水产养殖过程中的溶解氧

水产养殖过程中的溶解氧
水产养殖过程中的溶解氧

溶解氧的管理

作者:shuichanboshi

5.泼洒“保底安”,不但可以对水体消毒,氧化水体中的有害物,降低危害,还可以

对底质进行处理,增加池塘水体中的溶解氧。

6.选择优质饲料,减少残饵量;控制饵料水平,减少粪便排泄量,减少微生物的耗氧

量。

7.通过水体施肥,特别是施用“肽肥”等有效磷及其他微量元素较高的肥水产品,改

善池水元素比例,特别是氮磷比例,促进浮游植物生长,增加溶氧水平。但水体施肥必须严格控制施肥量和合理把握施肥密度,以免水体过肥,造成泛池。

8.根据水体有机物质含量、浮游生物量、水质老化情况等及时加注新水,增加池水透

明度,保证表层水体以下有充足的阳光进行光合作用,提高水体溶氧量。

9.合理使用增氧机,特别是应抓住每一个晴天,在中午将上层过饱和氧输送至下层,

改善下层溶氧状况。

10.施用水质改良剂、增氧剂可进行化学增氧。

11.水体溶氧过饱和时,可以泼洒粗盐、黄泥等,既可清除塘底的病因,还可控制来年

浮游藻类的繁殖水平。

水中溶解氧的测定(2017-标准)

实验二水质溶解氧的测定(碘量法) 1 实验目的 掌握生活饮用水及水源水中溶解氧的测定原理及方法;掌握测定溶解氧自来水水样的采集方法;正确使用溶解氧瓶及固定水中溶解氧的方式;巩固碘量法操作。 2 实验原理 硫酸锰与氢氧化钠作用生成氢氧化锰,氢氧化锰与水中溶解氧结合生成含氧氢氧化锰(或称亚锰酸),亚锰酸与过量的氢氧化锰反应生成偏锰酸锰,在酸性条件下偏锰酸锰与碘化钾反应析出碘,用硫代硫酸钠标准溶液滴定析出的碘。根据硫代硫酸钠标准溶液的消耗量求得水样中溶解氧的含量。 3 试剂 3.1 硫酸锰溶液:称取48g MnSO 4·4H 2 O(AR)溶于水中至100ml,过滤后使用。 3.2 碱性碘化钾溶液:称取50gNaOH(AR)溶于40ml蒸馏水中,另称取15gKI (AR)溶于20ml蒸馏水中。待NaOH溶液冷却后,合并两溶液,加水至100ml。静置24小时后取上清液备用。 3.3 浓硫酸(AR) 3.4 淀粉指示剂溶液(1%):称取1g可溶性淀粉,置于小烧杯中,加少量纯水调成糊状,在不断搅拌下将糊状液倒入100ml正在沸腾的纯水中,继续煮沸2~3分钟,冷后移入瓶中使用。 3.5 6mol/LHCl 3.6 0.025mol/L硫代硫酸钠标准储备溶液:应先配成0.1mol/L的浓度,标定出准确浓度后,再用纯水稀释至0.025mol/L。 3.7 0.1mol/L硫代硫酸钠标准溶液:称取13g硫代硫酸钠Na 2S 2 O 3 .5H 2 O(AR)置 于烧杯中,溶于500ml煮沸放冷的纯水中,此溶液的浓度为0.1mol/L。移入棕色瓶中7~10天进行标定。 标定方法:将K 2Cr 2 O 7 于烘箱烤至恒重,用减重法精确称取K 2 Cr 2 O 7 1.1g左右, 置于小烧杯中,加纯水使其完全溶解,并移入250ml容量瓶中,用少量纯水洗涤 小烧杯多次,洗涤液一并移入容量瓶中,定容。移取25.00mLlK 2Cr 2 O 7 于250 ml 碘量瓶中,加20 ml水,加2gKI晶体,再加6mol/LHCl溶液5ml,密塞,摇匀, 水封,在暗处静置10分钟。加纯水50ml,用待标定的Na 2S 2 O 3 标准溶液滴定至溶 液呈淡黄色时(近终点),加入2ml1℅淀粉指示剂,继续滴至溶液从蓝色变为亮 绿色为止。记录Na 2S 2 O 3 溶液消耗的量(平行测定三份)。计算出Na 2 S 2 O 3 标准溶液 浓度。

水产动物养殖过程中十六种细菌性疾病简介

水产动物养殖过程中十六种细菌性疾病简介 细菌是一种具有细胞壁的单细胞原核生物,不同于真核生物之处在于它有原始核。但无核膜、核仁,也缺乏内质网、线粒体、叶绿体等细胞器。水产动物细菌病的种类较多,危害严重的主要是革兰氏阴性菌引起的疾病,如柱状屈挠杆菌引起的烂鳃病、假单胞菌引起的败血病、嗜水气单胞菌引起的疖疮、腐皮病等。今日小鱼就为大家简单介绍下细菌性疾病。 1.细菌性烂鳃病 病原为柱状嗜纤维菌,革兰氏染色阴性,菌体无鞭毛。 被感染的病鱼行动缓慢,反应迟钝,呼吸困难,食欲减退,常离群独游。体色变黑,尤其头部颜色更为暗黑,因而称此病为“乌头瘟”。肉眼观察,病鱼鳃盖骨的内表皮往往发炎充血,严重时中间部分的表皮常腐蚀成一个圆形不规则的透明小区,俗称“开天窗”。鳃丝腐烂,特别是鳃丝未端粘液很多,带有污泥和杂物碎屑,有时在鳃瓣上可见血斑点。鳃丝骨条尖端外露,附着许多粘液和污泥,并附有很多细长的细菌。 主要危害草鱼,从鱼种至成鱼均可受害,许多淡水鱼类也能被感染。本病在水温15℃以上时开始发生;在15~30℃范围内,水温趋高易暴发流行,致死时间也随之变短。水中病原菌的浓度越大,鱼的密度越高,鱼的抵抗力越小,水质越差,则越易暴发流行。本病常和传染性肠炎、出血病、赤皮病并发。一般流行于4~10月,尤以夏季流行为多。 2.白皮病 又叫白尾病,病原是柱状嗜纤维菌和白皮极毛杆菌。 病鱼发病初期,尾柄处发白,随着病情发展迅速扩展蔓延,以至自背鳍基部后面的体表全部发白。严重的病鱼,尾鳍烂掉,或残缺不全。病鱼的头部向下,尾部向上,与水面垂直,时而作挣扎状游动,时而悬挂于水中,不久病鱼即死亡。 白皮病为鲢、鳙的主要病害之一。此病主要发生在饲养20~30天的鲢、鳙鱼苗及夏花阶段。常可形成急性流行病,1龄及2龄以上的成鱼偶然可以发病。病程较短,病势凶猛,死亡率很高,发病后2~3天就会造成大批死亡。 3.白头白嘴病 病原尚未完全查明,一般认为是一种黏细菌。

