干涉法测微小量-实验报告

干涉法测微小量-实验报告
干涉法测微小量-实验报告

干涉法测微小量

创建人:系统管理员总分:100

实验目的

学习掌握利用光的干涉原理检验光学元件表面集合特征的方法,用劈尖的等厚干涉测量细丝直径的方法,同时加深对光的波动性的认识。

实验仪器

低频信号发生器、示波器、超声声速测定仪、频率计等

实验原理

1、用牛顿环测平凸透镜的曲率半径

图1.牛顿环干涉条纹的形成

当曲率很大的平凸透镜的凸面放在一平面玻璃上时,会产生一组以O为中心的明暗相接的同心圆环,称为牛顿环。

如图,1、2两束光的光成差2

δ+

=?,式中λ为入射光的波长,δ是空气层厚度,空气

折射率1n ≈。如果第m 个暗环处空气厚度为m δ,则有

故得到:2

m m λ

δ?

=

2、 劈尖的等厚干涉测细丝直径

图2.劈尖干涉条纹的形成

两片叠在一起的玻璃片,在它们的一端口夹一直径待测的细丝,于是两片玻璃之间便形成一空气劈尖。当用单色光垂直照射时,会产生干涉现象。因为光程差相等的地方是平行两玻璃片交线的直线,所以等厚干涉条纹是一组明暗相间的、平行于交线的直线。设入射光波长为

λ,则得到第m 级暗纹处空气劈尖的的厚度2

m λ

?

=d 。由此可知,m=0时,d=0,即在两

玻璃片交线处,为零级暗条纹。如果在细丝处呈现m=N 级条纹,则待测细丝直径2

λ

?=N d 。

实验内容

1、 测平凸透镜的曲率半径 (1)观察牛顿环

1) 将牛顿环仪按图3所示放置在读数显微镜镜筒和入射光调节木架的玻璃片的下方,木架上的透镜要正对着钠光灯窗口,调节玻璃片角度,使通过显微镜目镜观察时视场最亮。

图3.观测牛顿环实验装置图

2) 调节目镜,看清目镜视场内的十字叉丝后,使显微镜筒下降到接近玻璃片,然后缓慢上升,直到观察到干涉条纹,再微调玻璃片角度及显微镜,使条纹更清楚。 (2)测牛顿环直径

1) 使显微镜的十字叉丝交点与牛顿环中心重合,并使水平方向的叉丝与标尺平行(与显微镜筒移动方向平行)。

2) 转动显微镜测微鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,直到竖丝与第35环相切为止。

3) 反向转动鼓轮,当竖丝与第35环相切时,记录读书显微镜上的位置读数

,然后继

续转动鼓轮,使竖丝依次与第25、20、15、10、5环相切,顺次记下读数d 25,d 20,d 15,d 10,d 5。 4) 继续转动鼓轮,越过干涉圆环中心,记下竖丝依次与另一边的5、10、15、20、25、30环相切时的读数'

30'

25'

20'

15'

10'

5,,,,,d d d d d d 。 5) 重复测量两次,实验共测得三组数据。

(3)用逐差法处理数据

第30环直径'

303030d d D -=,同理,可求出D 25,D 20....D 5,式(7)中,取n=15,求出

2215m m D D -+,代入式(7)中计算R 和R 的标准差。

2、 测细丝直径 (1)观察干涉条纹

将劈尖盒放在曾放置牛顿环的位置,同前法调节,观察到干涉条纹,使条纹最清晰。 (2)测量

1) 调节显微镜及劈尖盒的位置,当转动测微鼓轮使镜筒移动时,十字叉丝的竖丝要保持与条纹平行。

2) 在劈尖面的三个不同部分,测出20条暗纹的总长度,测三次求其平均值及单位长度的干涉条纹数l

n 20

=

。 3) 测劈尖两玻璃片交线处到夹细线处的总长度L ,测三次,求平均值。 4) 由公式求细丝直径2

202

2

λλ

λ

???

=?=?=l L n

L N d 。 3、 计算涉及相关公式

数据处理

实验内容一:测平凸透镜曲率半径总分值:45 (1)计算干涉环半径及不确定度

◆ (不计分)原始测量数据如下(表格中数据单位均为mm):

环数30252015105 d1(mm)

d1'(mm)

D1(mm)

d2(mm)

d2'(mm)

D2(mm)

d3(mm)

d3'(mm)

D3(mm)

◆ (15分)干涉环的直径

环数 30 25 20 15 10 5 D 平均值(mm )

Ud (mm )

(2)计算2

215m m D D -+及不确定度

◆ (6分)根据以上数据,计算结果如下:

m

5 10 15 2215m m D D -+(mm 2)

