 将DDS应用于波形发生器,能非常方便的产生任意波形。一般除了具备常规函数发生器所具备的正弦波、方波、锯齿波、脉冲、噪声外,还有指数上升、指数下降、Sinc波、心电图波、直流,以及地震波等任意波形。能采用直接在仪器上手动编辑或windows 下软件编辑的方式产生任意波形,用于模拟电路或应用环境中可能发生的情况,此外还具备非常丰富的调制功能,甚至有些调制功能是以往只能在高端信号源上才能看到的。 下面找出主要以国产厂商为主的函数/任意波形发生器做一个对比,以此来了解国内DDS的应用水平,并给出一个大概的选购指南,以便您在需要的时候能够快捷的找到合手的信号源。Agilent在很早之前就推出了33200系列

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原理

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原 理 什么是函数信号发生器?函数信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。 函数信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。 函数信号发生器的工作原理:函数信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。它能够产生多种波形,如三角波、锯齿波、矩形波、正弦波,所以在生产实践和科技领域中有着广泛的应用。 函数信号发生器系统主要由主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器和指示电压表构成。当输入端输入小信号正弦波时,该信号分两路传输,一路完成整流倍压功能,提供工作电源;另一路进入一个反相器的输入端,完成信号放大功能。该放大信号经后级的门电路处理,变换成方波后经输出,输出端为可调电阻。 函数信号发生器产生的各种波形曲线均可以用三角函数方程式来表示,函数信号发生器在电路实验和设备检测中具有十分广泛的用途。例如在通信、广播、电视系统中,都需要射频发射,这里的射频波就是载波,把音频、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

函数信号发生器实训报告

电子与信息工程 综合实验课程报告 实验名称:基于单片机的信号发生器的设计与实现班级:电子1班 组员:徐丹许艳徐梅 指导教师:张辉 时间:2013-6-8至2011-6-16

目录 前言......................................................................... 错误!未定义书签。 1 波形发生器概述 (2) 1.1波形发生器的发展状况 (2) 1.2国内外波形发生器产品比较 (3) 2 方案论证与比较 (4) 2.1 方案一 (4) 2.2 方案二 (5) 2.3 方案三 (5) 3 硬件原理 (5) 3.1 MCS-51单片机的内部结构 (6) 3.1.1 内部结构概述 (6) 3.1.2 CPU结构 (6) 3.1.3 存储器和特殊功能寄存器 (7) 3.2 P0-P3口结构 (7) 3.3 时钟电路和复位电路 (8) 3.3.1时钟电路 (8) 3.3.2单片机的复位状态 (9) 3.4 DAC0832的引脚及功能 (10) 4 软件原理 (11) 4.1 主流程图 (12) 4.1.1 方波仿真图 (13) 4.1.2 三角波仿真图 (14) 4.1.3 锯齿波仿真图 (15) 4.1.4 梯形波仿真图 (16) 4.1.5 正弦波仿真图 (17) 4.2附录:实物图 (17) 总结 (18) 致谢 (19) 参考文献 (19)

1 波形发生器概述 在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域,经常需要用到各种各样的信号波形发生器。随着集成电路的迅速发展,用集成电路可很方便地构成各种信号波形发生器。用集成电路实现的信号波形发生器与其它信号波形发生器相比,其波形质量、幅度和频率稳定性等性能指标,都有了很大的提高。 1.1波形发生器的发展状况 波形发生器是能够产生大量的标准信号和用户定义信号,并保证高精度、高稳定性、可重复性和易操作性的电子仪器。函数波形发生器具有连续的相位变换、和频率稳定性等优点,不仅可以模拟各种复杂信号,还可对频率、幅值、相移、波形进行动态、及时的控制,并能够与其它仪器进行通讯,组成自动测试系统,因此被广泛用于自动控制系统、震动激励、通讯和仪器仪表领域。 在70 年代前,信号发生器主要有两类:正弦波和脉冲波,而函数发生器介于两类之间,能够提供正弦波、余弦波、方波、三角波、上弦波等几种常用标准波形,产生其它波形时,需要采用较复杂的电路和机电结合的方法。这个时期的波形发生器多采用模拟电子技术,而且模拟器件构成的电路存在着尺寸大、价格贵、功耗大等缺点,并且要产生较为复杂的信号波形,则电路结构非常复杂。同时,主要表现为两个突出问题,一是通过电位器的调节来实现输出频率的调节,因此很难将频率调到某一固定值;二是脉冲的占空比不可调节。 在70 年代后,微处理器的出现,可以利用处理器、A/D/和D/A,硬件和软件使波形发生器的功能扩大,产生更加复杂的波形。这时期的波形发生器多以软件为主,实质是采用微处理器对DAC的程序控制,就可以得到各种简单的波形。 90 年代末,出现几种真正高性能、高价格的函数发生器、但是HP公司推出了型号为HP770S的信号模拟装置系统,它由HP8770A任意波形数字化和HP1776A波形发生软件组成。HP8770A实际上也只能产生8 中波形,而且价格昂贵。不久以后,Analogic公司推出了型号为Data-2020的多波形合成器,Lecr oy 公司生产的型号为9100 的任意波形发生器等。 到了二十一世纪,随着集成电路技术的高速发展,出现了多种工作频率可过GHz 的DDS 芯片,同时也推动了函数波形发生器的发展,2003 年,Agilent 的产品33220A能够产生17 种波形,最高频率可达到20M,2005 年的产品N6030A 能够产生高达500MHz 的频率,采样的频率可达1.25GHz。由上面的产品可以看出,函数波形发生器发展很快近几年来,国际上波形发生器技术发展主要体现在以下几个方面:

简易函数波形发生器

系统框图 1、系统设计 1.1总体设计 系统采用±12V双电源供电,由LM324集成运放芯片构成滞回比较器、积分器和二阶有源低通滤波器。它由滞回比较器产生方波信号,方波信号经过积分器后产生三角波信号。三角波信号一路反馈回滞回比较器,作为滞回比较器的V REF(反馈电压);另一路经二阶有源低通滤波器滤波以后产生正弦波信号。使用时可以在电路系统的不同输出点得到不同的波形信号。正弦波信号通过LM358集成芯片构成全波整流电路。

2.2 单元电路设计 2.2.1方波——三角波发生电路 方波-三角波发生电路由滞回比较器和积分运算电路组成。通过滞回比较器产生方波,方波通过积分电路产生三角波。积分运算电路既作为延迟环节又作为方波变三角波电路,滞回比较器和积分运算电路的输出互为另一个电路的输入。 方波的输出电压幅度由稳压管ZD1、ZD2共同决定。稳压幅度Uz为 +Uz=3.9+0.7=4.6(V) 其中,0.7V为二极管D1正向导通的管压降。 -Uz=-(3.9+0.7)=-4.6 (V) 其中,0.7V为二极管D2正向导通管压降。 所以 U o1=±U Z=±4.6(V) V pp(方波)=9.2V 电路的第二级是一个积分器,用于输出三角波。当电路的第一级输出的方波信号U01送入该级电路后,由该级电路对信号进行积分变换以后,产生三角波信号U02。U02分成两路,一路输入第三级电路,另一路反馈回滞回比较器,作为滞回

比较器的V REF。R1为10KΩ,R2为10 kΩ,R4=10kΩ,C1=0.1uF。 第二级电路的输出电压幅度为: 错误!未找到引用源。 =(10K/10K)*4.6V=4.6(V) V pp(三角波)=9.2(V) 第一级电路和第二级电路的振荡周期相同,可以由以下的公式求得: =4×(10x103)×(10x103)×0.1×10-6/(10×103) T=4 (ms) 则振荡频率为: f=1/ T=1/(0.172×10-3)=250(Hz) 2.2.2正弦波发生电路 C2 第三级电路是二阶有源低通滤波器,用于对第二级电路送来的信号U02进行滤波。U02经过第三级电路的滤波之后,变换成正弦波信号后由U03输出。U03输出信号的周期与U02输出信号的周期相同。根据集成运算放大器的工作原理,集成运算放大器的两输入端“虚短”,即两输入端的电压相等。所以在第三级电

函数波形发生器.docx

1 2 3 4 5 6 7 8 vcc vcc 11 U1A LM324D 02 R12 50% 3 矩形波 C7 10uF 4~l 50%^! ■^iRH 10k ;, Rw6 D1 Dz1 0 2DZ4.QT Dz2… □Z4.7 iS 乙 0324D R1 卉扳忒 U3C 750 U Key=A 1N414^ D2 禺 4N4仏 C6 卄 IOOI R15 17 1ML Dz3 2^02DZ4- 13 4D1 2 ID 9 Rwl 50% T 啥 4 1nF Rw2 50% 100kj 50% Key?A R2 K'kL 23 锯齿 1 S 22 C2 Z100 R14 1k|. w3 24 _L >R3—T — : iokh 10: C3 ±22°F OOnF Rw8 100kL Key=A 21 巫弦波 三角波 .17V

