中国风力发电设备制造业的风雨历程.

中国风力发电设备制造业的风雨历程.
中国风力发电设备制造业的风雨历程.

中国风力发电设备制造业的风雨历程

世界风力发电网信息中心——访清华大学王承煦教授

世界风力发电网报道:就中国风力发电设备制造业的发展,记者专题采访了清华大学王承煦教授。

记者:改革开放 30周年,我国风力发电设备制造业取得了巨大成绩。您认为 20世纪 80年代是我国风电设备制造业发展的第一个阶段,请您概述一下这个阶段的发展历程和特征。

王承煦:这个阶段是我国风力发电设备制造业探索发展的阶段,其特征是以设计、制造微小型离网式风力发电机为主; 同时, 也开始研制可以用于并网运行的中小型风力发电机。

微小型离网式风力发电机是指单机容量 50 W到 10 kW的风力发电机,其可以单机运行,供农村或牧区一家一户使用,也可以和光伏发电并联互补使用,即我们所谓的风光系统,其益处是可以少用蓄电池;容量达到 10~100 kW 的小型风力发电机还可以和柴油发电机并用,以达到节省柴油或解决柴油供应不足的问题,其主要应用于海岛。十一届三中全会后, 通过对国外的考察, 领导层和科学技术界认识到风力发电确实可以作为一种有利用价值的发电方式,在电网覆盖不到的地区推广应用。这样,我国微小型离网式风力发电机迎来了大发展。我国组织高校、科研院所、设备制造厂联合攻关、自主设计、制造微小型离网式风力发电机。同时,政府鼓励应用微小型离网式风力发电机, 特别是在内蒙古地区牧民购买一台就可以获得一定数额的补贴。内蒙古地区陆续形成了几个能批量生产微小型风力发电机的制造厂。这样从产品设计、试制到批量生产, 微小型离网式风力发电机在内蒙古地区很快就得以推广。与此同时, 微小型离网式风力发电机也在全国其他地区发展,比如西北地区、华东地区等。

这样, 我国微小型离网式风力发电机就蓬勃发展起来了, 所制造的微小型离网式风力发电机逐渐由 200 W 、 300 W 、 1000 W 发展到 100 kW. 到目前为止,我国微

小型离网式风力发电机在制造工艺和技术水平上都非常成熟, 可以实现年产约 5万台, 产量居世界第一,而且出口到日本、欧洲、东南亚等地。

微小型离网式风力发电机的大量发展为我国带来了明显的社会效益和经济效益:第一,可以直接改善偏远且不适合建立大型电网地区的居民生活条件;第二,随着微

小型

风力发电机设备技术的改进和配套设施的逐渐完善,例如永磁式发电机、整流逆变器、充放电控制器等,微小型离网式风力发电机设备制造厂创造了大量的就业岗位等。 1979年, 我国开始自主研发可以并网运行的试验型机组, 但仍然属于中小型, 包括水平轴和立轴两种风力发电机,比如容量为 20 kW、 40万 kW 、 50 kW、55 kW的水平轴风力发电机和 2 kW、 4 kW的立轴风力发电机。当时有两条研制路线:一是国内自主研制,比如,当时我国组织试制出了容量为 20 kW、 40 kW、 50 kW、 100 kW的水平轴风力发电机。其次是我国和国外联合开发制造,比如,和联邦德国联合研制出了 30kW 达里厄型水平轴风力发电机,这是我国在风力发电机研制方面第一个和国外合作的项目。 1986年, 我国从丹麦维斯塔公司引进了 3台 55 kW 变桨距风力发电机, 并在山东荣成建立了我国第一个小型风电场。

当时, 世界上存在两种风力发电机组, 即美洲国家开发的两叶片式风轮驱动的同步发电机,欧洲国家开发的三叶片式风轮驱动的异步发电机。水电部从美国、丹麦等国家考察后,经过诸多讨论,决定研制三叶片变桨距风轮驱动的 200 kW异步发电机。这台机组由水电部杭州机械设计所设计,福建若干单位配套制造。

这台样机从立项到方案讨论、设计、制造,到 1991生产出样机安装在福建省平潭风电场并网运行,并进行鉴定,共用时 8年。这台机组除参考部分国外图纸外,完全是自主设计、制造,取得了不少经验。但该台机组的控制系统未采用微机控制系统,而在当时世界上已普遍采用微机控制系统。所以,一台风力发电机研制时间过长,技术就容易落后。另外,虽然当时试制出了可以并网用的风力发电机,但并没有考虑到要大力发展风电场。记者:您亲历了我国风力发电设备制造业的发展历史。那么,请您回顾一下改革开放之前我国风电设备制造业的发展情况。

王承煦:20世纪 60年代,前苏联切断我国燃油供应和 20世纪 70年代两次石油危机使我国认识到发展风力发电等非化石二次能源的重要性, 同时, 我国无电地区对电力需求迫切,特别是风能资源丰富的无电或缺电牧区、海岛等适合发展风电。

回顾人类利用风能的历史, 我国是最早利用风能的国家之一, 如我国很早就利用风能提水灌溉。新中国成立后,我国也曾在多个地区进行过风力发电试点工作。1975年, 清华大学和内蒙古草原研究所合作, 在内蒙古商都地区选择当地牧机生产企业共同试制了 50 W 、 100 W 的离网式微型风力发电机,其他地区也有研制小型风力发电设备的。这个阶段所生产的风力发电设备都属于小容量的,而且没有形成生产力。

记者:1991年 ~2000年,我国政策开始倾向于制造大中型风力发电机,并重视建设风力发电场。请您分析该该第二阶段,我国风力发电设备制造业的发展情况及其进步。王承煦:20世纪 90年代初,基于可持续发展和环境保护的要求,我国开始发展大中型风力发电机(容量为 100 kW~1000 kW 之间的为中型风电机组, 1000 kW 以上为大型风电机组。 1991年, 我国通过民间渠道的沟通方式, 实现了到德国考察风电设备制造业。经考察后,我国决定购买德国单机容量为 250kW 失速异步型风电机组,这当时是我国引进的单机最大发电容量机组, 1992年, 几十台该机型风电机组被应用到东北、内蒙、海南三个地区, 我国风电场建设由此也获得了发展。德国的举动引起丹麦维斯塔等国际风电设备制造公司对中国市场的关注, 它们开始通过各种方式陆续进入我国风电设备市场。但由于我国是能源利用大国,且由于引进的风电机组价格昂贵,不可能完全依靠进口风电机组来建设发电厂, 必须要实现我国自主研制大中型风力发电机, 来解决我国风电场建设问题。

国家发改委制定出“九五乘风计划”,希望建立合资公司来解决我国风电设备落后问题。基于此计划建立了两个合资公司:西安航空发动机公司与德国诺得克斯(NORDEDX 公司签订合资协议,生产 600 kW大型风力发电机组;中国一拖集团有限公司与西班牙国家电力公司美德 (MADE 再生能源公司成立“一拖一美德 (洛阳风电设备有限公司”, 生产 660 kW大型风力发电机组。当时明确上述两个公司生产制造定桨距失速型风力发电机,容量选定在 600 kW 级。虽然通过建立合资公司,成功