◆ (5分)2215m m D D -+(mm 2)=

◆ (3分)2

215m

m D D u

-+(mm 2)=

(3)计算λ

n D D R m

n m 42

2-=+及不确定度

◆ (8分)已知光波长589.3nm,平凸透镜曲率半径的平均值R(m)=

◆ (6分)平凸透镜曲率半径的不确定度

U(m)=

R

◆ (2分)故平凸透镜曲率半径的最终表达式为R(单位:m)=

实验内容二:测细丝直径总分值:30测细丝直径

◆ (不计分)劈尖长度L(mm)=

◆ (不计分)光波长(nm)=

◆ (9分)20条暗纹长度(三次测量,mm):

次数n123 l0(mm)

l0’(mm)

l(mm)

◆ (5分)平均值l(mm)=

◆ (4分)伸展不确定度l U(mm)=

◆ (6分)那么细丝直径平均值d (mm)=

◆ (5分)那么细丝直径不确定度d U (mm)=

◆ (1分)细丝直径最终结果为:d(mm)=

思考题 总分值:15 思考题1 总分值:10

参看下图,从空气膜上下表面反射的光线相遇在D 处发生相干,其光程差为

2

λ

+

-++=?AD CD BC AB ,为什么写2

δ+

=??

答案:

思考题2 总分值:5

牛顿环的中心级次是多少?你实验用的牛顿环中心是亮还是暗?为什么?

答案:

等厚干涉实验报告(2)

大学物理实验报告(等厚干涉) 、实验目的: 1?、观察牛顿环和劈尖的干涉现象。 2、了解形成等厚干涉现象的条件极其特点。 3、用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚度。 二、实验原理: 1.牛顿环 牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成,结构如图所示。 当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空 气膜,经空气膜和玻璃之间的上下界面反射的两束光存在光程差,它们在平凸透镜的凸面(底面)相遇后将发生干涉,干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆,称为牛顿环(如图所示。由牛顿最早发现)。由于同一干涉圆环各处的空气薄膜厚度相等,故称为等厚干涉。牛顿环实验装置的光路图如下图所示: 设射入单色光的波长为入,在距接触点r k处将产生第k级牛顿环,此处对应的空气膜厚度为d k,则空 气膜上下两界面依次反射的两束光线的光程差为 - 扎 =2nd k 亠— 2 式中,n为空气的折射率(一般取1),入/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。 下界面上的两束反射光的光程差存在两种情况: 根据干涉条件,当光程差为波长的整数倍时干涉相长, 反之为半波长奇数倍时干涉相消, 故薄膜上 2k K=1,2,3,….,明环

(2k 1) 2K=0,1,2,….,暗环

2 2 2 由上页图可得干涉环半径r k,膜的厚度d k与平凸透镜的曲率半径R之间的关系R =(R-d k) - r k o o 由于dk远小于R,故可以将其平方项忽略而得到2Rd k二r k o结合以上的两种情况公式,得到: *5 r k =2Rd k二kR,, k= 0,1,2…,暗环 由以上公式课件,r k与d k成二次幕的关系,故牛顿环之间并不是等距的,且为了避免背光因素干扰, 般选取暗环作为观测对象。 而在实际中由于压力形变等原因,凸透镜与平板玻璃的接触不是一个理想的点而是一个圆面;另外镜 要作图求出斜率4R,,代入已知的单色光波长,即可求出凸透镜的曲率半径R o 2.劈尖 将两块光学平玻璃叠合在一起,并在其另一端插入待测的薄片或细丝(尽可能使其与玻璃的搭接线平行) 则在两块玻璃之间形成以空气劈尖,如下图所示: 当单色光垂直射入时,在空气薄膜上下两界面反射的两束光发生干涉;由于空气劈尖厚度相等之处是平行于两玻璃交线的平行直线,因此干涉条纹是一组明暗相间的等距平行条纹,属于等厚干涉。干涉条件如下: k =2d k - =(2k 1) 2 k=0, 1,2,… 可知,第k级暗条纹对应的空气劈尖厚度为 面沾染回程会导致环中心成为一个光斑, 这些都致使干涉环的级数和半径无法准确测量。而使用差值法消去附加的光程差,用测量暗环的直径来代替半径, 都可以减少以上类型的误差出现。由上可得: 2 2 d m — d n R 二--------- 4(m - n) ■ 式中,D m、D n分别是第m级与第n级的暗环直径,由上式即可计算出曲率半径由于式中使用环数差m-n代替了级数k,避免了圆环中心及暗环级数无法确定的问题。 凸透镜的曲率半径也可以由作图法得出。测得多组不同的D m和m,根据公式D2m = 4R m , 可知只 Hi

光通信实验报告

竭诚为您提供优质文档/双击可除 光通信实验报告 篇一:光通信实验报告 信息与通信工程学院 光纤通信实验报告 班姓学 级:名:号: 班内序号:17 日 期:20XX年5月 一、oTDR的使用与测量 1、实验原理 oTDR使用瑞利散射和菲涅尔反射来表征光纤的特性。瑞利散射是由于光信号沿着光纤产生无规律的散射而形成。oTDR就测量回到oTDR端口的一部分散射光。这些背向散射信号就表明了由光纤而导致的衰减(损耗/距离)程度。形成的轨迹是一条向下的曲线,它说明了背向散射的功率不断减小,这是由于经过一段距离的传输后发射和背向散射的信