水产养殖—池塘养殖中氨氮的危害及其控制方法

水产养殖—池塘养殖中氨氮的危害及其控制方法 相关专题:水产养殖 时间:2012-03-13 15:25 来源:阿里巴巴农业频道 【阿里巴巴农业】 在水产养殖过程中,我们经常碰到池塘中氨氮过高的问题,在高密度精养池塘中这个问题更加严重,给养殖造成了一定的危害。下面,我们就池塘中氨氮的形成、氨氮的危害、氨氮的消除途径以及氨氮的控制方法一一加以阐述。 一、池塘中氨氮的形成 池塘中的氨氮主要来源于三种途径,即水生动物的排泄物、施加的肥料和被微生物菌分解的饲料、粪便及动植物尸体。鱼类可通过鳃和尿液、甲壳类能通过鳃和触角腺向水中排出体内的氨氮,以免发生体内氨中毒。水生动物的粪便及动植物尸体中含有大量蛋白质,被池塘中的微生物菌分解后形成氨基酸,再进?步分解成氨氮。 二、氨氮对水生动物的危害 1.氨氮的中毒机理氨氮以两种形式存在于水中,一种是氨(NH3),又叫非离子氨,对水生生物有毒,极易溶于水。另一种是铵(NH4+),又叫离子氨,对水生生物无毒。当氨(NH3)通过鳃进入水生生物体内时,会直接增加水生生物氨氮排泄的负担,氨氮在血液中的浓度升高,血液pH随之相应上升,水生生物体内的多种酶活性受到抑制,并可降低血液的输氧能力,破坏鳃表皮组织,降低血液的携氧能力,导致氧气和废物交换不畅而窒息。此外,水中氨浓度高也影响水对水生生物的渗透性,降低内部离子浓度。 2. 氨氮对水生动物的危害氨氮对水生动物的危害有急性和慢性之分。慢性氨氮中毒危害为:摄食降低,生长减慢;组织损伤,降低氧在组织问的输送;鱼和虾均需要与水体进行离子交换(钠,钙等),氨氮过高会增加鳃的通透性,损害鳃的离子交换功能;使水生生物长期处于应激状态,增加动物对疾病的易感性,降低生长速度;降低生殖能力,减少怀卵量,降低卵的存活力,延迟产卵繁殖。急性氨氮中毒危害为:水生生物表现为亢奋、在水中丧失平衡、抽搐,严重者甚至死亡。 三、氨氮的消除途径 1.硝化和脱氮铵(NH3)被亚硝化细菌氧化成亚硝酸,亚硝酸再被硝化细菌氧化成硝酸,称为硝化作用,硝化作用需要消耗氧气,当水中溶氧浓度低于1~2毫

淡水养殖水体溶解氧含量诊断分析及浮头泛

第23卷第5期 2014年5月 长江流域资源与环境 Resources and Environment in the Yangtze Basin Vol.23No.5 May 2014   淡水养殖水体溶解氧含量诊断 分析及浮头泛塘气象预报 黄永平1,刘可群2,苏荣瑞1,刘凯文1,刘 敏2,周守华1,耿一风1(1.荆州农业气象试验站,湖北荆州434100;2.武汉区域气候中心,湖北武汉430074) 摘 要:通过实时监测荆州农试站养殖塘各种水质要素,结合2011~2012年养殖塘发生的25个鱼泛塘实例,探讨 了养殖水体溶解氧含量与气象要素之间的联系。分析表明:养殖水体溶解氧含量与6h变温、总辐射量、气压值正 相关,与水温、空气相对湿度值负相关。从平时的调查记录来看,鱼泛塘事件主要发生在5~10月间,湿度大、气温 低、气压下降、日照强度弱等都会引起溶解氧含量低,严重的会诱发鱼泛塘。根据25个鱼泛塘实例,结合气象要素 的特点,提出了急剧降温降压型、寡照型、高温高热型3种鱼泛塘发生条件的概念模型,分别以实例进行了验证,并 初步总结出根据气象要素观测资料进行浮头泛塘预报的方法和流程。 关键词:水产养殖;溶解氧;鱼泛塘;气象要素;预报 中图分类号:S915;S917.1 文献标识码:A 文章编号:1004-8227(2014)05-0638-06 DOI:10.11870/cjlyzyyhj201405007 收稿日期:2013-02-04;修回日期:2013-06-03 基金项目:国家公益性行业(气象)专项“水产养殖气象保障关键技术”(GYHY201006029) 作者简介:黄永平(1969~ ),男,高级工程师,主要从事农业气象试验研究.E-mail:jzqqxj@163.com 水产养殖基本上是露天作业,气象条件与水产养殖的成败息息相关。天气突变造成浮头泛塘已成为水产养殖的主要灾害之一,2012年6月10日,武汉市涨渡湖区的一口4hm2鱼池泛塘,死鱼1万多kg,池中各种鱼类全军覆没[1]。荆州市处于长江中游地区江汉平原,是中国著名的鱼米之乡,近年来又有“中国淡水渔业第一市”的美誉。随着经济的发展和养殖技术的提高,水产养殖逐渐向高密度、高产量、集约化发展,但其养殖风险也在加大,一旦发生大面积鱼类浮头直至泛塘,将会带来巨大的经济损失。 导致鱼浮头与泛塘的主要气象因素很多。天气变化导致水体溶解氧减少是主要原因;水温急剧下降刺激鱼神经末梢,引起机能紊乱,行动失常,也会引起或诱发鱼泛塘[2]。目前国内对于鱼类泛塘与气象要素之间的联系,进行了较多研究,并总结了一些鱼类泛塘发生的天气模型及气象指标[3~7],但模型指标较为单一,不够全面,对荆州市水产浮头预报指导意义有限。本文在对水体溶解氧高密度观测及2011~2012年发生的25个鱼泛塘实例分析基础上,提出了3种发生鱼泛塘的概念模型,并总结出预 报方法与流程,以期对水产养殖起到防灾减灾作用,减少渔民的经济损失[8,9]。 1 资料和方法 荆州农试站2011~2012年每年3~10月逐时的溶解氧含量、水温及各种气象因素的观测数据,观测仪器采用的是美国哈希公司生产的在线式水质监测仪,设置为每小时读取1次溶氧量、水温及其它水质要素。气象数据来源于荆州市荆州区地面气象观测站数据,2011~2012年发生的25个鱼泛塘实例,来源于进行水温、水质监测的鱼塘渔民的记录数据。统计方法主要为相关分析。 2 结果与分析 2.1 水体溶解氧含量与气象因素的关系2.1.1 温度 图1是水温与鱼塘溶解氧相关关系图。图中可以看出日平均溶解氧含量与日平均水温呈现显著(通过a=0.001检验)的负相关,主要表现在春秋两

水中溶解氧的测定实验报告.