制造出了容量为 600 kW 的风力发电机,但是由于国外风电设备技术发展很快,单机容量 750 kW、 900 kW甚至 MW 级风力发电机都已进入市场,致使所产风力发电机几乎没有批量生产进入市场的机会。但也培养了一批风电设备制造人才。同时期, 国家经贸委制定了“双加工程”和“国债风电项目”,以求实现 600 kW 失速型风电机组的国产化。当时,在国外失速型风力发电机处于优势地位,但变桨距风力发电机也在发展,甚至还出现了无齿轮箱风电机组。从 20世纪 90年代后期起,国际风电设备市场每隔 2~3年左右时间,技术就更新一次,且单机容量越来越大。所以,一刀切的单一的机型认同不利于我国风电制造业的发展。 20世纪末, 新疆金风科技股份有限公司(以下简称金风科技和浙江运达风力发电工程有限公司(以下简称浙江运达通过引进德国 500 kW失速风力发电机,自主研制出 600 kW失速型风力发电机。科技部在“九五”风力发电重点攻关项目中大力支持了金风科技、浙江运达 600kW 失速型风力发电机的完善化和产业化生产项目。

记者:进入二十一世纪,特别是《可再生能源法》的颁布实施,使我国风电设备制造业驶入了快车道。请您简析此阶段我国风电设备制造业的发展状况。

王承煦:进入二十一世纪之后, 在科学发展观的指导下以及“十一五”节能减排目标的制定, 尤其是可再生能源法的推出和国家发改委颁布了风电场特许权政策, 促进了我国风电事业大发展,由此,风电设备制造业也进入了快速发展期,大量国有企业、民营企业都开始进入该领域。

据不完全统计,目前国内进入风电整机制造市场的企业已达到 40多家。

2001年, 科技部将研制兆瓦级以上双馈型风力发电机和失速型风力发电机列入国家 863计划,并将此任务交予金风科技、浙江运达、国电龙源电力集团公司和沈阳工业大学等, 此后金风科技公司提出将研制 MW 级失速型风力发电机转为研制MW 级直驱型 (无齿轮传动永磁低速风力发电机,此举得到科技部大力支持。在该计划下, 2005年,金风科技试制出我国第一台 MW 级风力发电机 --1.2 MW 直驱永磁风力发电机, 2005年,沈阳工业大学自主研制出 1 MW双馈风力发电机。

在这个阶段,国家规定风电项目设备国产化率要达到 70%以上,这给国内装备企业提供了巨大发展和市场空间。许多国内企业通过购买许可证方式, 希望尽快实现能够制造兆瓦级以上风力发电机。华锐风电科技有限公司(以下简称华锐风电、东方汽轮机厂等通过购买德国富兰德(Fuhrlander 公司和 Repower 公司的许可证生产1.5 MW变浆变速双馈风力发电机。上海电气集团和北京北重汽轮电机有限责任公司购进英国 EU 公司(原德国 Dewind 公司 1.25 MW 和 2.0 MW 风电机组的生产许可证分别试制出 1.25 MW 和 2.0 MW变浆变速双馈风力发电机。湖南南车集团与湘

电集团有限公司分别从奥地利 Windtec 公司及日本原宏产公司取得 1.65MW 变浆变速双馈风电机组及 2.0 MW 直驱永磁风电机组生产许可证。此外还有一种合作

模式,即通过联合设计来制造 2.0 MW级风力发电机, 比如德国 Aerodyn 公司分别与上海电气集团和中国船舶重工集团公司联合设计制造 2.0 MW 级变浆变速双馈型

风力发电机;金风科技与德国 Vensys 公司联合设计研制出 1.5 MW级直驱型风力发电机,并安装于北京官厅。此外,浙江运达通过自主研发试制出 1.5 MW变浆变速双馈风力发电机。目前,金风科技、华锐风电、东方汽轮机厂等具备了较强的技术开发能力, 同时在市场占有、关键零部件供应链方面也已具备了较强的竞争优势。

在风电零配件制造领域,国内企业在关键零部件的配套方面已经具备了一定的实力。叶片方面:目前国内企业对风电机组中叶片的研制技术已经基本掌握,能批量生产 1.5 MW 以下各系列化叶片。具有代表性的企业有中航惠腾风电设备有限公司、连云港中复连众复合材料集团有限公司、上海玻璃钢研究院等。齿轮箱方面:南京高速齿轮制造有限公司、重庆齿轮箱有限责任公司、杭州前进齿轮箱集团有限公司等三家国内企业可以实现风电齿轮箱批量生产, 此外大连重工集团、中国第二重型机械集团公司等企业也开始齿轮箱的生产。发电机方面:中国北方机车车辆工业集团公司、兰州电机厂、上海电机厂有限责任公司、湘潭电机集团有限公司、四川东风电机厂有限公司等众多企业能够满足国内的需要。风电机组的其他配套部件厂还有无锡柴油机厂、东方汽轮机有限公司(生产轮毂和变速箱箱体铸件,秦川机床集团(生产变速箱箱体铸件、青岛武晓 [集团 ]有限公司(生产塔筒、无锡大昶重型环件有限公司(生产塔筒、法兰等。目前,控制系统、主轴承、直驱型风力发电机低速永磁发电机、变频器等核心部件应该是攻关的重点。

总而言之,我国风电设备制造业三十年成就显着,在全球化的今天,我们不必追求百分之百的国产化率,关键是要掌握核心技术,并有切合自身国情的独创之处。记者:请您谈谈目前我国风电设备制造业存在的问题及其努力的方向。

王承煦:第一,目前能够具有自主知识产权并切合中国实际的风电整机设计、制造企业很少,这个实际是指中国风资源情况、电网情况、地域情况等。仅依靠国外风机机型的生产许可证生产的风力发电机,其原型是按照该国的气候、地域、电网等条件设计的,应用到中国就会出现“水土不服”的问题,因此完全依靠它,远不能满足我国风电发展的需求。(本篇文章来源 :中国金属加工在线

风力发电设备可靠性评价规程修订稿

风力发电设备可靠性评 价规程 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

风力发电设备可靠性评价规程(试行) 1 范围 本规程规定了风力发电设备可靠性的统计办法和评价指标。适用于我国境内的所有风力发电企业发电能力的可靠性评价。 风力发电设备的可靠性统计评价包括风电机组的可靠性统计评价和风电场的可靠性统计评价两部分。 风电机组的可靠性统计评价范围以风电机组出口主开关为界,包括风轮、传动变速系统、发电机系统、液压系统、偏航系统、控制系统、通讯系统以及相应的辅助系统。 风电场的可靠性统计评价范围包括风电场内的所有发电设备,除了风电机组外,还包括箱变、汇流线路、主变等,及其相应的附属、辅助设备,公用系统和设施。 2 基本要求 本规程中指标评价所要求的各种基础数据报告,必须尊重科学、事实求是、严肃认真、全面而客观地反应风力发电设备的真实情况,做到准确、及时、完整。 与本规程配套使用的“风电设备可靠性管理信息系统”软件及相关代码,由中国电力企业联合会电力可靠性管理中心(以下简称“中心”)组织编制,全国统一使用。 3状态划分 风电机组(以下简称机组)状态划分如下: 运行 (S) 可用(A) 调度停运备用 备用 (DR)

