氟硅酸盐对混凝土性能的影响

氟硅酸盐对混凝土性能的影响
氟硅酸盐对混凝土性能的影响

d o i :10.3963/j .i s s n .1674-6066.2019.01.006氟硅酸盐对混凝土性能的影响

蔡老虎,张立国

(南京生物医药谷建设发展有限公司,南京210000

)摘 要: 通过研究氟硅酸盐对混凝土凝结时间二

工作性二抗渗性能的影响,探讨氟硅酸盐对于综合改善混凝土耐久性的可行性三结果表明:掺入适量氟硅酸盐,可有效延长混凝土凝结时间;掺入0.5%氟硅酸镁,

混凝土具备最佳的工作性能;掺氟硅酸盐外加剂混凝土具有良好的抗渗性能;综合改善混凝土耐久性的氟硅酸盐最佳掺量为0.5%的氟硅酸镁三关键词: 氟硅酸盐; 混凝土; 凝结时间; 抗渗性能; 耐久性

I n f l u e n c e o f F l u o r o s i l i c a t e o n t h eP e r f o r m a n c e o fC o n c r e t e

C A IL a o -h u ,Z HA N GL i -g

u o (N a n j i n g B i o t e c ha n dP h a r m a c e u t i c a lV a l l e y C o n s t r u c t i o na n dD e v e l o p m e n tC o ,L t d ,N a n j i n g 210000,C h i n a )A b s t r a c t : E f f e c to f f l u o r o s i l i c a t eo nt h es e t t i n g t i m e ,w o r k a b i l i t y a n di m p e r m e a b i l i t y o

f c o n c r e t ew a sr e s e a r c h e d .A n d t h e f e a s i b i l i t y o f c o m p r e h e n s i v e i m p r o v i n

g c o n c r e t ed u r a b i l i t y w a s i n v e s t i g a t e d .R e s u l t ss

h o w e dt h a t t h es e t t

i n g t i m e e x t e n d sw h e n t h e c o n c r e t e i sb l e n d e d p r o p e r f l u o r o s i l i c a t e .C o n c r e t e p o s s e s s e dt h eb e s tw o r k a b i l i t y w h e na d d i n g 0.5%c o n t e n tM g S i F 6四6H 2O.T h eb e s tm i x i n g a m o u n t o f c o m p r e h e n s i v e i m p r o v i n g c o n c r e t e d u r a b i l i t y w a s 0.5%.K e y w

o r d s : f l u o r o s i l i c a t e ; c o n c r e t e ; s e t t i n g t i m e ; i m p e r m e a b i l i t yp e r f o r m a n c e ; d u r a b i l i t y 收稿日期:2018-11-30.作者简介:蔡老虎(1987-),硕士,工程师.E -m a i l :491363776@q q

.c o m 氟硅酸盐作为混凝土外加剂,可以有效改善其耐久性能三氟硅酸盐可用于耐酸混凝土中生成反应物氟硅酸钠,我国早期也曾使用氟硅酸镁溶液作为混凝土表面硬化剂,在水泥混凝土中掺入氟硅酸钠也可以起到缓凝

作用三P l a n k [1]等人研究了外加剂对混凝土浆体流变特性二

收缩及相关机理的影响三王立久[2]认为以氟硅酸盐为主要成分的超缓凝剂能有效减少塌落度损失,防止水化热裂缝和减少混凝土收缩三抗冻性能明显提高三以

氟硅酸钠和柠檬酸和糖蜜进行复配研究[3],结果显示复配外加剂可有效提高缓凝效果,并增强混凝土的抗渗性能三

通过研究氟硅酸盐对混凝土凝结时间二工作性二抗渗性能等的影响,探讨氟硅酸盐对于综合改善混凝土耐久性的可行性三

1 试验材料和方法

该试验配比为水泥467k g /m 3,砂682k g /m 3,碎石1113k g /m 3,水154k g

/m 3,外加剂0.90%三水泥:选用马鞍山海螺水泥厂生产的PO 42.5普通硅酸盐水泥;

粉煤灰:采用谏壁电厂的I 级粉煤灰;细骨料:采用河砂,细度模数2.7,Ⅱ区中砂;粗骨料:采用5~20mm 连续级配石灰石质碎石三

氟硅酸盐为氟硅酸镁和氟硅酸锌,氟硅酸盐掺量取0二0.25%二0.5%二0.75%二1.0%二2.0%三2 结果与讨论

2.1 氟硅酸盐对混凝土凝结时间的影响

王善拔[4]等人认为混凝土凝结时间与缓凝剂掺量呈正相关,缓凝型减水剂增加一倍[5],混凝土凝结时间

12建材世界 2019年 第40卷 第1期

浅谈影响型钢混凝土结构抗震性能的因素

浅谈影响型钢混凝土结构抗震性能的因素 浅谈影响型钢混凝土结构抗震性能的因素 摘要:由于型钢混凝土具有刚度大,防火、防腐性能好及重量轻、延性好等优点,因此在土木工程中具有广阔的应用前景。从抗震性能来讲,型钢混凝土结构适用于抗震烈度为6度至9度的多层、高层和一般构筑物。本文总结出了影响型钢混凝土结构抗震性能的六大因素:轴压比、剪跨比、型钢含量和型钢形式、 配箍率、混凝土强度、型钢的锚固形式。 关键字:型钢混凝土;轴压比;剪跨比;配箍率;型钢的锚固形式 中图分类号:TU528文献标识码: A 文章编号: 型钢混凝土组合结构是一种优于钢结构和钢筋混凝土结构的新 型结构,它分别继承了钢结构和钢筋混凝土结构的优点,克服了两者的缺点而产生的一种新型结构体系。型钢混凝土结构充分利用钢(抗拉性能好)和混凝土(抗压性能好)的特点,按照最佳几何尺寸,组成最优的组合构件,这种组合构件具有刚度大的特点,与钢结构相比,防火、防腐性能好,具有较大的抗扭和抗倾覆能力,而且,与钢筋混凝土结构相比,具有重量轻,构件延性好,增加净空高度和使用面积,同时缩短施工期,节约模板,特别是在高层和超高层建筑及桥梁结构中使用组合构件,更加体现了它的承载能力高和能克服混凝土结构施工困难的特点。 由于型钢混凝土结构具有上述特点,因此在土木工程中具有广阔的应用前景。从抗震角度来讲,型钢混凝土结构适用于抗震烈度为6度至9度的多层、高层和一般构筑物。 通过实验,总结出了影响型钢混凝土抗震性能的主要因素为: 1、轴压比 实验和工程实践表明,轴压比是影响型钢混凝土偏心受压构件破坏形式、延性、变形能力和抗震性能的最重要因素。当轴压比超过一定限值时,无论配箍率如何提高,框架柱的延性都不能得到明显改善,

