矿井运输设备电动机损坏原因分析及预防措施示范文本

矿井运输设备电动机损坏原因分析及预防措施示范文本
矿井运输设备电动机损坏原因分析及预防措施示范文本

矿井运输设备电动机损坏原因分析及预防措施示范

文本

In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each

Link To Achieve Risk Control And Planning

某某管理中心

XX年XX月

矿井运输设备电动机损坏原因分析及预

防措施示范文本

使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。

前言

目前,在井下采区运输设备中,基本上以刮板输送机

和皮带输送机为主,而采区运输设备的运行特点是,运转

时间长,环境条件恶劣,且经常处于满负荷运行,如使用

不当或检修不到位,就会发生故障,严重时就会损坏电动

机。在采区运输系统中,如一台设备的电动机损坏,就会

影响整个运输系统,损害一台电动机的直接损失并不大,

但往往由于查找故障原因难,维修工作量大,经常影响正

常生产,对整个采区来说,就会造成很大损失。近几年,

通过对损坏输送机的电动机事故进行调查分析,结果表

明,损坏电动机的输送机一般以双电机拖动的设备较多在

双电机拖动的设备中,当一台电动机出现隐性故障后,由于现象不明显,操作人员和检查人员不注意细节的微小变化,不能及时发现电动机“隐疾”,造成电动机长时间带病工作,直接影响了本身和另一台电动机的正常运转,长此下去,最后的结果就是损坏电动机,造成停产维修。

1运输设备电动机故障及损坏的原因

1.1机械故障

1.1.1对于刮板输送机而言,运转过程中有卡阻现象,使刮板输送机的负荷不均匀,电流变化幅度大。工作面的刮板机下窜,出现底槽反货现象,造成单侧电动机超负荷运行,使电动机定子绕组长时间在过电流状态下运行,定子绕组过热,绝缘强度下降,导致电动机损坏。

1.1.2电动机振动,其主要原因有:

(1)机身固定螺栓松动,刮板输送机压顶不牢;

(2)安装时联轴器间隙过小,运转时联轴器相互顶

住,产生过大的轴向推力,使电动机发生高频抖动。

1.2电气故障

过负荷保护装置不灵敏:

1.2.1电动机的控制开关整定值过高,超过电动机额定电流的110%,致使电动机在过负荷时保护装置不动作;

1.2.2电压太高或太低,是指电源电压高于或低于电动机额定电压。由于电动机侧供电电压不稳定,电压过高,定子绕组容易高温,使绝缘降低,易造成短路接地。电压过低,则不利于电动机起动,使铜损增加,电动机效率降低。

1.2.3对于两个电压都适应的电动机(如额定电压660V和1140V两用的电动机),如误将高压连接的绕组接在低压电源上,这样就降低了起动力矩,造成另一侧电动机超负荷起动,超负荷运行而损坏;

1.2.4定子绕组内部可能有一、二匝线圈短路,空载时

能起动,带负荷起动时,最大起动力矩不足,使另一侧电动机超负荷起动,超负荷运行;

1.2.5鼠笼式电动机转子发现断条后,转子导体切割定子旋转磁场产生的电流和转矩不均匀,不断的笼条与整个鼠笼形成一个闭式回路,能产生感应电流,断开的笼条由于是开式状态,虽然笼条切割磁力线,但它没有感应电流产生。没有电流产生,也就没有转矩产生,使电动机的转矩下降,损耗增加,输出的功率下降,而且电动机转子在不连续感应电流的作用下,转矩不均,使电动机定子绕组过热,造成绝缘下降; 1.2.6漏电保护不灵敏。电动机和供电系统漏电后,保护组件不动作,系统不跳电,造成电动机三相电流不平衡,而损坏电动机。

1.3过热故障

电动机的负荷长期超过额定值,这时电动机起动困难,起动后迅速发热,使电动机绝缘下降。

1.3.1风冷电动机通风不良,风叶损坏,没有足够的风流散热,机体通风道堵塞,风流吹不到发热部位机体进风道的进风网被堵,造成进风困难;

1.3.2水冷电动机冷却水的水量不足,水道堵塞或因长时间使用,水道中产生的水垢,使电动机水道断面变小,造成冷却水量不足,使发热的电动机不能及时冷却;

1.3.3轴承过热原因:润滑油不合格、不清洁,供油不足或过量,使轴承不能很好的润滑;

1.3.4定子或转子组件更换后出现间隙不均匀,导致铁芯间相互摩擦,使电动机温度升高,造成绝缘下降。

1.4电动机受潮

主要是顶板淋水、底板积水造成电动机进水,或因水冷电动机冷却水嘴的密封损坏,使泄漏的水由端盖结合面进入电动机,使电动机绝缘下降,易引起匝间短路、绝缘对地击穿等故障。

2预防措施

2.1提高检修质量,实行设备包机制,发现问题要及时全面处理,不留死角。保证联轴器的安装间隙,减小轴向推力,防止电动机发生振动。

2.2定期进行完好检查,避免水、油进入电动机内部。

2.3坚持每天对电动机的对地绝缘和相间绝缘进行测量,做好记录,发现绝缘阻值降低要及时查找原因。

2.4每天对电动机轴承的温度进行检测,结果应做好记录,温升过高时应查明原因。

2.5定期对系统的电源电压进行测量,结果应做好记录,发现电压不稳、偏差太大后要及时调整,尽量稳定电源电压。

2.6对运行的电动机要定期分别检测电动机的空、满载电流。

2.7定期对电动机保护插件的灵敏度进行检测,电动机

满负荷运行电流超110%时,保护插件不动作,应立即更换保护插件。

2.8定期对水冷电动机的水道进行冲洗,冲洗过程中应采用锤击法进行除垢清理工作,必要时可进行水道耐压试验。

2.9对于线圈短路或接地造成的发热,根据发热具体情况检查分析,视情况进行修复或更换线圈。

2.10在电动机运转过程中,如漏电保护装置动作,切记不要盲目送电,必须查明故障原因,排除后方可送电。

2.11按要求更换润滑脂,两对磁极的电动机润滑脂的加入量,不应超过轴承及端盖空腔的1/2。四对磁极的电动机润滑脂的加入量,不应超过轴承及端盖空腔的3/4。换油时,必须将旧油清洗干净,不同牌号的润滑脂,不允许混用。高温、高转速的电动机必须采用2锂基润滑脂。

结束语

以上是针对井下运输设备电动机常见故障及损坏原因进行的分析研究,就电动机在使用过程中可能出现的故障及损坏和预防措施进行了分析总结,为以后修理工作中快速查找故障、提高检修效率提供了理论依据和实践保证。对保证井下正常生产,提高企业生产效率和安全生产都具有十分重要的现实意义和技术效果。