(R) 场内原因受累停运备用 在使用受累停运备用 (PRI) (ACT) (PR) 场外原因受累停运备用 (PRO) 计划停运 不可用(U) (PO) 非计划停运 (UO) 4 状态定义 在使用(ACT)——机组处于要进行统计评价的状态。在使用状态分为可用(A)和不可用(U)。 可用(A)——机组处于能够执行预定功能的状态,而不论其是否在运行,也不论其提供了多少出力。可用状态分为运行(S)和备用(R)。 4.2.1 运行(S)——机组在电气上处于联接到电力系统的状态,或虽未联接到电力系统但在风速条件满足时,可以自动联接到电力系统的状态。机组在运行状态时,可以是带出力运行,也可以是因风速过高或过低没有出力。 4.2.2 备用(R)——机组处于可用,但不在运行状态。备用可分为调度停运备用(DR)和受累停运备用(PR)。 4.2.2.1 调度停运备用(DR)——机组本身可用,但因电力系统需要,执行调度命令的停运状态。 4.2.2.2 受累停运备用(PR)——机组本身可用,因机组以外原因造成的机组被迫退出运行的状态。按引起受累停运的原因,可分为场内原因受累停运备用(PRI)和场外原因受累停运备用(PRO)。 a) 场内原因受累停运备用(PRI)——因机组以外的场内设备停运(如汇流线路、箱变、主变等故障或计划检修)造成机组被迫退出运行的状态。 b) 场外原因受累停运备用(PRO)——因场外原因(如外部输电线路、电力系统故障等)造成机组被迫退出运行的状态。

DLT5191-2004_风力发电场项目建设工程验收规范

DLT5191-2004_风力发电场项目建设工程验收规范ICS27.180 F22 备案号:J356-2004 中华人民共和国电力行业标准 P DL/T5191-2004 风力发电场项目建设 工程验收规程 Code of construction acceptance on wind power plant project 2004-03-09发布 2004-06-01实施 中华人民共和国国家发展和改革委员会发布 前言………………………………………………………….? 1范围…………………………………………………………l 2规范性引用文件 (2) 3总则 (3) 4工程验收依据 (5) 5工程验收组织机构及职责.......................................7 5(1单位工程完工验收领导小组组成及职责 (7) 5(2工程整套启动验收委员会组成及职责..................7 5(3工程移交生产验收组组成及职责...........................9 5(4工程竣工验收委员会组成及职责...........................lO 5(5工程建设相关单位职责 (10)

6单位工程完工验收 (13) 6(1一般规定.........................................................13 6(2风力发电机组安装工程验收.................................13 6(3升压站设备安装调试工程验收..............................16 6(4场内电力线路工程验收.......................................20 6(5中控楼和升压站建筑工程验收..............................2l 6(6交通工程验收................................................22 7工程启动试运验收................................................24 7(1一般规定.........................................................24 7(2单台机组启动调试试运验收.................................24 7.3工程整套启动试运验收.......................................25 8工程移交生产验收................................................29 9工程竣工验收 (31) DL/T5191-2004 附录A(资料性附录) 单位工程完工验收鉴定书 内容与格式…………………………34 附录B(资料性附录) 工程整套启动试运验收鉴定书 内容与格式…………………………36 附录c(资料性附录) 工程移交生产验收交接书 内容与格式..............................38 附录D(资料性附录) 工程竣工验收鉴定书内容与格式 (40) 条文说明 (43) 前言

中国风力发电调研报告

—1— 我国风电发展情况调研报告 风电发展情况调研组 风能作为一种清洁的可再生能源,党中央、国务院对其开发利用非常重视,有关部门出台了一系列的方针政策,对增加我国能源供应、调整能源结构和保护生态环境起到了积极作用,促进了可再生能源的发展。 华北、西北、东北三个地区是我国陆上风能资源最丰富地区,江苏是海上风能资源最丰富地区之一,这四个地区风电发展具有一定代表性。为深入研究大规模风电接入系统对电网稳定运行的影响,制定完善相应的标准和管理规范,电监会组织并邀请中国科学院、中国电力科学研究院风电专家组成调研组,先后对东北三省、内蒙古、甘肃、新疆、江苏等七省(区)的风电场建设、运行情况进行了调研。调研组与地方政府有关部门、电网公司、风电企业进行了座谈,并实地考察了相关电力调度中心和部分风电场。 在此次调研的基础上,形成此报告,供参考。一、风电建设与运行情况 我国风能资源丰富,根据全国风能资源普查最新成果统计,初步探明陆域离地10米高度风能资源总储量为43.5亿千瓦, 其 https://www.360docs.net/doc/9612150921.html,

—2— 中技术可开发量约为3亿千瓦,如果推算到风电机组轮毂高度,风能的技术可开发量约为6亿千瓦1,主要分布在我国西北地区大部、华北北部、东北北部、青藏高原腹地以及沿海地区(见图1) 。 图1全国风能资源区划图(高度为50米) (一)风电装机容量 2006年《可再生能源法》颁布后,我国风电取得跨越式发展。截至2008年底,全国风电装机容量为894万千瓦2,占全国 1引自国家能源局《2008 中国风电发展报告》 2引自中国电力企业联合会《全国电力工业统计快报》(2008年)。该数据和有关部门统计的2008年底风电吊装容量1217万千瓦存在差别,主要因为部分风电场机组未通过240小时试运行或接入工程滞后尚未进入商业化运行。

风力发电设备可靠性评价规程(参考Word)

1 范围 1.1 本规程规定了风力发电设备可靠性的统计办法和评价指标。适用于我国境内的所有风力发电企业发电能力的可靠性评价。 1.2 风力发电设备的可靠性统计评价包括风电机组的可靠性统计评价和风电场的可靠性统计评价两部分。 1.3 风电机组的可靠性统计评价范围以风电机组出口主开关为界,包括风轮、传动变速系统、发电机系统、液压系统、偏航系统、控制系统、通讯系统以及相应的辅助系统。 1.4 风电场的可靠性统计评价范围包括风电场内的所有发电设备,除了风电机组外,还包括箱变、汇流线路、主变等,及其相应的附属、辅助设备,公用系统和设施。 2 基本要求 2.1 本规程中指标评价所要求的各种基础数据报告,必须尊重科学、事实求是、严肃认真、全面而客观地反应风力发电设备的真实情况,做到准确、及时、完整。 2.2 与本规程配套使用的“风电设备可靠性管理信息系统”软件及相关代码,由中国电力企业联合会电力可靠性管理中心(以下简称“中心”)组织编制,全国统一使用。 3状态划分 风电机组(以下简称机组)状态划分如下: 运行 (S) 可用(A) 调度停运备用 备用 (DR) (R) 场内原因受累停运备用在使用受累停运备用 (PRI) (ACT) (PR) 场外原因受累停运备用 (PRO) 计划停运 不可用(U) (PO) 非计划停运 (UO)

