乙醇爆炸伤害模型

乙醇爆炸伤害模型
乙醇爆炸伤害模型

乙醇与空气可形成爆炸性混合物。在爆炸极限范围内,遇明火或高温,能引起爆炸。

爆炸事故严重度取决于伤害/破坏半径构成圆面积中财产的价值和死亡的人数。

不同的伤害模型将有不同的伤害/破坏半径。不同伤害/破坏半径所包围的封闭面积内人员多少、财产价值多少,将影响事故严重度大小。伤害/破坏半径划分为:死亡半径、重伤(二度烧伤)半径、轻伤(一度烧伤)半径及财产破坏半径。

乙醇在爆炸极限范围能引起燃烧爆炸。爆炸的伤害区域即为人员的伤害区域。为了估计爆炸所造成的人员伤亡情况,将危险区域划分为死亡区、重伤区、轻伤区。

爆炸中心与给定超压间的距离按下式计算:

R=0.3967W T N T1/3 exp[3.5031-0.724ln△p+0.0398(ln△p)2]

△p——超压

死亡半径按超压90kPa计算;重伤半径按超压44kPa计算;轻伤半径按超压17kPa计算。分别用R1、R2、R3代表死亡半径、重伤半径、轻伤半径。

①乙醇伤亡范围的计算:

W T N T=aW f c o Q f c o/Q T N T

R1乙醇=0.3967W T N T1/3exp[3.5031-0.724ln△p死亡+0.0398(ln△p死亡)2]

=16.58m

R2乙醇=0.3967W T N T1/3exp[3.5031-0.724ln△p重伤+0.0398(ln△p

2]

重伤)

=21.99m

R3乙醇=0.3967W T N T1/3exp[3.5031-0.724ln△p轻伤+0.0398(ln△p

2]

轻伤)

=34.07m

乙醇形成蒸气云爆炸伤害半径表4-11

死亡半径内的人员如缺少防护,则被认为将无例外地蒙受严重伤害或死亡;重伤半径内的人员如缺少防护,则绝大多数将遭受重伤;轻伤半径的内人员如缺少防护,则绝大多数将遭受轻微伤害。

蒸汽云爆炸事故后果模拟分析法

蒸汽云爆炸事故后果模拟分析法 超压: 1) TNT 当量 通常,以TNT 当量法来预测蒸气云爆炸的威力。如某次事故造成的 破坏状况与kgTNT 炸药爆炸所造成的破坏相当,则称此次爆炸的威力 为kgTNT 当量。 蒸气云爆炸的TNT 当量W N T 计算式如下: VWn=1.8 XaX WX Q/Q TNT 式中,W N T —蒸气云的TNT 当量(kg ) a —蒸气云的TNT 当量系数,正己烷取 a =0.04; W —蒸气云爆炸中烧掉的总质量(kg ) Q —物质的燃烧热值(kJ/kg ), 正己烷的燃烧热值按48.27 X 106J/kg ,参与爆炸的正己烷按最大 使用量792kg 计算,则爆炸能量为38.23 X 109J 将爆炸能量换算成TNT 当量q , —般取平均爆破能量为 4.52 X 106J/kg ,因此 W N T = 1.8 XaX WX Q /q TNT + =1.8 X 0.04X 792X 48.27 X 106/4.52 X 106 =609kg 2)危害半径 为了估计爆炸所造成的人员伤亡情况,一种简单但较为合理的预 测程序是将危险源周围划分为死亡区、重伤区、轻伤区和安全区。 死亡区内的人员如缺少防护,则被认为将无例外的蒙受重伤或死 亡,其内径为0,外径为R ,表示外周围处人员因冲击波作用导致肺 出血而死亡的概率为0.5,它与爆炸量之间的关系为: =11.3 m R 1 13.6 如 0.37 13.6 420.43 0.37 1000 1000

重伤区的人员如缺少防护,则绝大多数将遭受严重伤害,极少数 人可能死亡或受伤。其内径就是死亡半径R,外径记为R,代表该处 人员因冲击波作用耳膜破损的概率为0.5,它要求的冲击波峰值超压 为44000Pa。冲击波超压P按下式计算: P =0.137Z-3 +0.119Z-2 +0.269Z-1-0.019 44000 44000 P 0.434 F0 101325 E 3 式中: P ――冲击波超压,Pa; Z――中间因子,等于0.996 ; E――蒸气云爆炸能量值,J ; P0——大气压,Pa,取101325 得R2=32.7m 轻伤区的人员如缺少防护,则绝大多数将遭受轻微伤害,少数人将受重伤或者平安无事。轻伤区的内径为重伤区的外径R2,外径R3, 表示外边界处耳膜因冲击波作用破裂的概率为0.01,它要求的冲击波峰值超压为17000Pa冲击波超压P按下式计算: -3 -2 -1 P =0.137Z 3 +0.119Z2 +0.269Z1-0.019 c 17000 17000 c“c r 5 1 UO R 101325 Z -R31 E 3 P -冲击波超压,Pa; Z—中间因子,等于 1.672 ; E—蒸气云爆炸能量值,J ; P0-大气压,Pa,取 101325

仓库火灾事故案例

仓库火灾事故案例 一、天津港“8·12”瑞海公司危险品仓库特别重大火灾爆炸事故 调查报告 8月18日,依据《安全生产法》《危险化学品安全管理条例》和《生产安全事故报告和调查处理条例》等有关法律法规,经国务院批准,成立国务院天津港“8·12”瑞海公司危险品仓库特别重大火灾爆炸事故调查组(以下简称事故调查组),事故调查组由杨焕宁同志(时任公安部常务副部长,现任安全监管总局局长)任组长,公安部、安全监管总局、监察部、交通运输部、环境保护部、全国总工会和天津市人民政府为成员单位,全面负责事故调查工作。同时,邀请最高人民检察院派员参加,并聘请爆炸、消防、刑侦、化工、环保等方面的专家参与事故调查工作。 调查认定,天津港“8·12”瑞海公司危险品仓库火灾爆炸事故是一起特别重大生产安全责任事故。 一、事故基本情况 (一)事故发生的时间和地点。 2015年8月12日22时51分46秒,位于天津市滨海新区吉运二道95号的瑞海公司危险品仓库(北纬39°02′22.98″,东经117 °44′11.64″。地理方位示意图见图1)运抵区(“待申报装船出口货物运抵区”的简称,属于海关监管场所,用金属栅栏与外界隔离。由经营企业申请设立,海关批准,主要用于出口集装箱货物的运抵和报关监管)最先起火,23时34分06秒发生