请在此位置输入品牌名/标语/slogan

Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

关于近期电机频繁烧毁事故分析报告

吉林省新天龙酒业有限公司文件 关于近期电机频繁烧毁事故 分析报告 8月27日及29日,三期循环水厂及动力车间分别烧毁560KW及500KW电机1台。其中三期循环水电机系电机负荷端槽出口处发生相间短路故障,动力车间风机电机系槽内发生短路故障,为了更好分析事故原因,避免类似事故发生,减少事故损失,电仪管理处决定亲自到沈阳电机厂和大连电机厂进行实地拆解电机,与厂家共同分析、研究问题产生原因和解决方法。 9月6日7日8日我们一行三人共同来到沈阳和大连。通过我们与电机厂家实际拆解检查,厂家技术人员与我们意见初步达成一致: 1、循环水厂电机烧毁原因主要是电机出厂存在先天性缺陷,电机长期运行中灰尘积累 及空气湿度大导致绝缘薄弱处出现短路故障,致使电机烧毁。 沈阳电机厂家建议我们对现有运行电机拆解检查,定期进行清洁处理,延长电机使用寿命。电仪修车间已经着手有顺序进行电机清灰处理。 2、动力车间此次烧毁500KW电机系2007年6月份运行,8月8日烧毁后由电仪管理 处进行返厂处理,08年1月26日安装,直至本次事故发生时大约累计运行16个月。 期间曾于6月8日厂内进行外引线和绝缘处理。(该电机返修时是该厂原技术员负责处理维修,现已被该公司辞退。) 据该公司技术人员分析,以前返厂电机修理在清理烧毁电机线圈时,都经过火烧处理,如果处理不当就会导致电机定子铁芯退化,导磁能力下降,运行过程中出现涡流,导致铁芯过热,烧毁线圈。 此电机经现场检查,发现电机底部有10组铁芯存在过热现象,而且已经变色。该部位线圈也出现过热现象,其它部位正常。经过检查分析,确定引起电机烧毁原因为铁芯过热引起。 动力车间现有690V大连第三电机厂生产电机,其中4台315KW、3台450KW、3台500KW、3台160KW,后由设备工程部购入4台套佳木斯产电机,含1台450KW、1台500KW、2台315KW,其中佳木斯引风机450KW烧毁1次返厂修理,大连的未出

电动机三种典型振动故障的诊断(1)

电动机三种典型振动故障的诊断 1 引言 某造纸厂一台电动机先后出现了三种典型的振动故障: (1) 基础刚性差; (2) 电气故障; (3) 滚动轴承损坏。 现将诊断分析及处理过程进行简单的描述和总结: 此电动机安装于临时混凝土基础上,基础由四根混凝土支柱支撑于二楼楼板横梁上,基础较为薄弱。电动机运行时振动较大,基础平台上感觉共振强烈。没有发现其他异常。 电动机结构型式及技术参数如下: 三相绕线型异步电动机 型号:yr710-6 额定功率:2000kw 额定转速:991r/min 工作频率:50hz 额定电压:10kv 极数:6 滚动轴承:联轴节端nu244c3; 6244c3 末端: nu244c3 (fag) 针对本电动机的特点,采用entek data pactm 1500数据采集器+9000a-lbv加速度传感器; enmoniter odyssey软件进行振动数据的采集和分析: 2 电动机基础刚性弱的诊断过程 2001年8月21日,采用entek data pactm 1500数据采集器对此电动机进行测试。首先,

断开联轴节,进行电动机单试。测量电动机两端轴承座处水平、垂直、轴向三个方向的振动速度有效值(mm/s rms)、振动尖峰能量(gse)幅值及频谱;测量电动机地脚螺栓、基础、基础邻近台板各点及台板下支撑柱上各点的振动位移峰峰值(μm p-p); 测量电动机两侧轴承座 水平、垂直方向的工频(1×n)振动相位角。将电动机断电,采集断电瞬间前后电动机振动频谱瀑布图。 之后,重新找正对中,带负荷运行进行测试,测试内容同上。 测点位置如图1所示;对电动机基础、地脚螺栓及台板各点振动幅值进行测量的数据如图2、图3所示。 图1 图2 振动数据侧视图

电机振动在线监测系统解决方案上课讲义

钛能科技根据多年来的状态监测实践,针对电机故障研发出了一套电机振动在线监测系统解决方案,对全面推动我司电机状态监测工作深入开展发挥了重要作用。 1.引言 电机是现代工业生产中的重要电气设备,是现代工业生产的重要物质和技术基础,广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保等各个行业。各种电机设备的技术水平和运行状况是影响一个工业企业各项经济技术指标的重要因素,电机故障会对企业生产运营造成严重影响。一般说来,电机故障约有60%-70%是通过振动和由振动辐射出的噪声反映出来的,因此现场应用中,振动监测技术是应用比较普遍的故障诊断方法。 电机振动主要由电枢不平衡、电磁力、轴承磨损、转轴弯曲和安装不良使电机与负载机械的轴心线不对中或倾斜等原因引起的。电机振动三个基本参数,分别是振幅、频率和相位。其中振幅可用位移、速度和加速度来表示。在测量过程中我们一般对高频故障(如滚动轴承、齿轮箱故障等)或高速设备进行测量时,应选加速度为参考量;在对低频故障(如不平衡、不对中等)或低速设备测量时,应选位移为参考量;而在进行振动的总体状态测量时,选速度为参考量。电机振动大小必须要满足国家的电机振动标准,否则会造成很严重的后果。 要做好电机振动的监测诊断,首先要对诊断对象做全面的了解以及必要的机理分析,比如:机器的结构和动态特性(齿轮与轴承规格、特征频率等),机器的相关机件连接情况(如动力源、基座等),机器的运行条件(如温度、压力、转速)及维修技术(如故障、维修、润滑、改造),异常振 动的形态和特性。 2.解决方案 2.1方案概述 钛能科技根据已有的技术规范,在对钢铁、石化、水泥客户广泛深入调研的基础之上,结合自身多年来的技术积累,精心开发了电机振动在线监测系统,受到了客户的肯定和好评。 钛能科技电机振动在线监测系统依托先进的物联网传感技术,通过测定电机设备特征参数(如振动加速度、速度、位移等),计算并存储设备的运行参数,自动生成日数据库、历史数据库及报警库。将特征参数值与设定值进行比较,来确定设备当前是处于正常、异常还是故障状态,设备一旦出现异常或者故障,及时报警通知运行管理人员。尽可能多的采集故障信息,从而获得设备的状态变化规律,预测设备的运行发展趋势,帮助用户查找产生故障的原因,识别、判断故障的严重程度,