4 状态定义 4.1 在使用(ACT)——机组处于要进行统计评价的状态。在使用状态分为可用(A)和不可用(U)。 4.2 可用(A)——机组处于能够执行预定功能的状态,而不论其是否在运行,也不论其提供了多少出力。可用状态分为运行(S)和备用(R)。 4.2.1 运行(S)——机组在电气上处于联接到电力系统的状态,或虽未联接到电力系统但在风速条件满足时,可以自动联接到电力系统的状态。机组在运行状态时,可以是带出力运行,也可以是因风速过高或过低没有出力。 4.2.2 备用(R)——机组处于可用,但不在运行状态。备用可分为调度停运备用(DR)和受累停运备用(PR)。 4.2.2.1 调度停运备用(DR)——机组本身可用,但因电力系统需要,执行调度命令的停运状态。 4.2.2.2 受累停运备用(PR)——机组本身可用,因机组以外原因造成的机组被迫退出运行的状态。按引起受累停运的原因,可分为场内原因受累停运备用(PRI)和场外原因受累停运备用(PRO)。 a) 场内原因受累停运备用(PRI)——因机组以外的场内设备停运(如汇流线路、箱变、主变等故障或计划检修)造成机组被迫退出运行的状态。 b) 场外原因受累停运备用(PRO)——因场外原因(如外部输电线路、电力系统故障等)造成机组被迫退出运行的状态。 4.3 不可用(U)——机组不论什么原因处于不能运行或备用的状态。不可用状态分为计划停运(PO)和非计划停运(UO)。 4.3.1计划停运(PO)——机组处于计划检修或维护的状态。计划停运应是事先安排好进度,并有既定期限的定期维护。 4.3.2非计划停运(UO)——机组不可用而又不是计划停运的状态。 5 状态转变时间界线和时间记录的规定 5.1 状态转变时间的界线 5.1.1 运行转为备用或计划停运或非计划停运:以发电机在电气上与电网断开时间为界。

风电场建设程序与工程施工

风电场建设程序与工程施工讲课大纲 主讲:陶福长 第一章风电场建设程序 第一节风电场建设主要程序 1.1编制项目建议书:项目建议书主要说明:项目必要性、项目规模、拟选机型、并网条件、计经分析、公司简介等,项目建议书报上级主管部门.2编制项目可研报告1.3完成工程初设和施工设计1.4完成项目准备,主要是落实资金和设备招投标1.5风电工程施工1.6工程竣工验收和风电场试运行1.7工程项目评估(风电场项目核准需要获得7个支持性文件:省电力公司并网文件、省国土资源厅土地文件(地灾评估、压矿评估)、省林业厅林业文件、省环保局环保文件、省水利厅水保文件、省物价局电价承诺文件、银行承诺。最后取得省发改委核准文件) 第二节风电场选址与测风 1、风电场选址主要考虑以下因素:风资源情况、并网条件、交通运输、地质情况、综合造价。2.风电场分类:2.1IEC 分类方法,最大风速与最大阵风。2.2国内分类方法,平均

风速与功率密度。2.3风机分类:1IEC分类方法:最大风速与湍流强度。3国家电网公司关于风电场并网运行技术规范:风机运行功率要稳定、功率要可控、功率因数可调、满足低电压穿越要求。4、目前国内外六种风机机型:失速型、主动失速型、最佳滑差、变桨调频调速、直驱机组、半直驱机组。 第三节风电场建设可研报告 风电场建设可研报告主要包括以下内容1综合说明,介绍公司情况和项目情况及并网条件、当地条件2风能资源情况3工程地质4项目任务与规模5风电场选址6风机选型与布置7电气系统8工程土建9工程管理设计10环保工程11劳动与安全卫生12工程概算13工程财务分析 第二章风电场施工准备 第一节风电场施工准备 1.1落实项目法人制、工程监理制、设备招标制、工程合同制 1.2组织准备:确定施工单位、监理单位 1.3落实施工组织:项目单位成立项目指挥部、工程施工单位成立工程项目部、工程监理单位成立工程监理部 1.4编制工程建设计划:建设单位、工程单位、监理单位分

风力发电系统及稳定性

风力发电系统及稳定性 2.1风力发电概述 风能是当今社会中最具竞争力,最有发展前景的一种可再生能源,将风能应用于发电(即风力发电)则是目前能源供应中发挥重要作用的一项新技术。研究风力发电技术对我国大型风力发电机组国产化及推动我国风力发电事业的不断发展有着重要意义。 与火力发电相比,风力发电有其自己的特点,具体表现在一下几个方面:1):可再生的洁净资源。风力发电是一种可再生的洁净能源,不消耗资源,不污染环境,这是风力发电所无法比拟的优点。 2):建设周期短。一个万千瓦级的风力发电场建设期不到一年。 3):装机规模灵活。可根据资金情况决定一次装机规模,有一台的资金就可安装投产一台。 4):可靠性高。把现代科技应用于风力发电机组可使风力发电可靠性大大提高。中大型风力发电机可靠性从20世纪80年代的50%提高到98%,高于火力发电,并且机组寿命可达20年。 5)造价低。从国外建成的风力发电场看,单位千瓦造价和单位千瓦时电价都低于火力发电,和常规能源发电相比具有竞争力。 6)运行维护简单。现在中大型风力机自动化水平很高,由于采用了微机技术,实现了风机自诊断功能,安全保护更加完善,并且实现了单机独立控制,多级群控和遥控,完全可以无人值守,只需定期进行必要的维护,不存在火力发电中的大修问题。 7)实际占地面积小。据统计,机组与监控,变电等建筑仅占火电场1%的土地,其余场地仍可供农,牧,渔使用。 8)发电方式多样化。风力发电既可并网运行,也可与其他能源,如柴油发电,太阳能发电,水力发电机组成互补系统,还可以独立运行,对于解决边远无电地区的用电问题提供了现实可行性。 2.11 国外风电发展现状 20世纪70年代石油危机发生以来,西方发达国家积极地寻求新的能源,风力发电应运而生。风电在国外发达国家相当普及,尤其是德国,西班牙,美国等国家,风电所占的比重很大。2011年全球新增装机容量超过4000万kw,累计装机容量超过2.37亿kw。据2012年世界风电报告,2011年全球风电累计装机容量排名前十位的国家如图2-1所示,2011年各国风电累计装机容量占比2-2所示。

风电场项目施工现场一般安全管理规定详细版

文件编号:GD/FS-1980 (管理制度范本系列) 风电场项目施工现场一般安全管理规定详细版 The Daily Operation Mode, It Includes All Implementation Items, And Acts To Regulate Individual Actions, Regulate Or Limit All Their Behaviors, And Finally Simplify The Management Process. 编辑:_________________ 单位:_________________ 日期:_________________