溶解氧的测定实验报告 易倩 一、实验目的 1.理解碘量法测定水中溶解氧的原理: 2.学会溶解氧采样瓶的使用方法: 3.掌握碘量法测定水中溶解氧的操作技术要点。 二、实验原理 溶于水中的氧称为溶解氧,当水受到还原性物质污染时,溶解氧即下降,而有藻类繁殖时,溶解氧呈过饱和,因此,水中溶解氧的变化情况在一定程度上反映了水体受污染的程度。 碘量法测定溶解氧的原理:在水中加入硫酸锰及碱性碘化钾溶液,生成氢氧化锰沉淀。此时氢氧化锰性质极不稳定,迅速与水中溶解氧化合生成锰酸锰: MnSO4+2aOH=Mn(OH)2↓(白色)++Na2SO4 2Mn(OH)2+O2=2MnO(OH)2(棕色) H2MnO3十Mn(OH)2=MnMnO3↓(棕色沉淀)+2H2O 加入浓硫酸使棕色沉淀(MnMn02)与溶液中所加入的碘化钾发生反应,而析出碘,溶解氧越多,析出的碘也越多,溶液的颜色也就越深2KI+H2SO4=2HI+K2SO4 MnMnO3+2H2SO4+2HI=2MnSO4+I2+3H2O I2+2Na2S2O3=2NaI+Na2S4O6 用移液管取一定量的反应完毕的水样,以淀粉做指示剂,用标准溶液滴定,计算出水样中溶解氧的含量。 三、仪器 1.250ml—300ml溶解氧瓶 2.50ml酸式滴定管。 3.250ml锥形瓶 4.移液管 5.250ml碘量瓶 6.洗耳球 四、试剂 l、硫酸锰溶液。溶解480g分析纯硫酸锰(MnS04· H20)溶于蒸馏水中,过滤后稀释成1000ml.此溶液加至酸化过的碘化钾溶液中,遇淀粉不得产生蓝色。 2、碱性碘化钾溶液。取500g氢氧化钠溶解于300—400ml蒸馏水中(如氢

水产养殖中常见寄生虫的图文详解

水产养殖中常见寄生虫的图文详解 水产养殖中会遇到各种各样的病害,寄生虫是危害水产动物生长和健康的重大病害之一。那么,水产养殖中到底有哪些寄生虫呢? 一、肉眼直接识别的寄生虫 扁弯口吸虫、锚头鳋、中华鳋、孢子虫(胞囊)、球虫(艾美虫胞囊)、碘泡虫(胞囊)、绦虫、九江头槽绦虫、孢子虫、鱼怪等。 二、需显微镜辅助观察的寄生虫 鳃隐鞭虫、纤毛虫、车轮虫、指环虫、斜管虫、小瓜虫、卵涡鞭虫、复口吸虫、华枝睾吸虫、刺激隐核虫等。 1.鳃隐鞭虫 每年5月~10月份流行。冬春季节,鳃隐鞭虫往往从草鱼鳃丝转移到鲢、鳙鳃耙上寄生,但不能使鲢、鳙发病,因鲢、鳙鱼有天然免疫力成为“保虫寄主”。同时,大鱼对此虫也有抵抗力。 2.斜管虫病

寄生于各种淡水养殖鱼类,主要危害鱼苗、鱼种,往往造成很大的经济损失。观赏鱼亦被寄生。流行季节在每年3-5月,适合斜管虫大量繁殖的水温是12~18℃,水温低至8~11℃时,仍可大量出现。用显微镜确诊后,需用斜管虫或专杀寄生虫类产品进行杀虫,3~5天后复检,杀灭效果不理想时需要复杀。

3.小瓜虫病(白点病)

病鱼体表和鳃瓣上布满白色点状的虫体和胞囊,肉眼可见,故又叫白点病。体表头部、躯干和鳍条处黏液明显增多,与虫体混在一起,似有一层薄膜,小瓜虫病有明显的发病季节,春、秋季南方初冬季均是流行季节。治疗此病,主要有硝酸亚汞、醋酸亚汞、孔雀石绿、福尔马林、硫酸铜、高锰酸钾等。但前三种会造成药残而危害人类健康,国家已明文禁用,后几种疗效逐年减退,甚至无效。(观赏鱼可以利用小瓜虫不耐高温的弱点,提高水温到32℃,再配备药物治疗,通常治愈率可达90%以上。若治疗及时,治愈率可达100%。

水产动物病害习题

简答题 第一章 1. 水产动物病害学的定义是什么? 水产动物病害学:是研究水产养殖动物(鱼、虾、贝等)疾病发生的原因、病理机制、流行规律以及诊断、预防和治疗方法的一门综合性学科。 2. 水产动物病害研究发展具有哪些主要特点? 3. 简述我国水产动物病害防治的发展过程。 4. 水产动物病害防治与其他学科的关系如何? 水产动物病害防治与其他学科的关系 1. 与水产动物本身的生物学知识有关:如各种水产养殖动物的形态学、分类学、生态学和生理学等; 2. 与病原体的生物学知识有关:如寄生虫学和微生物学等; 3. 与养殖水体环境化学知识有关:如水化学和环境与水质监测技术等 4. 与病害监测技术有关:如生物制片技术、PCR 技术和电镜技术等; 5. 与病害防治研究与应用知识有关:如病理学、药物学、药理学和水产动物免疫学等。 第二章 1. 影响海. 病原:又称病原体,是能引起疾病发生的致病微生物和寄生虫的统称。 2. 病原的种类 1)致病微生物:包括病毒、细菌、真菌和单细胞藻类等 2)寄生虫:包括原生动物、吸虫(单殖吸虫和复殖吸虫)、绦虫、线虫、棘头虫、寄生蛭类、寄生甲壳类等。 1、产动物疾病发生的主要因素有哪些? 水温(T水)、盐度、溶解氧、酸碱度、透明度、硫化氢、氨氮、亚硝酸盐、余氯、营养不良、动物本身先天或遗传的缺陷、机械损伤。 2. 宿主、病原体和环境间的相互关系如何? 病原体疾病的发生往往不是某个单一因素影响的结果,而是病原、宿主和环境相互作用的结果。 3.病原体疾病的来源与传播方式有哪些? 4. 病原对宿主有哪些危害作用?影响病原体致病的因素有哪些? 病原对宿主的危害: 1) 机械损伤:寄生虫的吸盘、钩和口器损伤皮肤、鳃等组织 结果:功能伤失;继发炎症感染 2) 夺取营养:某些病原是以宿主体内营养为食:肠道寄生虫 3) 分泌有害物质:如:细菌和病毒分泌毒素、某些寄生虫分泌 蛋白分解酶等 4) 压迫和阻塞:如:绦虫、孢子虫的胞囊等(影响性腺发育) 5) 其他疾病的媒介:如:鱼蛭、桡足类等 5. 试述水产动物疾病的综合预防措施? 彻底清池1) 清淤:(新池浸泡1月)旧池清淤 2) 药物消毒:水泥池:1/10000的KMnO4或含氯消毒剂等。 土池: a. 生石灰清池