号都有所损耗。 给定了光纤参数后,瑞利散射的功率就可以标明出来,如果波长已知,它就与信号的脉冲宽度成比例:脉冲宽度越长,背向散射功率就越强。瑞利散射的功率还与发射信号的波长有关,波长较短则功率较强。也就是说用1310nm信号产生的轨迹会比1550nm信号所产生的轨迹的瑞利背向散射要高。 在高波长区(超过1500nm),瑞利散射会持续减小,但另外一个叫红外线衰减(或吸收)的现象会出现,增加并导致了全部衰减值的增大。因此,1550nm是最低的衰减波长;这也说明了为什么它是作为长距离通信的波长。很自然,这些现象也会影响到oTDR。作为1550nm波长的oTDR,它也具有低的衰减性能,因此可以进行长距离的测试。而作为高衰减的1310nm或1625nm波长,oTDR的测试距离就必然受到限制,因为测试设备需要在oTDR轨迹中测出一个尖锋,而且这个尖锋的尾端会快速地落入到噪音中。 菲涅尔反射是离散的反射,它是由整条光纤中的个别点而引起的,这些点是由造成反向系数改变的因素组成,例如玻璃与空气的间隙。在这些点上,会有很强的背向散射光被反射回来。因此,oTDR就是利用菲涅尔反射的信息来定位连接点,光纤终端或断点。 oTDR的工作原理就类似于一个雷达。它先对光纤发出一

等厚干涉--牛顿环实验报告

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪

三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 2222222)(r d Rd R r d R R ++-=+-= 由于r R >>,可以略去d 2得

R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来2λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1,0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何中心。实际测量时,我们可以通过测量距中心较远的两个暗环半径r m 和r n 的平方差来计算曲率半径R 。因为 λMR r m =2 λnR r n =2 两式相减可得 λ)(22n m R r r n m -=-

一种光电方法测量微小位移

一种光电方法测量微小位移 摘要 高精度的测量广泛的应用于微电子、超精加工、生物工程、未来医学、航天技术、材料科学、纳米操作等高技术产业中,且成为这些领域的关键技术,也成为许多领域不断进步的制约性因素。 干涉的方法测量长度是激光在几何量测量中最重要的应用。以迈克尔逊干涉仪为代表的光波干涉法一直是公认的精密测量长度和位移的有力手段。激光的出现与发展给干涉测量长度提供了极好的相干光源,光波干涉技术测量逐渐成为科研与生产中精密测量的重要手段。但是测量方法受限于光源单色性差和人眼计数的误差,再加许多其它客观外部因素的存在,很难统计干涉条纹,从而造成很大的误差。 为了提高测量的精确度,本文采用线阵CCD为条纹记录工具,通过后台电路,对干涉条纹的图像进行分析得到微小位移量。本文的主要研究内容有: 第一、线阵CCD的结构及工作原理。 第二、迈克尔逊干涉实验的分析研究,阐明利用激光干涉测量位移量的原理,设计出简单实用的干涉测量光路。 第三、用设计的实验装置进行实际测量,并对其测量数据进行数据处理和结果分析。 最后,根据实验结果,比对和分析采用的实验方法的可行性和不足,并对后继工作提出一些需要改进和完善的地方。 关键词:微小位移,激光,干涉条纹,干涉条纹间距,线阵CCD

one ABSTRACT KEY WORDS:

目录 前言 (1) 第一章线阵CCD的数据采集系统分析 (3) §1.1 CCD的分类 (3) §1.2 CCD的工作原理 (4) §1.2.1 光电转换 (4) §1.2.2 电荷的存储 (5) §1.2.3 电荷的转移 (6) §1.2.4 电荷的检测 (7) §1.3 CCD的工作原理 (8) 第二章激光干涉的原理介绍及测量分析 (10) §2.1 激光及激光干涉 (10) §2.2 国内外关于高精度测量技术状况 (11) §2.2.1 国外现状分析 (11) §2.2.2 国内的研究现状 (12) §2.3 CCD的工作原理 (13) §2.4 用激光干涉测量位移不足分析 (15) 第三章利用干涉和线阵CCD设计微位移测量 (17) §3.1 实验测量 (17) §3.2 实验测量结果 (18) 第四章误差及影响条件分析 (20) §4.1 系统误差 (20) §4.2 余弦误差 (20) §4.3 死区误差 (20) §4.4 波长修正误差 (21) §4.5 热膨胀误差 (21) 结论 (22)