* W 卄*4巴犁曲<5 冋"Y 0叢%T r

函数波形发生器的设计 一、验目的 1、学习函数波形发牛器的设实计方法; 2、了解单片函数发生器ICL8038的工作原理及应用; 3、掌握函数波形发生器电路的调试及主要指标的测试方法; 4、研究函数波形发牛器的设计方案。 二、实验原理 在无线电通信,测量,口动化控制等技术领域广泛地应用着各种类型的信号发牛器,常用的波形是止弦波,矩形波(方波)和锯齿拨。 随着集成电路技术的发展,己有能力同时产生同频的方波,三角波和正弦波的专用集成电路, 称为函数波形发生器,如ICL8038o 1.函数波形发生器 专用集成电路ICL8038就是一个函数波形发生器,其引出脚的排列及性能见附录一。典型应用电路如图5-2-1所示。 图5-2-1 161^038典熨应川电路

函数信号发生器

函数信号发生器 函数信号发生器 作者:华伟锋卞蕊樊旭超 2013-8-8

函数信号发生器 摘要 直接数字频率合成(DDS)是一种重要的频率合成技术,具有分辨率高、频率变换快等优点,在雷达及通信等领域有着广泛的应用前景。本文介绍了DDS(直接数字频率合成)的基本原理和工作特点,提出以DDS芯片AD9850芯片为核心利用MSP430F5438单片机控制,辅以必要的外围电路,构成一个输出波形稳定、精度较高的信号发生器。该信号发生器主要能产生标准的正弦波、方波与三角波(锯齿波),波形可手动切换,频率步进可调,软件系统采用菜单形式进行操作,LCD液晶显示可实时显示输出信号的类型、幅度、频率和频率步进值,操作方便明了,还增加了很多功能。 关键词:AD9850;信号发生器;MSP430F149单片机;DDS;LCD液晶; Abstact:Direct Digital Synthesis (DDS) is an important frequency synthesizer technology, with high resolution, fast frequency conversion, etc., in radar and communications and other fields have a wide range of applications. This article describes the DDS (direct digital frequency synthesis) of the basic principles and work, we proposed to DDS chip AD9850 chip as the core using MSP430F5438 MCU control, supplemented by the necessary peripheral circuits to form a stable output waveform, high precision signal generator . The signal generator can generate standard primary sine wave, square wave and triangular wave (sawtooth), the waveform can be manually switched, frequency step adjustable software system used to operate the menu form, LCD liquid crystal display can be real-time display of the output signal type , amplitude, frequency and frequency step value, easy to understand, but also adds a lot of functionality. Key words:AD9850; signal generator; MSP430F5438MCU; DDS; LCD liquid crystal;