硅酸盐水泥的选择与应用

浅谈硅酸盐水泥的选择与应用 学号:2010040432 姓名:高健专业:工程管理班级:4班 【摘要】本文对建筑工程中通常使用的各种硅酸盐水泥的特点、生产工艺、工作效能、注意事项,水泥制品特点等进行了简要分析。(主要从硅酸盐水泥的种类特征进行分析,进而为实际生活中选择合适的硅酸盐水泥。) 【关键词】波兰特水泥; 在所有的材料中,建筑材料的消耗量是最大的。因而,在所有的产业中,建筑材料产业成为了资源消耗量最大的产业。水泥,是建筑工程中最基础,用量最大的建筑材料。水泥性能的优良、以及所选用的水泥的型号、规格的不同,会直接影响到整个建筑工程的质量及最终的成败。各种不同的水泥,其生产工艺及性能也是各有特色的。 硅酸盐水泥,又称波特兰水泥(英语:Portland Cement),是由硅酸盐水泥熟料、0%-5%石灰石或粒化高炉炉渣、适量石膏磨细制成的水硬性胶凝材料。 一水泥分类 这类水泥包括不掺或掺有混合材料的各种硅酸盐水泥,中国按其混合材料的掺加情况,共分为如下六类。 1.纯熟料硅酸盐水泥,用于较为重要的土木建筑工程,因其抗冻性和耐磨性较好, 适用于配制高标号混凝土。 2.普通硅酸盐水泥,广泛用于制做各种砂浆和混凝土。普通硅酸盐水泥在应用方面 与硅酸盐水泥基本相同,并且有一些硅酸盐水泥不能应用的地方普通硅酸盐水泥也可以用,这使得普通硅酸盐水泥成为建筑行业应用面最广,使用量最大的水泥品种。 3.矿渣硅酸盐水泥,(矿渣水泥的抗渗性较差,不宜用于有抗渗要求的混凝土工程 中。但具有良好的耐热性,可用于温度不高于200℃的混凝土工程中,如热工窑炉基础等。)可用于地面、地下、水中各种混凝土工程,也可用于高温车间的建筑,但不宜用于需要早期强度高和受冻融循环、干湿交替的工程。因其颜色较浅,比重较小,水化热

影响混凝土强度的主要因素

影响混凝土强度的主要因素 硬化后的混凝土在未受到外力作用之前,由于水泥水化造成的化学收缩和物理收缩引起砂浆体积的变化,在粗骨料与砂浆界面上产生了分布极不均匀的拉应力,从而导致界面上形成了许多微细的裂缝。另外,还因为混凝土成型后的泌水作用,某些上升的水分为粗骨料颗粒所阻止,因而聚集于粗骨料的下缘,混凝土硬化后就成为界面裂缝。当混凝土受力时,这些预存的界面裂缝会逐渐扩大、延长并汇合连通起来,形成可见的裂缝,致使混凝土结构丧失连续性而遭到完全破坏。强度试验也证实,正常配比的混凝土破坏主要是骨料与水泥石的粘结界面发生破坏。所以,混凝土的强度主要取决于水泥石强度及其与骨料的粘结强度。而粘结强度又与水泥强度等级、水灰比及骨料的性质有密切关系,此外混凝土的强度还受施工质量、养护条件及龄期的影响。 1)水灰比 水泥强度等级和水灰比是决定混凝土强度最主要的因素。也是决定性因素。 水泥是混凝土中的活性组成,在水灰比不变时,水泥强度等级愈高,则硬化水泥石的强度愈大,对骨料的胶结力就愈强,配制成的混凝土强度也就愈高。如常用的塑性混凝土,其水灰比均在0.4~0.8之间。当混凝土硬化后,多余的水分就残留在混凝土中或蒸发后形成气孔或通道,大大减小了混凝土抵抗荷载的有效断面,而且可能在孔隙周围引起应力集中。因此,在水泥强度等级相同的情况下,水灰比愈小,水泥石的强度愈高,与骨料粘结力愈大,混凝土强度也愈高。但是,如果水灰比过小,拌合物过于干稠,在一定的施工振捣条件下,混凝土不能被振捣密实,出现较多的蜂窝、孔洞,将导致混凝土强度严重下降。参见图3—1。 图3—1混凝土强度与水灰比的关系 a)强度与水灰比的关系 b)强度与灰水比的关系 2)骨料的影响 当骨料级配良好、砂率适当时,由于组成了坚强密实的骨架,有利于混凝土强度的提高。如果混凝土骨料中有害杂质较多,品质低,级配不好时,会降低混凝土的强度。 由于碎石表面粗糙有棱角,提高了骨料与水泥砂浆之间的机械啮合力和粘结力,所以在原材料、坍落度相同的条件下,用碎石拌制的混凝土比用卵石拌制的混凝土的强度要高。 骨料的强度影响混凝土的强度。一般骨料强度越高,所配制的混凝土强度越高,这在低水灰比和配制高强度混凝土时, 特别明显。骨料粒形以三维长度相等或相近的球形或立方体

几种常见硅酸盐水泥的特性

几种常见硅酸盐水泥的特性 一、组成部分 1)硅酸盐水泥(又称波特兰水泥) 由硅酸盐水泥熟料、0%-5%石灰石或粒化高炉炉渣、适量石膏磨细制成。 硅酸盐水泥熟料的主要成分为硅酸三钙3CaO·SiO2,硅酸二钙2CaO·SiO2,铝酸三钙3CaO·Al2O3和铁铝酸四钙4CaO·Al2O3·Fe2O3。 2)矿渣硅酸盐水泥(简称故渣水泥) 由硅酸盐水泥熟料和粒化高炉矿渣、适量石膏磨细制成 水泥中粒化高炉矿渣掺加量按重量计为20~70%;允许用不超过混合材料总掺量1/3的火山灰质混合材料(包括粉煤灰)、石灰石、窑灰来代替部分粒化高炉矿渣,这些材料的代替数量分别不得超过15%、10%、8%;允许用火山灰质混合材料与石灰石,或与窑灰共同来代替矿渣,但代替的总量不得超过15%,其中石灰石不得超过10%、窑灰不得超过8%;替代后水泥中的粒化高炉矿渣不得少于20%。 3) 火山灰质硅酸盐水泥(简称火山灰水泥) 由硅酸盐水泥熟料和火山灰质混合材料、适量石膏磨细制成。 水泥中火山灰质混合材料掺加量按重量计为20~50%;允许掺加不超过混合材料总掺量1/3的粒化高炉矿渣,代替部分火山灰质混合材料,代替后水泥中的火山灰质混合材料不得少于20%。 4)粉煤灰硅酸盐水泥(简称粉煤灰水泥) 由硅酸盐水泥熟料和粉煤灰、适量石膏磨细制成 水泥中粉煤灰掺加量按重量计为20~40%;允许掺加不超过混合材料总掺量1/3的粒化高炉矿渣,此时混合材料总掺量可达50%,但粉煤灰掺量仍不得少于20%或大于40%。 5)复合硅酸盐水泥(简称复合水泥) 由硅酸盐水泥熟料和粉煤灰混合材料、适量石膏磨细制成 水泥中混合材料总掺加量按质量百分比应大于15%,不超过50%。水泥中允许用不超过8%的窑灰代替部分混合材料;掺矿渣时混合材料掺量不得与矿渣硅酸盐水泥