水轮发电机组振动原因分析

水轮发电机组振动原因 分析 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

水轮发电机组振动原因分析水轮发电机组的振动问题与一般动力机械的振动有一定差异,除了机器本身转动或固定部分引起的振动外,尚需考虑发电机的电磁力以及作用于水轮机过流部分的流动压力对系统及其部件振动的影响。在机组运转的状态下,流体—机械—电磁三部分是相互影响的。例如,当水流流动激起机组转动部分振动时,在发电机转子与定子之间会导致气隙不对称变化,由此产生的磁拉力不平衡也会造成机组转动部分的振动,而转动部分的运动状态出现某些变化后,又会对水轮机的水流流场及发电机的磁场产生影响。因此,水轮机的振动是电气、机械、流体等多种原因引起的。可见,完全按照这三者的相互关系来研究系统的振动是不够的。鉴于问题的复杂性,将引起水轮机组振动原因大致分为机械、水力、电气三方面的因素来研究,为水电厂生产管理、运行、检修人员提供参考意见,以便制定出相应的预防和消振措施。 1水轮发电机组振动的危害振动是旋转机械不可避免的现象,若能将其振幅限制在允许范围内,就能确保机组安全正常运行。但较大振动对机组安全是不利的,会造成如下危害:

a)使机组各连接部件松动,使各转动部件与静止部件之间产生摩擦甚至扫膛而损坏; b)引起零部件或焊缝的疲劳、形成并扩大裂缝甚至断裂; c)尾水管低频压力脉动可使尾水管壁产生裂缝;当其频率与发电机或电力系统的自振频率接近时,将发生共振,引起机组出力大幅度波动,可能会造成机组从电力系统中解列,甚至危及厂房及水工建筑物。下面简单介绍几起天桥水电厂机组振动引起的事故,以便从中了解机组振动的起因。 a)20世纪80年代初,天桥水电站多次发生因振动摆度过大而引起的设备损坏事故。1980年8月3号机由于上导轴承摆度大导致4个上导瓦背垫块断裂;1982年10月3号机发生发电机扫膛严重事故,上导瓦架与上机架固定螺栓8只中的5只被剪断,1只定位销剪断、瓦架变形。上机架振幅达022mm,水导轴承处振幅达020mm。水轮机轴与发电机大轴法兰联接处摆度为074mm,后经测量分析为机组轴承中心不正,发电机转子外圆度超标,空气间隙不匀等原因所致。

电机烧毁的原因汇总

电机烧毁得原因汇总 电机得运转离不开正常得电源输入,合理得电机负荷,良好得散热与绕组漆包线绝缘层得保护。 电机烧毁得原因: (1)异常负荷与堵转;润滑失效,摩擦阻力增大,就是负荷异常得首要原因。 (2)金属屑引起得绕组短路; (3)接触器问题; (4)电源缺相与电压异常; (5)冷却不足; 电动机烧坏主要原因 电动机烧坏得直接原因就是温度高。 电动机常见故障分为机械故障与电气故障两大类,电气故障包括:定子与转子绕组得短路、断路、及启动设备故障;机械故障包括:振动过大、轴承过热、定子与转子相互摩擦及有不正常噪音等。 电动机温度过高得原因 1、电动机本身内部得原因 (1)安装与维修电动机时,误将△形接法得电动机绕组接成了Y形接法,或者误将Y形接法得接成了△形。 (2)绕组相间、匝间短路或接地,导致绕组电流增大,三相电流不平衡,使电动机过热。 (3)极相组线圈连接不正确或每相线圈数分配不均,造成三相空载电流不平衡,并且电流过大;电动机运行时三相电流严重不平衡,产生噪声与振动,电动机过热。 (4)定、转子发生摩擦发热。

(5)异步电动机得笼型转子导条断裂,或绕线转子绕组断线。电动机出力不足而过热。 (6)电动机轴承过热。 2、电动机负载方面得原因 (1)电动机长时间过负载运行,定子电流大大超过额定电流,电动机过热。 (2)电动机启动于频繁,启动时间过长或者启动间隔时间太短,都会引起电动机温升过高。 (3)被拖动机械故障,使电动机出力增大,或被卡住不转或转速急剧下降,使电动机电流猛增而过热。 (4)电动机得工作制式与负载工作制不匹配,例如短时周期工作制得电动机用于带动连续长期工作得负载。 3、环境与通风散热方面得原因 (1)电动机工作环境与通风过高,电动机得不到良好得通风散热而过热。 (2)电动机内得灰尘、油垢过多,不利于电动机得散热。 (3)风罩或电动机内挡风板未装,导致风路不畅,电动机散热不良。 (4)风扇破损、变形、松脱,或者未装或装反,使电动机通风散热不良。 (5)封闭式电动机外壳散热筋片缺损过多,散热面积减少;或者防护式电动机风扇堵塞,都会造成电动机通风散热不良而温升过高。 1、缺相 2、负载过大 3、短路 4、过热

高压电机振动故障分析与处理

高压电机振动故障分析与处理 高压电动机在煤矿生产中的应用极其广泛,根据安装运行维护管理的规定必须进行定期的检查,以便及时了解、掌握电动机的运行情况,及时采取有效的措施,从而保障电动机的安全运行。因此,本文将分析总结高压电动机在安装、运行中所出现振动故障的查找与处理方法。 1、电机振动的测量 对电机振动量的测量从过去用螺丝刀测听,到现在使用较精密的振动测试仪,已经能进行准确的判定。V—63型便携式测振仪,为目前各工厂企业使用较多的用于测量振动的主要仪器,在及时预报电机的振动故障,根据电机的具体运行状况,制定出不同的维护检修措施,发挥着重要作用。 1.1 测量方法 振动的测量可进行振动位移、速度、加速度的测量,在测量时,应注意(1)在测量前,应检查确认仪器的电池电压,正确的设置频率范围。(2)根据不同的测量参数,正确的设置频率范围。(3)在测量时,应保持探头和被测面垂直。(4)在测量过程中,施加在仪器上的压力应适中。 1.2 选取测量位置 根据电机的结构特点,选取合适的能表征电机振动特性的测量点,对判定电机的振动是否超标是非常重要的,对于大中型电机,一般选取电机轴承座的正上方以及轴承中心线左右的对称点,或者电机大端盖的垂直向下与轴承水平方向垂直位置作为测量点。 1.3 电机振动的判定标准 电机振动量所测试的三个参数振动位移、速度、加速度,根据振动的频率越低则振动的位移量的测定灵敏度就越高,振动的频率越高则振动加速度所测定的灵敏度就越高的机理,对于大多数的设备,其振动的速度能够表征设备的振动状态。所以,在对电机进行监测时,以电机振动的速度为主,兼顾振动的位移量。 2、电机在自由状态下振动小,栓紧底脚时振动大,或相反 目前对置于刚性基础上所做空载试验的高压电机,是取自由状态的振动测试值还是在栓紧底脚时的振动测试值没有进行明确的规定。实践证明,取自由状态的振动测试值是可行的,由于在大多数的情况下,把紧底脚时测得的电机的振动值要较自由状态小。其原因可认为通过电机底座面和刚性基础面的良好吻合等于变相增加了电机的刚性。现今,对于结构刚性较差的电机,增加其剐性可以减小振动已经成为不争的事实,可以认为是抑制了电机某种频率的附加振动或者削弱了电

电动机常见故障分析及处理(案列)