如何使用函数信号发生器

如何使用函数信号发生器 认识函数信号发生器 信号发生器一般区分为函数信号发生器及任意波形发生器,而函数波形发生器在设计上又区分出模拟及数字合成式。众所周知,数字合成式函数信号源无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟,其锁相环( PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phase Jitter)及频率漂移均能达到相当稳定的状态,但毕竟是数字式信号源,数字电路与模拟电路之间的干扰,始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发. 这是通用模拟式函数信号发生器的结构,是以三角波产生电路为基础经二极管所构成的正弦波整型电路产生正弦波,同时经由比较器的比较产生方波,换句话说,如果以恒流源对电容充电,即可产生正斜率的斜波。同理,右以恒流源将储存在电容上的电荷放电即产生负斜率的斜波,电路结构如下: 当I1 =I2时,即可产生对称的三角波,如果I1 > >I2,此时即产生负斜率的锯齿波,同理I1 < < I2即产生正斜率锯齿波。 再如图二所示,开关SW1的选择即可让充电速度呈倍数改变,也就是改变信号的频率,这也就是信号源面板上频率档的选择开关。同样的同步地改变I1及I2,也可以改变频率,这也就是信号源上调整频率的电位器,只不过需要简单地将原本是电压信号转成电流而已。 而在占空比调整上的设计有下列两种思路: 改变电平的幅度,亦即改变方波产生电路比较器的参考幅度,即可达到改变脉宽而频率不变的特性,但其最主要的缺点是占空比一般无法调到20%以下,导致在采样电路实验时,对瞬时信号所采集出来的信号有所变动,如果要将此信号用来作模数(A/D)转换,那么得到的数字信号就发生变动而无所适从。但不容否认的在使用上比较好调。 2、占空比变,频率跟着改变,其方法如下: 将方波产生电路比较器的参考幅度予以固定(正、负可利用电路予以切换),改变充放电斜率,即可达成。 这种方式的设计一般使用者的反应是“难调”,这是大缺点,但它可以产生10%以下的占空比却是在采样时的必备条件。 以上的两种占空比调整电路设计思路,各有优缺点,当然连带的也影响到是否能产生“像样的”锯齿波。 接下来PA(功率放大器)的设计。首先是利用运算放大器(OP) ,再利用推拉式(push-pull)放大器(注意交越失真Cross-distortion的预防)将信号送到衰减网路,这部分牵涉到信号源输出信号的指标,包含信噪比、方波上升时间及信号源的频率响应,好的信号源当然是正弦波信噪比高、方波上升时间快、三角波线性度要好、同时伏频特性也要好,(也即频率上升,信号不能衰减或不能减太大),这部分电路较为复杂,尤其在高频时除利用电容作频率补偿外,也牵涉到PC板的布线方式,一不小心,极易引起振荡,想设计这部分电路,除原有的模拟理论基础外尚需具备实际的经验,“Try Error”的耐心是不可缺少的。 PA信号出来后,经过π型的电阻式衰减网路,分别衰减10倍(20dB)或100倍(40dB),此时一部基本的函数波形发生器即已完成。(注意:选用π型衰减网络而不是分压电路是要让输出阻抗保持一定)。 一台功能较强的函数波形发生器,还有扫频、VCG、TTL、 TRIG、 GATE及频率计等功能,其设

简易函数信号发生器的设计

简易函数信号发生器的设计 一、 电路功能 能同时输出方波、三角波和正弦波三种波形。 二、 技术指标 信号发生器能产生方波、三角波和正弦波三种周期性波形输出信号频率范围在100Hz —10KHz 可调,输出信号的峰峰值可调,方波的峰峰值约为8V ,三角波的峰峰值约为5V ,正弦波的峰峰值约为6V 。 三、 电路原理框图 (电路原理框图) 四、 元器件的介绍 1、 集成运算放器LM324 每块运放集成电路内含有四个相同的运算放大器,它们电源共用,彼此独立工作,管脚排列如图一所示。 图一(集成运算放大器LM324)

2、发光二极管LED 本次设计所用的发光二极管有绿色和红色两种圆头发光二极管,发光二极管的管脚有长短,长的为正极,短的为负极。 3、二极管 二极管具有单向导电性,如图3所示。如图中所示,二极管的一端是银色的,此端口为负极。 图二(二极管) 4、PNP和NPN PNP和NPN分别有三个管脚,分别有基极b,集电极c和发射极e,他们的分布店铺是如图四所示。 图三(三极管) 五、电路中元件参数的计算与取值,元器件清单 1、方波、三角波电路 2、

电路图如图四所示是产生方波和三角波的电路原理图。如图所示,A U 1构成有源积分器, A U 2构成迟滞比较器。 A U 2中,根据“虚短虚开”得 当n v =p v =0时,01v 的值为门限电压 当01V 单独作用时,p v = 01122 V R R R + (1) 当02V 单独作用时,p v = 022 11 V R R R + (2) ∴ 022 11 01212V R R R V R R R +++ = 0 (3) ∴此时01v 为门限电压T V T V ∴=01V = 022 1 V R R - (4) 又02V = z V ± = ±4V ∴ +T V = Z V R R 21 (5) -T V = z V R R 2 1 - (6) ∴ 当01v 达到+T V 时,三角波反转;当01v 达到-T V 时,三角波再次反转 ∴ +T V 和-T V 分别代表三角波的峰-峰值 ∴ 峰-峰值 m m v 01 = +T V --T V = z V R R 2 1 2,又称回差电压 又由原理图可知,方波的峰-峰值为z V 2 图四(方波三角波产生电路) 300 -4V +4V 2 0R