OTDR实验报告

实验名称:自构建光纤链路的otdr测试实验实验日期:指导老师:林远芳学生姓 名:同组学生姓名:成绩: 一、实验目的和要求二、实验内容和原理三、主要仪器设备四、实验结果记录 与分析 五、数据记录和处理六、结果与分析七、讨论、心得 一、实验目的和要求 1. 了解瑞利散射及菲涅尔反射的概念及特点; 2. 熟练掌握裸纤端面切割、清洁、连接对准方法及熔接技术; 3. 熟悉光时域反射仪(optical time domain reflectometer,以下简称 otdr)的工 作原理、操作方法和使用要点,能利用 otdr 测试、判断和分析光纤链路中的事件点位置及 其产生原因,提高工程应用能力。 二、实验内容和原理 1.otdr 测试基本理论 散射:光遇到微小粒子或不均匀结构时发生的一种光学现象,此时光传输不再具有良好 的方向性。 瑞利散射:当光在光纤中传播时,由于光纤的基本结构不完美(光纤本身的缺陷、制作 工艺和材料组分存在着分子级大小的结构上的不均匀性),一部分光纤会改变其原有传播方向 而向四周散射(图 1-3-1),引起光能量损失,其强度与波长的 4 次方成反比,随着波长的 增加,损耗迅速下降。 后向或背向散射:瑞利散射的方向是分布于整个立体角的,其中一部分散射光纤和原来 的传播方向相反,返回到光纤的注入端,形成连续的后向散射回波。光纤中某一点的后向回 波可以反映出光纤中光功率的分布情况,椐此可以测试出光纤的损耗。 菲涅尔反射:当光纤由一种媒质进入另一种媒质时会产生的一种反射,其强度与两种媒 质的相对折射率的平方成正比。如图1-3-2 所示,一束能量为p0 的光,由媒质 1(折射率 为nl)进入媒质 2(折射率为 n2)产生的反射信号为p1,则 ?n1?n2p1???n?n2?1? ???2 衰减:指信号沿链路传输过程中损失的量度,以 db 表示。衰减是光纤中光功率减少量 的一种度量,光纤内径中的瑞利散射是引起光纤衰减的主要原因。通常,对于均匀光纤来 说,可用单位长度的衰减,即衰减系数来反映光纤的衰减性能的好坏。 当光脉冲通过光纤传输时,沿光纤长度上的每一点均会引起瑞利散射。这种散射向着四 面八方,其中总有一部分会沿着纤轴反向传输到输入端。由于主要的散射是瑞利散射,并且 瑞利散射光的波长与入射光的波长相同,其光功率与该散射点的入射光功率成正比,光纤中 散射光的强弱反映了光纤长度上各点衰减大小,光纤长度上的某一点散射信号的变化,可以 通过后向散射方法独立地探测出来,而不受其它点散射信号改变的影响,所以测量沿纤轴返 回的后向瑞利散射光功率就可以获得光沿着光纤传输时的衰减及其它信息。 基于后向散射法设计的测量仪器称为 otdr,其突出优点在于它是一种非破坏性的单端测 量方法,测量只需在光纤的一端进行。它利用激光二极管产生光脉冲,经定向耦合器注入被 测光纤,然后在同一端测量沿光纤轴向向后返回的散射光功率返回信号与时间的关系,将时 间值乘以光在光纤中的传播速度以计算出距离,在屏幕上显示返回信号的相对功率与距离之 间的关系曲线和测试结果。国内厂家主要是中国电子科技集团公司第四十一研究所,国外的 品牌主要有安捷伦(agilent)、安立(anritsu)、exfo、wavetek 等。 2.光纤的连接 光纤连接时的耦合损耗因素基本上可分为两大类:一类是固有的,是被连接光纤本身特 性参数的差异,比如纤芯直径、模场直径、数值孔径差异、纤芯或模场的同心度偏差、纤芯

等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告 Final revision on November 26, 2020

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在 一块光学玻璃平板(平镜)上构成的,如图。平凸透 镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两

光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为

干涉法测量微小量

干涉法测微小量 (本文内容选自高等教育出版社《大学物理实验》) 光的干涉现象表明了光的波动性质,干涉现象在科学研究与计量技术中有着广泛的应用。在干涉现象中,不论是何种干涉,相邻干涉条纹的光程差的改变都等于相干光的波长,可见光的波长虽然很小,但干涉条纹间的距离或干涉条纹的数目却是可以计量的。因此,通过对干涉条纹数目或条纹移动数目的计量,可得到以光的波长为单位的光程差。 利用光的等厚干涉现象可以测量光的波长,检验表面的平面度、球面度、光洁度,精确的测量长度、角度,测量微小形变以及研究工作内应力的分布等。 通过本次实验,学习、掌握利用光的干涉原理检验光学元件表面几何特征的方法,用劈尖的等厚干涉测量细丝直径的方法,同时加深对光的波动性的认识。 实验原理 1. 用牛顿环测平凸透镜的曲率半径 当曲率半径很大的平凸透镜的凸面放在一平面玻璃上时,见图,在透镜的凸面与平面 之间形成一个从中心O 向四周逐渐增厚的空气层。当单色光垂直照射下来时,从空气层上下两个表面反射的光束1和光束2在上表面相遇时产生干涉。因为光程差相等的地方是以O 点为中心的同心圆,因此等厚干涉条纹也是一组以O 点为中心的明暗相间的同心圆,称为牛顿环。由于从下表面反射的光多走了二倍空气层厚度的距离,以及从下表面反射时,是从光疏介质到光密介质而存在半波损失,故1、2两束光的光程差为 2 2λ δ+ =? (1)

