三相全控桥式整流电路实验报告doc

三相全控桥式整流电路实验报告doc
三相全控桥式整流电路实验报告doc

三相全控桥式整流电路实验报告

篇一:实验一、三相桥式全控整流电路实验

实验一、三相桥式全控整流电路实验

一、实验目的

1. 熟悉三相桥式全控整流电路的接线、器件和保护情况。

2. 明确对触发脉冲的要求。

3. 掌握电力电子电路调试的方法。

4. 观察在电阻负载、电阻电感负载情况下输出电压和电流的波形。

二、实验类型

本实验为验证型实验,通过对整流电路的输出波形分析,验证整流电路的工作原理和输入与输出电压之间的数量关系。

三、实验仪器

1.MCL-III教学实验台主控制屏。 2.MCL—33组件及MCL35组件。 3.二踪示波器 4.万用表 5.电阻(灯箱)

四、实验原理

实验线路图见后面。主电路为三相全控整流电路,三相桥式整流的工作原理可参见“电力电子技术”的有关教材。

五、实验内容和要求

1. 三相桥式全控整流电路

2. 观察整流状态下,模拟电路故障现象时的波形。实验方法:

1.按图接好主回路。

2.接好触发脉冲的控制回路。将给定器输出Ug接至MCL-33面板的Uct端,将MCL-33 面板上的Ublf接地。

打开MCL-32的钥匙开关,检查晶闸管的脉冲是否正常。

(1)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60的幅度相同的双脉冲。

(2)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1”脉冲超前“2”脉冲60,则相序正确

,否则,应调整输入电源。 3.三相桥式全控整流电路(1)电路带电阻负载(灯箱)的情况下:调节Uct(Ug),使?在30o~90o范围内,用示波器观察记录?=30O、60O、90O 时,整流电压ud=f(t),晶闸管两端电压uVT=f(t)的波形,并用万用表记录相应的Ud和交流输入电压U2数值。

o

u??= 30°u

u

ia

?

tOuab

=30O

三相桥式全控整流电路

1主电路的原理 1.1主电路 其原理图如图1所示。 图1 三相桥式全控整理电路原理图 习惯将其中阴极连接在一起的3个晶闸管(VT1、VT3、VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)称为共阳极组。此外,习惯上希望晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。从后面的分析可知,按此编号,晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。 1.2主电路原理说明 整流电路的负载为带反电动势的阻感负载。假设将电路中的晶闸管换作二极管,这种情况也就相当于晶闸管触发角α=0o时的情况。此时,对于共阴极组的3个晶闸管,阳极所接交流电压值最高的一个导通。而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。此时电路工作波形如图2所示。

图2 反电动势α=0o时波形 α=0o时,各晶闸管均在自然换相点处换相。由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。在分析ud的波形时,既可从相电压波形分析,也可以从线电压波形分析。从相电压波形看,以变压器二次侧的中点n为参考点,共阴极组晶闸管导通时,整流输出电压ud1为相电压在正半周的包络线;共阳极组导通时,整流输出电压ud2为相电压在负半周的包络线,总的整流输出电压ud = ud1-ud2是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。

实验一,三相桥式全控整流电路实验

实验一、三相桥式全控整流电路实验 一、实验目的 1.熟悉三相桥式全控整流电路的接线、器件和保护情况。 2.明确对触发脉冲的要求。 3.掌握电力电子电路调试的方法。 4.观察在电阻负载、电阻电感负载情况下输出电压和电流的波形。 二、实验类型 本实验为验证型实验,通过对整流电路的输出波形分析,验证整流电路的工作原理和输入与输出电压之间的数量关系。 三、实验仪器 1.MCL-III教学实验台主控制屏。 2.MCL—33组件及MCL35组件。 3.二踪示波器 4.万用表 5.电阻(灯箱) 四、实验原理 实验线路图见后面。主电路为三相全控整流电路,三相桥式整流的工作原理可参见“电力电子技术”的有关教材。 五、实验内容和要求 1.三相桥式全控整流电路 2.观察整流状态下,模拟电路故障现象时的波形。 实验方法: 1.按图接好主回路。

2.接好触发脉冲的控制回路。将给定器输出Ug接至MCL-33面板的Uct端,将MCL-33 面板上的Ublf接地。 打开MCL-32的钥匙开关,检查晶闸管的脉冲是否正常。 (1)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o的幅度相同的双脉冲。 (2)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1”脉冲超前“2”脉冲600,则相序正确,否则,应调整输入电源。 3.三相桥式全控整流电路 (1)电路带电阻负载(灯箱)的情况下:调节Uct(Ug),使α在30o~90o范围内,用示波器观察记录α=30O、60O、90O时,整流电压u d=f(t),晶闸管两端电压u VT=f(t)的波形,并用万用表记录相应的Ud和交流输入电压U2数值。 i α=0Oα=30O

三相交流电路实验报告1

中国石油大学(华东)现代远程教育 实验报告 课程名称:电工电子学 实验名称:三相交流电路 实验形式:在线模拟 +现场实践 提交形式:在线提交实验报告 学生姓名:赵军学号: 年级专业层次:14 春石油开采技术高起专 学习中心:江苏油田学习中心 提交时间:2014 年 6 月8 日