浅谈硅酸盐水泥特性

浅谈硅酸盐水泥特性 摘要:水泥作为建筑行业重要的基础原料,成为了国民经济建设的必要物资基础,而硅酸盐水泥因为其自身的特性,在特定环境下更是显得必不可少。 关键字:硅酸盐;水泥;特性 Abstract: Cement as the construction industry important basic material, become the national economic construction of the necessary material base, and Portland cement because its own characteristics, in certain circumstances it is to appear more indispensable. Key Word: Portland; Cement; characteristics 1.硅酸盐水泥定义及分类 硅酸盐水泥在国外又称为波特兰水泥,在我国的定义是凡是由硅酸盐水泥熟料,搀和0-5%的石灰石或者是粒化高炉矿渣,在添加适量的石膏,研磨成细粉状的水硬性胶凝材料,这是中国的国家通用标准对硅酸盐水泥的定义。 按照国家标准,硅酸盐水泥一般分为两种类型,第一种是Ⅰ型硅酸盐水泥这种硅酸盐水泥的代号是P怠,其定义为不掺加任何混合材料的硅酸盐水泥。第二种是Ⅱ型硅酸盐水泥,这种硅酸盐水泥的代号是P愠,其定义为在硅酸盐水泥粉磨时搀和石灰石或者是粒化高炉矿渣,掺加的质量不得超过水泥本身质量的5%。 2.硅酸盐水泥特性及应用 2.1硅酸盐水泥特性 (1硅酸盐水泥强度高 硅酸盐水泥的特性与一般水泥相比,最显著的特性是凝结快,凝结快预示着硬化快,硬化快意味着硅酸盐水泥的早期强度增长率比一般谁大,强度比一般水泥高。 (2硅酸盐水泥水化热高

影响高性能混凝土工作性能的因素.

随着科学技术和生产力的发展,高性能混凝土应用越来越广泛,如高速铁路、高层建筑,跨海大桥、海底隧道等,高性能混凝土具有独特的优越性,高工作性、高耐久性,在工程中安全使用寿命、经济合理性、环境条件的适应性等方面产生了明显的效益。 高性能混凝土的工作性能主要是保证混凝土结构成型时无原始缺陷,从而保证混凝土的耐久性。良好的工作性能是使混凝土质量均匀、获得高性能,从而安全可靠的前提。 高性能混凝土的工作性能主要包括三部分内容: 1. 流动性:表征拌和物流动的难易程度。 2. 粘聚性:拌和物在搅拌、运输、泵送、浇注、振实过程中不容易出现泌水和离析分层的性能。 3. 可泵性:拌和物在泵压下在管道中移动摩擦阻力和弯头阻力之和的倒数。 影响高性能混凝土的工作性能的因素: 一、砂 砂的粗细程度、细颗粒含量、级配均严重影响高性能混凝土的工作性,高性能混凝土应采用细度模数在 2.6-3.0之间的 II 区砂, 细颗粒含量 0.315mm 筛以下达到15%, 含泥量控制在 2%以下。往往受资源的局限不容易找到上述要求的砂,偃师西梁场使用的砂细度模数在 2.8-3.3之间满足Ⅰ区和Ⅱ区颗粒级配,但 0.315mm 筛以下颗粒含量在 5%以内,混凝土施工过程中经常出现堵管、爆管现象。在保证混凝土的抗压强度、弹性模量、耐久性的前提下,通过提高砂率和细砂与粗砂掺配的方法,满足了混凝土的工作性。二、碎石 碎石的粒径、形状、级配对混凝土所需的水泥浆量有重大影响,从而影响混凝土的工作性能。高性能混凝土应选择针片状含量少、级配良好、石粉含量少的碎石。颗粒级配良好可以减少混凝土所需水泥浆量。高性能混凝土碎石中的泥和石

硅酸盐和硫铝酸盐复合水泥性能的研究

硅酸盐和硫铝酸盐复合水泥性能的研究班级:材料1003班姓名:指导老师: 摘要 本论文从研究硫铝酸盐水泥熟料、硅酸盐水泥熟料、粉煤灰、二水石膏四种原料复合后的水泥体系的物理性能入手,运用xRD衍射和扫描电镜等方法测试复合水泥体系的水化产物,对该复合水泥体系的水化机理进行了详细的探讨,通过复合水泥矿物组成和水化产物的理论计算,初步探讨复合水泥矿物的匹配。 本文确定了性能较好的各组分的配合比。研究表明,在硅酸盐水泥熟料中掺入10%以下硫铝酸盐水泥熟料的情况下,当石膏掺量为10%,CSA熟料含量在5%左右时,复合系统各方面的性能指标比较理想。当硅酸盐水泥熟料中掺入少量硫铝酸盐水泥熟料后,并配以适量的石膏掺量,可以提高硅酸盐水泥的早朗强度,抗压强度平均提高5MPa,同龄期抗折强度也有所提高。两种熟料复合后,水泥体系的凝结时间会明显缩短。 关键词:硅酸盐水泥,铝酸盐水泥,复合,性能

目录 第1章绪论------------------------------------------------------------------------------------- 1 1.1引言------------------------------------------------------------------------------------- 1 1.1.1硅酸盐水泥的发展概况 ---------------------------------------------------- 1 1.1.2硫铝酸盐水泥的发展概况 ------------------------------------------------- 3 1.2硅酸盐和硫铝酸盐复合水泥体系的研究现状 --------------------------------- 4 1.3论文选题的目的及意义 ---------------------------------------------------------- 5 1.3.1研究目的 ---------------------------------------------------------------------- 5 1.3.2论文选题的意义 ------------------------------------------------------------- 6 1.4研究内容 ---------------------------------------------------------------------------- 7 第2章实验内容------------------------------------------------------------------------------- 8 2.1实验原料------------------------------------------------------------------------------- 8 2.2材料化学成分------------------------------------------------------------------------- 8 2.3.1复合水泥的制备 ----------------------------------------------------------- 11 2.4水泥物理性能测定----------------------------------------------------------------- 11 2.4.1水泥净浆标准稠度用水量和凝结时间 -------------------------------- 11 2.4.2水泥砂浆抗压强度和抗折强度 ----------------------------------------- 11 2.5水泥微观分析----------------------------------------------------------------------- 11 2.5.1水泥净浆水化产物的取得 ----------------------------------------------- 11 2.5.2 XRD分析水泥水化产物的组成 ---------------------------------------------- 12 2.5.3扫描电镜(SEM)分析法观察水泥净浆水化产物的形貌------------------ 12