第一次爆炸,23时34分37秒发生第二次更剧烈的爆炸。事故现场形成6处大火点及数十个小火点,8月14日16时40分,现场明火被扑灭。 (二)事故现场情况。 事故现场按受损程度,分为事故中心区(航拍图见图2、示意图见图3)、爆炸冲击波波及区(示意图见图4)。事故中心区为此次事故中受损最严重区域,该区域东至跃进路、西至海滨高速、南至顺安仓储有限公司、北至吉运三道,面积约为54万平方米。两次爆炸分别形成一个直径15米、深1.1米的月牙形小爆坑和一个直径97米、深2.7米的圆形大爆坑。以大爆坑为爆炸中心,150米范围内的建筑被摧毁,东侧的瑞海公司综合楼和南侧的中联建通公司办公楼只剩下钢筋混凝土框架;堆场内大量普通集装箱和罐式集装箱被掀翻、解体、炸飞,形成由南至北的3座巨大堆垛,一个罐式集装箱被抛进中联建通公司办公楼4层房间内,多个集装箱被抛到该建筑楼顶;参与救援的消防车、警车和位于爆炸中心南侧的吉运一道和北侧吉运三道附近的顺安仓储有限公司、安邦国际贸易有限公司储存的7641辆商品汽车和现场灭火的30辆消防车在事故中全部损毁,邻近中心区的贵龙实业、新东物流、港湾物流等公司的4787辆汽车受损。 爆炸冲击波波及区分为严重受损区、中度受损区。严重受损区是指建筑结构、外墙、吊顶受损的区域,受损建筑部分主体承重构件(柱、梁、楼板)的钢筋外露,失去承重能力,不再满足

模型组合讲解——爆炸反冲模型

模型组合讲解——爆炸反冲模型 [模型概述] “爆炸反冲”模型是动量守恒的典型应用,其变迁形式也多种多样,如炮发炮弹中的化学能转化为机械能;弹簧两端将物块弹射将弹性势能转化为机械能;核衰变时将核能转化为动能等。 [模型讲解] 例. 如图所示海岸炮将炮弹水平射出,炮身质量(不含炮弹)为M ,每颗炮弹质量为m ,当炮身固定时,炮弹水平射程为s ,那么当炮身不固定时,发射同样的炮弹,水平射程将是多少? 解析:两次发射转化为动能的化学能E 是相同的。第一次化学能全部转化为炮弹的动能;第二次化学能转化为炮弹和炮身的动能,而炮弹和炮身水平动量守恒,由动能和动量的关系式m p E k 22 =知,在动量大小相同的情况下,物体的动能和质量成反比,炮弹的动能E m M M mv E E mv E +====2222112121,,由于平抛的射高相等,两次射程的比等于抛出时初速度之比,即:m M M v v s s +==122,所以m M M s s 2+=。 思考:有一辆炮车总质量为M ,静止在水平光滑地面上,当把质量为m 的炮弹沿着与水平面成θ角发射出去,炮弹对地速度为0v ,求炮车后退的速度。 提示:系统在水平面上不受外力,故水平方向动量守恒,炮弹对地的水平速度大小为θcos 0v ,设炮车后退方向为正方向,则m M mv v mv v m M -==--θθcos 0cos )(00, 评点:有时应用整体动量守恒,有时只应用某部分物体动量守恒,有时分过程多次应用动量守恒,有时抓住初、末状态动量即可,要善于选择系统,善于选择过程来研究。 [模型要点] 内力远大于外力,故系统动量守恒21p p =,有其他形式的能单向转化为动能。所以“爆炸”时,机械能增加,增加的机械能由化学能(其他形式的能)转化而来。 [误区点拨] 忽视动量守恒定律的系统性、忽视动量守恒定律的相对性、同时性。 [模型演练] (2005年物理高考科研测试)在光滑地面上,有一辆装有平射炮的炮车,平射炮固定在炮车上,已知炮车及炮身的质量为M ,炮弹的质量为m ;发射炮弹时,炸药提供给炮身和炮弹的总机械能E 0是不变的。若要使刚发射后炮弹的动能等于E 0,即炸药提供的能量全部变为炮弹的动能,则在发射前炮车应怎样运动? 答案:若在发射前给炮车一适当的初速度v 0,就可实现题述的要求。 在这种情况下,用v 表示发射后炮弹的速度,V 表示发射后炮车的速度,由动量守恒可知:

蒸汽云爆炸事故后果模拟分析法

蒸汽云爆炸事故后果模拟分析法 超压: 1)TNT 当量 通常,以TNT 当量法来预测蒸气云爆炸的威力。如某次事故造成的破坏状况与kgTNT 炸药爆炸所造成的破坏相当,则称此次爆炸的威力为kgTNT 当量。 蒸气云爆炸的TNT 当量W TNT 计算式如下: W TNT =×α×W f ×Q f /Q TNT 式中,W TNT —蒸气云的TNT 当量(kg) α—蒸气云的TNT 当量系数,正己烷取α=; W f —蒸气云爆炸中烧掉的总质量(kg) Q f —物质的燃烧热值(kJ/kg), 正己烷的燃烧热值按×106J/kg ,参与爆炸的正己烷按最大使用量792kg 计算,则爆炸能量为×109J 将爆炸能量换算成TNT 当量q ,一般取平均爆破能量为×106J/kg ,因此 W TNT = ×α×W f ×Q f /q TNT + =××792××106/×106 =609kg 2)危害半径 为了估计爆炸所造成的人员伤亡情况,一种简单但较为合理的预测程序是将危险源周围划分为死亡区、重伤区、轻伤区和安全区。 死亡区内的人员如缺少防护,则被认为将无例外的蒙受重伤或死亡,其内径为0,外径为R ,表示外周围处人员因冲击波作用导致肺出血而死亡的概率为,它与爆炸量之间的关系为: = m 重伤区的人员如缺少防护,则绝大多数将遭受严重伤害,极少数人可能死亡或受伤。其内径就是死亡半径R 1,外径记为R 2,代表该处 0.37 0.37 1420.4313.613.610001000TNT W R ?? ??== ? ??? ??