一、实验目的 1 . 练习三相交流电路中负载的星形接法。 2 . 了解三相四线制中线的作用。 二、实验原理 1 . 对称三相电路中线、相电压和线、相电流的关系,三相电路中,负载的连接分为星形连接和三角形连接两种。一般认为电源提供的是对称三相电压。 ( 1 )星形连接的负载如图1 所示: 图1 星形连接的三相电路 A、B、C表示电源端,N为电源的中性点(简称中点),N'为负载的中性点。无论是三线制或四线制,流过每一相负载的相电流恒等于与之相连的端线中的线电流: (下标I 表示线的变量,下标p 表示相的变量) 在四线制情况下,中线电流等于三个线电流的相量之和,即 端线之间的电位差(即线电压)和每一相负载的相电压之间有下列关系:

当三相电路对称时,线、相电压和线、相电流都对称,中线电流等于零,而线、相电压满足: ( 2 )三角形连接的负载如图2 所示: 其特点是相电压等于线电压: 线电流和相电流之间的关系如下: 当三相电路对称时,线、相电压和线、相电流都对称,此时线、相电流满足: 2 . 不对称三相电路 在三相三线制星形连接的电路中,若负载不对称,电源中点和负载中点的电位不再相等,称为中点位移,此时负载端各相电压将不对称,电流和线电压也不对称。 在三相四线制星形连接的电路中,如果中线的阻抗足够小,那么负载端各相电压基本对称,线电压也基本对称,从而可看出中线在负载不对称时起到了很重要的作用。但由于负载不对称,因此电流是不对称的三相电流,这时的中线电流将不再为零。 在三角形连接的电路中,如果负载不对称,负载的线、相电压仍然对称,但线、相电流不再 对称。 如果三相电路其中一相或两相开路也属于不对称情况。

单相半控桥整流电路实验报告

目录 一、实验基本内容----------------------------------2 1.实验项目名称-----------------------------------2 2.实验已知条件-----------------------------------2 3.实验完成目标-----------------------------------3 二、实验条件描述-----------------------------------3 1.主要设备仪器-----------------------------------3 2.小组人员分工-----------------------------------3 三、实验过程描述-----------------------------------4 1.实现同步---------------------------------------4 2.半控桥纯阻性负载试验---------------------------4 3.半控桥阻-感性负载(串联L=200mH)实验-----------6 四、实验仿真---------------------------------------9 五、实验数据处理及讨论-----------------------------18 六、实验思考---------------------------------------22

一、实验基本内容 1.实验项目名称:单相半控桥整流电路实验 2.实验已知条件:单相半控桥整流电路如图所示,图中晶闸管VT1,二极管VD4组成一对桥臂,VT3,VD2组成另一对桥臂,变压器u2加在桥臂的中间。 (1)阻性负载电源电压u2在(0,α),VD2,VT3承受反向阳极电压处于截止状态,由于VT1未加触发脉冲而使VT1,VD4处于正向阻断状态,此时ud=0 , uVT1=u2, uVD2= -u2, uVT3=0, uVD4=0;wt=α时刻,触发VT1,VT1,VD4立即导通,VD2,VT3承受反向电压关断,此时ud= u2 , uVT1= 0, uVD2= -u2, uVT3=-u2, uVD4=0;u2在负半周(π,π+α)期间,VT3,VD2虽然承受正向阳极电压但由于门极没有触发信号而正向阻断,此时ud=0,uVT1=0,uVD4=u2,uVT3= -u2,uVD2=0; wt=π+α时刻触发VT3,则VT3,VD2,此时ud= u2,uVT1=-u2,uVD4=u2, uVT3=0, uVD2=0。 (2)感性负载负载电感足够大从而使负载电流连续且为一水平线。电源电压u2的正半周,wt=α时刻触发晶闸管VT1,则VT1,VD4立即导通,电流从电源出来经VT1,负载,VD4流回电源,此时ud=u2。当wt=π时,电源电压u2经零变负,由于电感的存在,VT1将继续导通,此时a点电位较b点电位低,二极管自然换相,从VD4换至VD2,这样电流不再经过变压器绕组,而由VT1,VD2续流,忽略器件导通压降,ud=0,整流电路不会输出负电压。电源电压u2的负半周,wt=π+α时刻触发VT3,则VT3,VD2导通,使VT1承受反向电压关断,电源通过VT3和VD2又向负载供电,ud= -u2。U2从负半周过零变正时,电流从VD2换流至VD4,电感通过VT3,VD4续流,ud又为零。以后,VT1再次触发导通,重复上诉过程。 3. 实验完成目标: (1)实现控制触发脉冲与晶闸管同步。

三相桥式全控整流电路

三相桥式全控整流电路

————————————————————————————————作者:————————————————————————————————日期:

1主电路的原理 1.1主电路 其原理图如图1所示。 图1 三相桥式全控整理电路原理图 习惯将其中阴极连接在一起的3个晶闸管(VT1、VT3、VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)称为共阳极组。此外,习惯上希望晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。从后面的分析可知,按此编号,晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。 1.2主电路原理说明 整流电路的负载为带反电动势的阻感负载。假设将电路中的晶闸管换作二极管,这种情况也就相当于晶闸管触发角α=0o时的情况。此时,对于共阴极组的3个晶闸管,阳极所接交流电压值最高的一个导通。而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。此时电路工作波形如图2所示。

图2 反电动势α=0o时波形 α=0o时,各晶闸管均在自然换相点处换相。由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。在分析ud的波形时,既可从相电压波形分析,也可以从线电压波形分析。从相电压波形看,以变压器二次侧的中点n为参考点,共阴极组晶闸管导通时,整流输出电压ud1为相电压在正半周的包络线;共阳极组导通时,整流输出电压ud2为相电压在负半周的包络线,总的整流输出电压ud = ud1-ud2是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。 直接从线电压波形看,由于共阴极组中处于通态的晶闸管对应的最大(正得最多)的相电压,而共阳极组中处于通态的晶闸管对应的是最小(负得最多)的