项目:排除电动机常见故障 学习目的 掌握排除电动机常见故障方法 工作准备 电动机一台,万用表、电桥、常用电动工具 操作步骤 电源接通后,电动机不转,熔丝烧断 运作中的电动机要严格按照国家相关质量标准进行检查以确保电动机的正常使用,运作的电动机与被拖动的设备位置要恰当,保证运行的稳定性,不能有晃动,保证通风性能良好。有些电动机因为各种原因需要经常的挪动,搬运等,对于这种电动机要加强日常的维护和检查,保证电动机运转的稳定性。 1、事故现象: 原因分析: 1)缺一相电源,或定子绕组一接反。 2)定子绕组相间短路。 3)定子绕组接地。 4)定子绕组接线错误。 5)熔丝截面过小。 6)电源线短路或接地。 故障判断: 1)首先可用万用表电阻档检查电源开关三相触头是否可靠闭合。 2)如开关正常则用双臂电桥来测量电机定子绕组相间直阻,以判定定子绕组是否完好。 3)如电机直阻正常可用摇表测量电机定子绕组和电源线对地绝缘电阻,判断电源线或电机是否发生接地故障。 4)如电机定子和电源线绝缘均正常则检查电机电源熔丝(如有)所标熔断电流同电机功率是否相匹配。 5)如以上检查均正常则应考虑电机定子绕组是否接反,如怀疑绕组接反可使用直流法重新判定绕

组首尾端。 处理方法: 1)检修故障开关触头,消除缺相。 2)查出短路点,并修复。 3)消除接地。 4)查出误接,改正之。 5)换较粗的熔丝。 6)重换电源线。 2、事故现象:通电后电动机不转动,有嗡嗡声 原因分析: 1)定子、转子绕组断路或电源一相无电。 2)绕组引出线首末接错,或绕组内部接反。 3)电源回路接点松动,接触电阻大。 4)负载过大,或转子被卡住。 5)电源电压过低。 6)小型电动机装配太紧或轴承内油脂过硬。 7)轴承卡住。 故障判断: 1)首先可用万用表电压档检查三相电源是否电压过低或有缺相。 2)如电源电压正常则用双臂电桥来测量电机定子绕组相间直阻,以判定定子绕组是否完好。 3)如电机直阻正常可用手转动电机转子以判断电机是否有卡涩现象,如有卡涩可将电机与负载解开再转动转子看卡涩是否消失,如消失则应检查负载是否过大或卡涩;如卡涩现象仍存在则需将电机解体做进一步检查。 4)如电机没有卡涩现象就仔细检查电机电源线螺丝是否松动,电源线本身是否损坏。 5)如以上检查均正常则应考虑电机定子绕组是否接反,如怀疑绕组接反可使用直流法重新判定绕组首尾端。 处理方法:

电机烧损的原因及防范措施

电机烧损的原因及防范措施 1缺相运行 造成电机缺相的原因很多,如控制回路的热继电器或磁力启动器的触头由于温度高而氧化,导致接触不良缺相;电机引线或电缆一相断开;电源动力保险一相烧融断开;电机绕组接头焊接不好,过热后融化断开等。 1.2长期过电流运行 最为常见的是机械装置与电动机的不匹配,就是平时所说的小马拉大车现象;机械部分瞥压、堵转或卡涩后过负荷运行;机械与电机连接处同心度不好;电机本身轴承严重卡涩或损坏;电机绕组选择不合理或接线错误,空载电流就偏大;定子绕组匝间有短路;电源电压过高;电动机在检修过程中取过定子铁芯,造成容量不足等。 1.3电机冷却系统故障 常见的低压电动机一般采用风冷。如果周围环境条件太差、灰尘太大、油污严重,就会导致电动机的表面通风散热槽堵塞;电动机的冷却风叶太小、与转轴存在相对运动或有叶片损坏;电动机冷却风叶安装错误,正向吹风变成反向吸风,冷却效果明显下降等。 1.4电机绕组接线错误 绕组接线错误常见的原因有三个: ①星形接法接成了三角形接法,造成单相绕组承担高电压而过流运行;②电机引出线的首尾搞反,不满足三相交流电互差120电角度的要求,造成启动瞬间定子绕组冒烟;③定子绕组一路接法误接成两路或两路接法误接成四路,造成空载电流偏大或烧损。 1.5定子绕组制作工艺及绝缘强度不符合要求 低压电动机在烧损后,在定子绕组修复的过程中,存在造成工艺和强度不符合要求的原因。①没有专用的电机绕线、嵌线、划线、接线和焊接的专用工具;②没有按照绕组绕线、嵌线、划线、接线和焊接的标准执行,造成匝间短

路;③电机绕组浸漆没有严格按照“三烘两浸”的程序和标准进行;④绕组层间、相间绝缘没垫好;五是电机绕组端部整形不好,端部太大碰触端盖造成接地。 1.6运行人员操作不当 连续工作制的电动机频繁启动,由于启动电流过大,加速电机绕组绝缘老化而烧损,尤其是电机热态情况下频繁启动;运行人员在不关闭泵或风机出入口门的情况下带负荷启动电机;对长期停运的电机,未进行绝缘测试和盘车,启动电动机。 2技术防范措施 针对归纳总结出来的电动机定子绕组烧损原因,结合从事电机检修与维护的工作经验,并参照相关规程,提出如下一些防止低压电动机烧损的技术措施。 2.1加装缺相保护 依据《电力工程电气设计手册》电气二次部分规定: 应装设两相保护,条件是: 当电动机由熔断器作为短路保护时,应装设本保护,保护装置用热继电器作为断相保护,容量>3kW的电动机应尽量使用带专用断相保护的热继电器。依据《电力工程电工手册》第二部分关于热继电器的选用条件: 长期或间断长期工作电动机保护用热继电器的选用中强调,对三角形接线的电动机应选用带断相保护装置的热继电器,其电流整定值应于电动机额定电流相等。 2.2强化运行使用的规范性 在启动电机前,必须测试电机的绝缘电阻合格,并盘车灵活;确定电机是在冷态下还是热态下启动,做到冷态启动不超过两次,间隔时间>5min;热态启动不超过两次,间隔时间>30min;检查电机接线及附件完好、测量绝缘合格、电机周围干净清洁没有杂物时送电,送电后必须检查电源电压波动在额定

火灾事故调查报告的

火灾事故调查报告的 事故调查组通过现场勘验、调查取证、检测鉴定和专家论证,查明了事故发生的经过、直接原因和间接原因、人员伤亡和财产损失情况,认定了事故性质和责任,提出了对有关责任人员和责任单位的处理建议。如下是小编给大家整理的火灾事故调查报告范文,希望对大家有所作用。 火灾事故调查报告的范文篇【一】1、事故工程概况 ①事故项目名称: ②施工内容:主体结构施工、内外墙装修等 ③项目概况:建筑面积㎡,地下二层局部地下一层,地上由xxx层非超限高层和xx超限高层组成。 2、事故再现描述 经过事故现场勘察、现场证人证言得出事故发展概况:XX年 x月x日上午x点x分左右,项目部管理人员xxx发现凤凰美地xxx班组仓库发生火灾,随后火苗向临边房间蔓延,最终火势蔓延至整个仓库,xxx发现仓库起火后第一时间通知项目部总指挥xxx,xxx立即将灭火人员分为两组,一组马上采用灭火器进行灭火,另一组立即启动xxxx路消防栓进行灭火。与此同时,项目部相关人员在第一时间拨打