式中λ为入射光的波长,δ是空气层厚度,空气折射率1≈n 。 当程差Δ为半波长的奇数倍时为暗环,若第m 个暗环处的空气层厚度为m δ,则有 ...3,2,1,0,2 ) 12(2 2=+=+ =?m m m λ λ δ 2 λ δ? =m m (2) 由图中的几何关系22 2)(m m R r R δ-+=,以及一般空气层厚度远小于所使用的平凸透镜的曲率 半径R ,即R m <<δ,可得 R r m m 22 =δ (3) 式中r m 是第m 个暗环的半径。由式(2)和式(3)可得 λmR r m =2 (4) 可见,我们若测得第m 个暗环的半径r m 便可由已知λ求R ,或者由已知R 求λ了。但是,由于玻璃接触处受压,引起局部的弹性形变,使透镜凸面与平面玻璃不可能很理想的只以一个点相接触,所以圆心位置很难确定,环的半径r m 也就不易测准。同时因玻璃表面的不洁净所引入的附加程差,使实验中看到的干涉级数并不代表真正的干涉级数m 。为此,我们将式(4)作一变换,将式中半径r m 换成直径D m ,则有 λmR D m 42 = (5)

干涉法测微小量思考题

干涉法测微小量 1. 从空气膜上下表面反射的光线相遇在D 处发生相干,为什么将光程差 2AD CD BC AB λ+-++=?写成2 2λδ+=?? 答:1.实验所测量的平凸透镜的曲率半径很大,其凸面与平 面玻璃的夹角很小,因此,当光线垂直照射下来时,光线 在空气层上表面的折射角和反射角都很小,于是可将折射 角和反射角忽略,近似认为入射光线、折射光线以及反射 光线在同一条直线上,在加上光在下表面反射时的半波损失,即得式①。 2. 我认为这里由于R 的值是比较大的,故光线在空气膜上下表面发生的反射角度偏差很小,又由于很小,在该范围内ABCD 近似在一条直线上,是可以使用近似AB+BC+CD-AD=2 而不影响结果的。 3.由于半径近1m ,而BO 只有几个毫米,故夹角极小,最多只有 rad 105.23-? ,于 是空气层的上下两表面可以看作平行平面,此时: δ==BC AB CD AD = 所以 2 22λδλ+ =+ -++=?AD CD BC AB 2.牛顿环的中心级次是多少?是亮斑还是暗斑?你试验用的牛顿环中心是亮还是暗?为什么? 答:1.因为牛顿环中心的空气层厚度为 ,故其级次为 ; 由式①可知,照射到牛顿环中心的光线的光程差为 ,是半波长的奇数倍,故牛顿环中心是暗斑,我实验所用的牛顿环中心是暗斑,与分析结果吻合。 2.(1)牛顿环的中心级次是0(由式而知m=0);(2)理论上应该是暗斑(由式知其为暗斑);(3)此次试验用的牛顿环中间有大部分区域都是暗的;(4)因为在中心处凸平面镜与平面玻璃之间存在挤压形变,形成一块接触区域,在这一区域内由为半波长的奇数倍,故应为暗区。 3.

用双棱镜干涉测光波波长的实验报告

用双棱镜干涉测光波波长的实验报告 【实验目的】 1.掌握用双棱镜获得双光束干涉的方法,加深对干涉条件的理解. 2.学会用双棱镜测定钠光的波长. 【实验仪器】 光具座,单色光源(钠灯),可调狭缝,双棱镜,辅助透镜(两片),测微目镜,白屏. 【实验原理】 如果两列频率相同的光波沿着几乎相同的方向传播,并且它们的位相差不随时间而变化,那么在两列光波相交的区域,光强分布是不均匀的,而是在某些地方表现为加强,在另一些地方表现为减弱(甚至可能为零),这种现象称为光的干涉. 菲涅耳利用图1所示的装置,获得了双光束的干涉现象.图中AB 是双棱镜,它的外形结构如图2所示,将一块平玻璃板的一个表面加工成两楔形板,端面与棱脊垂直,楔角A 较小(一般小于10).从单色光源发出的光经透镜L 会聚于狭缝S ,使S 成为具有较大亮度的线状光源.从狭缝S 发出的光,经双棱镜折射后,其波前被分割成两部分,形成两束光,就好像它们是由虚光源S1和S2发出的一样,满足相干光源条件,因此在两束光的交叠.区域P1P2内产生干涉.当观察屏P 离双棱镜足够远时,在屏上可观察到平行于狭缝S 的、明暗 相间的、等间距干涉条纹. 图1 图2 设两虚光源S1和S2之间的距离为d ',虚光源所在的平面(近似地在光源狭缝S 的平面内)到观察屏P 的距离为d ,且d d <<',干涉条纹间距为x ?,则实验所用光源的波长λ为 x d d ?'= λ 因此,只要测出d '、d 和x ?,就可用公式计算出光波波长. 【实验内容】 1.调节共轴 (1)按图1所示次序,将单色光源M ,会聚透镜L ,狭缝S ,双棱镜AB 与测微目镜P 放置在光具座上.用目视法粗略地调节它们中心等高、共轴,棱脊和狭缝S 的取向大体平行. (2)点亮光源M ,通过透镜L 照亮狭缝S ,用手执白纸屏在双棱镜后面检查:经双棱镜折射后的光束,有否叠加区P1P2 (应更亮些)?叠加区能否进入测微目镜? 当移动白屏时,叠加