人员因冲击波作用耳膜破损的概率为,它要求的冲击波峰值超压为44000Pa 。冲击波超压P ?按下式计算: P ?=++式中: P ?——冲击波超压,Pa ; Z ——中间因子,等于; E ——蒸气云爆炸能量值,J ; P0——大气压,Pa ,取101325 得R 2= 轻伤区的人员如缺少防护,则绝大多数将遭受轻微伤害,少数人将受重伤或者平安无事。轻伤区的内径为重伤区的外径R 2,外径R 3,表示外边界处耳膜因冲击波作用破裂的概率为,它要求的冲击波峰值 超压为17000Pa 。冲击波超压P ?按下式计算: P ?=++P ?——冲击波超压,Pa ; Z ——中间因子,等于; E ——蒸气云爆炸能量值,J ; P0——大气压,Pa ,取101325 得R 3= m 安全区内人员即使无防护,绝大多数也不会受伤,安全区内径为轻伤区的外径R 3,外径无穷大。 财产损失半径,指在冲击波的作用下建筑物发生三级破坏的半径,单位为m 。按照英国建筑物破坏等级的划分标准规定,建筑物的三级破坏是指房屋不能居住、屋基部分或全部破坏、外墙1 ~ 2面部分破损,承重墙破损严重。财产损失半径可由下式确定。 式中: K ——取值为5. 6 6 /121/3TNT 431751??? ???? ?? ?????+= TNT W KW R 0440********.434 101325P P ?===2 1 3 0R Z E P =?? ? ?? 01700017000 0.168101325P P ?===313 0R Z E P =?? ???

爆炸与反冲现象问题

爆炸与反冲现象问题 1.爆炸现象的三个规律 (1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸物体间的相互作用力远大于受到的外力,所以在爆炸过程中,系统的总动量守恒. (2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加. (3)位置不变:爆炸的时间极短,因而作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸的位置以新的动量开始运动. 2.反冲现象 (1)系统内的不同部分在强大内力作用下向相反方向运动,通常用动量守恒来处理.

(2)反冲运动中,由于有其他形式的能转变为机械能,所以系统的总动能增加. (3)反冲运动中平均动量守恒. 若系统在全过程中动量守恒,则这一系统在全过程中平均动量也守恒.如果系统由两个物体组成,且相互作用前均静止,相互作用中均发生运动, 则由m1v1-m2v2=0,得m1s1=m2s2,该式的适用条件是: ①系统的总动量守恒或某一方向的动量守恒. ②构成系统的m1、m2原来静止,因相互作用而运动. ③s1、s2均为沿动量守恒方向相对于同一参考系的位移. 3.人船模型知识

(1)人船模型的适用条件:物体组成的系统动量守恒且系统中物体原来均处于静止状态,合动量为0. (2)人船模型的特点:两物体速度大小、位移大小均与质量成反比,方向相反,两物体同时运动,同时停止. (3)人船模型的动量与能量规律:遵从动量守恒定律,系统或每个物体动能均发生变化.力对“人”做的功量度“人”动能的变化;力对“船”做的功量度“船”动能的变化.

例题精选 1. 质量为m的人站在质量为M,长为L的静止小船的右端。小船的左端靠在岸边。当他向左走到船的左端时,船左端离岸多远? 解:人、船系统动量守恒,总动量始终为零,所以人、船动量大小始终相等。从图中可以看出,人、船的位移大小之和等于L。设人、船位移大小分别为l1、l2,则:mv1=Mv2,两 边同乘时间t,ml1=Ml2,而l1+l2=L,∴

蒸气云爆炸伤害模型

液化石油气蒸气云爆炸伤害模型 采用TNT当量法估计蒸气云爆炸的严重度。如果某次事故造成的破坏状况与xkgTNT爆炸造成的破坏状况相当,则称此次爆炸的威力为xkgTNT当量。 1)TNT当量 用TNT当量来预测蒸气云爆炸严重程度的原理是:假定一定百分比的蒸气参与了爆炸,对形成冲击波有实际的贡献,并以TNT当量来表示蒸气云爆炸的威力。计算公式见式中的各参数单位及意义见表。 TNTffTNT QQWWα8.1= 式 表3-2 参数对照表 W TNT蒸气云的TNT当量 kg α蒸气云的TNT当量系数 -- W f蒸气云中燃料的总质量 kg

Q f燃料的燃烧热 MJ/kg Q TNT TNT的爆热 MJ/kg R 死亡半径 m 备注α=4℅,1.8为地面爆炸系数 液化石油气的燃烧热Q f=45.217-46.055MJ/kg 煤气的燃烧热Q f=8.38-8.79MJ/kg TNT的爆热Q TNT=4.12~4.69 MJ/kg (1)该企业液化石油气为116t,故TNT当量计算如下:kgQQWW TNTffTNT64.8432552.4116000636.4504.08.1α8.1=×××== 因此,该危险源的爆炸事故的严重度相当于84325.64kgTNT爆炸造成的破坏状况。 死亡半径R1: 通过TNT当量计算可知,液化石油气储罐发生蒸气云爆炸所造成的死亡半径如下: ()()mWR TNT17.701000/64.843256.131000/6.1337.037.01=×=×= 重伤半径R2: 019.0-269.0119.0137.0Δ1-2-3-ZZZp S++= 231020064.0)(RpERZ==,TNTTNT QWE×=,0p=101000pa =169.7m 2R 轻伤半径R3: 019.0-269.0119.0137.0Δ1-2-3-ZZZp S++= 331030064.0)(RpERZ==,TNTTNT QWE×=,0p=101000pa =225.6m 3R 财产损失半径R4 []61231)/3175(1/6.4TNTTNT WWR+×= =4.6×43.85/1.00024 =201.71m