水产禁用药物的危害

水产禁用药物的危害与替代 我国水产渔药生产一直落后于人药和兽药的生产,多数产品的质量、药效、安全性、残留性均未能做到严格把关和严格控制。今年水产食品安全再次拉响了警报,使广大消费者谈鱼色变,严重影响了水产业的发展。目前许多养殖户对使用违禁药物危害认识还不到位,导致许多禁用药物禁而不止。现将一些常见禁用药物的相关知识作一简要介绍,以引导养殖者安全用药、健康养殖,减少养殖病害的发生。 1.孔雀石绿:孔雀石绿过去常被用于制陶业、纺织业、皮革业、食品颜色剂和细胞化学染色剂,1933年起其作为驱虫剂、杀虫剂、防腐剂在水产中使用,后曾被广泛用于预防与治疗各类水产动物的水霉病、鳃霉病和小瓜虫病。从上世纪90年代开始,国内外学者陆续发现,该药倒入水中,能溶解泥土中的锌而导致水生生物中毒,并具有高毒素、高残留等副作用。鉴于其危害性,我国于2002年5月将孔雀石绿列为水产养殖禁用药物。 替代物:目前国内渔药生产厂家推出了一些替代品,如霉平(附1),苦参地肤子散(附2), 卫可(杜邦)(附3)还可使用一些含碘的消毒剂;养殖过程中进行综合预防,严防鱼体受伤;改良发病池水质,并用消毒剂消毒水体。对小瓜虫可以用植物产品纤灭(附4),杀虫膏(附5)将养殖水体中的虫体抑制或杀灭,使其不能寄生于鱼体。 2.氯霉素(盐、酯及制剂)氯霉素具有广谱抗菌作用,对多数革兰氏阴性菌、革兰氏阳性菌均有效,在水产上能有效防治烂鳃、赤皮病。但该药对人类的毒性较大,可抑制骨髓造血功能,造成过敏反应,引起再生性障碍贫血(包括白细胞减少、红细胞减少、血小板减少等),此外该药还可引起肠道菌群失调及抑制抗体的形成,抑制肝药酶,影响其它药物在肝脏的代谢,使药效延长,或使毒性增强,目前已被较多国家禁用。 替代物:外用泼洒可用渔经强氯精30%(附6)或二氧化氯10%(附7)、碘制剂(附8)、浓戊二醛溶液(附9)替代,内服可用10%氟苯尼考粉(附10)、10%盐酸多西环素(附11)、诺氟沙星粉(附12)等制剂。或用中西药组装的套餐(附13)等。 3、呋喃唑酮(痢特灵) 该药内服后难吸收,肠道内药物浓度高,血液浓度低且迅速被破坏,难以维持有效的药物浓度,不宜用于全身性感染,只宜用于肠道感染和原虫病,故水产上用于治疗鱼的肠炎病。呋喃唑酮的

养殖池塘水溶解氧作用及增氧方法

养殖池塘水溶解氧作用及增氧方法 养鱼池塘水中的溶解氧高低就是水质好坏的主要指标,水产动物都必须在有氧的条件下才能生存,如果缺氧就要死亡。在池塘养鱼中水体缺氧可使鱼虾浮头,严重时泛池窒息死亡,造成重大经济损失。 养鱼水体溶氧要求标准 经水产科技工作者在长期的养殖实践中总结,一般养殖(育苗)池塘水体的溶解氧应保持在5毫克/升~8 毫克/升,最低也要保持3 毫克/升,低于此值就会发生鱼虾泛塘死亡。养鱼水体溶氧量要求标准(见下表)。 在养殖中,水质轻度缺氧虽不致鱼虾死亡,但也严重影响其生长速度,使饵料系数提高,生产成本增加,养殖效益下降。以草鱼为

例,草鱼在主要生长期内要求水中溶氧量5 毫克/升以上或饱与度大于70%为正常范围,最低为2 毫克/升,0、4 毫克/升为致死点。2毫克/升时草鱼开始浮头。草鱼在溶氧量为2、72 毫克/升的情况下比在5、56 毫克/升的情况下,其生长速度降低98%,饲料系数提高4 倍。其它鱼虾也大致一样。 引起养殖水质中溶氧不足的原因 气温高 氧气在水中溶解度随温度升高而降低,如在一个大气压下,水温由10℃上升到35℃时,空气中的氧在纯水中的溶解度可以由11、27 毫克/升降至6、93 毫克/升,高温会引起溶氧降低。此外,鱼类与其它生物在高温时因摄食运动量加大耗氧多也就是一个重要原因。 养殖密废过大 养鱼户一味追求高产量,亩放养常规品种4000 尾~5000 尾,甚至更多,超出正常放养量的一倍多。这样,鱼类与水中生物活动呼吸作用加大,耗氧量当然也加大。 有机物的分解 大量的有机物(如塘头配套饲养大量的生猪、鸭、鸡、白鸽等禽畜牲口的排泄物)的分解作用,造成细菌活动大,消耗了水中大量的氧气,因此容易造成缺氧。 无机物的氧化作用造成缺氧 养殖池塘水中与池塘淤泥存在的硫化氢、亚硝酸盐等会发生

动物养殖过程中常见疾病的防控

动物养殖过程中常见疾病的防控 摘要:随着畜牧业不断发展,畜牧业养殖规模不断扩大,在养殖过程中受到外界环境、动物自身的影响较大,很容易诱发各种疾病,如果不能对动物疾病进行及时防控,会导致疫病大规模传播,给养殖户造成较大经济损失。该文对动物养殖过程中的疾病病因进行分析,并且提出疾病防控策略,旨在提高养殖水平。 关键词:动物养殖;疾病防控;疾病原因;防控策略 王昊. 动物养殖过程中常见疾病的防控[J]. 农业工程 技术,2017,37(32):59-60. 随着养殖业的不断发展,养殖过程中的安全问题受到人们的重视程度越来越高,动物安全直接影响人类的生命安全,动物疾病防治可以有效地阻断各种疫病的传播。在养殖过程中,必须要对引发动物疾病的各种原因进行分析,找到疾病的发生根源,并且对源头进行防控,提高疾病预防水平。 当前规模化养殖场越来越多,养殖的动物主要是牛、羊、猪以及鸡鸭等禽类。动物养殖过程中的疾病发生原因主要分为外界环境影响以及动物自身体质两个方面:外界环境又包括养殖场环境条件、食物安全问题、免疫条件等;动物自身的问题则主要指的是动物自身的体质,有的动物从出生之后