了火警电话,经项目部全体管理人员及消防部门全力进行扑救,火灾持续二十分钟,至7:30分火灾全部扑灭。经事后调查,本次火灾事故未造成人员伤亡,过火面积约xxxm2,直接经济损失约xxx元。 1、直接原因 Xxx早上七点进入仓库取工具准备去上班,进入仓库后不慎将烟头扔在仓库编织袋上,xxx在不知情的情况下离开仓库,离开仓库后编织袋开始起火,并蔓延至仓库夹芯板,导致仓库起火。 2、间接原因 ①xxx作为班组长安全意识淡薄,吃烟头未熄灭后就随手丢弃。②项目部安全管理人员疏于对班组的管理,缺乏消防知识安全交底,仓库及仓库周围严禁携带火种。 ①尽管本次火灾得到了及时扑救,且未造成人员伤亡,但也给我项目部乃至全公司的安全管理又一次敲响警钟,认真牢记本次事故教训,始终坚持“安全第一,预防为主,综合治理”的方针,②立即组织项目管理人员、施工班组全体施工人员进行消防安全教育,坚持事故“四不放过原则”。 ③由项目经理组织全体管理人员对施工现场安全文明施工管理进行专项检查,不留隐患死角,绝不能走过场。④对生

事故调查报告范例修订稿

事故调查报告范例 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

四川省XX机械有限公司 “7·20”一般触电事故调查报告? 2016年7月20日5时30分许,四川省XX机械有限公司员工代德祥在途经枪管车间电焊机处时,发生一起一般触电事故,导致工人代德祥当场死亡,直接经济损失90万元。 根据《生产安全事故报告和调查处理规定》(省政府令第225号)和县政府《关于一般事故授权安监部门组织调查处理的批复》(X县府函〔2008〕55号)的相关规定,由县安全监管局牵头,组织县监察局、县公安局、县总工会、县经信局、嘉明镇政府成立了事故调查组。 事故调查组按照“科学严谨、依法依规、实事求是、注重实效”的原则,通过现场勘查、调查取证、综合分析,查明了事故发生的经过、直接原因和间接原因、人员伤亡和直接经济损失情况,认定了事故性质和责任,提出了对有关责任人员和责任单位的处理建议。同时,针对事故原因及暴露出的问题,提出了事故防范和整改措施建议。现将有关情况报告如下: 一、基本情况 (一)事故单位概况 该公司于2015年01月15日取得X县工商行政管理局颁发的《营业执照》,统一社会信用代码:932Q,类型:有限责任公司(自然人投资或控股),住所:X县XX镇罗桥村,法定代表人:XXX,注册资本:陆佰万元人民币,营业期限:2015年01月15日至长期。经营范围:制造、加工、销售:石油钻采专用设备。 (二)事故死者情况

代德祥,性别:男,民族:汉族,现年:62岁,家庭住址:X县XX镇送田二组,身份证号码:510XXX。代德祥于2015年4月进入四川省XX机械有限公司工作,从事车床工作,未与四川省罗桥机械有限公司签订劳务合同。 二、事故发生经过及善后处理 2016年7月20日5时许,代德祥从公司宿舍起床后去食堂吃早饭,5时30分许代德祥吃完早饭,从食堂出来途经枪管车间电焊机处时,踩踏在有积水与破损电线(电焊机连接线)接触的地面触电扑倒在地。6时许,门卫陈大树起床去打扫车间卫生,走到枪管车间半坡处时,发现代德详扑倒在电焊机旁,陈大树就用扫帚去撮了一下代德祥,没有任何反应。陈大树感觉出事了,于是他马上返回到门卫室把同一宿舍的杨务生和张定金叫醒赶到现场。张定金看到这个情况后,认为代德祥应该是触电了,随即把电焊机旁墙壁上的配电箱闸刀开关断开,然后查看代德祥,发现已经停止心跳。门卫陈大树立即就跟总经理陈大奇打电话说“出事了,代德祥触电了”。半小时左右陈大奇和办公室相关人员到达现场,确定代德祥已经死亡。经家属同意后,事故当日将死者代德祥遗体送到了泸县殡仪馆。 接到事故报告后,县政府立即启动生产安全事故应急预案,县委、县政府主要领导和分管领导相继就善后维稳、事故调查等工作作出重要指示,XX镇政府、县安监局、县公安局XX派出所等有关人员第一时间赶往事故现场,开展事故调查。 目前,事故善后处理结束,死者家属得到妥善安抚,社会秩序良好。 三、事故原因和性质 (一)直接原因 在枪管车间电焊机配电闸刀开关未断开的情况下,工人代德祥途经电焊机旁时,踩踏在有积水与破损电线(电焊机连接线)接触的地面触电导致死亡。 (二)间接原因

电动机常见故障分析与维修..

直流电动机常见故障分析与维修 1.引言 电动机在人们的工农业生产中发挥着巨大的作用,给人们的生活带来了极大的便利。直流电动机虽然结构较复杂,使用与维护较麻烦,价格较贵,但是由于其具有调速性能好,起动转矩大等优点, 本文分析了电动机的结构、工作原理以及在工作中的常见故障,并给出了一些日常维护的方法。 2.直流电动机的原理、结构与拆装 2.1直流电动机的工作原理 当把直流电动机的电刷A、B接到直流电源上时,从图2.1可以看出,电刷A是正电位,B是负电位,在N极范围内的导体ab中的电流是从a流向b,在S极范围内的导体cd中的电流是从c流向d。前面已经说过,载流导体在磁场中要受到电磁力的作用,因此,ab和cd两导体都要受到电磁力Fde的作用。根据磁场方向和导体中的电流方向,利用电动机左手定则判断,ab边受力的方向是向左,而cd边则是向右。由于磁场是均匀的,导体中流过的又是相同的电流,所以,ab边和cd边所受电磁力的大小相等。这样,线圈上就受到了电磁力的作用而按逆时针方向转动了。当线圈转到磁极的中性面上时,线圈中的电流等于零,电磁力等于零,但是由于惯性的作用,线圈继续转动。线圈转过半州之后,虽然ab与cd的位置调换了,ab边转到S极范围内,cd边转到N极范围内,但是,由于换向片和电刷的作用,转到N极下的cd边中电流方向也变了,是从d流向c,在S极下的ab边中的电流则是从b流向a。因此,电磁力Fdc的方向仍然不变,线圈仍然受力按逆时针方向转动。可见,分别处在N、S极范围内的导体中的电流方向总是不变的,因此,线圈两个边的受力方向也不变,这样,线圈就可以按照受力方向不停的旋转了,通过齿轮或皮带等机构的传动,便可以带动其它工 作机械。 图2.1 从以上的分析可以看到,要使线圈按照一定的方向旋转,关键问题是当导体从一个磁极范围内转到另一个异性磁极范围内时(也就是导体经过中性面后),导体中电流的方向也要同时改变。换向器和电刷就是完成这个任务的装置。在直流发电机中,换向器和电刷的任务是把线圈中的交流电变为直流电向外输出;而在直流电动机中,则用换向器和电刷把输入的直流电变为线圈中的交流电。可见,换向器和电刷是直流电机中不可缺少的关键性部件。 当然,在实际的直流电动机中,也不只有一个线圈,而是有许多个线圈牢固地嵌在转子铁芯槽中,当导