蒸汽云爆炸伤害半径计算模型

C.7蒸汽云爆炸模型分析 该工程建设项目原料罐区设100m 3异丁烯储罐2台,如1台不慎发生爆裂,发生火灾爆炸,其气体泄漏量计算公式如下: gh p p p A C Q d L 220+??? ? ??-=ρ 式中: Q L ——液体泄漏速度,kg/s ; C d ——液体泄漏系数; A ——裂口面积,m 2; ρ——泄漏介质密度,kg/m 3; P ——容器内介质压力,Pa ; P 0——环境压力,Pa ; g ——重力加速度; h ——裂口之上液位高度,m 。 现假设异丁烯储罐破裂形成80mm ,宽20mm 的长方形裂口,裂口之上液位高度忽略,泄漏时间取1min ,液体密度取670kg/m 3,环境大气压取0.1MPa ,介质压力取0.6MPa ,液体泄漏系数取0.5。经计算,异丁烯泄漏速度为1.695kg/s ,泄漏量为101.7kg 。 根据荷兰应用科研院提供的蒸汽云爆炸冲击波伤害半径计算公式计算伤害半径: ()3 /1C S H V N C R ??= 式中: R ——损害半径,m ;

C S——经验常数,取决于损害等级,具体损害等级见表C-5; N——效率因子,一般取10%; V——参与爆炸的可燃气体体积,m3; H C——高热值,kJ/m3,取240771.7 kJ/m3; 表C-5 损害等级表 损害 等级 Cs 人员伤害设备损坏备注 1 0.03 1%死亡于肺部伤害 >50%耳膜破裂 >50%被碎片击伤。 重创建筑物和设备 2 0.06 1%耳膜破裂。 1%被碎片击伤。 造成建筑物外表的可 修复性破坏 3 0.15 被玻璃击伤玻璃破碎 4 0.4 10%玻璃破碎 通过现假设异丁烯储罐破裂并泄漏1min,计算出泄漏量为101.7kg,折算成气体体积为40599.7704m3。异丁烯的高热值取120772.321kJ/m3。 结合表C-5中C S的值,带入公式,计算出不同损害等级的半径如下: 表C-6 损害半径表 损害 等级 Cs 人员伤害设备损坏损害半径(m)备注 1 0.03 1%死亡于肺部伤害 >50%耳膜破裂 >50%被碎片击伤 重创建筑物和设备23.66 2 0.06 1%耳膜破裂 1%被碎片击伤 造成建筑物外表的可 修复性破坏 47.32 3 0.15 被玻璃击伤玻璃破碎118.3 4 0.4 10%玻璃破碎315.42 从伤害模型的计算结果可以看出:当异丁烯储罐泄漏,假设泄漏时间1min,泄漏的异丁烯全部气化,在爆炸中心周边23.66m范围内

高中物理模型组合27讲(Word下载)爆炸反冲模型

高中物理模型组合27讲(Word 下载)爆炸反冲模 型 [模型概述] 〝爆炸反冲〞模型是动量守恒的典型应用,其变迁形式也多种多样,如炮发炮弹中的化学能转化为机械能;弹簧两端将物块弹射将弹性势能转化为机械能;核衰变时将核能转化为动能等。 [模型讲解] 例. 如下图海岸炮将炮弹水平射出,炮身质量〔不含炮弹〕为M ,每颗炮弹质量为m ,当炮身固定时,炮弹水平射程为s ,那么当炮身不固定时,发射同样的炮弹,水平射程将是多少? 解析:两次发射转化为动能的化学能E 是相同的。第一次化学能全部转化为炮弹的动能;第二次化学能转化为炮弹和炮身的动能,而炮弹和炮身水平动量守恒,由动能和动量的关系式m p E k 22 =知,在动量大小相同的情形下,物体的动能和质量成反比,炮弹的动能E m M M mv E E mv E +====2222112121,,由于平抛的射高相等,两次射程的比等于抛出时初速度之比,即:m M M v v s s +==122,因此m M M s s 2+=。 摸索:有一辆炮车总质量为M ,静止在水平光滑地面上,当把质量为m 的炮弹沿着与水平面成θ角发射出去,炮弹对地速度为0v ,求炮车后退的速度。 提示:系统在水平面上不受外力,故水平方向动量守恒,炮弹对地的水平速度大小为θcos 0v ,设炮车后退方向为正方向,那么m M mv v mv v m M -==--θθcos 0cos )(00, 评点:有时应用整体动量守恒,有时只应用某部分物体动量守恒,有时分过程多次应用动量守恒,有时抓住初、末状态动量即可,要善于选择系统,善于选择过程来研究。 [模型要点] 内力远大于外力,故系统动量守恒21p p =,有其他形式的能单向转化为动能。因此〝爆炸〞时,机械能增加,增加的机械能由化学能〔其他形式的能〕转化而来。

爆炸模型分析

19.3.1简述 爆炸是物质的一种非常急剧的物理、化学变化,也是大量能量在短时间内迅速释放或急剧转化成机械功的现象。它通常是借助于气体的膨胀来实现。 从物质运动的表现形式来看,爆炸就是物质剧烈运动的一种表现。物质运动急剧增速,由一种状态迅速地转变成另一种状态,并在瞬间内释放出大量的能。 1)爆炸的特征 一般说来,爆炸现象具有以下特征: (1)爆炸过程进行得很快; (2)爆炸点附近压力急剧升高,产生冲击波; (3)发出或大或小的响声; (4)周围介质发生震动或邻近物质遭受破坏。 一般将爆炸过程分为两个阶段:第一阶段是物质的能量以一定的形式(定容、绝热)转变为强压缩能;第二阶段强压缩能急剧绝热膨胀对外做功,引起作用介质变形、移动和破坏。 2)爆炸类型 按爆炸性质可分为物理爆炸和化学爆炸。物理爆炸就是物质状态参数(温度、压力、体积)迅速发生变化,在瞬间放出大量能量并对外做功的现象。其特点是在爆炸现象发生过程中,造成爆炸发生的介质的化学性质不发生变化,发生变化的仅是介质的状态参数。例如锅炉、压力容器和各种气体或液化气体钢瓶的超压爆炸以及高温液体金属 遇水爆炸等。化学爆炸就是物质由一种化学结构迅速转变为另一种化学结构,在瞬间放出大量能量并对外做功的现象。如可燃气体、蒸气或粉尘与空气混合形成爆炸性混合物的爆炸。化学爆炸的特点是:爆炸发生过程中介质的化学性质发生了变化,形成爆炸的能源来自物质迅速发生化学变化时所释放的能量。化学爆炸有3个要素,即反应的放热性、反应的快速性和生成气体产物。雷电是一种自然现象,也是一种爆炸。 从工厂爆炸事故来看,有以下几种化学爆炸类型:

(1)蒸气云团的可燃混合气体遇火源突然燃烧,是在无限空间中的气体爆炸; (2)受限空间内可燃混合气体的爆炸; (3)化学反应失控或工艺异常所造成压力容器爆炸; (4)不稳定的固体或液体爆炸。 总之,发生化学爆炸时会释放出大量的化学能,爆炸影响范围较大;而物理爆炸仅释放出机械能,其影响范围较小。 爆炸是物质的一种非常急剧的物理、化学变化,也是大量能量在短时间内迅速释放或急剧转化成机械功的现象。它通常是借助于气体的膨胀来实现。 从物质运动的表现形式来看,爆炸就是物质剧烈运动的一种表现。物质运动急剧增速,由一种状态迅速地转变成另一种状态,并在瞬间内释放出大量的能。 1)爆炸的特征 一般说来,爆炸现象具有以下特征: (1)爆炸过程进行得很快; (2)爆炸点附近压力急剧升高,产生冲击波; (3)发出或大或小的响声; (4)周围介质发生震动或邻近物质遭受破坏。 一般将爆炸过程分为两个阶段:第一阶段是物质的能量以一定的形式(定容、绝热)转变为强压缩能;第二阶段强压缩能急剧绝热膨胀对外做功,引起作用介质变形、移动和破坏。 2)爆炸类型 按爆炸性质可分为物理爆炸和化学爆炸。物理爆炸就是物质状态参数(温度、压力、体积)迅速发生变化,在瞬间放出大量能量并对外做功的现象。其特点是在爆炸现象发生过程中,造成爆炸发生的介质的化学性质不发生变化,发生变化的仅是介质的状态参数。例如锅炉、压力容器和各种气体或液化气体钢瓶的超压爆炸以及高温液体金属

案例家具厂火灾爆炸事故分析完整版

案例家具厂火灾爆炸事 故分析 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

案例42某家具厂火灾爆炸事故分析某家具厂厂房是一座四层楼的钢筋混凝土建筑物。第一层楼的一端是车间,另一端为原材料库房,库房内存放了木材、海绵和油漆等物品。车间与原材料库房用铁栅栏和木板隔离。搭在铁栅栏上的电线没有采用绝缘管穿管绝缘,原材料库房电闸的保险丝用两根铁丝替代。第二层楼是包装、检验车间及办公室。第三层楼为成品库。第四层楼为职工宿舍。 由于原材料库房电线短路产生火花引燃库房内的易燃物,发生了火灾爆炸事故,导致17人死亡,20人受伤,直接经济损失80多万元。 1.按照《中华人民共和国安全生产法》的要求,该厂负责人接到事故报告后,应当做什么、不得做什么? 参考答案 该厂负责人接到事故报告后应当做的是: (1)应当迅速采取有效措施组织抢救,防止事故扩大,减少人员伤亡和财产损失。 (2)立即如实报告当地负有安全生产监督管理职责的部门。 该厂负责人接到事故报告后不应当做的是: (1)不得隐瞒不报、谎报或者拖延不报。 (2)不得故意破坏现场、毁灭有关证据。 2.该事故调查组应由哪些部门组成调查组的主要职责是什么

参考答案 (1)事故调查组应包括安全生产监督管理部门、公安部门、监察部门、工会。 【《生产安全事故报告和调查处理条例》第二十二条规定,根据事故的具体情况,事故调查组由有关人民政府、安全生产监督管理部门、负有安全生产监督管理职责的有关部门、监察机关、公安机关以及工会派人组成,并应当邀请人民检察院派人参加。 事故调查组可以聘请有关专家参与调查。】 (2)该事故调查组的主要职责 ①查明事故发生的过程、人员伤亡、经济损失情况。 ②查明事故原因。 ③确定事故性质。 ④确定事故责任。 ⑤提出事故处理意见。 ⑥提出防范措施。 ⑦写出事故调查报告。 【《生产安全事故报告和调查处理条例》第二十五条事故调查组履行下列职责: (一)查明事故发生的经过、原因、人员伤亡情况及直接经济损失; (二)认定事故的性质和事故责任;

专题三 碰撞 爆炸和反冲

专题三碰撞爆炸和反冲 一、碰撞现象的特点和规律 1.碰撞的种类及特点 2. 两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律。 以质量为m1、速度为v1的小球与质量为m2的静止小球发生对心弹性碰撞为例, 则有m1v1=m1v1′+m2v2′,1 2m1v 2 1 = 1 2m1v1′ 2+ 1 2m2v2′ 2 解得v1′=(m1-m2)v1 m1+m2 ,v2′= 2m1v1 m1+m2 结论:(1)当两球质量相等时,v1′=0,v2′=v1,两球碰撞后交换速度。 (2)当质量大的球碰质量小的球时,v1′>0,v2′>0,碰撞后两球都向前运动。 (3)当质量小的球碰质量大的球时,v1′<0,v2′>0,碰撞后质量小的球被反弹回来。 3.碰撞发生的三个条件 (1)动量守恒:p1+p2=p1′+p2′ (2)动能不增加:E k1+E k2≥E k1′+E k2′或 p21 2m1+ p22 2m2≥ p1′2 2m1+ p2′2 2m2。 (3)若同向运动碰撞,则v后>v前。 [复习过关] 1.质量为1 kg的小球A以8 m/s的速率沿光滑水平面运动,与质量为3 kg的静止小球B发生正碰后,A、B两小球的速率v A和v B可能为() A.v A=5 m/s B.v A=-3 m/s

C.v B =1 m/s D.v B =6 m/s 解析 若A 、B 发生弹性碰撞,则动量和机械能均守恒,m A v 0=m A v A +m B v B 及12m A v 2 0=12m A v 2A +12m B v 2B , 解得v A = m A -m B m A +m B v 0=-4 m/s , v B =2m A m A +m B v 0=4 m/s 。 若A 、B 发生完全非弹性碰撞,则仅动量守恒,m A v 0=(m A +m B )v ,解得v = m A m A +m B v 0=2 m/s 。故A 的速度范围-4 m/s ≤v A ≤2 m/s ,小球B 的速度范围2 m/s ≤v B ≤4 m/s ,B 正确。 答案 B 2.(多选)如图1所示,半径和动能都相等的两个小球相向而行。甲球质量m 甲大于乙球质量m 乙,水平面是光滑的,两球做对心碰撞以后的运动情况可能是下列哪些情况( ) 图1 A.甲球速度为零,乙球速度不为零 B.两球速度都不为零