硅酸盐水泥___论文

河南大学土木建筑学院课题:硅酸盐水泥

硅酸盐水泥 胶凝材料是指在物理、化学作用下,从具有可塑性的浆体逐渐变成坚固石状体的过程,能将其他物料胶结为整体并具有一定机械强度的物质。因其具有原料丰富、生产成本低、耐久性好、适应性强、耐火性好等众多优点而广泛应用于工业、民用建筑、水利工程等建设之中,成为在国民经济及人民生活中不可缺少的重要材料。 胶凝材料一般可分为有机和无机两类。有机胶凝材料是指各种树脂和沥青等;无机胶凝材料又可分为水硬性和非水硬性。水硬性胶凝材料在拌水后技能在空气中硬化一,又能在水中硬化并具有强度,通常称为水泥,如硅酸盐水泥、铝酸盐水泥、硫酸盐水泥等;非水硬性胶凝材料是指不能在水中硬化,但能在空气中或其他条件下硬化,如石灰、石膏、镁质胶凝材料等等。 在众多的胶凝材料中,水泥占有尤为突出的,它是基本建设的主要原料之一,广泛应用于工业、农业、国防、交通、城市建设、水利及海洋开发等工程建设。水泥工业的发展对保证国家建设和提高生活水平具有十分重要的意义。水泥按其主要矿物组成可分为硅酸盐水泥、铝酸盐水泥、铁铝酸盐水泥、氟铝酸盐水泥、少熟料或无熟料水泥。水泥的主要技术特征是:水硬性(分为快硬和特快硬两类);水化热(分为中热和低热两类);抗硫酸盐性(分中抗硫酸盐腐蚀和高抗硫酸盐腐蚀);膨胀性(分为膨胀和自应力);耐高温性(铝酸盐水泥的耐高温性以水泥中氧化铝含量分级)。 在水泥诸多品种中,硅酸盐水泥是应用最广泛和研究最多的。在此从硅酸盐水泥的分类、生产、技术要求、性能及应用等方面对硅酸盐水泥进行简单的研究分析。 所谓硅酸盐水泥是指从黏土和石灰石为原料,经高温煅烧得到以硅酸盐钙为主要成分的熟料,加入0—5%的混合材料和适量石膏磨细制成的水硬性胶凝材料,国际上统称为波特兰水泥。 硅酸盐水泥的分类 硅酸盐水泥包括纯熟料硅酸盐水泥和掺混合材料硅酸盐水泥两类,我国按其混合材料的掺加情况,共分为如下五类:纯熟料硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰质硅酸盐水泥粉煤灰硅酸盐水泥。 纯熟料硅酸盐水泥在硅酸盐水泥熟料中加入适量石膏,磨细而成的水泥,分425、525、625、725四个标号。其早期强度比其他几种硅酸盐水泥高5~10%,抗冻性和耐磨性较好,适用于配制高标号混凝土,用于较为重要的土木建筑工程。 普通硅酸盐水泥简称普通水泥。由硅酸盐水泥熟料掺加少量混合材料和适量石膏磨细而成。混合材料的加入量根据其具有的活性大小而定。普通水泥分为275、325、425、525、625和725六个标号,广泛用于制做各种砂浆和混凝土。 矿渣硅酸盐水泥简称矿渣水泥。由硅酸盐水泥熟料和粒化高炉矿渣,加

水泥的性能特点及改进方法

水泥的性能特点及改进方法 摘要:水泥广泛应用于工业与民用建筑工程,还广泛应用于农业、水利、公路、铁路、海港和国防等工程。近年来,随着经济的发展和建设的需要,工程上越来越多的要求水泥具有多方面的性质。本文介绍了几种常用水泥的性质特点,同时对其可能的改性方法加以简略介绍。 关键词: 水泥 性能 施工 改良 一、几种常用水泥的组成与结构特点 1、硅酸盐水泥 硅酸盐水泥也称波特兰水泥,由硅酸盐水泥熟料、0~5%的石灰石活粒化高炉矿渣、适量石膏磨细组成。共分为两种类型:不掺混合材料的称Ⅰ型硅酸盐水泥,代号P ?Ⅰ,在硅酸盐水泥熟料中掺加不超过水泥质量5%的石灰石或粒化高炉矿渣混合材料的称Ⅱ型硅酸盐水泥,代号P ?Ⅱ。硅酸盐水泥熟料主要由硅酸三钙、硅酸二钙、铝酸三钙、铁铝酸四钙组成,除熟料外,还含有游离氧化钙、游离氧化镁和碱等次要成分。 国标GB 175—2007对硅酸盐水泥要求水泥颗粒粒径一般在7~200μm 范围内,可用筛析法和比表面积法检验。国标GB 175—2007规定硅酸盐水泥比表面积应大于300㎡/kg 。凝结时间初凝不得早于45min ,终凝不得迟于390min ,初凝时间不满足为废品,终凝时间不满足为不合格品。另外,体积安定性不良的水泥应作废品处理,不得用于工程中。碱含量(选择性指标)按O K O Na 22658.0 计算值表示。 GB/T 17671—1999规定,将水泥、标准砂和水按1:2.5:0.5的比例,并按规定的方法制成40mm ×40mm ×160mm 的标准试件,在标准养护条件下养护至规定的期龄,分别按规定的方法测定其3d 和28d 的抗压强度和抗折强度,根据测定结果,将水泥分为42.5、42.5R 、52.5、52.5R 、62.5、62.5R 六个等级。 2、普通硅酸盐水泥 由硅酸盐水泥熟料、>5%~≤20%的活性混合材料、适量石膏磨细制成的水硬性凝胶材料,称为普通硅酸盐水泥,代号P ?O 。允许用不超过水泥质量5%的窑灰或不超过水泥质量8%的非活性材料来代替。 GB175-2007规定,普通硅酸盐水泥初凝时间不小于45min ,终凝不大于600min 。安定性要求煮沸法合格。强度等级要求根据3d 和28d 的抗折和抗压强度,将普通硅酸盐水泥分为42.5、42.5R 、52.5、52.5R 四个强度等级,各强度

影响混凝土和易性的主要因素有哪些

影响混凝土和易性的主要因素 作者:李春芳 摘要:和易性是指混凝土易于搅拌、运输、浇筑、捣实等施工作业,并能获得质量均匀和密实的混凝土性能。和易性为一综合技术性能,它包括流动性、黏聚性、保水性三方面的含义,和易性有时也称工作性。 Abstract:workability refers to the concrete mixing easily, transportation, casting, ramming construction work, performance of concrete and to obtain uniform quality and dense. And as a comprehensive technical performance, including liquidity, cohesiveness, water retention of three aspects, and is also sometimes referred to the work of. 关键词:和易性、流动性、粘聚性、保水性 1)水泥浆的数量 混凝土拌合物水泥浆赋予混凝土拌合物一定的流动性。在水灰比不变的情况下,单位体积拌合物内,如果水泥浆愈多,则拌合物的流动性愈大。若水泥浆过多,将会出现流浆现象,使拌合物粘聚性变差,同时对混凝土耐久性也会产生一定影响,且水泥用量也大。水泥浆过少,不能填满骨料空隙或不能很好地包裹骨料表面时,就会产生崩坍现象,粘聚性变差。混凝土拌合物水泥浆的含量应以满足流动性要求为度,不宜过量。 2)水泥浆的稠度 水泥浆的稠度是由水灰比决定的。保持混凝土拌合物的水灰比不变增加用水量,这种情况下拌合物中的水泥浆增多,当水泥浆增加量在一定范围内时,骨料周围水泥浆润滑作用增强,减少了骨料间的摩擦力,使拌合物流动性增大,可以改善混凝土的和易性。但是,当水泥浆增加量过多时,骨料用量必然相对减少,这时混凝土拌合物就会出现流浆及泌水现象,致使黏聚性和保水性变差,反而使混凝土的和易性变坏。 保持混凝土的水泥用量不变增加用水量,当用水量增加不太多时,混凝土拌合物的黏聚性和保水性不受影响,流动性增大,这时混凝土的和易性得到改善。但当加水量过多时,拌合物的水灰比过大,水泥浆过稀,这时混凝土的流动性虽然增大,但将会产生严重的分层离析和泌水现象,致使混凝土的和易性变差,并严重影响混凝土的