相桥式全控整流电路实验报告

实验三三相桥式全控整流电路实验 一.实验目的 1.熟悉MCL-18, MCL-33组件。 2.熟悉三相桥式全控整流电路的接线及工作原理。 二.实验内容 1.MCL-18的调试 2.三相桥式全控整流电路 3.观察整流状态下,模拟电路故障现象时的波形。 三.实验线路及原理 实验线路如图3-12所示。主电路由三相全控整流电路组成。触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。三相桥式整流电路的工作原理可参见“电力电子技术”的有关教材。 四.实验设备及仪器 1.MCL—Ⅱ型电机控制教学实验台主控制屏。 2.MCL-18组件 3.MCL-33组件 4.MEL-03可调电阻器(900 )

6.二踪示波器 7.万用表 五.实验方法 1.按图3-12接线,未上主电源之前,检查晶闸管的脉冲是否正常。 (1)打开MCL-18电源开关,给定电压有电压显示。 (2)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o的幅度相同的双脉冲。 (3)用示波器观察每只晶闸管的控制极、阴极,应有幅度为1V—2V的脉冲。注:将面板上的Ublf接地(当三相桥式全控整流电路使用I组桥晶闸管VT1~VT6时),将I组桥式触发脉冲的六个琴键开关均拨到“接通”,琴键开关不按下为导通。 (4)将给定输出Ug接至MCL-33面板的Uct端,在Uct=0时,调节偏移电压Ub,使?=90o。(注:把示波器探头接到三相桥式整流输出端即U d 波形, 探头地线接到晶闸管阳极。) 2.三相桥式全控整流电路 (1)电阻性负载 按图接线,将Rd调至最大450? (900?并联)。 三相调压器逆时针调到底,合上主电源,调节主控制屏输出电压U uv、U vw、U wu,从0V调至70V(指相电压)。调节Uct,使?在30o~90o范围内变化,用示波器观察记录?=30O、60O、90O时,整流电压u d=f(t),晶闸管两端电压u VT=f(t)的波形,并记录相应的Ud和交流输入电压U2 数值。 30°90° αUd (V) U2 (V) 30°143 70 60°90 70 90°23 70 3.电感性负载 按图线路,将电感线圈(700mH)串入负载,Rd调至最大(450?)。 调节Uct,使?在30o~90o范围内变化,用示波器观察记录?=30O、60O、90O时,整流电压u d=f(t),晶闸管两端电压u VT=f(t)的波形,并记录相应的Ud和交流输入电压U2 数值。 30°90° αUd (V) U2 (V)

三相桥式全控整流电路的性能研究.

三相桥式全控整流电路的性能研究 一、原理及方案 三相桥式全控整流电路系统通过变压器与电网连接,经过变压器的耦合,晶闸管主电路得到一个合适的输入电压,使晶闸管在较大的功率因数下运行。变流主电路和电网之间用变压器隔离,还可以抑制由变流器进入电网的谐波成分。保护电路采用RC过电压抑制电路进行过电压保护,利用快速熔断器进行过电流保护。采用锯齿波同步KJ004集成触发电路,利用一个同步变压器对触发电路定相,保证触发电路和主电路频率一致,触发晶闸管,使三相全控桥将交流整流成直流,带动直流电动机运转。 结构框图如图1-1所示。整个设计主要分为主电路、触发电路、保护电路三个部分。框图中没有表明保护电路。当接通电源时,三相桥式全控整流电路主电路通电,同时通过同步电路连接的集成触发电路也通电工作,形成触发脉冲,使主电路中晶闸管触发导通工作,经过整流后的直流电通给直流电动机,使之工作。 图1-1 三相桥式全控整流电路结构图

二、主电路的设计及器件选择 实验参数设定负载为220V、305A的直流电机,采用三相整流电路,交流测由三相电源供电,设计要求选用三相桥式全控整流电路供电,主电路采用三相全控桥。 1.三相全控桥的工作原理 如图2-1所示,为三相桥式全控带阻感负载,根据要求要考虑电动机的电枢电感与电枢电阻,故为阻感负载。习惯将其中阴极连接在一起的3个晶闸管称为共阴极组;阳极连接在一起的3个晶闸管称为共阳极组。共阴极组中与a、b、c 三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。晶闸管的导通顺序为 VT1-VT2-VT3-VT4-VT5-VT6。变压器为Y ?-型接法。变压器二次侧接成星形得到零线,而一次侧接成三角形避免3次谐波流入电网 KP1KP3KP5 图1 三相桥式全控整流电路 图2-1 三相桥式全控整流电路带(阻感)负载原理图 2. 三相全控桥的工作特点 ⑴2个晶闸管同时通形成供电回路,其中共阴极组和共阳极组各1个,且不能为同1相器件。 ⑵对触发脉冲的要求: 按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差。 共阴极组VT1、VT3、VT5的脉冲依次差。 共阳极组VT4、VT6、VT2也依次差。 同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180。