蒸汽云爆炸事故后果模拟分析法

蒸汽云爆炸事故后果模 拟分析法 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

蒸汽云爆炸事故后果模拟分析法 超压: 1)TNT当量 通常,以TNT当量法来预测蒸气云爆炸的威力。如某次事故造成的破坏状况与kgTNT炸药爆炸所造成的破坏相当,则称此次爆炸的威力为kgTNT当量。 蒸气云爆炸的TNT当量W TNT计算式如下: W TNT=×α×W f×Q f/Q TNT 式中,W TNT—蒸气云的TNT当量(kg) α—蒸气云的TNT当量系数,正己烷取α=; W f—蒸气云爆炸中烧掉的总质量(kg) Q f—物质的燃烧热值(kJ/kg), 正己烷的燃烧热值按×106J/kg,参与爆炸的正己烷按最大使用量 792kg计算,则爆炸能量为×109J 将爆炸能量换算成TNT当量q,一般取平均爆破能量为×106J/kg,因此 W TNT= ×α×W f×Q f /q TNT+ =××792××106/×106 =609kg 2)危害半径 为了估计爆炸所造成的人员伤亡情况,一种简单但较为合理的预测程序是将危险源周围划分为死亡区、重伤区、轻伤区和安全区。 死亡区内的人员如缺少防护,则被认为将无例外的蒙受重伤或死亡,其内径为0,外径为R ,表示外周围处人员因冲击波作用导致肺出血而死亡的概率为,它与爆炸量之间的关系为: = m 重伤区的人员如缺少防护,则绝大多数将遭受严重伤害,极少数人可能死亡或受伤。其内径就是死亡半径R1,外径记为R2,代表该处人员

因冲击波作用耳膜破损的概率为,它要求的冲击波峰值超压为44000Pa。 ?按下式计算: 冲击波超压P ?=++式中: P ?——冲击波超压,Pa; P Z——中间因子,等于; E——蒸气云爆炸能量值,J; P0——大气压,Pa,取101325 得R2= 轻伤区的人员如缺少防护,则绝大多数将遭受轻微伤害,少数人将受重伤或者平安无事。轻伤区的内径为重伤区的外径R2,外径R3,表示外边界处耳膜因冲击波作用破裂的概率为,它要求的冲击波峰值超压为17000Pa。冲击波超压P?按下式计算: ?=++P?——冲击波超压,Pa; P Z——中间因子,等于; E——蒸气云爆炸能量值,J; P0——大气压,Pa,取101325 得R3= m 安全区内人员即使无防护,绝大多数也不会受伤,安全区内径为轻伤区的外径R3,外径无穷大。 财产损失半径,指在冲击波的作用下建筑物发生三级破坏的半径,单位为m。按照英国建筑物破坏等级的划分标准规定,建筑物的三级破坏是指房屋不能居住、屋基部分或全部破坏、外墙1 ~ 2面部分破损,承重墙破损严重。财产损失半径可由下式确定。 式中: K——取值为5. 6 正常泄露: 从原料危险性及最大储存使用量两方面综合考虑,选取甲醇的存储为研究对象进行蒸汽云爆炸事故后果模拟分析。

爆炸评价模型及伤害半径计算讲解

爆炸评价模型及伤害半径计算 1、蒸气云爆炸(VCE )模型分析计算 (1)蒸气云爆炸(VCE )模型 当爆炸性气体储存在贮槽内,一旦泄漏,遇到延迟点火则可能发生蒸气云爆炸,如果遇不到火源,则将扩散并消失掉。用TNT 当量法来预测其爆炸严重度。其原理是这样的:假定一定百分比的蒸气云参与了爆炸,对形成冲击波有实际贡献,并以TNT 当量来表示蒸气云爆炸的威力。其公式如下: W TNT = 式中W TNT ——蒸气云的TNT 当量,kg ; β——地面爆炸系数,取β=1.8; A ——蒸气云的TNT 当量系数,取值范围为0.02%~14.9%; W f ——蒸气云中燃料的总质量:kg ; Q f ——燃料的燃烧热,kJ/kg ; Q TNT ——TNT 的爆热,QTNT=4120~4690kJ/kg 。 (2)水煤气储罐蒸气云爆炸(VCE )分析计算 由于合成氨生产装置使用的原料水煤气为一氧化碳与氢气混合物,具有低闪点、低沸点、爆炸极限较宽、点火能量低等特点,一旦泄漏,极具蒸气云爆炸概率。 若水煤气储罐因泄漏遇明火发生蒸气云爆炸(VCE ),设其贮量为70%时,则为2.81吨,则其TNT 当量计算为: 取地面爆炸系数:β=1.8; 蒸气云爆炸TNT 当量系数,A=4%; 蒸气云爆炸燃烧时燃烧掉的总质量, Wf=2.81×1000=2810(kg ); 水煤气的爆热,以CO 30%、H 2 43%计(氢为1427700kJ/kg,一氧化碳为10193

kJ/kg):取Q f =616970kJ/kg; TNT的爆热,取Q TNT =4500kJ/kg。 将以上数据代入公式,得 W TNT 死亡半径R1=13.6(W TNT/1000) =13.6×27.740.37 =13.6×3.42=46.5(m) 重伤半径R 2 ,由下列方程式求解: △P2=0.137Z2-3+0.119 Z2-2+0.269 Z2-1-0.019 Z2=R2/(E/P0)1/3 △P2=△P S/P0 式中: △P S ——引起人员重伤冲击波峰值,取44000Pa; P ——环境压力(101300Pa); E——爆炸总能量(J),E=W TNT ×Q TNT 。 将以上数据代入方程式,解得: △P2=0.4344 Z2=1.07 R2=1.07×(27739×4500×1000/101300)1/3 =1.07×107=115(m) 轻伤半径R 3 ,由下列方程式求解: △P3=0.137Z3-3+0.119 Z3-2+0.269 Z3-1-0.019 Z3=R3/(E/P0)1/3

爆炸和反冲(教师版)