的体质较弱,容易感染疾病。所以在养殖过程中要对各种可能的原因进行分析,并且及时做好防控,提高动物养殖水平。 一、动物养殖过程中的常见疾病以及病因 1、畜牧养殖中的常见疾病 当前畜牧业发展越来越迅速,养殖过程中动物出现疾病的概率也越来越高,畜牧业养殖过程中的常见疾病有寄生虫病、传染病以及普通病。 普通病的发病率最高,包括内外科病、产科疾病,外科疾病指的是养殖过程中出现的外伤、眼病、蹄病等,内科疾病种类较多,比如肠道疾病、呼吸道疾病等。产科疾病种类也比较多,病因复杂,根据不同的疾病种类,可以分为怀孕期、分娩期以及产后疾病。 寄生虫病也是动物养殖过程中最常见的疾病,是各种寄生虫在动物体表以及体内寄生产生的疾病,寄生虫会吸收动物的营养物质,内寄生虫主要寄生在宿主体内,比如原虫和蠕虫,外寄生虫则主要寄生在节肢动物的体外,而且传播也是通过动物之间的相互接触传播。 传染病指的是通过某种微生物袭击动物引起的疾病,传染性较强。传染病的传染介质主要是空气,也可以通过动物之间的相互接触或者食物交叉传染,是一种很难预防的疾病。 2、动物养殖过程中的疾病病因

养鱼的方法和技巧

金鱼的饲养方法 一、水的技巧 1;先将透明的鱼缸(其它的器皿也行,但注意一定要透明)洗净 2;用苏打水,没有苏打水的话.可用凉开水代替。但记住千万不要用自来水,因为自来水里有消毒的氯气,小金鱼吃不消。 3;水尽量的多一点,以保证氧气含良和鱼的充分自由。买个养鱼专用的小型气泵是最好了。 二、饲养的技巧 1;如果没有条件保持鱼缸水温的话,在这个寒冷的冬日要经常给金鱼足够的日照。 2;在鱼缸里面放一些白米石和一些水草,但记住水草一定要适当。 3;喂食方面可以投点鱼虫或者白面馒头,但每次要少喂、勤喂。 注意,小金鱼特别容易得白点病(一种寄生虫的病),如果发现鱼身上有这类东西或鳞片掉下来有伤口的话,记得到花鸟市场买一种”黄粉”(主要是消炎的),再给鱼换水的时候滴一些甲基蓝的药水(主要是去寄生虫的)。在您的精心呵护下,小金鱼一定会带给您相等快乐的。 三、饲养方法 1、首先要准备好养鱼容器,并提前晾好水,如要铺砂、种草,则需一切就绪后再徐徐将水加入,晾水约需一二天时间。然后将装着金鱼连同“老水”的塑料袋放入水族箱内,使之悬于水体的中上层,约半小时后,估计塑料袋中的水温已接近水族箱中。同时,加入食盐1小匙于水中,以起杀菌作用。待鱼在水族箱中适应1-2天后再投饵。如果还需要增加放养量,则应先将新鱼放在另一容器内单养7-10天,观察鱼确实无病后,再与原来水族箱的鱼放在一起饲养,以免带入病原体。 2、投饵方法 金鱼饲养时期的饵料一般有人工饵料和天然饵料两种。投饵一定要严格定时、定量,以保持水质清新。一般说投饵次数以每日1-2次为宜,早晚各1次,晚上1 次宜早不宜晚。另外,投饵的时间、次数、数量还应根据以下一些原则来决定: (1)天气晴朗,日暖风和,水中溶解氧充足,水温适宜时,可适当多投一些饵料。 (2)水质清瘦,鱼体食欲较强时,可多投一些饵料。 (3)如果鱼体有病,或品种娇嫩珍贵,则应少投一些粗饵料,改投一些精饵料。 要辨别金鱼饥饱和消化吸收情况如何,可根据鱼粪的颜色来分辨。鱼粪呈绿色、棕色或黑色者,表示鱼体摄食适合,吸收良好。如果鱼粪呈白色,则表明鱼食过饱。 、室内养金鱼先要解决光照问题: 因为金鱼的美除了形体外,重要的是色,而保证色的鲜艳,必须保证鱼体接受强光,否则,鱼体色彩将日趋暗淡。而且易染上疾病,所以金鱼喂养处应当光源充足,有紫外线光源就更佳。 如果气温适宜,白天可把鱼缸放置凉台或窗前,保质充分的光照。所以说,掌握适宜金鱼生长的温度和保证其充分的光照,室内养金鱼就有了大的保证。 3、掌握喂食的时间和方法: 保证每天喂食1-2小时内吃完,不能过多。投放时间:春夏宜在早上7点左右,太阳开始晒到鱼缸时投食,深秋和冬季宜在8点左右投食,严寒时可在9-10点投食。记住,不能在傍晚大量投食,即使金鱼觅食明显,也只能在下午3点钟左右少量投食。另外,水泡眼、朝天龙等种鱼,觅食活动性差,尽可能照顾一些,喂些活鱼虫。

水产养殖动物病毒病的防控思路和措施(中)

水产养殖动物病毒病的防控思路和措施(中) 3 防病毒病的诱发因素 有时水产养殖动物携带病毒,但养殖环境稳定,没有强烈应激的情况下,并不发病,也能正常养殖到出塘,也就是说隐性感染可以不发病。但有的池塘鱼虾携带病毒,当水环境剧烈变化或其它强烈应激发生时病毒病就开始暴发,造成鱼虾死亡(图1病毒病的死亡数量与时间曲线示意图), 图1病毒病的死亡数量与时间曲线示意图 这些引起隐性感染病毒的鱼虾等水产养殖动物发病的因素就称为诱发因素。与病原学病因(必须病因)相对应,也有人称其为流行病学病因,就是从流行病学角度分析这些诱发因素能引起养殖动物发病,控制这些诱发因素的发生就能控制疾病的发生。因为病毒病发病后没有有效的药物治疗,有些疾病发生后也