(完整版)整流滤波电路实验报告

整流滤波电路实验报告 姓名:XXX 学号:5702112116 座号:11 时间:第六周星期4 一、实验目的 1、研究半波整流电路、全波桥式整流电路。 2、电容滤波电路,观察滤波器在半波和全波整流电路中的滤波效果。 3、整流滤波电路输出脉动电压的峰值。 4、初步掌握示波器显示与测量的技能。 二、实验仪器 示波器、6v交流电源、面包板、电容(10μF*1,470μF*1)、变阻箱、二极管*4、导线若干。 三、实验原理 1、利用二极管的单向导电作用,可将交流电变为直流电。常用的二极管整 流电路有单相半波整流电路和桥式整流电路等。 2、在桥式整流电路输出端与负载电阻RL并联一个较大电容C,构成电容滤 波电路。整流电路接入滤波电容后,不仅使输出电压变得平滑、纹波显著成小,同时输出电压的平均值也增大了。 四、实验步骤 1、连接好示波器,将信号输入线与6V交流电源连接,校准图形基准线。 2、如图,在面包板上连接好半波整流电路,将信号连接线与电阻并联。

3、如图,在面包板上连接好全波整流电路,将信号输入线与电阻连接。

4、在全波整流电路中将电阻换成470μF的电容,将信号接入线与电容并联。 5、如图,选择470μF的电容,连接好整流滤波电路,将信号接入线与电阻并联。 改变电阻大小(200Ω、100Ω、50Ω、25Ω)

200Ω100Ω50Ω

25Ω 6、更换10μF的电容,改变电阻(200Ω、100Ω、50Ω、25Ω)200Ω 100Ω

50Ω 25Ω 五、数据处理 1、当C 不变时,输出电压与电阻的关系。 输出电压与输入交流电压、纹波电压的关系如下: avg)r m V V V (输+= 又有i avg R C V ??=输89.2V )(r 所以当C 一定时,R 越大 就越小 )(r V avg 越大 输V

三相全控桥式整流电路

课程设计任务书 学生姓名:专业班级:自动化0602班 指导教师:工作单位:自动化学院 题目:三相桥式全控整流电路的设计(带反电动势负载) 初始条件: 1.反电动势负载,E=60V,电阻R=10Ω,电感L无穷大使负载电流连续; 2.U2=220V,晶闸管触发角α=30°; 3.其他器件如晶闸管自己选取。 要求完成的主要任务:(包括课程设计工作得及其技术要求,以及说明书撰写待具体要求) 1.主电路的设计及原理说明; 2.触发电路设计,每个开关器件触发次序及相位分析; 3.保护电路的设计,过流保护,过电压保护原理分析; 4.各参数的计算(输出平均电压,输出平均电流,输出有功功率计算,输出波形分析); 5.应用举例; 6.心得小结。 时间安排: 7月6日查阅资料 7月7日方案设计 7月8日- 9日馔写电力电子课程设计报告 7月10日提交报告,答辩 指导教师签名:年月日 系主任(或责任教师)签名:年月日

摘要 整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。 关键词:整流,变压,触发,过电压,保护电路。

三相桥式整流电路实验报告

实验报告 实验名称三相桥式全控整流电路实验课程名称电力电子技术 院系部:专业班级:学生姓名:学号:同组人:实验台号:指导教师:成绩:实验日期: 华北电力大学

实验一、三相桥式全控整流电路实验 一、实验目的 1.熟悉三相桥式全控整流电路的接线、器件和保护情况。 2.明确对触发脉冲的要求。 3.掌握电力电子电路调试的方法。 4.观察在电阻负载、电阻电感负载情况下输出电压和电流的波形。 二、实验类型 本实验为验证型实验,通过对整流电路的输出波形分析,验证整流电路的工作原理和输入与输出电压之间的数量关系。 三、实验仪器 1.MCL-III教学实验台主控制屏。 2.MCL—33组件及MCL35组件。 3.二踪示波器 4.万用表 5.电阻(灯箱) 四、实验原理 实验线路图见后面。主电路为三相全控整流电路,三相桥式整流的工作原理可参见“电力电子技术”的有关教材。 五、实验内容和要求 1.按图接好主回路。 2.接好触发脉冲的控制回路。将给定器输出Ug接至MCL-33面板的Uct端,将MCL-33 面板上的Ublf接地。 打开MCL-32的钥匙开关,检查晶闸管的脉冲是否正常。 (1)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o的幅度相同的双脉冲。 (2)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1”脉冲超前“2”脉冲600,则相序正确,否则,应调整输入电源。 (3)用万用表记录α=0O、30O、60O、90O、120O时对应的Uct(Ug)的值。在做下 3.三相桥式全控整流电路 (1)电路带电阻负载(灯箱)的情况下:调节Uct(Ug),使α在30o~90o范围内,用示波器观察记录α=30O、60O、90O时,整流电压u d=f(t),晶闸管两端电压u VT=f(t)的波形,并用万用表记录相应的Ud和交流输入电压U2数值。

三相交流电路实验报告-百度文库(精)

三相交流电路实验报告-百度文库(精)

中国石油大学(华东)现代远程教育 实验报告 课程名称:电工电子学 实验名称:三相交流电路 实验形式:在线模拟+现场实践 提交形式:在线提交实验报告 学生姓名:毕义合学号:12952112061 年级专业层次:网络12春高起专 学习中心:建设工程分院函授站 提交时间: 2013 年 6 月 23 日

一、实验目的 1. 练习三相交流电路中负载的星形接法。 2. 了解三相四线制中线的作用。 二、实验原理 1. 对称三相电路中线、相电压和线、相电流的关系,三相电路中,负载的连接分为星形连接和三角形连接两种。一般认为电源提供的是对称三相电压。 (1)星形连接的负载如图1所示: 图1 星形连接的三相电路