爆炸和反冲 1.装有炮弹的大炮总质量为M ,炮弹的质量为m ,炮弹射出炮口时对地的速度为v 0,若炮筒与水平地面的夹角为θ,则炮车后退的速度大小为( ) 【答案】B 【解析】发射炮弹时,炮车只可能沿水平地面向后退,水平方向所受的摩擦力远小于火药爆炸时炮弹与炮车间的相互作用力,故系统在水平方向上动量守恒. 由mv 0cos θ=(M-m)v,得 项对. 2.质量为m 的人站在质量为M 、长为L 的静止小船的右端,小船的左端靠在岸边(如图3所示)。当他向左走到船的左端时,船左端离岸的距离是 ( ) A .L B 【答案】D 【解析】本题考查动量守恒定律。人和船组成的系统动量守恒,运动时间相同,12mv Mv =,所以12mv t Mv t =即12mx Mx =,且有12x x L +=,解得2mL x M m =+,选D 。 3.一人静止于光滑的水平冰面上,现欲离开冰面,下列方法中可行的是( ) A.向后踢腿 B.手臂向后甩 C.在冰面上滚动 D.脱下外衣水平抛出 【答案】D 【解析】把人和外衣看作系统,由动量守恒定律可知:衣服向后抛出时,人会向前反冲,故D 对.由于人体各部分总动量为零,故A 、B 皆错.由于冰面“光滑”,故人不可能在冰面上滚动,D 错. 4.如图8-5-3所示,质量为M 的物体P 静止在光滑的水平桌面上,另有一质量为m(M>m)的物体Q 以速度v 0正对P 滑行,则它们相碰后(设桌面足够大)( ) 图8-5-3 A.Q 物体一定被弹回,因为M>m B.Q 物体可能继续向前 C.Q 物体的速度不可能为零 D.若相碰后两物体分离,则过一段时间可能再碰 【答案】B 【解析】因为相碰后Q 、P 有获得相同速度的可能,所以A 错.只有M=m 且M 、m 发生 图3

蒸气云爆炸冲击波uvce

L P G罐区定量模拟评价 模拟事故及条件 液化石油气(LPG)一旦大量泄漏,极易与周围空气混合形成爆炸性混合物,如遇到明火引起火灾爆炸,其产生的爆炸冲击波及爆炸热火球热辐射破坏、伤害作用极大。LPG 罐区发生过的事故类型主要有蒸气云爆炸(UVCE)和沸腾液体扩展蒸气云爆炸(BLEVE)。蒸气云爆炸(UVCE)是指可燃气体或蒸气与空气的云状混合物在开阔地上空遇到点火源引发的爆炸。UVCE发生后的危害主要是爆炸冲击波对周围人员、建筑物、储罐等设备的伤害、破坏。沸腾液体扩展蒸气云爆炸(BLEVE)是指液化气体储罐在外部火焰的烘烤下突然破裂,压力平衡破坏,液化石油气(LPG)急剧气化,并随即被火焰点燃而产生的爆炸。BLEVE 发生后的危害主要是火球热辐射危害,同时爆炸产生的碎片和冲击波也有一定的危害。 恒源石化炼油厂液化气储罐区共有液化气储罐9台,总储量3000 m3,最大储罐1000m3。 蒸气云爆炸(UVCE)定量模拟评价 TNT当量法是一种对UVCE定量评价的主要方法,首先按超压-冲量准则确定人员伤亡区域及财产损失区域。冲击波超压破坏准则见表1: 表1冲击波超压破坏、伤害准则 1发生蒸气云爆炸(UVCE)的LPG的TNT当量W TNT 及爆炸总能量E: LPG的TNT当量:W TNT =αW LPG Q/Q TNT (1) α为LPG蒸气云当量系数(统计平均值为0.04); W LPG 为蒸气云中LPG质量(在此模拟400 m3储罐,折合约240t);Q为LPG燃烧热,46.5MJ/kg;

Q TNT 为TNT爆炸热5.066MJ/kg; 由式(1)可求得LPG的TNT当量:W TNT =88.1t; 2爆炸冲击波正相最大超压ΔP: LPG的爆炸冲击波正相最大超压: (1) 式中,—对比距离。 △P—为冲击波的正相最大超压(kPa); R—为距UVCE中心距离(m); W—为TNT质量或TNT当量(kg)。 图1冲击波的正相最大超压-距UVCE中心距离对数曲线由表1和图1可得出以下结果(表2): 表2冲击波超压破坏、伤害距离 超压/kPa 距UVCE中 心距离m 建筑物破坏程 度 超压/kPa 距UVCE中 心距离m 人伤害程度 5.88-9.81 797-491 受压面玻璃大部分 破碎 20-30 261-201 轻微伤害 20.7-27.6 263-216 油储罐破裂30-50 201-154 中等损伤68.65-98.07 132-114 砖墙倒塌50-100 154-113 严重损伤196.1-294.2 88-77 大型钢架结构破坏>100 <113 大部分死亡 沸腾液体扩展蒸气云爆炸(BLEVE)定量模拟评价 BLEVE是在LPG储罐暴露于火源时发生的,是由储罐区发生的小型火灾引发的。BLEVE 的基本特点:容器损坏;超热液体的蒸气突然燃烧;蒸气燃烧并形成火球。 BLEVE发生后的最主要危害是产生火球强热辐射,火球当量半径R可由下式计算:R=2.9W1/3() 火球持续时间t可由下式计算: t=0.45W1/3() W:发生BLEVE的LPG质量,单位kg 模拟1000 m3储罐发生BLEVE,其火球当量半径R=244m,持续时间t=38s。 定量模拟评价总结

石油、化工企业火灾爆炸事故案例及其引发原因

编订:__________________ 审核:__________________ 单位:__________________ 石油、化工企业火灾爆炸事故案例及其引发原因 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4846-33 石油、化工企业火灾爆炸事故案例 及其引发原因 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 ·这里只列举部分发生在国内外石油、化工企业的已发事故(限定在生产作业期间及生产作业准备阶段发生的事故)以及个别未遂事故,并对事故发生的直接原因进行粗略划分。 这里只列举部分发生在国内外石油、化工企业的已发事故(限定在生产作业期间及生产作业准备阶段发生的事故)以及个别未遂事故,并对事故发生的直接原因进行粗略划分。 1、工程设计失误 1)、设计单位对设计任务认识不深 某沿海企业在海边建设油罐,设计单位因无经验在设计中未对罐底外壁采取防腐措施。由于地处海边,化学腐蚀现象严重,若不对罐底外壁采取防腐措施,