不能马上确定是具体什么病原引起的,这种情况下从控制诱发因素的方法来防控疾病的发生更为重要。 常见的病毒病发生的诱发因素有水变倒藻、刺激性大的药物应激、台风暴雨引起的水质剧烈变化、缺氧、气泡病、过量投喂、大量换水、拉网、施肥不当等等。 3.1 防倒藻水变诱发病毒病 各种原因引起的藻类大量死亡以后水体理化、生物指标发生大幅变化,产氧能力下降,有机质积累,氨氮、亚硝酸盐等有害物质增加,倒藻后几天是疾病的高发期,很多情况病毒病都是倒藻以后暴发的。根据不同类型的养殖水体情况,选择适时改底、补肥、补菌、增氧等稳水措施,保持整个养殖过程的水体稳定,是减少疾病发生的重要工作。 3.2 防药物刺激诱发病毒病 很多情况下病毒病的暴发与外用杀虫药物或刺激性大的消毒剂有关,大剂量使用杀虫剂和消毒剂是诱发病毒病的重要原因之一。湖北草鱼春片鱼种在春天有一个草鱼出血病的发病高峰期,多数发病池塘在发病初期每天只有零星死亡,检查鱼体有少量纤毛虫或烂鳃,这时如果大剂量外泼杀虫剂或消毒剂,马上诱发病毒病暴发,转为以病毒病为主的疾病,有的养殖户不重视药物的刺激性,甚至连续多次杀虫和消毒,直到最后诱发草鱼出血病暴发,出现死亡量快速上升。鲤鱼的锦鲤疱疹病毒病、鲫鱼的疱疹病毒病大量外用杀虫剂和消毒剂都能诱发发病,其它鱼类因

禁用的鱼药大全

1、地虫硫磷(大风雷); 2、六六六; 3、林丹(丙体六六六); 4、毒杀芬(氯化莰烯); 5、滴滴涕(DDT); 6、甘汞; 7、硝酸亚汞; 8、醋酸汞; 9、呋喃丹(克百威、大扶农); 10、杀虫脒(克死螨); 11、双甲脒(二甲苯胺脒); 12、氟氯氰菊酯(氟氰菊酯); 13、五氯酚钠; 14、孔雀石绿(碱性氯); 15、锥虫胂胺; 16、酒石酸锑钾; 17、磺胺噻唑; 18、磺胺脒(磺胺胍); 19、呋喃西林(呋喃新); 20、呋喃唑酮(痢特灵); 21、呋喃那斯; 22、氯霉素; 23、红霉素; 24、杆菌肽锌; 25、泰乐菌素; 26、环丙沙星; 27、阿伏帕星; 28、喹乙醇; 29、速达肥; 30、乙稀雌酚; 31、甲基睾丸酮。 以下列出几种禁药的危害: 林丹、毒杀芬――均为有机氯杀虫剂,后者也用为清塘剂。其最大的特点是自然降解慢,残留期长,有生物富集作用,有致癌性,对人体功能性器官有损害等。 甲基睾丸酮、己烯雌酚――属于激素类药物。在水产动物体内的代谢较慢,极小的残留都可对人类造成危害。甲基睾丸酮对妇女可能会引起类似早孕的反应及乳房胀、不规则出血等;大剂量应用影响肝脏功能;孕妇有女胎男性化和畸胎发生,容易引起新生儿溶血及黄疸。 己烯雌酚可引起恶心、呕吐、食欲不振、头痛反应,使正常人的生理功能发生紊乱,损害肝脏和肾脏;可引起子宫内膜过度增生,导致孕妇胎儿畸形。

孔雀石绿――致癌、致畸、致突变,能溶解足够的锌,引起水生生物中毒。 锥虫砷胺――杀虫剂。由于砷有剧毒,其制剂不仅可在生物体内形成富集,而且还可对水域环境造成污染,因此它具有较强的毒性,国外已被禁用。 五氯酚钠――它易溶于水,经日光照射易分解。常用于杀螺剂。它造成中枢神经系统、肝、肾等器官的损害,对鱼类等水生动物毒性极大。该药对人类也有一定的毒性,对人的皮肤、鼻、眼等粘膜刺激性强,使用不当,可引起中毒。 杀虫脒和双甲脒――农业部、卫生部在发布的农药安全使用规定中,把杀虫脒列为高毒药物,1989年已宣布杀虫脒作为淘汰药物。双甲脒不仅毒性高,其中间代谢产物对人体也有致癌作用。该类药物还可通过食物链的传递,对人体造成潜在的致癌危险。 氯霉素――该药对人类的造血系统毒性较大,抑制骨髓造血功能造成过敏反应,引起再生障碍性贫血,此外该药还可引起肠道菌群失调及抑制抗体的形成。该药已在国外较多国家禁用。 呋喃唑酮――呋喃唑酮残留会对人类造成潜在危害,可引起溶血性贫血、多发性神经炎、眼部损害和急性肝坏死等残病。目前已被欧盟等国家禁用。 甘汞、硝酸亚汞、醋酸汞和吡啶基醋酸汞――汞对人体有较大的毒性,极易产生富集性中毒,出现肾损害。国外已经在水产养殖上禁用这类药物。 对于这些知识,许多养殖户和经销商不甚了解,容易造成违规使用的现象,对人类的身体健康构成很大的威胁。因此,大家必须认清禁用渔药的危害及其相关知识,提高警惕,严格把关,坚决杜绝禁用渔药的使用,确保水产品的质量和安全。为了自己和他人的长期利益,广大养殖户应慎而对之。

实验二_水中溶解氧的测定

水中溶解氧的测定--碘量法 一、实验原理 水中溶解氧的测定,一般用碘量法。在水中加入硫酸锰及碱性碘化钾溶液,生成氢氧化锰沉淀。此时氢氧化锰性质极不稳定,迅速与水中溶解氧化合生成锰酸锰: 2MnSO 4+4NaOH=2Mn(OH) 2 ↓+2Na 2 SO 4 2Mn(OH) 2+O 2 =2H 2 MnO 3 H 2MnO 3 十Mn(OH) 2 =MnMnO 3 ↓+2H 2 O (棕色沉淀) 加入浓硫酸使棕色沉淀(MnMn0 2 )与溶液中所加入的碘化钾发生反应,而析出碘,溶解氧越多,析出的碘也越多,溶液的颜色也就越深。 2KI+H 2SO 4 =2HI+K 2 SO 4 MnMnO 3+2H 2 SO 4 +2HI=2MnSO 4 +I 2 +3H 2 O I 2+2Na 2 S 2 O 3 =2NaI+Na 2 S 4 O 6 用移液管取一定量的反应完毕的水样,以淀粉做指示剂,用标准溶液滴定,计算出水样中溶解氧的含量。 二、实验用品: 1、仪器:溶解氧瓶(250ml)锥形瓶(250ml)酸式滴定管(25ml) 移液管(50m1)吸球 2、药品:硫酸锰溶液碱性碘化钾溶液浓硫酸淀粉溶液(1%) 硫代硫酸钠溶液(0.025mol/L) 三、实验方法 (一)水样的采集与固定 1、用溶解氧瓶取水面下20—50cm的河水、池塘水、湖水或海水,使水样充满250ml的磨口瓶中,用尖嘴塞慢慢盖上,不留气泡。 2、在河岸边取下瓶盖,用移液管吸取硫酸锰溶液1ml插入瓶内液面下,缓慢放出溶液于溶解氧瓶中。 3、取另一只移液管,按上述操作往水样中加入2ml碱性碘化钾溶液,盖紧瓶