硅酸盐水泥的制备及性能测试实验报告

硅酸盐水泥的制备及性能测试 第1章实验目的 1.1 掌握硅酸盐水泥的制备工艺原理及工艺过程(包括原料的选择、生料的粉磨与成型、水泥熟料的烧结、水泥的粉磨)。 1.2提出具体的实验方案,确定合理的工艺条件(包括原料的配方、熟料的率值、烧成温度及水泥的组成和配合比),制备出合格的硅酸盐水泥样品。 1.3按国家标准对硅酸盐水泥样品进行相关的性能测定。 第2章实验原理 硅酸盐水泥的制备分为三个阶段:石灰质原料、粘土质原料与少量校正原料经破碎后,根据硅酸盐水泥熟料的率值进行配料、磨细成为成分合适、质量均匀的生料,称为生料制备;生料在窑炉内煅烧至部分熔融所得到的以硅酸钙为主要成分的硅酸盐水泥熟料,称为熟料煅烧;熟料加适量石膏共同磨细成为水泥,称为水泥粉磨。水泥加水拌成的浆体,起初具有可塑性和流动性,随着水泥与水发生一系列物理化学反应——水化反应的不断进行,浆体逐渐失去流动能力,转变成为具有一定强度及其它性能的固体。 第3章实验设备、材料及试剂 3.1 实验材料及试剂 化工原料(化学纯或分析纯):碳酸钙(CaCO3),石英砂(SiO2),氧化铝(Al2O3),氧化铁(Fe2O3),标准砂。 3.2 实验设备 水泥试验磨、高铝坩埚、硅碳棒高温炉、烘干箱、勃氏透气比表面积仪、电子天平、水泥净浆搅拌机、水泥净浆标准稠度及凝结时间测定仪、水泥混凝土恒温恒湿标准养护箱、水泥胶砂搅拌机、水泥胶砂振实台(或水泥胶砂振动台)、电动抗折试验机、数显式建材压力试验机、沸煮箱、水泥抗压夹具、水泥抗折试模。 3.2.1 实验设备图及介绍

A.水泥试验磨是由罩壳、磨机、 支座及电器控制箱等四大部分组成。 (1)罩壳:罩壳由二层玻璃钢板中间 夹吸音棉组成,分上下两罩,上罩壳 有罩门,下罩壳有取料斗,可盛放磨 好的物料,罩壳与磨机轴用带有毛毡 圈端盖7密封,所以罩壳起到隔音和 防尘的良好密封作用。(2)磨机:磨 机由筒体磨门盖、轴承及轴承、联轴 器和齿轮减速机等组成,是研磨物料 的主体部分,在卸料时将磨盖换上栅 孔卸料板,满足卸料的要求。(3)支 座:支座是由磨机及电动机组成的钢 结构,用以支承罩壳,磨机,电动减 速机及电器控制箱等,磨机座底部有4个Φ20底脚螺栓孔,用以固定全套设备。4、电器控制箱:由按钮、组合开关、热继电器、时间继电器、组合开关等组成,用它控制电机的启动和停止。 B.水泥净浆搅拌机主要有双速电 机、传动箱、主轴、偏心座、搅拌叶、 搅拌锅、底座、立柱、支座、外罩、 程控制器等组成。双速电动机通过联 轴器将动力传给传动箱内的蜗杆再经 蜗轮及一对齿轮和传给主轴并减速。 主轴带动偏心座同步旋转,使固定在 偏心座上的搅拌叶进行公转。同时搅 拌叶通过搅拌叶轴上端的行星齿轮围 绕固定的内齿轮完成自转运动。双速 电机经时间程控器控制自动完成一次 慢—停—快转的规定工作程序。搅拌 锅与滑板用偏心槽旋转锁紧。

浅谈混凝土性能的影响因素

浅谈混凝土性能的影响因素 发表时间:2020-04-15T06:58:02.942Z 来源:《建筑学研究前沿》2020年1期作者:王仕华[导读] 混凝土是建筑技术中最常用、最常用的建筑材料之一。 天元建设集团有限公司山东临沂 276000摘要:混凝土是建筑技术中最常用、最常用的建筑材料之一。发展趋势是实力不断提高,然而,耐久性不足给未来公司带来了沉重的负担,本文分析了影响高性能混凝土耐久性的因素,提出了提高高性能混凝土耐久性的相应措施。 关键词:高性能混凝土;耐久性;影响因素 1.高性能混凝剂介绍及材料 它需要耐久性作为设计的主要指标。根据不同用途的要求,它保证了以下服务:耐久性、工作性、适用性、强度、体积稳定性和盈利性,因此,高性能混凝土在配置上具有结合率低、原材料优质、数量充足等特点补充混合物(矿物细混合物)和高效混合物。 高性能混凝土是指能够满足综合统一特种服务要求的混凝土。这种混凝土不能通过传统的混凝土建筑材料和普通的搅拌、浇铸和硬化方法获得。 高性能混凝土(HPC)是利用常规材料和工艺生产的一种新型高技术混凝土,它具有混凝土结构所需的各种力学性能,高耐久性,高工作能力和高体积稳定性。 2影响高性能混凝土耐久性的主要原因 2.1.内因 普通水泥混凝土完成的工程不能满足耐久性(超耐久性)要求的主要原因在于混凝土本身的内部结构,一是混凝土的孔隙率很高,满足混凝土施工的要求,也就是说,要满足水泥石总体积的25%左右的高耗水量和高水灰比,特别是作为水通道的孔隙、各种侵蚀剂、氧气、二氧化碳等有害物质进入混凝土,二是水泥水化物的稳定性不够,硅酸盐水泥水化后的主要成分是高碱性水化硅酸钙、水化铝酸钙和水化硫酸钙,此外,水化物中还含有大量游离CaO强度很低,稳定性差。在侵蚀的条件下,首先要侵蚀混凝土,为了提高混凝土的耐久性,必须减少或消除这些稳定性差的构件,特别是游离CaO。 2.2.外部原因 混凝土结构的环境条件和防护措施是影响混凝土结构耐久性的外部因素,外部环境因素对混凝土结构的破坏是环境因素对混凝土结构物化作用的结果。具体如下: 冻结过程中的循环损伤;(2)氯离子侵蚀;(3)碳化损伤;(4)碱集料反应;(5)磨损损伤;(6)钢腐蚀。 3.提高高性能混凝土耐久性的措施研究 3.1合理施工 混凝土结构施工时,应根据结构的侵蚀环境进行适当的耐久性。还应考虑结构在长期使用过程中,由于环境影响对结构的安全性和适用性造成的承载力要求和材料性能恶化的影响。已保存,必须有助于减少环境对结构的影响,避免水、水蒸气和污染物在混凝土表面积聚,并有助于在施工期间对混凝土进行捣固和维护,混凝土结构的连接应避开最不利的环境,混凝土保护层垫块的强度和密实度不得低于结构混凝土的强度和密实度。 3.2优质原材料的选择 混凝土的耐久性首先取决于混凝土的组成,提高混凝土的耐久性可以有效地防止腐蚀介质的侵入,这是解决混凝土结构耐久性的前提和基础。 3.2.1水泥 水泥应选用硅酸盐水泥和普通硅酸盐水泥,水泥混合料应为矿渣或灰渣,除符合有关标准和规定外,水泥不宜过细。如果水泥太细,水泥熟料中铝酸三钙含量增加,水泥水化速度过快,水化热释放过强,说明混凝土收缩增大,内外温差过大,抗裂性降低,不利于耐久性,水泥中的高碱含量不仅会引起混凝土整体的碱反应,还会增加混凝土的开裂,所以一般不要使用高碱含量的水泥。 3.2.2.矿物混合物