则油罐建成后罐底将很快被腐蚀穿透,不仅油罐将报废,若油品大量漏失,还会引发严重的次生事故(如火灾、爆炸、环境污染等等)。建设单位在最后一次审查时发现了这个问题,并予以纠正。 某厂在建设一套采用了新技术的装置时,由于企业技术人员没有搞清新技术到底新在什么地方,向设计单位提供了过时的物料数据(对于老技术来说,这些数据仍然可用),设计单位也没有进行认真审查。装置建成投产后,核心设备每天都处在超温工况下工作。不到一年就将该核心设备烧坏,只好再花5000多万元进行改造。 辽阳石聚乙烯新线工艺是按老线工艺照搬过来的,而多处设计错误是导致20xx年2月23日发生爆炸的直接原因。A、设计单位擅自将悬浮液接收罐的安全阀开启压力从0.3 MPa,改为0.58 MPa。视镜是在0.5 MPa时破裂后引发爆炸事故的。如果设计不改变新线安全阀的起跳压力视镜很可能不会破碎,爆炸事故也就不会发生。B、原化学工业部《压力容器视镜》设计

模型组合讲解爆炸反冲模型

模型组合讲解——爆炸反冲模型 高志勇 [模型概述] “爆炸反冲”模型是动量守恒的典型应用,其变迁形式也多种多样,如炮发炮弹中的化学能转化为机械能;弹簧两端将物块弹射将弹性势能转化为机械能;核衰变时将核能转化为动能等。 [模型讲解] 例. 如图所示海岸炮将炮弹水平射出,炮身质量(不含炮弹)为M ,每颗炮弹质量为m ,当炮身固定时,炮弹水平射程为s ,那么当炮身不固定时,发射同样的炮弹,水平射程将是多少? 解析:两次发射转化为动能的化学能E 是相同的。第一次化学能全部转化为炮弹的动能;第二次化学能转化为炮弹和炮身的动能,而炮弹和炮身水平动量守恒,由动能和动量的关系 式m p E k 22 =知,在动量大小相同的情况下,物体的动能和质量成反比,炮弹的动能E m M M mv E E mv E +====2222112121,,由于平抛的射高相等,两次射程的比等于抛出时初速度之比,即:m M M v v s s +==122,所以m M M s s 2+=。 思考:有一辆炮车总质量为M ,静止在水平光滑地面上,当把质量为m 的炮弹沿着与水平面成θ角发射出去,炮弹对地速度为0v ,求炮车后退的速度。 提示:系统在水平面上不受外力,故水平方向动量守恒,炮弹对地的水平速度大小为θcos 0v ,设炮车后退方向为正方向,则m M mv v mv v m M -==--θθcos 0cos )(00, 评点:有时应用整体动量守恒,有时只应用某部分物体动量守恒,有时分过程多次应用动量守恒,有时抓住初、末状态动量即可,要善于选择系统,善于选择过程来研究。 [模型要点] 内力远大于外力,故系统动量守恒21p p =,有其他形式的能单向转化为动能。所以“爆炸”时,机械能增加,增加的机械能由化学能(其他形式的能)转化而来。

蒸气云爆炸模型

5.4.1 蒸气云爆炸模型分析 蒸气云爆炸能产生多种破坏效应,如冲击波超压、热辐射、碎片作用等,但最危险、破坏力最强的是冲击波的破坏效应。常见的冲击波伤害-破坏准则有:超压准则、冲量准则、压力-冲量准则等。本次评价采用超压准则。 蒸气云爆炸的超压使用TNT 当量法进行计算。蒸气云爆炸的TNT 当量可用下式估算: TNT f f TNT Q Q W W α8.1= 式中:1.8:地面爆炸系数; α:蒸气云的TNT 当量系数,0.04; W f :液化石油气形成的蒸汽云中参与爆炸的燃料的质量, kg ; Q f :燃料的燃烧热,kJ/kg ; Q TNT :TNT 的爆热,4520kJ/kg ; W TNT :蒸气云的TNT 当量,kg ; 根据项目单位提供的资料,液化石油气成份为50%的丙烷、50%的丁烷。查物质系数和特性表可知,丙烷燃烧热Hc/(103Btu.lb -1)为19.9,丁烷燃烧热Hc/(103Btu.lb -1)为19.4,则: 液化石油气的燃烧热Q f =19.9×103×0.5+19.4×103×0.5=19.7×103(Btu/lb )=19.7×103×1.055÷0.454=45779(kJ/kg ) 液化石油气密度取0.51t/m 3,充装系数取0.9,设泄露的液化石油

气形成的蒸汽云中参与爆炸的总体积百分数为30%,假设这个Ⅱ级供应站6m 3的液化石油气全部泄露(实际是不可能全部泄露的)。则: 6m 3的液化石油气全部发生泄漏时,液化石油气形成的蒸汽云中参与爆炸的燃料的质量W f =6×0.51×103×0.9×30%=826(kg ) W TNT =1.8×0.04×826×45779/4520=602.3(kg ) ①死亡区 该区内的人员如缺少防护,则被认为将无例外地蒙受严重伤害或死亡,其内径为零,外径记为R 0,表示外圆周处人员因冲击波作用导致肺出血而死亡的概率为50%,它与爆炸量间的关系由下式确定: 37.00)1000/(6.13TNT W R 式中:W TNT 为爆源的TNT 当量,kg 。 代入W TNT =602.3(kg ,TNT ) 得死亡半径R 0=11.3m 可以认为该圆周内没有死亡的人数正好等于圆周外死亡的人数,即死亡区内的人员将全部死亡,而死亡区外的人员将无一死亡。这一假设在破坏效应随距离急剧衰减的情况下是近似成立的。 ②重伤区 该区内的人员如缺少防护,则绝大多数将遭受严重伤害,极少数人可能死亡或受伤。其内径就是死亡半径R 0,外径记为R 1,代表该处人员因冲击波作用耳膜破裂的概率为50%,它要求冲击波峰值超压为44000Pa 。冲击波超压△Ps 可按下式计算: △Ps=0.137Z-3+0.119Z-2-0.019

相关文档
最新文档