电机事故分析报告

安全事故分析报告 2012年6月19日中班,我队煤机司机叶家安在操作煤机期间,因煤墙垮落,砸伤右腿,从而发生一起轻伤事故。这次事故反映出我队安全管理存在一定的漏洞,相关人员安全意识不强,缺乏应变能力等问题。事后我单位组织相关人员通过现场勘察询问,并经当事人证实得出此次报告如下: 一、事故经过 2012年6月19日20:30时分,工作面煤机运行至31#~40#之间时,煤体高度由3.0m突然陡增至3.8m,煤机前滚筒由31#支架上行割过15m后都未及时打开护帮板,此时,前后滚筒之间的煤体突然垮落,沿着煤机机身滚落飞溅击中后方煤机司机叶家安。见此情发生,当班班长陈志强立即报告跟班队长王本允,调派人员将伤工送职工医院接受治疗,经医生诊治,各项身体机能正常,休息两到三天即可恢复正常工作。 二、事故原因分析 事故发生后,经过对当事人叶家安、陈志强、王本允等相关人员的询问及对事故现场分析后确认,这是一起由于作业人员思想麻痹,支架操控不及时引起的人生安全轻伤事故。 1、煤机司机叶家安从业素质底、经验匮乏,发现煤体陡增,待煤机煤体陡增进入煤体15m后都及时将支架护帮板打开支护煤墙,造成煤墙垮塌,是导致事故发生的主要原因之一。 2、跟班班长陈志强未很好的落实、执行本单位制定工作面巡查管理制度,也是导致事故发生的主要原因。 3、工作面出现褶曲构造,煤体高度陡增超过支架有效支撑高度,是此次事故产生的次要原因。 4、跟班干部王本允未能及时深入到现场指导工作、排查隐患,管理粗枝大叶是本次事故发生重要原因。

三、防范措施。 1、对于职工加大针对性的安全教育力度,安全知识和技能人人理解,人人掌握,举一反三,提高自我防范意识。 2、严格落实岗位责任制,进一步加大安全管理力度,勤查隐患、狠抓整改,防患于未然。 四、处理意见。 1、当事人叶家安缺乏安全意识,没有基本应变处理的措施,是造成事故的直接原因。对其处罚300元人民币。 2、班长陈志强没有认真执行相关管理制度。对其处罚金200元。 3、跟班干部王本允管理疏忽、监管力度不足。对其处罚金500元。 4、本单位安全教育力度不足,给予负责人陈大伟、杜爱成各处罚金300。 采煤二队 2012-06-20

同步电动机经常出现地故障及原因分析报告

同步电动机经常出现的故障及原因分析 经常发现的故障现象有:①定子铁芯松动,运行中噪声大。②定子绕阻端部绑线崩断,绝缘蹭坏,连接处开焊,导线在槽口处端点断裂引起短路。③转子励磁绕组接头处产生裂纹、开焊绝缘局部烧焦。④转子线圈绝缘损伤,起动绕组笼条断裂。⑤转子磁极的燕尾楔松动、退出。⑥电刷滑环松动,风叶断裂等故障。 以上故障现象有的出现在同步电动机仅运行2—3年,甚至半年。一般认为是电动机制造质量问题。但许多电机制造厂,虽对制造工艺中的关键部位加强措施,但没有明显效果,故障现象仍然屡屡发生。 通过对同步电动机及励磁装置运行数据进行数理统计分析,对电动机起动,投励运行中的各种典型状态波形摄片,研究分析表明,同步电动机出现上述故障,不是制造问题,而是传统励磁技术存在缺陷。 2 传统励磁技术存在的缺陷 2.1 励磁装置起动回路及环节设计不合理 同步电动机励磁装置主回路中的主桥分为:全控桥式和半控桥式,下面分别以这两种方式分析。 ①半控桥式励磁装置:由三只大功率晶闸管和一只大功率二极管组成,如图1所示。电动机在起动过程中,存在滑差,在转子线圈将感应-交变电势,其正半波通过ZQ形成回路,产生+if,其负半波则通过KQ,RF形成回路,产生-if,

如图2所示,由于回路不对称,则形成的-if与+if也不对称,致使定子电流强烈脉动,波形如图3所示。使电动机因此而强烈振动,直到起动结束才消失。 ②全控桥工励磁装置:由6只大功率晶闸管组成,如图4所示。 在起动过程中,随着滑差减小,当转速达到50%以上时,励磁感应电流负半波通路时通时断,同样形成+if与-if电流不对称从而形成脉振转矩,造成电动机强烈振动。 ③投励时“转子位置角”不合理。无论是全控桥还是半控桥,电动机起动过程投励时,都产生 沉闷的冲击,这种冲击,同样会造成电机损害,这是“转子位置角”不合理所致。 以上所出现的脉振、投励时的冲击,并不一定一次性使电机损坏,但每次起动都会使电机产生疲劳,造成电机部损害,积而久之,必然造成电机部故障。 2.2 将GL型反时限继电器兼做失步保护 传流动磁装置将GL型继电器兼做失步保护,当电机失步时,它不能动作(如带风机类负载)或不及时动作(如带往复式压缩机类负载),使电动机或励磁装置损坏。 ①失励失步:是指同步电动机励磁绕组失去直流励磁或严重欠励磁,使同步电动机失去静态稳定,滑出同步,此时丢转不明显,负载基本不变,定子电流过流

2电机振动异常的识别与诊断

电机振动异常的识别与诊断 一、三相交流电机定子异常产生的电磁振动 三相交流电机在正常运转时,机座上受到一个频率为电网频率2倍的旋转力波的作用,而可能产生振动,振动大小与旋转力波的大小和机座的刚度直接有关。 定子电磁振动异常的原因: ①定子三相磁场不对称,如电网三相电压不平衡。因接触不良和断线造成单相运行,定子绕组三相不对称等原因,都会造成定子磁场不对称,而产生异常振动。 ②定子铁心和定子线圈松动将使定子电磁振动和电磁噪声加大。 ③电磁底脚线条松动,相当于机座刚度降低使定子振动增加。 定子电磁振动的特征: ①振动频率为电源频率的2倍,F=2f ②切断电源,电磁振动立即消失 ③振动可以在定子机座上和轴承上测得 ④振动强度与机座刚度的负载有关 二、气隙静态偏心引起的电磁力 电机定子中心与转子轴心不重合时,定、转子之间气隙将会出现偏心现象,偏心固定在一个位置上,在一般情况下,气隙偏心误差不超过气隙平均值的上下10%是允许的,过大的偏心值产生很大的单边磁拉力。 气隙静态偏心产生的原因: ①电磁振动频率是电源频率的2倍F=2f。 ②振动随偏心值的增大在增加,随负载增大而增加。 ③断电后电磁振动消失。 ④静态偏心产生的电磁振动与定子异常产生的电磁振动非常相似,难以区别。 三、气隙动态偏心引起电磁振动 偏心的位置对定子是不固定的,对转子是固定的,因此偏心的位置随转子而转动。 气隙动态偏心产生的原因: ①转子的转轴弯曲 ②转子铁心与转轴或轴承不同心。 ③转子铁心不圆 气隙动态偏心产生电磁振动的特征; ①转子旋转频率和定子磁场旋转频率的电磁振动都可能出现。 ②电磁振动的振幅随时间变化而脉动(振),脉动的频率为2sf,周期为1/2sf 当电动机负载增加,S加大,其脉动节拍加快。 ③电动机往往发生与脉动节拍相一致的电磁噪声。 ④断电后,电磁振动消失,电磁噪声消失。 四、转子绕组故障引起的电磁振动 笼形电机笼条断裂,绕组异步电机由于转子回路电气不平衡都将产生不平衡电磁力。 转子绕组故障产生的原因: ①笼条铸造质量不良,产生断条和高阻。