A、B、C表示电源端,N为电源的中性点(简称中点),N' 为负载的中性点。无论是三线制或四线制,流过每一相负载的相电流恒等于与之相连的端线中的线电流: (下标I表示线的变量,下标p表示相的变量) 在四线制情况下,中线电流等于三个线电流 的相量之和,即 端线之间的电位差(即线电压)和每一相负载的相电压之间有下列关系: 当三相电路对称时,线、相电压和线、相电流都对称,中线电流等于零,而线、相电压满足: (2)三角形连接的负载如图2所示:

其特点是相电压等于线电压: 线电流和相电流之间的关系如下: 当三相电路对称时,线、相电压和线、相电 流都对称,此时线、相电流满足: 2.不对称三相电路 在三相三线制星形连接的电路中,若负载不对称,电源中点和负载中点的电位不再相等,称

为中点位移,此时负载端各相电压将不对称,电流和线电压也不对称。 在三相四线制星形连接的电路中,如果中线的阻抗足够小,那么负载端各相电压基本对称,线电压也基本对称,从而可看出中线在负载不对称时起到了很重要的作用。但由于负载不对称,因此电流是不对称的三相电流,这时的中线电流将不再为零。 在三角形连接的电路中,如果负载不对称,负载的线、相电压仍然对称,但线、相电流不再对称。 如果三相电路其中一相或两相开路也属于不对称情况。 3.三相负载接线原则 连接后加在每相负载上的电压应等于其额定

三相桥式全控整流电路分析

一、三相桥式全控整流电路分析 三相桥式全控整流电路原理图如图所示。三相桥式全控整流电路是由三相半波可控整流电路演变而来的,它由三相半波共阴极接法(VT1,VT3,VT5)和三相半波共阳极接法(VT1,VT6,VT2)的串联组合。 其工作特点是任何时刻都有不同组别的两只晶闸管同时导通,构成电流通路,因此为保证电路启动或电流断续后能正常导通,必须对不同组别应到导通的一对晶闸管同时加触发脉冲,所以触发脉冲的宽度应大于π/3的宽脉冲。宽脉冲触发要求触发功率大,易使脉冲变压器饱和,所以可以采用脉冲列代替双窄脉冲;每隔π/3换相一次,换相过程在共阴极组和共阳极组轮流进行,但只在同一组别中换相。接线图中晶闸管的编号方法使每个周期内6个管子的组合导通顺序是VT1-VT2-VT3-VT4-VT5-VT6;共阴极组T1,T3,T5的脉冲依次相差2π/3;同一相的上下两个桥臂,即VT1和VT4,VT3和VT6,VT5和VT2的脉冲相差π,给分析带来了方便;当α=O时,输出电压Ud一周期内的波形是6个线电压的包络线。所以输出脉动直流电压频率是电源频率的6倍,比三相半波电路高l倍,脉动减小,而且每次脉动的波形都一样,故该电路又可称为6脉动整流电路。

在第(1)段期间,a相电压最高,而共阴极组的晶闸管VT1被触发导通,b相电位最低,所以供阳极组的晶闸管KP6被触发导通。这时电流由a相经VT1流向负载,再经VT6流入b 相。变压器a、b两相工作,共阴极组的a相电流为正,共阳极组的b相电流为负。加在负载上的整流电压为ud=ua-ub=uab 经过60°后进入第(2)段时期。这时a相电位仍然最高,晶闸管VTl继续导通,但是c 相电位却变成最低,当经过自然换相点时触发c相晶闸管VT2,电流即从b相换到c相,VT6承受反向电压而关断。这时电流由a相流出经VTl、负载、VT2流回电源c相。变压器a、c 两相工作。这时a相电流为正,c相电流为负。在负载上的电压为ud=ua-uc=uac 再经过60°,进入第(3)段时期。这时b相电位最高,共阴极组在经过自然换相点时,触发导通晶闸管VT3,电流即从a相换到b相,c相晶闸管VT2因电位仍然最低而继续导通。此时变压器bc两相工作,在负载上的电压为ud=ub-uc=ubc 余相依此类推。 仿真实验 “alpha_deg”是移相控制角信号输入端,通过设置输入信号给它的常数模块参数便可以得到不同的触发角α,从而产生给出间隔60度的双脉冲。 二、MATLAB仿真 (1)MATLAB simulink模型如图 (2)参数设置 电源参数设置:电压设置为380V,频率设为50Hz。注意初相角的设置,a相电压设为0,b相电压设为-120,a相电压设为-240。

三相全控桥式整流电路

课程设计任务书 学生:专业班级:自动化0602班 指导教师:工作单位:自动化学院 题目:三相桥式全控整流电路的设计(带反电动势负载) 初始条件: 1.反电动势负载,E=60V,电阻R=10Ω,电感L无穷大使负载电流连续; 2.U2=220V,晶闸管触发角α=30°; 3.其他器件如晶闸管自己选取。 要求完成的主要任务:(包括课程设计工作得及其技术要求,以及说明书撰写待具体要求) 1.主电路的设计及原理说明; 2.触发电路设计,每个开关器件触发次序及相位分析; 3.保护电路的设计,过流保护,过电压保护原理分析; 4.各参数的计算(输出平均电压,输出平均电流,输出有功功率计算,输出波形分析); 5.应用举例; 6.心得小结。 时间安排: 7月6日查阅资料 7月7日方案设计 7月8日- 9日馔写电力电子课程设计报告 7月10日提交报告,答辩 指导教师签名:年月日 系主任(或责任教师)签名:年月日