干涉法测微小量(已批阅)教学文案

干涉法测微小量(已批 阅)

实验题目:干涉法测微小量 实验目的:学习、掌握利用光的干涉原理检验光学元件表面集合特征的方法,用劈尖的等厚 干涉测量细丝直径的方法,同时加深对光的波动性的认识。 实验原理:1、用牛顿环测平凸透镜的曲率半径 当曲率很大的平凸透镜的凸面放在一平面玻璃上时,会 产 生一组以O 为中心的明暗相间的同心圆环,称为牛顿环。 如图,1、2两束光的光程差为2 2λδ+=?,式中λ为入射 光 的波长,δ是空气层厚度,空气折射率1≈n 。如果第m 个暗环处空气厚度为δm ,则有 ...3,2,1,0,2 )12(22=+=+ =?m m m λ λ δ 故得到:2 λ δ? =m m 。 利用几何关系有2 2 2 )(m m R r R δ-+=,并根据R m <<δ,得到R r m m 22=δ,联系以上两式, 有 λmR r m =2 换成直径,并考虑第m+n 个环和第m 个环,有λR n m D n m )(42 +=+, λmR D m 42=,故λ n D D R m n m 42 2-= + 那么测量出D m+n 和D m 就可以根据这个表达式得到R 。 2、劈尖的等厚干涉测细丝直径

两片叠在一起的玻璃片,在它们的一端夹一直径待测的细丝, 于 是两玻璃片之间形成一空气劈尖。当用单色光垂直照射时,会产生干涉现象。因为程差相等的地方是平行于两玻璃片交线的直线,所以等厚干涉条纹是一组明暗相间、平行于交线的直线。 设入射光波为λ,则得第m 级暗纹处空气劈尖的厚度2 λm d =。 由此可知,m=0时,d=0,即在两玻璃片交线处,为零级暗条纹。 如果在细丝处呈现m=N 级条纹,则待测细丝直径2 λ?=N d 。 3、利用干涉条纹检验光学表面面形 实验内容: 1. 测平凸透镜的曲率半径 (1) 观察牛顿环 1) 将牛顿环仪按图7.2.1-5所示放置在读数显微镜镜筒和入射光调节木架的玻璃片的下方,木架上的透镜要正对着钠光灯窗口,调节玻璃片角度,使通过显微镜目镜观察时视场最亮。 2) 调节目镜,看清目镜视场的十字叉丝后,使显微镜筒下降到接近玻璃片,然后缓慢上升,直到观察到干涉条纹,再微调玻璃片角度及显微镜,使条纹更清楚。 (2) 测牛顿环直径 1) 使显微镜的十字叉丝交点与牛顿环中心重合,并使水平方向的叉丝与标尺平行(与显微镜筒移动方向平行)。

等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告 This manuscript was revised on November 28, 2020

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光 学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻 璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的

一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环

等厚干涉实验报告记录

等厚干涉实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

大学物理实验报告(等厚干涉) 一、实验目的: 1.、观察牛顿环和劈尖的干涉现象。 2、了解形成等厚干涉现象的条件极其特点。 3、用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚度。 二、实验原理: 1.牛顿环 牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成,结构如图所示。 当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空气膜,经空气膜和玻璃之间的上下界面反射的两束光存在光程差,它们在平凸透镜的凸面(底面)相遇后将发生干涉,干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆,称为牛顿环(如图所示。由牛顿最早发现)。由于同一干涉圆环各处的空气薄膜厚度相等,故称为等厚干涉。牛顿环实验装置的光路图如下图所示: 设射入单色光的波长为λ,在距接触点r k处将产生第k级牛顿环,此处对应的空气膜厚度为d k,则空气膜上下两界面依次反射的两束光线的光程差为 2 2 λ δ+ = k k nd 式中,n为空气的折射率(一般取1),λ/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。 根据干涉条件,当光程差为波长的整数倍时干涉相长,反之为半波长奇数倍时干涉相消,故薄膜上下界面上的两束反射光的光程差存在两种情况: 2 )1 2( 2 2 2 2 λ λ λ δ + = + = k k d k k K=1,2,3,… K=0,1,2,…