风电场项目施工现场一般安全管理 规定详细版 提示语:本管理制度文件适合使用于日常的规则或运作模式中,包含所有的执行事项,并作用于规范个体行动,规范或限制其所有行为,最终实现简化管理过程,提高管理效率。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 1、进入xxx风电场项目部施工现场人员,必须正确佩戴合格的安全帽,系好安全帽的扣带,并按规定穿戴好防护工作服和必要的安全防护用具,严禁穿拖鞋、高跟鞋、赤脚赤膊进入施工现场,严禁外部闲杂人员进入施工现场。 2、进入xxx风电场项目部施工现场人员,禁止吸烟;严禁酒后进入施工现场上班作业。 3、施工现场存放的材料、设备,应做到存放场地安全可靠,材料、设备存放整齐,有便利的通道,必要时设专人进行看护。 4、施工现场地面上有孔洞、坑道、沟口、闸门

口、升降口、漏斗口等危险处,应设有安全防护拦杆设施,并悬挂明显标志。如现场临时施工打开的孔洞、坑道、沟口、闸门口、升降口、漏斗口等危险处,应设安全警戒带,并派专人看护,施工完毕应立即加上盖板或装上防护栏。 5、起重机设备在使用前要经过荷载试车试验,试车前应注意检查大钩、钢丝绳、行走机构和电气部分等。操作人员包括司机和起重工应持证上岗。使用时,应设专人指挥,禁止斜吊,禁止任何人站在吊运物品的上面,或者在吊运物品的下面停留、行走,在货物悬空时,驾驶人员不能离开操作岗位。 6、凡坠落高度在二米和二米以上,且在有可能坠落的高处进行作业,均称为高处作业。从事高处施工作业的人员,必须按标准系好安全带、戴好安全帽和穿软底鞋,不准穿塑料底和带钉子的硬底鞋。高处

整机厂及中国风力发电配套厂商名录

风力发电整机制造机构名称 维斯塔斯风力技术公司 新疆金风科技发展公司 四川风瑞能源 GAMESA GE能源集团 华锐风电科技股份有限公司 浙江华仪风能开发有限公司 苏司兰能源有限公司 江西麦德风能设备股份有限公司 常州轨道车辆牵引传动工程技术研究中心上海电气风电设备有限公司 中国南车株洲电力机车研究所风电事业部湖南湘电风能有限公司 中船重工(重庆)海装风电设备有限公司Repower 浙江运达风力发电工程有限公司 上海万德风力发电有限公司 佛山市东兴风盈风电设备制造有限公司潍坊中云机器有限公司 东方汽轮机有限责任公司 保定惠德风电工程有限公司 哈尔滨哈电风电设备公司 北京北重汽轮电机有限责任公司

沈阳华创风能有限公司 西安维德风电设备有限公司 广东明阳风电有限责任公司 三一电气有限责任公司 中小型风力发电机组(含并网/离网型)机构名称 广州红鹰能源科技公司 扬州神州风力发电有限公司 嘉兴市安华风电设备有限公司 上海思源致远绿色能源有限公司 宁波风神风电科技有限公司 深圳风发科技发展有限公司 广州中科恒源能源科技有限公司 宁夏风霸机电有限公司 上海林慧新能源科技有限公司 西安大益风电科技有限公司 瑞安海立特风力发电有限公司 风能蓄电池机构名称 北京辉泽世纪科技有限公司 叶片及其材料机构名称 重庆国际复合材料有限公司 艾尔姆玻璃纤维制品(天津)有限公司

上海玻璃钢研究院 江苏九鼎新材料股份有限公司 南京先进复合材料制品有限公司 上海越科复合材料有限公司 中国兵器工业集团第五三科技研究院 威海市碳素渔竿厂 金陵帝斯曼树脂有限公司 中航(保定)惠腾风电设备有限公司 浙江联洋复合材料有限公司 常熟市卡柏(Core Board)复合材料有限公司北京恒吉星工贸有限责任公司 风力发电机机构名称 湘潭电机股份有限公司 南车电机股份有限公司 西安捷力电力电子有限公司 兰州电机有限责任公司 东方电机股份有限公司 上海电气集团 盾安电气 齿轮箱/回转支承机构名称 南京高速齿轮制造有限公司 德国GA T传动技术有限公司

风电场现场施工执行有效标准、规范、规程清单(最新本)

XXX风电场现场执行有效标准、规范、规程清单(最 新版本) 第一部分风电场工程施工验收标准 (一)工程通用规范 1.建设工程监理规范GB 50319-2000 2.建设工程项目管理规范GB50326-2001 3.建设工程文件归档整理规范GB/T50328-2001 4.风力发电场项目建设工程验收规范DL/T5191-2004 5.风力发电工程施工组织设计规范DL/T5384—2007 6.风力发电机组验收规范 GB/T 20319-2006 (二)风力发电机组 1.风力发电机组装配和安装规范 GB/T 19568—2004 2.风力发电机组验收规范 GB/T 20319—2006 (三)风电场风力建筑工程 1.普通砼用砂、石质量检验方法标准及检验JGJ52-2006 2.普通混凝土配合比设计规程 JGJ55-2001 3.混凝土外加剂应用技术规范 GB50119-2003 4.预拌混凝土 GB14902-2003 5.钢筋机械连接通用规程 JGJ107-2010 6.钢筋焊接及验收规程 JGJ 18-2012 7.混凝土用水标准 JGJ 63-2006 8.混凝土泵送施工技术规程 JGJT10-2011 9.粉煤灰混凝土应用技术规范 GBJ146-90 10.建筑给水排水及采暖工程质量验收规范 GB50242-2002 11.建筑装饰装修工程施工质量验收规范 GB50210-2001 12.屋面工程质量验收规范 GB50207-2012 13.混凝土强度检验评定标准 GB/T50107-2010 14.普通混凝土拌合物性能试验方法 GB/T50080-2002

15.混凝土质量控制标准 GB50164-2011 16.建筑工程质量验收统一标准 GB50300-2001 17.建筑地基基础施工质量验收规范 GB50202-2002 18.混凝土结构工程施工质量验收规范 GB50204-2002 19.砌体工程施工质量验收规范 GB50203—2002 20.建筑地面工程质量验收规范 GB50209 -2010 21.钢结构工程施工质量验收规范 GB50205—2001 22.建筑电气工程施工质量验收规范 GB50303-2002 23.通风与空调工程施工质量验收规范 GB50243—2002 24.工业建筑防腐蚀设计规范 GB50046-2008 25.工程测量规范 GB50026-93 26.电力建设施工质量验收及评定规程第1部分:土建工程DL/T5210.1—2005 (四)电气设备安装工程 1.电气装置安装工程电气设备交接试验标准 GB50150—2006 2.电气装置安装工程电缆线路施工及验收规范 GB50168—2006 3.电气装置安装工程接地装置施工及验收规范 GB50169—2006 4.电气装置安装工程盘、柜及二次回路接线施工及验收规范 GB50171—2012 5.电气装置安装工程蓄电池施工及验收规范 GB50172—92 6.电气装置安装工程低压电器施工及验收规范 GB50254—96 7.建筑电气工程施工质量验收规范 GB50303—2002 8.电气装置安装工程高压电器施工及验收规范 GBJ147—2010 9.电气装置安装工程电力变压器、油浸电抗器、互感器施工及验收规 GBJ148—2010 10.电气装置安装工程母线装置施工及验收规范 GBJ149—2010 11.电气装置安装工程旋转电机施工及验收规范 GB 50170-2006 12.电气装置安装工程质量检验及评定规程 DL/T5161.1—5161.17-2002 13. 35kV及以下架空电力线路施工及验收规范 GB50173—92 14.110kV及以上送变电工程启动及竣工验收规程 DL/T782—2001