摘要 整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。 关键词:整流,变压,触发,过电压,保护电路。

相电路实验报告

实验一 一、实验名称 三相电路不同连接方法的测量 二、实验目的: 1. 理解三相电路中线电压与相电压、线电流与相电流之间的关系。 2. 掌握三相电路的正确连接方法与测量方法。 三、实验原理 1.三相电路 三相电路在生产上应用最为广泛,发电和输配电一般都采用三相制。在用电方面,许多负载是三相的或连接成三相形式的,如三相交流电动机。 三相电路是由三相电源供电的电路。三个频率相同且随时间按正弦函数变换的电动势,如果每相电动势的振幅相等,相位依次相差120o,则称为三相电动势。产生对称三相电动势且各阻抗相等的电源称为对称电源。当三相电动势的相序依次为U相、V相和W相时,称为正序或顺序,反之称为负序或逆序。本实验在三相电源的相序为正序的情况下进行测量。 三相电源由DDSZ-1型实验台台面左侧的DD01三相调压交流电源提供。如下图所示。

在三相电路中,负载一般也是三相的,即由三个部分组成,每一部分称为一个相。如三相负载各相阻抗值相同,则称为对称三相负载。三相负载有两种连接方式:星形联结和三角形联结。 在三相电路中,电源或负载各相的电压称为相电压,端线之间的电压称为线电压;流过电源或负载各相的电流称为相电流,流过各端线的电流称为线电流。星形联结时,各相电压源的负极连在一起称为三相电源的中性点或零点。各相负载的一端接在一起称为负载的中性点或零点。电源的中性点与负载中性点的连线称为中性线或零线。流过中性线的电流称为中性线电流。 2.三相负载的星形联结(三相四线制) 3.三相负载的三角形联结

ou 负载为三角形联结时,线电压等于相电压。当电源与负载对称时,线电流和相电流在数值上的关系为 L P I 。 四、实验设备 1.DDSZ-1型电机及电气技术实验装置 2.D42三相可调电阻器 3.D33交流电压表 4.D32交流电流表 五、实验内容与步骤 1. 组接实验电路; 2. 三相四线制,三相负载为星形联结时,分别测量线电压、相电压、线电流、相电流,记录实验数据。 3. 三相三线制,三相负载为星形联结时,分别测量线电压、相电压、线电流、相电流,记录实验数据。 表5-2

三相桥式全控整流电路

图1 三相桥式全控整流电路 实验六:三相桥式全控整流电路 (一)实验目的 1.掌握实验电路的工作原理和关键波形; 2.分析不同参数设置对仿真结果的影响 (二)实验原理 在三相桥式全控整流电路中,对共阴极组和共阳极组是同时进行控制的,控制角都是α。由于三相桥式整流电路是两组三相半波电路的串联,因此整流电压为三相半波时的两倍。很显然在输出电压相同的情况下,三相桥式晶闸管要求的最大反向电压,可比三相半波线路中的晶闸管低一半。 为了分析方便,使三相全控桥的六个晶闸管触发的顺序是1-2-3-4-5-6,晶闸管是这样编号的:晶闸管KP1和KP4接a 相,晶闸管KP3和KP6接b 相,晶管KP5和KP2接c 相。 晶闸管KP1、KP3、KP5组成共阴 极组,而晶闸管KP2、KP4、KP6组成 共阳极组。 为了搞清楚α变化时各晶闸管的导通规律,分析输出波形的变化规 则,下面研究几个特殊控制角,先分 析α=0的情况,也就是在自然换相点 触发换相时的情况。图1是电路接线 图。 为了分析方便起见,把一个周期 等分6段(见图2)。 在第(1)段期间,a 相电压最高,而共阴极组的晶闸管KP1被触发导通,b 相电位最低,所以供阳极组的晶闸管KP6

被触发导通。这时电流由a相经KP1流向负载,再经KP6流入b相。变压器a、b两相工作,共阴极组的a相电流为正,共阳极组的b相电流为负。加在负载上的整流电压为 =-= 经过60°后进入第(2)段时期。这时a相电位仍然最高,晶闸管KPl继续导通,但是c相电位却变成最低,当经过自然换相点时触发c相晶闸管KP2,电流即从b相换到c相,KP6承受反向电压而关断。这时电流由a相流出经KPl、负载、KP2流回电源c相。变压器a、c两相工作。这时a相电流为正,c相电流为负。在负载上的电压为 =-= 再经过60°,进入第(3)段时期。这时b相电位最高,共阴极组在经过自然换相点时,触发导通晶闸管KP3,电流即从a相换到b相,c相晶闸管KP2因电位仍然最低而继续导通。此时变压器bc两相工作,在负载上的电压为 =-= 余相依此类推。 由上述三相桥式全控整流电路的工作过程可以看出: 1.三相桥式全控整流电路在任何时刻都必须有两个晶闸管导通,而且这两个晶闸管一个是共阴极组,另一个是共阳极组的,只有它们能同时导通,才能形成导电回路。 2. 三相桥式全控整流电路就是两组三相半波整流电路的串联,所以与三相半波整流电路一样,对于共阴极组触发脉冲的要求是保证晶闸管KPl、KP3和KP5依次导通,因此它们的触发脉冲之间的相位差应为120°。对于共阳极组触发脉冲的要求是保证晶闸管KP2、KP4和KP6依次导通,因此它们的触发脉冲之间的相位差也是120°。 3.由于共阴极的晶闸管是在正半周触发,共阳极组是在负半周触发,因此接在同一相的两个晶闸管的触发脉冲的相位应该相差180°。 4. 三相桥式全控整流电路每隔60°有一个晶闸管要换流,由上一号晶闸管换流到下一号晶闸管触发,触发脉冲的顺序是:1→2→3→4→5→6→1,依次下去。相邻两脉冲的相位差是60°。