函数波形发生器 程序及程序流程图、系统原理图

ASSUME CS: CODE CODE PUBLIC ORG 100H START: MOV DX,40H ;8255 A口地址IN AL,DX ;8255初始化TEST AL,01H JZ FF1 TEST AL,02H JZ FF2 TEST AL,04H JZ FF3 JMP START ;读频率选择状态L: TEST AL,10H JZ FB TEST AL,20H JZ JCB TEST AL,40H JZ SJB JMP START ;读波形选择状态FF1:MOV SI,09H JMP L FF2:MOV SI,03H JMP L FF3:MOV SI,02H JMP L ;频率调节 FB: MOV DX 48H ;0832 端口地址F: MOV BX 0FFH F0: MOV CX,SI MOV AL,00H F1: OUT DX,AL LOOP F1 DEC BX JNZ F0 MOV BX,0FFH F2: MOV CX,SI F3: OUT DX,AL LOOP F3 DEC BX JNZ F2 JMP F ;方波发生子程序 JCB:MOV DX,48H ;0832 端口地址MOV AL,0FFH J: INC AL MOV BX,0FFH J1: MOV CX,SI J2: OUT DX,AL LOOP J2 DEC BX JNZ J1 JMP J ;锯齿波发生子程序 SJB: MOV DX,48H ;0832 端口地址S: MOV AL,00H MOV BX,80H S0: MOV CX,SI S1: OUT DX,AL INC AL LOOP S1 DEC BX JNZ S0 MOV BX 80H S2: MOV CX,SI S3: DEC AL OUT DX,AL LOOP S3 DEC BX JNZ S2 JMP S ;三角波发生子程序JMP START ENDS CODE

函数信号发生器实验报告

北京邮电大学 电子电路综合设计实验报告 课题名称:函数信号发生器的设计和调试 院系:信息与通信工程学院 班级: 2012211113 姓名:李鸣野 学号:2012210362 班内序号:01 摘要 函数(波形)信号发生器能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫函数信号发生器在电路实验和设备检测中具有十分广泛的用途。例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域。方波-三角波产生电路主要有运放组成,其中由施密特触发器多谐振荡器产生方波,积分电路将方波转化为三角波,差分电路实现三角波-正弦波的变换。该电路振荡频率由第一个电位器调节,输出方波幅度的大小由稳压管的稳压值决定;正弦波幅度和电路的对称性分别由后两个电位器调节。

关键词:方波,三角波,正弦波 基本要求: a)设计一个设计制作一个可输出正弦波、三角波和方波信号的函数信号发生器 1)输出频率能在1-10khz范围内连续可调,无明显失真; 2)方波输出电压Uopp=12V,上升、下降沿小于10us,占空比可调范围30%--70%; 3)三角波Uopp=8V; 4)正弦波Uopp≥1V。 b)用PROTEL软件绘制完整的电路原理图(SCH) 设计思路: 要产生方波,需要用稳压管和比较器组成方波产生电路。稳压管为实验提供的6v稳压管。方波经过RC积分电路积分得到三角波,幅度为Uo2m=±(UZ+UD),由R1和Rf的比值及稳压管的稳压值决定,实验要求三角波峰峰值为8v,故根据公式推导后,选用20K的电阻作为R1,30K的电阻作为Rf。R3为12K。R4为直流平衡电阻,应与R2保持一致,均为5K。R0为限流电阻,根据实验要求选用2K。 三角波到正弦波的变换电路主要由差分放大器来完成。差分放大器具有工作点稳定,输入阻抗高,抗干扰能力强等优点。特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。波形变换的原理是利用差分放大器传输特性曲线的非线性。R e取阻值为100Ω,C1、C2、C4为隔直流电容,取C1=C2=C3=33uF。Rp1调节三角波

函数波形发生器

函数波形发生器 一、题目分析 题目要求:利用D/A芯片产生峰峰值为5V的锯齿波和三角波。 控制功能:使用2个拨动开关(K1、K2)进行功能切换。当K1接高电平时,输出波形的频率为1Hz,否则为0.5Hz。当K2接高电平时,输出为三角波,否则输出为锯齿波。 使用的主要元器件:8031、6MHz的晶振、74LS373、74LS138、2764、DAC0832、LM324、拨动开关K1、K2等。 输出波形的验证方法:使用示波器测量输出波形。 函数发生器采用AT89c52 单片机作为控制核心,外围采用模拟/数字转换电路(DAC0832)、运放电路(LM324)、按键等。电路采用AT89C52单片机和一片DAC0832数模转换器组成数字式低频信号发生器。 通过开关控制可产生锯齿波、三角波,同时用开关控制频率切换的波形。所产生的波形V P-P范围为5 V,频率范围为1HZ与0.5HZ,波形准确并且平滑。本系统设计简单、性能优良,具有一定的实用性。 本设计主要应用AT89c52作为控制核心。硬件电路简单,软件功能完善,控制系统可靠,性价比较高等特点。 二、方案论证 硬件方案选择 方案一:AT89c52单片机是一种高性能8位单片微型计算机。它把构成计算机的中央处理器CPU、存储器、寄存器、I/O接口制作在一块集成电路芯片中,从而构成较为完整的计算机。AT89c52芯片中每一路模拟输出与DAC0832芯片相连,构成多个DAC0832同步输出电路,输出波形稳定,精度高,但是第二级DAC0832输出,发生错误并且电路连接复杂。 方案二:AT89c52芯片中只有一路模拟输出或几路模拟信号非同步输出,这种情况下CPU对DAC0832 执行一次写操作,则把一个数据直接写入DAC