电动机烧坏原因及应对措施

电动机烧坏原因及应对措施 一、概述: 工业生产中广泛应用电动机拖动机械设备,而其中三相异步电动机的使用尤其广泛。我们在生产中经常会遇到三相异步电动机因使用不当而被烧毁,不仅增加了生产成本,而且影响到正常的生产。目前我公司有高低压三相异步电动机1000多台,最大的功率为3400KW,还有大型同步电动机3台,功率为2600KW,自投产至今已有多台电动机因各种原因烧坏,因而减少电动机烧毁故障、提高电动机的使用寿命是我们应认真研究的一个课题。现就本人通过对公司以往几台电动机烧坏的原因分析,发表个人观点,以供各位领导参考,并欢迎各位对电气管理工作提出批评意见,以提高电气管理水平。 二、电动机烧坏的几个原因: 1、电动机缺相运行: 电动机正常运行时三相负载为对称负载,因此三相电流基本保持平衡,大小相等,如果电动机缺相运行时(三相绕组中任一相断开的现象叫缺相),电动机振动将会变大,出现异常声音,转速下降电流增加,电机温升将会急剧升高,从而导致电动机烧坏。打开烧坏的电动机检查定子绕组,部分绕组变成黑色。 2、长期过负荷运行: 由于电动机长时间过载或过热运行,将会加速定子绕组绝缘老化,绝缘最薄弱点碳化引起绕组匝间短路、相间短路或对地短路等现象而使电动机绕组局部烧毁。打开烧坏的电动机检查定子绕组,全部绕组变成黑色。 3、机械故障原因引起: 电动机轴承损坏、转子不平衡或连接的机泵振动,联轴器连接不平衡等原因造成电动机振动值超标,从而引起电动机绕组匝间松驰,绝缘出现裂纹等不良现象,破坏效应不断积累,热胀冷缩使绝缘受到磨损,加速了绝缘老化,最终导致最先碳化的绝缘破坏直至烧毁电动机。打开烧坏的电动机检查绕组,一组绕组断相或匝间短路,但绕组不会变色。 4、堵转引起电动机烧坏: 电动机轴承完全损坏不能转动将电机轴抱死,或电动机拖动的机械设备卡死导致电动机堵转,从而造成电动机出现很大的堵转电流,使电动机绕组温升急剧升高而

电机振动的危害、原因及判断和排除故障的方法

电机振动的危害、原因及判断和排除故障的方法 内容简介:一般来讲,引起电动机振动的原因不外乎机械和电磁两方面的原因。引起直流电动机振动的主要原因是机械上、电气上和安装上的原因。在生产中我们经常采用断电法来检查区分是由于电磁还是机械原因引起的振动 电动机在各行各业中有着广泛的应用,而在使用中会出现许多问题,其中电机振动是日常生产生活中较轻易碰到的。 一、电动机振动的危害 电动机振动会加速电动机轴承磨损,使轴承的正常使用寿命大大缩短,同时,电动机振动将使绕组绝缘下降。由于振动使电机端部绑线松动,造成端部绕组产生相互磨擦,绝缘电阻降低,绝缘寿命缩短,严重时造成绝缘击穿。另外,电动机振动会造成所拖动机械的损坏,影响四周设备的正常工作,发出很大的噪声。 二、电动机振动的原因 一般来讲,引起电动机振动的原因不外乎机械和电磁两方面的原因。引起直流电动机振动的主要原因是机械上、电气上和安装上的原因。电机振动极限值在国家标准GB100068.2一88《旋转电机振动测定方法及极限振动极限》中都有规定。振动是所有电机在制造、安装、运行维护与检修中经常遇到和必须解决的问题。振动过大会导致电机的运行稳定性破坏、换向条件恶化、零部件损坏、电机寿命缩短,甚至造成停机故障。 机械部分故障主要有以下几点: 机械方面主要存在地脚紧固不牢,基础台面倾斜,不平;轴承损坏,转轴弯曲变形,电动机轴线中心与其所拖动机械轴线中心不一致;定、转子铁芯磁中心不一致,转子动平衡不良等。转动部分不平衡主要是转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。处理方法是先找好转子平衡。如果有大型传动轮、制动轮、耦合器、联轴器,应与转子分开单独找好平衡。再有就是转动部分机械松动造成的。如:铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。 1、联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。还有一种情况,就是有的联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。机座、端盖重要支承件制造误差或运行变形。由于机座、端盖等转子重要支承件的配合面形位误差超差,特别是大、中型电机运行较长时间后机座、端盖等重要支承件变形,使电机在运行时轴承产生干扰力,造成电机振动。这些配件的误差或变形可采用回转打百分表等方式测得,发现有这一情况后,应对配件进行焊修等工艺方式处理,或更换配件。 2、与电机相联的齿轮、联轴器有毛病。这种故障主要表现为齿轮咬合不良,轮齿磨损严重,对轮润滑不良,联轴器歪斜、错位,齿式联轴器齿形、齿距不对、间隙过大或磨损严重,都会造成一定的振动。 3、电机本身结构的缺陷和安装的问题。这种故障主要表现为轴颈椭圆,转轴弯曲,轴与轴瓦间间隙过大或过小,轴承座、基础板、地基的某部分乃至整个电机安装基础的刚度不够,电机与基础板之间固定不牢,底脚螺栓松动,轴承座与基础板之间松动等。而轴与轴瓦间间隙过大或过小不仅可以造成振动还可使轴瓦的润滑和温度产生异常。电枢不平衡。由于旋转时不平衡质量产生的离心力的作用,使轴承上作用有一个旋转力,造成了电机和基础的振动。当气隙不匀、主极固定不紧或机座、端盖的刚度较差时,都会造成振动加剧,因此检