单相半波整流电路仿真实验报告

单相半波整流电路仿真实验报告 一、实验目的和要求 1.掌握晶闸管触发电路的调试步骤与方法; 2.掌握单相半波可控整流电路在电阻负载和阻感负载时的工作; 3.掌握单相半波可控整流电路MATLAB的仿真方法,会设置各个模块的参数。 二、实验模型和参数设置 1. 总模型图: 有效值子系统模型图: 平均值子系统模型图:

2.参数设置 晶闸管:Ron=1e-3,Lon=1e-5,Vf=,Ic=0,Rs=500, Cs=250e-9.电源:Up=100*, f=50Hz. 脉冲发生器:Amplitude=5, period=, Pulse Width=2 情况一:R=1Ω,L=10mH; a=0°or a=60°; 情况二:L=10mH; a=0°or a=60°; 三、波形记录和实验结果分析 (1)R=1Ω,L=10mH; a=0°时的波形图: (2)R=1Ω,L=10mH; a=60°时的波形图:

(3)L=10mH; a=0°时的波形图: (4)L=10mH; a=60°时的波形图:

在波形图中,从上到下依次代表电源电压、脉冲发生器电压、晶闸管的电流,、晶闸管两端电压、负载电流和负载两端电压。 分析对比这四张图可以知道,由于负载中有电感,因此晶闸管截止的时刻并不在电压源为负值的时刻,而是在流过晶闸管的电流为零的时刻;同时,在对比中可以发现在电感相同的情况下,电阻负载的存在会使关断时间提前。 1.计算负载电流、负载电压的平均值: 以R=1Ω,L=10mH时 o α = 负载电压的平均值为如下: o α 60 = 负载电压的平均值为如下:

三相交流电路-电工电子学实验报告

实验报告 课程名称:电工电子学指导老师:张伯尧成绩:___ _ 实验名称:三相交流电路 一、实验目的和要求二、实验设备 三、实验内容四、实验结果 五、心得 一、实验目的 一、实验目的 1.学习三相交流电路中三相负载的连接。 2.了解三相四线制中线的作用。 3. 掌握三相电路功率的测量方法。 二、主要仪器设备 1. 实验电路板 2. 三相交流电源(220V) 3. 交流电压表或万用表 4. 交流电流表 5. 功率表 6. 单掷刀开关 7. 电流插头、插座 三、实验内容 1. 三相负载星形联结 按图1接线,图中每相负载采用三只白炽灯,电源线电压为220V。 图1

1) 测量三相四线制电源各电压(注意线电压和相电压的关系)。 U UV/V U VN/V U WU/V U UN/V U VN/V U WN/V 217.0218.0217.0127.0127.0127.3 表1 2)按表2内容完成各项测量,并观察实验中各电灯的亮度。表中对称负载时为每相开亮三 只灯;不对称负载时为U相开亮1只灯,V相开亮2只灯,W相开亮3只灯。 测量值 负载情况相电压相电流中线电 流 中点电 压 U UN’/V U VN’/V U WN’/V I U/A I V/A I W/A I N/A U N’N/V 对称负载有中线1241241240.26 3 0.26 3 0.26 5 00 无中线126.1126.8126.50.26 3 0.26 3 0.26 6 0 1.1 不对称负载有中线1241251240.09 2 0.17 6 0.26 6 0.1560 无中线168144770.10 5 0.18 8 0.21 6 051.9 表2 2. 三相负载三角形联结 按图2接线。测量功率时可用一只功率表借助电流插头和插座实现一表两用,具体接法见图3所示。接好实验电路后,按表3内容完成各项测量,并观察实验中电灯的亮度。 表3中对称负载和不对称负载的开灯要求与表2中相同。 三相负载三角形联结记录数据

三相桥式全控整流电路实验报告

三相桥式全控整流电路实 验报告 Prepared on 24 November 2020

实验三三相桥式全控整流电路实验 一.实验目的 1.熟悉MCL-18, MCL-33组件。 2.熟悉三相桥式全控整流电路的接线及工作原理。 二.实验内容 1.MCL-18的调试 2.三相桥式全控整流电路 3.观察整流状态下,模拟电路故障现象时的波形。 三.实验线路及原理 实验线路如图3-12所示。主电路由三相全控整流电路组成。触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。三相桥式整流电路的工作原理可参见“电力电子技术”的有关教材。 四.实验设备及仪器 1.MCL—Ⅱ型电机控制教学实验台主控制屏。 2.MCL-18组件 3.MCL-33组件 4.MEL-03可调电阻器(900) 6.二踪示波器 7.万用表 五.实验方法 1.按图3-12接线,未上主电源之前,检查晶闸管的脉冲是否正常。 (1)打开MCL-18电源开关,给定电压有电压显示。