干涉法测量杨氏模量

应用光的干涉现象测量金属丝的杨氏弹性模量 Application of optical interference phenomenon measuring the young's elasticity modulus of wire 青岛科技大学高分子科学与工程学院高材111 王冠男学号1103010103 【引言】:传统的杨氏模量测量仪使用复杂,同时不容易调节,测量误差较大,故改进。应用光的干涉现象可以对微小形变,微小角度等进行测量。使用劈尖干涉仪和杨氏模量测量仪的组合装置,用金属因拉力造成的微小形变代替头发丝的直径,进行测量,省略了对杨氏模量测量仪的水平调节过程,同时增加了实验的精确度。 Preface: The traditional young's modulus measuring instrument is complex to be used, and at the same time, not easy to control, and the measurement error is big, so I have improved it. Using the application of optical interference phenomenon , so that we can measure the small deformation, small Angle, etc. Use cleft tip interferometer and young's modulus measuring instrument combination device, with metal for tension caused by small deformation instead of the diameter of the hair, measurement, omitted the adjustment process of young's modulus measuring instrument,at the same time increased the accuracy of the experiment 关键词:光的干涉,杨氏模量,测量微小形变 Keywords: interference of light, young's modulus, measure the small deformation 【实验原理】 1、劈尖干涉原理 劈尖干涉现象在科学研究领域与计量技术中有广泛的应用,如测量光波波长,检验表面的平面度、球面度、粗糙度,精确测量长度、角度、微小形变,以及研究工件内的应力分布等。 如图1所示,平行光由折射率为的介质中垂直入射折射率为住的劈尖.在劈尖上表面处入射光线一部分会反射,一部分会折射进入劈尖内部.如果劈尖的夹角很小,可以认为反射光线原路返回,折射光线垂直于劈尖下表面,折射光线经劈尖下表面反射后进入劈尖上表面在入射点与反射光线发生干涉r7].干涉的光程差为: △=2d+(λ/2) (1) 其中, (λ/2)为附加光程差( n1

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告 一、实验题目:迈克尔逊干涉仪 二、实验目的: 1. 了解迈克尔逊干涉仪的结构、原理和调节方法; 2. 观察等倾干涉、等厚干涉现象; 3. 利用迈克尔逊干涉仪测量He-Ne激光器的波长; 三、实验仪器: 迈克尔逊干涉仪、He-Ne激光器、扩束镜、观察屏、小孔光阑四、实验原理(原理图、公式推导和文字说明): 在图M 2′是镜子M 2 经A面反射所成的虚像。调整好的迈克尔逊干涉仪,在 标准状态下M 1、M 2 ′互相平行,设其间距为d.。用凸透镜会聚后的点光源S是 一个很强的单色光源,其光线经M 1、M 2 反射后的光束等效于两个虚光源S 1 、S 2 ′ 发出的相干光束,而S 1、S 2 ′的间距为M 1 、M 2 ′的间距的两倍,即2d。虚光源 S 1、S 2 ′发出的球面波将在它们相遇的空间处处相干,呈现非定域干涉现象,其 干涉花纹在空间不同的位置将可能是圆形环纹、椭圆形环纹或弧形的干涉条纹。 通常将观察屏F安放在垂直于S 1、S 2 ′的连线方位,屏至S 2 ′的距离为R,屏上 干涉花纹为一组同心的圆环,圆心为O。 设S 1、S 2 ′至观察屏上一点P的光程差为δ,则 )1 /) (4 1 ( ) 2 ( 2 2 2 2 2 2 2 2 2 - + + + ? + = + - + + = r R d Rd r R r R r d R δ (1) 一般情况下d R>>,则利用二项式定理并忽略d的高次项,于是有

??? ? ??+++=? ??? ??+-++?+=)(12)(816)(2)(4222 22222222222 2 r R R dr r R dR r R d R r R d Rd r R δ (2) 所以 )sin 1(cos 22θθδR d d + = (3) 由式(3)可知: 1. 0=θ,此时光程差最大,d 2=δ,即圆心所对应的干涉级最高。旋转微调鼓轮使M 1移动,若使d 增加时,可以看到圆环一个个地从中心冒出,而后往外扩张;若使d 减小时,圆环逐渐收缩,最后消失在中心处。每“冒出”(或“消失”)一个圆环,相当于S 1、S 2′的距离变化了一个波长λ大小。如若“冒出”(或“消失”)的圆环数目为N ,则相应的M 1镜将移动Δd ,显然: N d /2?=λ (4) 从仪器上读出Δd 并数出相应的N ,光波波长即能通过式(4)计算出来。 2. 对于较大的d 值,光程差δ每改变一个波长所需的θ的改变量将减小,即两相邻的环纹之间的间隔变小,所以,增大d 时,干涉环纹将变密变细。 五、实验步骤 六、实验数据处理(整理表格、计算过程、结论、误差分析): m m 105-5?=?仪 N=30