五种常用硅酸盐系水泥的成分、特性的适用范围

五种常用硅酸盐系水泥的成分、特性的适用范围 (一)硅酸盐水泥PI PII 成分:1. 水泥熟料及少量石膏(Ⅰ型) ;2. 水泥熟料、5%以下混合材料、适量石膏(Ⅱ型) 主要特征:1. 早期强度高;2. 水化热高;3. 耐冻性好;4. 耐热性差;5. 耐腐蚀性差;6. 干缩较小。 适用范围:1. 制造地上地下及水中的混凝土、钢筋混凝土及预应力混凝土结构,包括受循环冻融的结构及早期强度要求较高的工程; 2. 配制建筑砂浆 不适用处:1. 大体积混凝土工程;2. 受化学及海水侵蚀的工程 (二)普通水泥(P.O) 成分:在硅酸盐水泥中掺活性混合材料6%~15%或非活性混合材料10%以下 主要特征:1. 早强;2. 水化热较高;3. 耐冻性较好;4. 耐热性较差;5. 耐腐蚀性较差;6.干缩较小; 适用范围:与硅酸盐水泥基本相同 不适用处:同硅酸盐水泥 (三)矿渣水泥(P·S) 成分:在硅酸盐水泥中掺入20%~70%的粒化高炉矿渣 主要特征:1. 早期强度低,后期强度增长较快;2. 水化热较低;3. 耐热性较好;4. 对硫酸盐类侵蚀抗和抗水性较好;5. 抗冻性较差;6. 干缩较大;7. 抗渗性差;8. 抗碳化能力差抵 适用范围:1. 大体积工程;2. 高温车间和有耐热耐火要求的混凝土结构;3. 蒸汽养护的构件;4. 一般地上地下和水中的混凝土及钢筋混凝土结构;5. 有抗硫酸盐侵蚀要求的工程;6. 配建筑砂浆 不适用处:1. 早期强度要求较高的混凝土工程;2. 有抗冻要求的混凝土工程 (四)火山灰水泥(P·P) 成分:在硅酸盐水泥中掺入20%~50%火山灰质混合材料 主要特征:1. 早期强度低,后期强度增长较快;2. 水化热较低;3. 耐热性较差;4. 对硫酸盐类侵蚀抵抗力和抗水性较好;5. 抗冻性较差;6. 干缩较大;7. 抗渗性较好 适用范围:1. 地下、水中大体积混凝土结构;2. 有抗渗要求的工程;3. 蒸汽养护的工程构件;4. 有抗硫酸盐侵蚀要求的工程; 5. 一般混凝土及钢筋混凝土工程; 6. 配制建筑砂浆 不适用范处:1. 早期强度要求较高的混凝土工程;2. 有抗冻要求的混凝土工程;3. 干燥环境的混凝土工程;4. 耐磨性要求的工程 (五)粉煤灰水泥(P·F) 成分:在硅酸盐水泥中掺入20%~40%粉煤灰 主要特征:1. 早期强度低,后期强度增长较快;2. 水化热较低;3. 耐热性较差;4. 对硫酸盐类侵蚀和抗水性较好;5. 抗冻性较差;6. 干缩较小;7. 抗碳化能力较差 适用范围:1. 地上、地下、水中和大体积混凝土工程;2. 蒸汽养护的构件;3. 有抗裂性要求较高的构件;4. 有抗硫酸盐侵蚀要求的工程;5. 一般混凝土工程;6. 配制建筑砂浆 不适用处:1. 早期强度要求较高的混凝土工程;2. 有抗冻要求的混凝土工程;3. 抗碳化要求的工程