(2)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o 的幅度相同的双脉冲。 (3)用示波器观察每只晶闸管的控制极、阴极,应有幅度为1V —2V 的脉冲。注:将面板上的Ublf 接地(当三相桥式全控整流电路使用I 组桥晶闸管VT1~VT6时),将I 组桥式触发脉冲的六个琴键开关均拨到“接通”, 琴键开关不按下为导通。 (4)将给定输出Ug 接至MCL-33面板的Uct 端,在Uct=0时,调节偏移电压Ub ,使=90o 。(注:把示波器探头接到三相桥式整流输出端即U d 波形, 探头地线接到晶闸管阳极。) 2.三相桥式全控整流电路 (1) 电阻性负载 按图接线,将Rd 调至最大450 (900并联)。 三相调压器逆时针调到底,合上主电源,调节主控制屏输出电压U uv 、U vw 、U wu ,从0V 调至70V(指相电压)。调节Uct ,使 在30o ~90o 范围内变化,用示波器观察记录=30O 、60O 、90O 时,整流电压u d =f (t ),晶闸管两端电压u VT =f (t )的波形,并记录相应的Ud 和交流输入电压U 2 数值。 30° 60° 90° 3.电感性负载 按图线路,将电感线圈(700mH)串入负载,Rd 调至最大(450)。 调节Uct ,使 在30o ~90o 范围内变化,用示波器观察记录=30 O 、60O 、90O 时,整流电压u d =f (t ),晶闸管两端电压u VT =f (t )的波形,并记录相应的Ud 和交流输入电压U 2 数值。 30° 60° 90°

电力电子课程设计-三相桥式整流电路的MATLAB仿真

五邑大学 电力电子技术课程设计报告题目:三相桥式整流电路的MATLAB仿真 院系信息工程学院 专业轨道交通电气化 班级 学号 学生姓名 指导教师 完成时间2016年11 月17 日

三相桥式整流电路的MATLAB仿真 一、题目的要求和意义 利用MATLAB软件中的SIMULINK对三相桥式整流电路进行建模、仿真,设置参数,采集波形。具体要求如下:输入三相电压源,线电压取380V,50Hz,内阻0.004欧姆。利用六个晶闸管搭建三相桥式整流电路的模型。当负载分别为纯电阻负载和阻感负载时设置相关参数利用示波器查看仿真波形,并将ud、id、uVT1波形记录下来。 整流电路是电力电子技术中最为重要,也是应用得最为广泛的电路,不仅应用于一般工业领域,也广泛应用于交通运输、电力系统、通信系统、能源系统及其他领域。常用的三相整流电路有三相桥式不可控整流电路、三相桥式半控整流电路和三相桥式全控整流电路。三相全控整流电路的整流负载容量较大,输出直流电压脉动较小,是目前应用最为广泛的整流电路。Matlab提供的可视化仿真工具Simulink可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强。利用matlab对三相桥式全控整流电路仿真,可以让我们进一步深入了解三相整流电路工作的每一个步骤,充分掌握三相整流电路,而对故障波形的采集与分析,锻炼我们解决电路出现问题时的能力,以使我们在实际工作中也能足够的理论知识去排除及解决各种电路故障,具有十分重要的意义。二、基本原理 三相桥式整流电路习惯将其阴极连接在一起的三个晶闸管(VT1、VT3、VT5)称为阴极组;阳极连接在一起的三个晶闸管(VT2、VT6、VT2)称为阳极组,如图1所示、 图1 三相桥式整流电路原理图 图1中a相电源的初相角是0,c相电源初相角是120度,b相电源的初相角是-120度。三相半波整流时,在一个周期内,相电压最高值会交换三次,而三相全桥时,负载相当于接在两相的线电压上,而线电压的最高值每个周期会交换六次,线电压波峰的交点叫自然交换点,这就意味,当触发角α=0时,就能整流出一个周期内有六个波峰的直流电,它们的电压波形如图2

单相半波可控整流电路实验报告

实验一、单相半波可控整流电路实验 王季诚(20101496) 一、实验目的 (1)掌握单结晶体管触发电路的调试步骤和方法。 (2)掌握单相半波可控整流电路在电阻负载及电阻电感性负载时的工作情况。 (3)了解续流二极管的作用。 二、实验所需挂件及附件

5 D42 三相可调电阻 6 双踪示波器自备 7 万用表自备 三、实验线路及原理 单结晶体管触发电路的工作原理及线路图已在1-3节中作过介绍。将DJK03-1挂件上的单结晶体管触发电路的输出端“G”和“K”接到DJK02挂件面板上的反桥中的任意一个晶闸管的门极和阴极,并将相应的触发脉冲的钮子开关关闭(防止误触发),图中的R负载用D42三相可调电阻,将两个900Ω接成并联形式。二极管VD1和开关S1均在DJK06挂件上,电感L d在DJK02面板上,有100mH、200mH、700mH 三档可供选择,本实验中选用700mH。直流电压表及直流电流表从DJK02挂件上得到。

图3-6单相半波可控整流电路 四、实验内容 (1)单结晶体管触发电路的调试。 (2)单结晶体管触发电路各点电压波形的观察并记录。 (3)单相半波整流电路带电阻性负载时U d/U2= f(α)特性的测定。 (4)单相半波整流电路带电阻电感性负载时续流二极管作用的观察。 五、预习要求 (1)阅读电力电子技术教材中有关单结晶体管的内容,弄清单结晶体管触发电路的工作原理。 (2)复习单相半波可控整流电路的有关内容,掌握单相半波可控整流电路接电阻性负载和电阻电感性负载时的工作波形。 (3)掌握单相半波可控整流电路接不同负载时U d、I d的计算方法。 六、实验方法 (1)单结晶体管触发电路的调试 将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V,用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用双踪示波

相关文档
最新文档