函数信号发生器设计报告

函数信号发生器设计报告 目录 一、设计要求 .......................................................................................... - 2 - 二、设计的作用、目的 .......................................................................... - 2 - 三、性能指标 .......................................................................................... - 2 - 四、设计方案的选择及论证 .................................................................. - 3 - 五、函数发生器的具体方案 .................................................................. - 4 - 1. 总的原理框图及总方案 ................................................................. - 4 - 2.各组成部分的工作原理 ................................................................... - 5 - 2.1 方波发生电路 .......................................................................... - 5 - 2.2三角波发生电路 .................................................................... - 6 - 2.3正弦波发生电路 .................................................................. - 7 - 2.4方波---三角波转换电路的工作原理 ................................ - 10 - 2.5三角波—正弦波转换电路工作原理 .................................. - 13 - 3. 总电路图 ....................................................................................... - 15 - 六、实验结果分析 ................................................................................ - 16 - 七、实验总结 ........................................................................................ - 17 - 八、参考资料 ........................................................................................ - 18 - 九、附录:元器件列表 ........................................................................ - 19 -

实验 函数信号发生器的原理与使用

电子科学系实验报告 系班组实验日期年月日姓名学号同组姓名 实验操作评定:好、较好、基本掌握、较差指导老师 实验二函数信号发生器的原理与使用 二、实验目的: 二、实验仪器和设备 三、实验内容 内容: 1 熟悉掌握函数发生器各个操作部件的功能 2. 实验验证各个功能的实现过程 3 用示波器观察各种输出信号 4 验证个功能指标是否符合仪器的标示 5 总结说明仪器的特点及应用 四、实验原理 使用一个激发装置(即信号源)来激励一个系统,以便观察、分析它对激励信号的反映如何,这是电子测试技术的标准实验之一。在设计、制造飞机时,需要事先了解机体及其有关设备在各种气流、雷击、雨水、温变干扰下的反映情况;在发展冶炼技术时,需要了解炉内物态随炉脸温度燃油器喷口温度而变化的动态过程;在分析一个电子线路时,常常需要了解输出信号频率及振幅与输入信号频率及振幅之间的关系。这样,在进行上述过程的硬件或软件的模拟实验时.就需要人为地产生各种模仿的信号。系统在这些模仿的信号的激励下产生各种反应,因此,称它们为激励信号。产生这些信号的仪器设备称为信号源。 信号源包括函数信号发生器、脉冲信号发生器、音频信号发生器、任意波形信号发生器以 及扫描频率发生器等多种设备,用于各种各样的工程测试。图11.1所示的产品系列树反映出信号源之间的关系,其中直接数字器件合成(DDS)是一种较新的技术,它利用了最

现代化的数字器件的能力,成为系列产品的主干,发展出函数发生器相任意波形发生器这样高水平的产品。 基本的函数发生器提供正弦波、方波和三角波,频率范围在1MHz到约50MHz之间。图11.2显示的是一个包含两个运算放大器的基本函数发生器。器件A1是一个积分器,它提供一个三角波输出信号,它所产生的三角波信号通过正弦波形成电路而产生正弦波信号输出。器件A2是一个电压比较器,它产生一个方波信号。大多数普通价格的函数发生器都以一些单片式集成电路(IC)为基础,并能提供正弦波、方波和三角波。价格较高者则能提供触发信号*只有较宽的频率范围祁较稳定的频率.具有可变的上升时间(对方波而言)和可变的直流补偿.具有较高的频率准确度和较强的输出驱动能力,旦波形失真度小。

相关文档
最新文档