硅酸盐水泥的性能及应用

8硅酸盐水泥的性能及应用 习要点硅酸盐水泥的性能是具有理论性和实用性的重要内容学习时应重点理解并定凝结时间的意义和影响凝结时间的因素;掌握水泥强度的产生、发展和影响因素;积变化与水化热在工程中所产生的影响了解抗渗性、抗冻性及坏境介质对水泥耐久 响机理拿握普通混凝土配合比的计算并了解混凝土的种类及应用了解外加剂对水凝土的作用和常用夕卜加剂的种类及机理。 硅酸盐水泥在现代建筑工程中主要用以配制砂浆、混凝土和生产水泥制品,随着国民经济的不断发展,水泥作为大量应用的工程材料,研究和改善其性能,对于发展水泥品种、提髙建筑效率、改进工程质量都具有十分重要的意义。硅酸盐水泥的性能包括:物理性能,如密度细度等, 建筑性能,如凝结时间、泌水性、保水性、强度、体积变化和水化热、耐久性等. 8. 1硅酸盐水泥的凝结时间 水泥浆体的凝结时间,对于建筑工程的施工具有十分重要的意义。水泥浆体的凝结可分为初凝和终凝。初凝表示水泥浆体失去流动性和部分可塑性,开始凝结。终凝则表示水泥浆体逐渐硬化,完全失去可塑性,并具有一泄的机械强度,能抵抗一泄的外来压力。从水泥加水搅拌到水泥初凝所经历的时间称为“初凝时间”,到终凝所经历的时间称为“终凝时间”。在施工过程中,若初凝时间太短,往往来不及进行施工浆体就变硬,因此,应有足够的时间来保证混凝丄砂浆的搅拌、输送、浇注、成型等操作的顺利完成。同时还应尽可能加快脱模及施工进度,以保证工程的进展要求。为此,各国的水泥标准中都规左了水泥的凝结时间。初凝时间,对水泥的使用更具有实际意义。根据中国水泥国家标准GB 175—1999 规泄,酸盐水泥初凝不得早于45min,终凝不得迟于390min° 8. 1?1凝结速度 水泥凝结时间的长短决泄于其凝结速度的快慢。从水泥的水化硬化过程可知,水泥加水拌和后熟料矿物开始水化,熟料中各矿物28d的水化速度大小顺序为CaA>CaS>C4AF>C2S, 并产生各种水化物,C3S与C2S水化生成C_S_H凝胶和Ca(0H)2, C3A与C4AF在石膏作用下?根据石膏掺量的不同可分别水化生成三硫型水化硫铝(铁)酸钙(AFt).单硫型水化硫铝(铁)酸钙(AFm)和C/H:個溶体。随着水化作用的继续进行,水化产物逐渐长大增多并初步联结成网,逐渐失去流动性与可塑性而凝结。所以,凡是影响水化速度的齐种因素,基本上也同样影响水泥的凝结速度,如熟料矿物组成、水泥细度.水灰比. 温度和外加剂等?但水化和凝结又有一左的差异。例如,水灰比越大,水化越快,凝结反而变慢。这是因为加水量过多.颗粒间距增大.水泥浆体结构不易紧密,网络结构难以形成的缘故。水泥的凝结速度既与熟料矿物水化难易有关,又与各矿物的含量有关。决左凝结速度的主要矿物为C3A 和C3S。R. H.鲍格和w?勒奇等人认为,C3A的含疑是控制初凝时间的决左因素。在C3A含量较髙或石膏等缓凝剂掺量过少时,硅酸盐水泥加水拌和后,C3血速反应,很快生成大量片状的水化铝酸钙,并相互连接形成松散的网状结构,出现不可逆的固化现象,称为“速凝”或“闪凝”。产生这种不正常快凝时,浆体迅速放出大量热,温度急剧上升。但是如果C3A较少(W2%)或掺加有石膏等缓凝剂,就不会出现快凝现象,水泥的凝结快慢则主要由C3S水化来决左。所以说,快凝是由C3A造成的,而正常凝结则是受 C3 S制约的。 事实上,水泥的凝结速度还与熟料矿物和水化产物的形态结构有关系。实验证明,即使化学组成和表而积完全相同的水泥,但由于锻烧制度的差异,仍可使熟料结构有所不同,凝结时间也将发生相应的变化。如急冷熟料凝结正常,而慢冷熟料常岀现快凝现象。这是因为慢冷时C。A能充分结晶,CsA晶体相对较多,使水化加快,而急冷时CsA固溶体与玻璃体中,由于玻璃体结构致密,相对CsA晶体水化较慢。同样,若水化产物是凝胶状的,则会 形成薄膜,包裹在未水化的水泥周围,阻碍矿物进一步水化,因而能延缓水泥的凝结。 温度的变化也会影响水泥的凝结速度。温度升髙,水化加快,凝结时间缩短,反之则凝结时间会延长,如图8. 1所示。所以,在炎热季石及高温条件下施工时,需注意初凝时间的变化,在冬季或寒冷条件下施工时应注意采取适当的保温措施,以保证正常的凝结时间。 总之,影响水泥凝结快慢的因素是多方而的,但主要还是C3A的影响,因此在生产上都是

水泥的基本性能

水泥的基本性能 硅酸盐水泥熟料的矿物组成

1、硅酸三钙是硅酸盐水泥熟料中的主要矿物成分,遇水时水化反应速度快,水化热大,凝结硬化快,其水化产物表现为早期强度高。

硅酸三钙是主要赋予硅酸盐水泥早期强度的矿物。 2、硅酸二钙是硅酸盐水泥中的主要矿物,遇水时水化反应速度慢,水化热很低,其水化产物表现为早期强度低而后期强度增进较高。硅酸二钙是决定硅酸盐水泥后期强度的矿物。 3、铝酸三钙遇水时水化反应极快,水化热很大,水化产物的强度很低。铝酸三钙主要影响硅酸盐水泥的凝结时间,同时也是水化热的主要来源。由于在煅烧过程中,铝酸三钙的熔融物是生成硅酸三钙的基因,故被列为“熔媒矿物”。 4、铁铝酸四钙遇水时水化反应速度快,水化热低,水化产物的强度也很低。由于在煅烧熔融阶段有助于硅酸三钙的生成,同样属于“熔媒矿物”。 硅酸盐水泥的技术要求 按国家标准规定,硅酸盐水泥应确保九项技术要求:水泥中的不熔物、氧化镁含量、三氧化硫含量、烧失量和碱含量,均不得超限;水泥的细度、凝结时间、安定性和强度,均必须达标。 2 掺加混合材料的硅酸盐水泥 1、普通硅酸盐水泥凡由硅酸盐水泥熟料、6%~15%混合材料、适量石膏磨细制成的水硬性胶凝材料,称为普通硅酸盐水泥,简称普通水泥,代号P·O。

2、矿渣水泥凡由硅酸盐水泥熟料和粒化高炉矿渣、适量石膏磨细制成的水硬性胶凝材料,称为矿渣硅酸盐水泥(简称矿渣水泥),代号P·S。 3、火山灰水泥凡由硅酸盐水泥熟料和火山灰质混合材料、适量石膏磨细制成的水硬性胶凝材料,称为火山灰质硅酸盐水泥(简称火山灰水泥),代号P·P。

4、粉煤灰水泥凡由硅酸盐熟料和粉煤灰、适量石膏磨细制成的水硬性胶凝材料,称为粉煤灰硅酸盐水泥(简称粉煤灰水泥),代号P·F。 5、复合水泥凡由硅酸盐水泥熟料、两种或两种以上规定的混合材料、适量石膏磨细制成的水硬性胶凝材料,称为复合硅酸盐水泥(简称复合水泥),代号P·C。 除普通硅酸盐水泥的上述四种水泥,其组成物料与普通硅酸盐水泥比较,虽然都有硅酸盐水泥熟料和适量石膏但它们的混合材料掺加量较多,且品种不同。因此在使用性能方面,矿渣水泥、火山灰水泥、粉煤灰水泥及复合水泥,与普通水泥明显不同。由于这四种水泥的共同点是熟料的相对减少,因此,凝结硬化速度较慢,早期强度较低;水化放热速度慢,发热量低;由于生成的氢氧化钙较少,在与混合材料化合时又耗去很多,故抵抗软水及硫酸盐介质的侵蚀能力较强。由于这四种水泥的共同点是掺加混合材料较多,因此其抗碳化、耐磨、抗冻等性能显差,干缩量也较高。此外,由于这四种水泥的混合材料品种不同,导致他们在 3 性能上也有所差异。如矿渣水泥泌水显著,制品的抗渗性差,而火山灰水泥的需水量较大,制品的抗渗性好;矿渣水泥、特别是火山灰水泥的干缩性差,而粉煤灰水泥有一定的抗裂性;复合水泥的性质,则因掺加混合材料的种类、比例不同而异。