塞,将瓶颠倒振摇使之充分摇匀。此时,水样中的氧被固定生成锰酸锰(MnMnO 3 ) 棕色沉淀。将固定了溶解氧的水样带回实验室备用。 (二)酸化 往水样中加入2ml浓硫酸,盖上瓶塞,摇匀,直至沉淀物完全溶解为止(若 没全溶解还可再加少量的浓酸)。此时,溶液中有I 2 产生,将瓶在阴暗处放5 分钟,使I 2 全部析出来。 (三)用标准Na 2S 2 O 3 溶液滴定 1、用50ml移液管从瓶中取水样于锥形瓶中。 2、用标准Na 2SN 2 O 3 溶液滴定至浅黄色。 3、向锥形瓶中加入淀粉溶液2ml(此时确芤合岳渡?。 4、继续用Na 2S 2 O 3 标准溶液滴定至蓝色变成无色为止。 5、记下消耗Na 2S 2 O 3 标准溶液的体积。 6、按上述方法平行测定三次。 (四)计算 溶解氧(mg/L)=C Na2S2O3×V Na2S2O3×32/4×1000/V水 O 2―→2Mn(OH) 2 ―→MnMnO 3 ―→2I 2 ―→4Na 2 S 2 O 3 1mol的O 2和4mol的Na 2 S 2 O 3 相当 用硫代硫酸钠的摩尔数乘氧的摩尔数除以4可得到氧的质量(mg),再乘1000可得每升水样所含氧的毫克数: CNa 2S 2 O 3 ——硫代硫酸钠摩尔浓度(0.0250mol/L) VNa 2S 2 O 3 ——硫代硫酸钠体积(m1) V水——水样的体积(ml) (具体公式同学们也可见教材123页) (五)参考资料 溶解于水中的氧称为溶解氧,以每升水中含氧(O 2 )的毫克数表示。水中溶解氧的含量与大气压力、空气中氧的分压及水的温度有密切的关系。在 1.013×105Pa的大气压力下,空气中含氧气20.9%时,氧在不同温度的淡水中的溶解度也不同。 如果大气压力改变,可按下式计算溶解氧的含量:

水产养殖中的主要安全危害及其来源

水产养殖中的主要安全危害及其来源 一、化学危害 1. 渔用药品和农药 杀虫剂、杀菌剂、杀藻剂、除草剂、消毒剂、防腐剂和抗氧化剂等污染水体后,可在养殖水产品中富集。可以富集的化学物质至少具备3个特性:不溶于水;在食物链的生物体内稳定存在;对生物体的毒性较低。这些特性使化学物质在食物链中不会断裂并形成逐级积累。一些很难代谢分解并直接排出生物体的化学物质,其富集作用的危害是不能低估的[1]。 2. 抗菌药 水产养殖业中越来越多地使用兽用或渔用抗菌药,它们的残留对人体健康的影响已受到人们的关注。作为治疗剂抗菌药(包括抗菌素)在水产养殖业中使用会对水环境产生潜在的影响,同时也会对人类健康产生潜在危害。 3. 激素 我国是大规模使用催产剂对鱼类进行人工繁殖的国家。近些年来,大量的团头鲂、异育银鲫、彭泽鲫、鲤鱼、鳜鱼、黄颡鱼在催产以后直接作食用鱼在市场上出售。也有用避孕药喂养黄鳝的报道。为了获得全雄或全雌鱼,用激素进行性转变,常用的有己烯雌酚、甲基睾酮、去甲睾酮等。食品中激素类药物残留会使正常人的生理功能发生紊乱,使儿童患肥胖症或性早熟。水产品中激素残留的潜在危害需要进一步研究。 4. 重金属与有害元素 水是一种高效溶剂,源于自然界和人类活动的大量化学物质都会溶入水中,其中重金属对水产养殖动物的毒性一般以汞最大,银、铜、镉、铅、锌次之。从食品安全考虑,重金属对人类健康危害是很大的。重金属污染以镉(Cd)最为严重,其次是汞(Hg)、铅(Pb)和非金属砷(As)。在水产养殖产品中主要有:镉、汞、铅、砷和酚类物质的残留。 5. 环境激素污染物 环境激素污染物是特指具有干扰人类和其他动物内分泌、免疫和神经系统的有毒污染物。2001年5月22日,在瑞典斯德哥尔摩,中国及其他90个国家的环境部长签署了与难降解有机物相关的控制公约,规定禁止或限制使用12种有机物:艾氏剂、氯丹、狄氏剂、异狄氏剂、七氯、毒杀酚、灭蚊灵、滴滴涕、六氯苯、多氯联苯、多氯二苯并对二噁英和多氯二苯并呋喃。前8种属农药类;后4种为工业副产物和燃烧产物。这12种物质在环境中不易降解,不仅破坏生态环境,而且干扰人类和其他动物的内分泌系统,影响生育能力,均属于环境激素类污染物。 二、生物危害 1. 寄生虫类 寄生虫类的生物危害主要包括吸虫、绦虫、线虫等,它一般以螺类、鱼类或甲壳类作为中间寄主,并以人和一些哺乳动物是它的最终寄主,并引起人类疾病。 2. 细菌 病原菌对养殖产品的污染程度取决于环境以及养殖水体中细菌的种类,引起水产品污染的细菌主要有2大类:本地区微生物区系;由环境污染所带来的细菌。主要种类有嗜水气单胞菌、肉毒杆菌、副溶血弧菌、霍乱弧菌、沙门氏菌、贺氏菌、大肠杆菌等。 3. 病毒 病毒是一类体积微小、能通过滤菌器,只能在活细胞内生长增殖的非细胞形态的微生物。病毒对水产动物造成的危害很大,目前已确定的病毒性疾病至少在23种以上,如草鱼出血病、对虾杆状病毒病、三角帆蚌瘟病等。病毒只对特定动物的特定细胞产生感染作用。 因此,食品安全只需考虑对人类有致病作用的病毒。很少量的病毒就可致人生病。病毒