风力发电系统可靠性评估体系

风力发电系统可靠性评估体系 摘要:近年来,我国的用电量不断增加,风力发电系统有了很大进展。由于风电具有随机性、间歇性和波动性等特点,风力发电系统的可靠性对大规模并网电力系统安全性造成较大影响,如何准确评估风力发电系统可靠性,这提出了全新的挑战。首先分析了风力发电系统的结构特点,提出了一种基于期望故障受阻电能相等的方法,用相同容量的发电机等效替代风电机“组串”,并根据元件状态特性对系统可靠性状态进行划分,最后建立时间、出力、系统等指标体系。 关键词:风力发电系统;等效替代;可靠性评估;指标体系 引言 随着风力发电技术迅猛发展,装机容量大幅增加,已成为可再生能源中技术最成熟、应用最广泛的发电技术之一。由于风电具有间歇性、波动性和随机性等特点,使得大规模风电接入电力系统后带来了不确定的因素,因此如何准确评估风力发电系统的可靠性显得非常重要。 1风力发电系统的特点 1.1风机输出功率影响因素分析

1)季节与时间的影响 中国“三北”地区风资源较为丰富。一般来说,一年中春季和冬季风资源较丰富,夏季风资源较贫乏;在一天中来说,白天风资源较贫乏,而夜晚风资源较丰富。 2)风速大小的影响 风电机组的运行状态和输出功率都与风速息息相关。图1给出了风电机组输出功率与风速的曲线。 2可靠性状态的划分 1)全额运行状态:当风速较快时,即风力发电系统输出功率能够达到总装机容量的70%以上。2)资源限制减额运行状态:当风速较慢时,即风力发电系统输出功率低于总装机容量的70%。3)故障减额运行状态:风力发电系统部分元件故障导致输出功率减少的状态。 3可靠性指标体系 3.1时间指标 1)全额运行时间FRH:风力发电系统处于全额运行状态(即输出功率达到总装机容量70%)的累计运行时间。2)资源限制减额运行时间RDH:风力发电系统由于风速的限制,输出功率小于总装机容量的70%的累积运行时间。3)故障减额运行时间FDH:风力发电系统中部分元件故障,导致输出功率减小的累积运行时间。4)故障停运时间FOH:风力系统由于元件故障发生全站停运的累计时间。由

可靠性管理制度

可靠性管理制度

黑泉水力发电厂设备可靠性管理制度 1、总则 1.1本标准规定了黑泉水力发电厂发电设备可靠性管理的管理职能、管理内容与要求、检查与考核。 1.2本标准适用于黑泉水力发电厂发电设备可靠性的管理。 2、管理职能 生产科是电厂发电设备可靠性管理的归口部门,负责电厂发电设备可靠性管理的统计和分析。检修科、运行部门负责本部门所管辖设备的可靠性管理工作。 3、管理内容与要求 3.1 组织机构 3.1.1 电厂可靠性管理网络由可靠性管理领导小组和可靠性管理网络人员组成。领导小组组长由分管生产副厂长担任,领导小组成员由生产科、检修科、运行部门等组成。 3.1.2可靠性管理领导小组名单: 组长:金晨杰 副组长:王宁克 成员:陈顺沛鲍占民马海民陈海英李刚刘芳何雪珂。 3.1.3可靠性管理领导小组的任务,确保电厂发电可靠,努力完成上级下达的可靠性指标,保证发电设备可靠性原始数据的正确、完整、及时,定期进行可靠性分析,提出改进设备可靠性的措施。

3.2 组长职责 3.2.1 在厂长的领导下,指挥、督促职能部门开展发电设备可靠性管理工作,保证完成上级下达的可靠性指标和本电厂提出的可靠性目标。 3.2.2 贯彻执行上级下达的关于可靠性管理的各项规定,经常检查电厂可靠性管理工作,定期听取汇报,及时解决存在的问题。 3.2.3 掌握电厂发电设备健康状况及存在问题、隐患,对可能构成影响机组可靠性指标的问题应及时组织有关人员采取措施加以解决。 3.2.4 掌握电厂可靠性指标的完成情况,对不能完成的预定指标要组织电厂有关部门进行分析,确定处理方案并督促落实。 3.3 生产科职责 3.3.1 生产科负责全厂可靠性管理工作。 3.3.2 随时掌握各部门可靠性指标的状况,如发现不能完成指标,应及时采取措施,制订可行方案,经批准后贯彻执行。 3.3.3 抓好全厂可靠性管理人员的理论和实践培训和技术演练工作,提高可靠性管理人员的管理水平。 3.4 各部门职责 3.4.1 各科室负责本部门发电设备的可靠性管理工作。 3.4.2 认真贯彻执行国家及系统内各项关于发电设备可靠

中国风能的利用现状及发展

中国风能的利用现状及发展 摘要:随着化石能源的不断消耗,新能源的开发利用引起了世界各国的重视。新能源具有污染少、储量大、永续性等特点。我国新能源产业呈现强劲发展势头,其中,风电发展最为迅猛。我国风能资源丰富,目前中国风电技术的开发利用取得了巨大进步。但中国的风能资源开发利用仍然存在诸多问题,如风电的并网消纳难、电力市场不完善、相关配套法规不健全和风机制造技术基础薄弱等,这些制约因素严重阻碍了我国风电的可持续发展。本文着重阐述了中国新能源风能的资源条件、我国风能发展现状及制约中国风能发展的因素并对我国风能发电的发展前景进行了展望。 能源是人类生存和发展的重要物质基础,是人类从事各种经济活动的原动力。由于化石能源(如煤、石油、天然气等能源)自然储量的有限性以及人类对其需求的无限性,随着人类对化石燃料无节制的开采和利用,化石能源短缺的矛盾日益突出。长期以来,我国以化石能源为主的能源构成形式加剧了对化石能源的依赖,据统计,2007 -2010年我国能源消耗总量不断上升,增长率分别为7. 8%、4. 0%、6. 3%、5. 9%;2011年能源消耗总量达34. 8亿t标准煤,比2010年增长7%。能源消耗总量中,煤、石油、天然气这些化石能源在2007-2010年所占比例分别为93. 2%、92.3%、92.2%、91.4%,是能源消费的主要部分。人均资源量少、资源消耗量大、能源供需矛盾尖锐以及利用效率低下、环境污染严重、能源结构不合理[2]已成为制约我国经济社会可持续发展的重要因素。 同时,化石能源的使用也给环境带来了许多负面影响,CO2等温室气体的排放导致全球气候变暖,并引发了气候的极端变化和一系列的自然灾害。在这种情况下,人类必须另辟蹊径,积极寻求能够替代化石能源的新能源和可再生能源,逐步摆脱对传统化石能源的依赖。 以水能、太阳能、风能、地热能、海洋能、生物质能和核能等为代表的新能源又称非化石能源,不但取之不尽、用之不竭,而且低碳、清洁、环保,既有利于保障能源供给,又可极大地减少温室气体的排放。新能源被认为是能够同时解决能源危机、金融危机和气候危机的战略性支点,因而成为新一轮国际竞争的热点。 新能源特别是风能,是一种清洁、廉价、储量极为丰富的可再生能源,它与