电动机常见故障案例分析报告

三相异步电动机“走单相”检修实例 一台HM2-100L1-4-2.2KW三相异步电动机,为星形接法。起动后,正常出力运行2小时后,若仍带满负载工作,电动机转速迅速下降,绕组很快发热,如果想保持原转速运行,则只能带60%的额定负载,一旦电动机停转便不能再起动。 故障分析:上述现象,多是三相异步电动机“走单相”。当一相断电后,星形接法的另外二相绕组变为串联,则每相绕组由原分担1/3额定功率变为分担1/2额定功率,每相绕组负载增加1.5倍,每相绕组的电流也因负载增加1.5倍。而此时,每相绕组电压只有190V,降为原来的109/220=1/1.16倍。若负载不变,电动机产生的电磁转矩也就不变,则转子感应电流I2必须相应增加为原来的1.16倍,方能保持转矩与原来的一样,这样,转子感应电流反应到定子方面,定子每相绕组电流总增加量为原来的1.5*1.16=1.73倍,比过负载电流大得多,而又比短路电流小,是一个介于过负载和短路之间的一种故障。 三相异步电动机“走单相”时,单相电流不能产生旋转磁场,电动机不能产生起动转矩,故电动机起动不起来。可见,三相异步电动机“走单相”时,若仍满负载(即额定功率)工作,电动机转速下降,绕组很快发热,时间一长,绕组便会烧毁。 检修方法:对于正在运行的电动机,若声音突然不正常,转速明显变低,应立即停机检查。当电动机有安培表测量电流时,可在停机

前检查三相电流是否平衡,如无此装置,在停机后重新合闸,若电动机只嗡嗡响不能起动起来,大多是由于一相保险丝熔断造成的,在拉闸时,该相刀口上无火花。此时,更换新保险丝即可。 电刷火花过大的解决方法 1.电刷与换向器接触不良或电刷磨损过短;研磨电刷接触面,更换新电刷。 2.电刷上弹簧压力不均匀:适当调整弹簧压力,使每个电刷压力保持在1.47×104~2.45×104Pa,也可凭手上的感觉。 3.刷握松动将刷握螺栓固紧,使刷握和换向器表面平行;刷握离换向器表面距离过大;调整刷握至换向器距离,一般为2~ 3mm 。 4.电刷牌号不符合要求:更换原来牌号。 5.电刷与刷握配合不当:不能过紧或过松,保证在热态时,电刷在刷握中能自由滑动,过紧可用砂纸将电刷适当砂去一些,过松的要调换新电刷。 6.换向器片间云母未拉净:用手拉刀刻去剩余云母。 7.刷架中心位置不对:移动刷架座,选择火花最好位置。 8.电机长期超负载:调整负载,在额定负载内。

电机振动的原因

电机振动的原因 电机振动的原因很多,也很复杂。8极以上大极数电机不会因为电机制造质量问题引起振动。振动常见于2--6极电机,GB10068-2000,《旋转电机振动限值及测试方法》规定了在刚性基础上不同中心高电机的振动限值、测量方法及刚性基础的判定标准,依据此标准可以判断电机是否符合标准。 电动机振动的危害 电动机产生振动,会使绕组绝缘和轴承寿命缩短,影响滑动轴承的正常润滑,振动力促使绝缘缝隙扩大,使外界粉尘和水分入侵其中,造成绝缘电阻降低和泄露电流增大,甚至形成绝缘击穿等事故。另外,电动机产生振动,又容易使冷却器水管振裂,焊接点振开,同时会造成负载机械的损伤,降低工件精度,会造成所有遭到振动的机械部分的疲劳,会使地脚螺丝松动或断掉,电动机又会造成碳刷和滑环的异常磨损,甚至会出现严重刷火而烧毁集电环绝缘,电动机将产生很大噪音,这种情况一般在直流电机中也时有发生。 电动机振动的十个原因 1.转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。 2.铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。 3.联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。 4.联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。 5.与电机相联的齿轮、联轴器有故障,齿轮咬合不良,轮齿磨损严重,对轮润滑不良,联轴器歪斜、错位,齿式联轴器齿形、齿距不对、间隙过大或磨损严重,都会造成一定的振动。 6.电机本身结构的缺陷,轴颈椭圆,转轴弯曲,轴与轴瓦间间隙过大或过小,轴承座、基础板、地基的某部分乃至整个电机安装基础的刚度不够。 7.安装的问题,电机与基础板之间固定不牢,底脚螺栓松动,轴承座与基础板之间松动等。 8.轴与轴瓦间间隙过大或过小不仅可以造成振动还可使轴瓦的润滑和温度产生异常。 9.电机拖动的负载传导振动,比如说电机拖动的风机、水泵振动,引起电机振动。

煤矿井下烧坏电机的分析原因及对策

煤矿井下烧坏电机的分析原因及对策 一、选型设计部合理 比如工作面刮板输送机的选型,由于每台刮板输送机都有其技术特征,故一般根据厂家给出的说明书选型和安装即可。然而厂家说明书给出的输送机的辅设长度均指水平辅设长度,而现场的实际情况,工作面的倾角、长度、煤质情况、可弯曲情况、环境温度等是千变万化的,如果考虑不周,造成选型设计不合理,一旦出现【小马拉大车】的情况,就会频繁出现烧电机的现象。而且出现这种情况会很麻烦。某矿有两个典型的例子,能足以说明选型不当所造成的严重后果。某矿东三区综采放顶煤工作面安装完成后,正式生产时,发现煤质松软,煤炭遇防尘水后发粘,并附着在溜槽表面,使得运煤过程中摩擦阻力很大,电机过负荷,经常出现拉不动的现象,生产任务急,一时又没有较好的解决办法,那么,频繁烧坏电机也就不足为奇了,虽然后来采取了一系列措施,如刮板上焊结小刮刀,减少防尘量等,但收效甚微,据统计,此工作面从回采到煤炭自燃发火封面,仅半年多的时间,共烧坏刮板输送机电机十几台,由于回采缓慢,造成煤炭自燃,危急情况下,最后不得不封面,刮板输送机、煤机等重要设备未能回收,从而造成了较为严重的经济损失。某矿东四采区综采放顶煤工作面倾角比较大,最陡处38 度多,由于设计成拉上山回采,加上延面等原因,造成刮板输送机严重过负荷,因而烧坏电机的情况时有发生,生产也因此十分被动。可见,选型设计是一个十分重要的环节,有一个因素考虑不到,就会陷入生产的被动。 二、供电设计不合理 设备选型后,必须要根据现场实际、设计出相适应的供电方案。 如果采取电缆选择不当,供电距离远而载面选择小,造成线路压降大。对于电动机而言, M=KU电机的转矩与电压的平方成正比,例如电源电压降低到额定电压的70,则转矩大约为原来的1/2.因此,电源电压的降低,可能造成电动机启动困难或不能正常运转,或满载运行时电流量增大而造成电机过热烧坏。 三、三相异步电动机两相运转三相电动机缺一相电源。 无论是启动前缺相,还是运行中缺相,都将使电动机定子、转子绕组电流大大增加,时间稍长,电动机就会因过热而烧毁。据统计,三相异步电动机烧毁

相关文档
最新文档