养殖水质检测常用的方法有哪些

养殖水质检测常用的方法有哪些? 养殖水质检测常用的方法有哪些?众所周知,养殖生产成功的关键在于水,只有管好水,养殖的成功才有保障。保持良好的水质环境,水质检测是至关重要的。水质检测的方法有很多,从传统的经验法到化学法再到目前正在推广的仪器法,经历了漫长的三个阶段。 一、传统经验法 是指养殖人员凭借多年的工作经验,人为地判断水质的各项指标。如鱼类摄食减少,则可能是pH值偏高或偏低,也有可能是氨氮超标;鱼类集中于水面,可能是水中缺氧等。这些人为的判断只是一个粗略的结果,误差是相当大的,而且随着养殖行业的发展,各企业的养殖规模越来越大,养殖的品种也越来越多,养殖的质量要求在不断提高,那么养殖水质的变化就是多样的,造成水质改变的原因更是多样的,例如投喂饲料、投放药物、自然环境、养殖品种数量的变化等因素,都会造成水质改变,单纯依靠人为经验的判断,已根本无法满足需要,有时甚至会带来巨大的损失。因此,这种依靠经验判断水质的土办法虽然运用了很长时间,但随着科学的进步和人们观念的转变,养殖专家的经验依然是各企业的宝贵财富,但作为检测水质的方法,已经逐渐被淘汰了。 二、化学法 在很多人依靠经验判断水质好坏的时候,采用化学方法检测水质还不被广泛利用,这一方法的最大优势就是检测数据准确可靠,但为什么没有推广应用呢?有几个方面的原因:第一,化学方法的检测过程比较复杂,需要较长的时间,要求检测人员具备相当的专业技能,才能准确的检测,如化学滴定法。有的化学检测试纸,如pH试纸,一般只能进行粗略的测量,如观察试纸颜色判断pH值在7~8之间,而无法得到准确的数字;另一方面,试纸容易受到外界环境(如温度、湿度、光照等)的影响,会导致试纸失效,粗略的测量也无法保证了。第二,化学法检测都需要取样测量,而水样采集到实验室时,各项指标都可能已发生变化,因而最终的检测结

水产动物疾病防治学

《水产动物疾病防治学》 一、课程基本信息 课程编号: 课程中文名称:水产动物疾病防治学 课程英文名称:Prevention Diseases of Marine Animals 课程类型:专业必修课 总学时:63 理论课:45 实验课学时:18 学分:2.5+0.5 适用专业:水产养殖 先修课程:微生物学、水环境化学、生物学、鱼类增养殖学、虾蟹养殖学 开课单位:生命科学学院 二、课程性质和任务 本课程是水产养殖专业的专业主要课程,属指定选修课。它是研究海产动物(包括鱼类、虾蟹类和贝类等)疾病发生的原因、病理机制、流行规律以及诊断、预防和治疗的一门综合性学科。当前,病害已成为制约水产养殖可持续健康发展的最主要因素,本课程主要就是利用水产养殖动物疾病发生和发展的一些基本原理,结合传统和现代的一些诊断与防治方法,解决水产养殖动物病害对水产养殖业的制约影响,为经济建设服务。本课程的重要任务: ?系统学习水产动物疾病发生的病原与病因; ?全面掌握水产动物病害的诊断、预防与治疗的常规方法; ?掌握水产动物免疫的基本机制及其免疫学原理在疾病防治中的应用; ?学习水产药物的基本种类及各种药物的主要应用范围; ?系统学习水产养殖动物的主要疾病及其防治措施; ?在教学过程中加强治学的能力与作风培养,提高学生的综合素质。 三、课程教学目标 1.学会一般水产养殖动物疾病的诊断,对疑难病症知道如何进行深入的检测的方法; 2.学会水产养殖动物疾病的防治; 3.结合传统和现代的一些诊断与防治方法,解决水产养殖动物病害对水产养殖业的制约影响,为经济建设服务。

四、理论教学环节和基本要求 本课程的基本教学内容包括:概论、疾病的发生与控制、免疫学原理与应用、病理学基础、药物学基础、水产病原检测技术、海水养殖鱼类疾病、海水养殖虾类疾病和海水养殖贝类疾病等共九部分(书本其余部分自学),各部分的具体内容与要求如下: 第一章概论 1.海水养殖动物病害学的定义; 了解海水养殖动物病害学的基本概念及本课程的学习目的与研究范围。 2.海产养殖动物病害学的发展简史; a.了解我国海产养殖动物病害研究概况 b.了解国外海产养殖动物病害研究发展概况 3.本学科与其它学科的关系。 明确本课程与水产养殖专业其他课程之间的相互关系,为本课程的学习奠定基础。 第二章疾病的发生与控制 1.疾病发生的原因; a.掌握海水养殖动物疾病发生的主要原因; b.掌握疾病发生与病原、宿主和环境的之间的相互关系关系。 2.疾病的控制。 a.掌握水产养殖动物疾病诊断的常见方法; b.掌握水产养殖动物疾病的综合预防措施; c.掌握水产养殖动物疾病的常用治疗方法,明确水产动物病害防治中“ 防重于治” 的基本原理与应用。 第三章免疫学原理与应用 1.海水鱼类及其它动物免疫的基本概念; a.掌握水产动物免疫的基本概念; b.掌握水产动物免疫的主要类型; c.理解水产动物免疫的主要特点; d.掌握水产动物免疫在病害防治中的应用前景与意义。 2.海水养殖动物的非特异性免疫; a.了解海水养殖动物的非特异性免疫因子的主要种类;

各种温度下饱和溶解氧值

各种温度下饱和溶解氧值 温度(℃)溶解氧(mg/L)温度(℃)溶解氧(mg/L) 0 14.6418 9.46 1 14.2219 9.27 2 13.8220 9.08 3 13.4421 8.90 4 13.0922 8.73 5 12.7423 8.57 6 12.4224 8.41 7 12.1125 8.25 8 11.8126 8.11 9 11.5327 7.96 10 11.2628 7.82 11 11.0129 7.69 12 10.7730 7.56 13 10.5331 7.43 14 10.3032 7.30 15 10.0833 7.18

16 9.8634 7.07 17 9.6635 6.95 1溶解氧指溶解在水中的氧含量。又称氧饱和值(dissolved oxygen saturation concentrtaion),指水体与大气中氧交换处于平衡时,水体中溶解氧的浓度。在通常的大气压力条件下,饱和溶解氧OS只随水温T而变化,饱和溶解氧还随大气压力而变化,大气压力越低,OS值则越小。饱和溶解氧也随水中的盐度而变化,盐度增高,OS值减小。 2其含量与空气中的氧分压、水温有关。氧分压变化甚微,故水温是主要的影响因素,水温愈低,水中溶解氧愈高。清洁地面水的溶解氧含量接近饱和状态。水中有大量藻类植物生长时,其光合作用释出的氧,可使水中溶解氧呈过饱和状态。 3当存在有机物污染水体或藻类大量死亡时,则溶解氧不断消耗而下降,甚至使水体处于厌氧状态,此时水中厌氧微生物繁殖,有机物发生腐败分解,使水发黑发臭。因此,水中溶解氧可作为有机物污染及其自净程度的间接指标。

相关文档
最新文档