XX风电场工程绿色施工方案

一、工程概况 1、工程概述 1.1 工程名称 XX风电场工程。 1.2 工程地点 XX省XX市XX镇。 1.3 工程性质、规模、工程范围 1.4 质量目标 1.4.1工程质量验评结果均达到行业和XX集团公司要求;实现达标投产要求。 1.4.2本工程范围内的建筑、安装、调试项目的合格率达到100%。不发生重大及以上质量事故。 1.4.3绿色、文明施工目标:噪音不影响周边农牧民,污水排放达标不影响环境,文明施工考核优良,绿色施工达标。 1.5 开工、完工日期 计划开工日期:XX年XX月XX日,计划完工日期:XX年XX月XX日。 二、编制依据 1、《建筑工程绿色施工评价标准》GB/50640-2010 2、《建筑施工现场环境与卫生标准》JGJ146-2004 3、《建筑施工现场安全检查标准》JGJ59-2011 4、《节水型生活用水器具》CJ164-2002 5、《建筑照明设计标准》GB50034-2004 6、《污水综合排放标准》GB8978-2002 7、《施工现场临时建筑物技术规范》JGJ/T188-2009 三、绿色施工目标与要求 运用ISO14000和ISO18000管理体系,在保证质量、安全等基本要求的前提下,通过科学管理和技术进步,最大限度的节约资源与减少对环境负面影响的施工活动——尽可能的应用绿色施工的新技术、新设备、新材料与新工艺,实现四节一环保(节能、节地、节水、节材和环境保护)。

绿色与施工指标体系由节地与室外环境、节能与能源利用、节水与水资源利用、节材与材料资源、环境质量等五类指标组成。 生活能耗控制指标: 1、施工现场作业人员生活用电平均每人每月<25千瓦时(含食堂、浴室等生活区公共用电)。 2、施工现场作业人员生活用水平均每人每月<1.5立方米(含食堂、浴室等生活区公共用水)。 节材控制指标 1、建筑材料损耗不高于现行定额规定的损耗比例。 2、模板等周转材料的周转率不低于定额要求。 3、工程废料回收再利用率: 1)钢、木等材料再利用率≥50%。 2)砂石、碎砖类材料再利用率≥80%。 四、绿色施工管理组织机构: 1、成立绿色施工管理领导小组 组长:项目经理: 副组长: 成员: 2、绿色施工领导小组职责分工 2.1、项目经理:负责各作业队之间的统筹与协调,全面落实绿色施工的管理工作,建立项目责任制,确定目标和指标,负责资源提供。 2.2、项目总工职责:组织编制绿色施工方案,制定项目绿色施工技术措施,执行绿色施工导则和标准。 2.3、领导小组成员职责:组织相关人员按绿色施工责任要求进行实施,并进行自查,落实改进措施。定期组织对当月绿色施工实施情况进行检查,且做好检查记录,并做好考核、评比工作。 2.4、设备物资部负责人:对进场材料验收和数量核对,建立原材料进场和耗用台帐,逐月和分阶段统计消耗数量,与合约部门预算对比,以掌握材料消耗情况。 2.5、技术员:熟悉图纸和规范要求,组织施工生产,落实工程进度计划和绿色施工措施,负责向施工班组交底。

风力发电设备可靠性评价规程

风力发电设备可靠性评价规程(试行) 1 范围 本规程规定了风力发电设备可靠性的统计办法和评价指标。适用于我国境内的所有风力发电企业发电能力的可靠性评价。 风力发电设备的可靠性统计评价包括风电机组的可靠性统计评价和风电场的可靠性统计评价两部分。 风电机组的可靠性统计评价范围以风电机组出口主开关为界,包括风轮、传动变速系统、发电机系统、液压系统、偏航系统、控制系统、通讯系统以及相应的辅助系统。 风电场的可靠性统计评价范围包括风电场内的所有发电设备,除了风电机组外,还包括箱变、汇流线路、主变等,及其相应的附属、辅助设备,公用系统和设施。 2 基本要求 本规程中指标评价所要求的各种基础数据报告,必须尊重科学、事实求是、严肃认真、全面而客观地反应风力发电设备的真实情况,做到准确、及时、完整。 与本规程配套使用的“风电设备可靠性管理信息系统”软件及相关代码,由中国电力企业联合会电力可靠性管理中心(以下简称“中心”)组织编制,全国统一使用。 3状态划分 风电机组(以下简称机组)状态划分如下: 运行 (S) 可用(A) 调度停运备用

备用 (DR) (R) 场内原因受累停运备用 在使用受累停运备用 (PRI) (ACT) (PR) 场外原因受累停运备用 (PRO) 计划停运 不可用(U) (PO) 非计划停运 (UO) 4 状态定义 在使用(ACT)——机组处于要进行统计评价的状态。在使用状态分为可用(A)和不可用(U)。 可用(A)——机组处于能够执行预定功能的状态,而不论其是否在运行,也不论其提供了多少出力。可用状态分为运行(S)和备用(R)。 4.2.1 运行(S)——机组在电气上处于联接到电力系统的状态,或虽未联接到电力系统但在风速条件满足时,可以自动联接到电力系统的状态。机组在运行状态时,可以是带出力运行,也可以是因风速过高或过低没有出力。 4.2.2 备用(R)——机组处于可用,但不在运行状态。备用可分为调度停运备用(DR)和受累停运备用(PR)。

电力设备可靠性管理规定

凌源小城子光伏电站管理制度电力设备可靠性管理规定

凌源小城子光伏电站电力设备管理规定 第一章总则 第一条为提高凌源小城子光伏电站(以下简称“电站”)的现代化管理水平,使电力设备可靠性管理进一步实现规范化和科学化,根据国家经贸委《电力可靠性管理暂行办法》以及中广核太阳能开发有限公司的电力设备可靠性管理制度规定,结合本电站的实际情况,特制定本规定。 第二条本规定适用于凌源小城子光伏电站各部门以及电力设备可靠性管理和统计工作。 第二章电厂电力可靠性管理工作的主要任务 第三条坚决贯彻可靠性准则和统计评价规程,使可靠性管理理念被电厂职工所认知。依据可靠性准则和统计评价规程,对电站范围内的电力设备进行可靠性数据的采集、统计。 第四条用可靠性指标对电站电力设备的运行、检修、维护以及设备改造等工作进行指导。为电站提供设备大小修、临检、运行、维护、消缺以及技改等各个环节的可靠性数据。 第五条用可靠性指标分析和评价电力生产过程的可靠性水平。并为上级提供电站可靠性管理的各类报表、总结。 第六条结合电站情况,拟订和实施可靠性目标管理。 第七条建立符合电站特点的可靠性效益评价系统,开展项目的事前论证和事后评价,并积极摸索综合效益最佳的可靠性目标,目的旨在完成提高电力设备的运行可靠性、经济性的职能。 第三章管理结构 第八条为加强电力设备可靠性的全方位全过程管理,电站设立可靠性管理工作小组直接受电站技术监督领导小组管理,全面负责电站可靠性管理工作的一切事务,并在上级主管部门的业务指导下进行工作。 第九条可靠性管理工作小组设置,由项目公司运维主管担任组长,管理成员主要包括电站运维