不同品种水泥的性能应用及使用注意事项

产品性能及应用 硅酸盐水泥 1、早期及后期强度均高:适用于预制和现浇的混凝土工程、冬季施工的混凝土工程、预应力混凝土工程等。 2、抗冻性好:适用于严寒地区和抗冻性要求高的混凝土工程。 3、干缩小:可用于干燥环境。 4、耐磨性好:可用于道路与地面工程。 适用于配制高标号、超高标号混凝土及大跨度梁架等。 普通硅酸盐水泥 特性:早期强度增长快、水化热略低、在低温情况下强度进展很快,耐冻性好、抗渗性好;和易性好。 适用于桥梁、码头、道路、高层建筑等各种建筑工程,一般工业与民用建筑,可配C30-C80不同标号混凝土。是应用最广的水泥 复合硅酸盐水泥 特性:耐腐蚀性耐热性好、水化热低、干缩性小、抗渗性较好;由于掺入了二种以上的混合材料,起到了互相取长补短的作用,其效果大大优于只掺一种混合材料。因而其用途更为广泛。 适用于一般工业与民用建筑。 使用注意事项 1、要注重存储管理,防止产品受潮。在运输、储存过程中要做好防护,雨天装车要注意车箱不能积水,要及时加盖防雨蓬布;水泥储存要放在干燥的环境中,避免水泥吸潮结块;使用时要坚持先进先用原则,且储存时间不宜过长,防止受潮,导致产品质量、性能下降;同时注意水泥不要与糖、化肥等有机物质混合在一起,避免引起不良反应。 2、不能混合使用。由于不同品种、强度等级水泥的质量、性能存在差异,要分开堆放,单独使用;同一厂家不同品种、不同等级水泥不能混合使用;同品种、同等级、但不同厂家的水泥也不得混合使用 3、合理地选择水泥品种及强度等级。在海螺水泥产品使用时,要根据施工部位和混凝土强度等级设计要求,合理地选择水泥品种及强度等级,避免选择高强度等级水泥配制低标号混凝土或用低强度等级水泥配制高标号混凝土,使水泥在混凝土中掺量不当,导致混凝土和易性差、坍落度损失大等不良现象产生,同时造成混凝土生产成本不经济 4、坚持预配试验工作。海螺水泥在使用时,由于不同工程、不同结构、不同部位的要求不同,要预先进行配比实验,确定最佳配合比,以确保混凝土质量稳定合格。 5、重视施工规范和养护工作。要严格控制好混凝土用砂、石、水等掺合料质量,水中不得含有有机物,砂石中含泥量要低,含硫、碱高的砂石及掺合物不得使用;混凝土配合比设计要按照施工规范进行设计;施工时搅拌要均匀,水灰比不能太大,振捣要适度,不能漏浆,避免混凝土出现水泥分布不均、离析、泌水等,使其强度下降。 6、在高温或低温天气搅拌混凝土时,要注意控制好掺合料的温度,避免混凝土凝结时间过快或过慢;浇筑的混凝土在失去塑性后,要及时浇水、覆盖,保持湿润,避免过于干燥使混凝土开裂,也要注意浇水不要过早、过多,以免混凝土表面粘结差、强度低,防止出现起砂、起皮现象。

水泥的基本性能

硅酸盐水泥熟料的矿物组成 1、硅酸三钙是硅酸盐水泥熟料中的主要矿物成分,遇水时水化反应速度快, 水化热大,凝结硬化快,其水化产物表现为早期强度高。硅酸三钙是主要赋予硅酸盐水泥早期强度的矿物。 2、硅酸二钙是硅酸盐水泥中的主要矿物,遇水时水化反应速度慢,水化热很 低,其水化产物表现为早期强度低而后期强度增进较高。硅酸二钙是决定硅酸盐水泥后期强度的矿物。 3、铝酸三钙遇水时水化反应极快,水化热很大,水化产物的强度很低。铝酸 三钙主要影响硅酸盐水泥的凝结时间,同时也是水化热的主要来源。由于在煅烧过程中,铝酸三钙的熔融物是生成硅酸三钙的基因,故被列为“熔媒矿物”。 4、铁铝酸四钙遇水时水化反应速度快,水化热低,水化产物的强度也很低。 由于在煅烧熔融阶段有助于硅酸三钙的生成,同样属于“熔媒矿物”。 硅酸盐水泥的技术要求 按国家标准规定,硅酸盐水泥应确保九项技术要求:水泥中的不熔物、氧化镁含量、三氧化硫含量、烧失量和碱含量,均不得超限;水泥的细度、凝结时间、安定性和强度,均必须达标。

掺加混合材料的硅酸盐水泥 1、普通硅酸盐水泥凡由硅酸盐水泥熟料、6%~15%混合材料、适量石膏磨细 制成的水硬性胶凝材料,称为普通硅酸盐水泥,简称普通水泥,代号P·O。 2、矿渣水泥凡由硅酸盐水泥熟料和粒化高炉矿渣、适量石膏磨细制成的水 硬性胶凝材料,称为矿渣硅酸盐水泥(简称矿渣水泥),代号P·S。 3、火山灰水泥凡由硅酸盐水泥熟料和火山灰质混合材料、适量石膏磨细制 成的水硬性胶凝材料,称为火山灰质硅酸盐水泥(简称火山灰水泥),代号P·P。 4、粉煤灰水泥凡由硅酸盐熟料和粉煤灰、适量石膏磨细制成的水硬性胶凝 材料,称为粉煤灰硅酸盐水泥(简称粉煤灰水泥),代号P·F。 5、复合水泥凡由硅酸盐水泥熟料、两种或两种以上规定的混合材料、适量 石膏磨细制成的水硬性胶凝材料,称为复合硅酸盐水泥(简称复合水泥),代号P·C。 除普通硅酸盐水泥的上述四种水泥,其组成物料与普通硅酸盐水泥比较,虽然都有硅酸盐水泥熟料和适量石膏但它们的混合材料掺加量较多,且品种不同。因此在使用性能方面,矿渣水泥、火山灰水泥、粉煤灰水泥及复合水泥,与普通水泥明显不同。由于这四种水泥的共同点是熟料的相对减少,因此,凝结硬化速度较慢,早期强度较低;水化放热速度慢,发热量低;由于生成的氢氧化钙较少,在与混合材料化合时又耗去很多,故抵抗软水及硫酸盐介质的侵蚀能力较强。由于这四种水泥的共同点是掺加混合材料较多,因此其抗碳化、耐磨、抗冻等性能显差,干缩量也较高。此外,由于这四种水泥的混合材料品种不同,导致他们在性能上也有所差异。如矿渣水泥泌水显

相关文档
最新文档