人员及其它相关负责人 第十条可靠性管理工作实行电站、部门和班组三级网络管理,并建立电站可靠性三级管理网络。电站可靠性管理网络成员由电站可靠性管理工作领导小组组长以电站文件形式签发确定。 第四章工作职能 第十一条电站可靠性管理工作领导小组职能 (一)负责贯彻上级方针政策、执行原电力部及网省局颁布的各项可靠性管理规定和落实下达可靠性管理的文件、规定、通知、细则等,制定电站可靠性管理规定、实施细则。 (二)负责电站可靠性管理的目标控制,并通过承包合同形式分解到相关部门,各相关部门保证完成所实施的必要细则、考核惩奖条例。 (三)负责主、辅设备可靠性数据报表的审批,以保证上报数据的准确性。 (四)负责电站可靠性管理设备检修三年滚动计划、进度与当年度大小修计划的审批工作。 (五)协调各部门之间的可靠性管理工作,定期检查网络的活动情况,对可靠性管理工作进行指导和帮助,提出提高可靠性管理工作的指导意见。 (六)负责可靠性指标的目标管理,以可靠性指标指导全电站检修和运行工作,确保电站全年可靠性指标的完成。 (七)负责对电站可靠性指标计划的分解、下达及检查考核工作。 (八)对采集的各项数据,进行定期分析主辅设备可靠性指标的完成状况,制定提高设备可靠性的技术措施和安全措施,定期组织可靠性网络活动,并进行专题分析。 (九)重大技措项目的立项、重要设备的更新改造等用可靠性指标进行评估和论证。对电站的重大技改项目进行可靠性管理的论证和目标管理,以便提高设备的可靠运行水平。 第十二条电站可靠性专职职能 (一)在电站可靠性管理小组组长领导下,电站可靠性管理小组成员做好可靠性管理的日常工作。 (二)负责电站可靠性指标的统计及上报广核集团、省公司工作。负责采集统计、保送各项可靠性数据和信息,并做到及时、准确、完整。 (三)负责组织参加网、省局开展的可靠性管理工作专业竞赛报表的报送。 (四)负责电站的主、辅设备检修的三年滚动计划、进度与当年度大小修计划汇总编制工作,并

中国风力发电的发展现状及未来前景.

中国风电发展现状及前景 前言 随着能源与环境问题的日益突出,世界各国正在把更多目光投向可再生能源,其中风能因其自身优势,作为可再生能源的重要类别,在地球上是最古老、最重要的能源之一,具有巨大蕴藏量、可再生、分布广、无污染的特性,成为全球普遍欢迎的清洁能源,风力发电成为目前最具规模化开发条件和商业化发展前景的可再生能源发电方式。 风,来无影、去无踪,是无污染、可再生能源。一台单机容量为1兆瓦的风电装机与同容量火电装机相比,每年可减排2000吨二氧化碳、10吨二氧化硫、6吨二氧化氮。随着《可再生能源法》的颁布,中国已把风能利用放在重要位置。 一、国内外风电市场现状 1.国外风机发展现状 随着世界各国对环境问题认识的不断深入,可再生能源综合利用的技术也在不断发展。在各国政府制订的相应政策支持和推动下,风力发电产业也在高速发展。截至2011年底,世界风电装机量达到237669MW,新增装机量43279MW,增长率22.3%,增速与2010年持平,低于2009年32%的增速。由表一,可以看出中国风电装机量62364MW,远远超过世界其他各国装机量,而德国依然是欧洲装机量最多的国家。从图表三中,很明显的看出,从2001年到2004年,风电装机增速是在下降的,2004年到2009年风电有处于一个快速发展期,直到近两年风电装机的增速又降为22%左右,可见风电的发展正处在一个由快速扩张到技术提

升的阶段。 图表 1 世界风电装机总量图 图表 2 世界近10年新增装机量示意图

图表 3 世界风电每年装机量增速

图表 4 总装机量各国所占份额

图表 5 2011年新增装机量各国所占份额 2.国内风电发展现状 中国的风电产业更是突飞猛进:2009年当年的装机容量已超过欧洲各国,名列世界第二。2010年将新增1892.7万kW,超越美国,成为世界第一。2011年装机总量到达惊人的62364MW。在图6中可以看出,中国风电正经历一个跨越式发展,这对世界风电的发展起到了至关重要的作用。然而,图8 中,我们能够清楚的看出自2007年以后,虽然新增装机量很大,但增速却明显下降,而其他国家,比如美国、德国,这些年维持着一个稳定的增速。由此,我们应该意识到,我国风电,尤其是陆上风电,正在进入一个转型期,从发展期进入成熟期,从量的追求进入到对质的提升。 图表 6 中国每年风电装机量示意图

含风电的发电系统可靠性评估(MC法)matlab程序

%% 3.计算含风电场的发电系统可靠性指标(非序贯MC) clc clear loadresult_WindFarmOutput %文件“result_WindFarmOutput.mat”构成了风电场出力的状态模型【风力状态状态概率】相关状态计算查看百度文库“风电场出力模型matlab程序” % 3.1 求出常规机组的出力模型,按类构成多状态模型 % RBTS发电系统中共有6类常规机组,%11台常规机组数据 % %2台5MW水电机组%% %1台10MW热电机组%% %4台20MW水电机组%% %1台20MW 热电机组%% %1台40MW水电机组%% %2台40MW热电机组% Generator.Norm=[5 0.01 5 0.01 10 0.02 20 0.015 20 0.015 20 0.015 20 0.015 20 0.025 40 0.02 40 0.03 40 0.03]; save('process.mat'); % 3.2MC抽样机组确定机组状态 % 3.2.1计算含风电场的RBTS可靠性 % 共有7类机组,常规机组状态在StateNorm【出力概率】元胞数组中,风电状态在StateFORWeibull6【出力概率】 I=0 %I用来记录发生却负荷的次数 sumDNS=0; DNS=zeros(200000,1); K=rand(200000,12);%1-11常规12风电 pwind=zeros(200000,1); for k=1:200000 Pout=zeros(12,1); %得到一次抽样常规机组状态 fori=1:11 if K(k,i)>Generator.Norm(i,2) Pout(i)=Generator.Norm(i,1); else Pout(i)=0; end end

相关文档
最新文档