微波光学实验报告

微波光学实验报告 一、实验目的与实验仪器 1.实验目的 (1)学习一种测量微波波长的方法。 (2)观察微波的衍射现象并进行定量测量。 (3)测量微波的布拉格衍射强度分布。 2.实验仪器 微波分光仪、分束玻璃板、固定和移动反射板、单缝板、双缝板、模拟晶体等。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 微波是一种波长处于1mm~1m之间的电磁波,范围为3×102~3×105MHz之间。微波也具有衍射、干涉等性质。 1.用微波分光仪(迈克尔逊干涉 仪)测微波波长 用迈克尔逊干涉仪测波长 光路图如上。设微波波长为λ, 若经M1和M2反射的两束波波 程差为Δ,则当满足 Δ = kλ(k = ±1,±2,…) 时,两束波干涉加强,得到各级 极大值;当满足 Δ = (k +)λ(k = 0,±1,±2,…) 时,两束波干涉减弱,得到各级极小值。

将反射板M2沿着微波传播的方向移动d,则波程差改变了2d. 若从某一极小值开始移动可动反射板M2,使接收喇叭收经过N个极小值信号,即电流示数出现N个极小值,读出M2移动的总距离L,则有: 2L = N·λ 从而λ = 由此可见,只要测定金属板位置的该变量L和出现接收到信号幅度最小值的次数N,可以求出微波波长。 2.微波的单缝衍射实验 当微波入射到宽度和其波长差不多的一个狭缝时,会发生衍射现象。在狭缝后面的衍射屏上出现衍射波强度不均匀,中央最强且最宽,从中央向两边微波衍射强度迅速减小。 当θ = 0时,衍射波强度最大,为中央零级极大; 其他次级强所在位置为: asinθ = ±(k + )λ(k = 1,2,…) 暗条纹位置为: asinθ = kλ(k = ±1,±2,…) 式中a为单缝的宽度。因此可以画出单缝衍射的强度分布曲线如上图。 3.微波的双缝干射实验 当微波入射到一块开有两个缝的铝板时,会发生 衍射现象,两缝面内波是同相位的。由惠更斯原理, 来自两缝波面向同一方向传播的子波叠加决定该方向 的强度。 强度极小所在位置(干涉相消): dsinθ = (k + )λ(k = 0,±1,±2,…) 强度极大所在位置(干涉相长): asinθ = kλ(k =0,±1,±2,…) 4.微波的布拉格衍射 晶体中的原子按一定规律形成高度规则的空间排列,称为晶格。最简单的晶格为立方晶格,具有三维的空间点阵结构,它如同一个三维光栅。晶体点阵中原子排列成许多具有不同取向的晶面,每个取向都由许多互相平行的晶面构成晶面族。由于晶体面间距与X射线

牛顿环-等厚干涉标准实验报告

实验报告 学生姓名: 学 号: 指导教师: 实验地点: 一、实验室名称: 、实验项目名称:牛顿环测曲面半径和劈尖干涉 三、实验学时: 四、实验原理: 1等厚干涉 如图1所示,在C 点产生干涉,光线11'和22'的光程差为 △ =2d+入 12 式中入/2是因为光由光疏媒质入射到光密媒质上反射时, 有一相位突 当光程差 △ =2d+入/2=(2k+1)入12, 即d=k 入/2时 产生暗条纹; 当光程差 △ =2d+入/2=2k 入/2, 即d=(k — 1/2)入/2时 产生明条纹 因此,在空气薄膜厚度相同处产生同一级的干涉条纹 ,叫等厚干涉条 2、用牛顿环测透镜的曲率半径 将一个曲率半径较大的平凸透镜的凸面置于一块光学平板玻璃上则 实验时间: 变引起的附加光程差

可组成牛顿环装置。如图2所示。 这两束反射光在AOB 表面上的某一点E 相遇,从而产生E 点的干涉。由于AOB 表面是球面,所产生的条纹是明暗相间 的圆环,所以称为牛顿环,如图3所示。 将两块光学平玻璃重叠在一起,在一端插入一薄纸 片,则在两玻璃板 间形成一空气劈尖,如图4所示。K 级干涉暗条纹对应的薄膜厚度为 d=k 入/2 k=0时,d=0, 即在两玻璃板接触处为零级暗条纹;若在 薄纸处呈现k=N 级条纹,则薄纸片厚度为 d ' =N 入12 若劈尖总长为L,再测出相邻两条纹之间的距离为△ x,则暗条纹总数 为N =L/A x , 即 d ' =L 入 12 △ x 。 五、实验目的: 深入理解光的等厚干涉及其应用,学会使用移测显微镜 六、实验内容: 1、 用牛顿环测透镜的曲率半径 2、 用劈尖干涉法测薄纸片的厚度 七、实验器材(设备、元器件): 牛顿环装置,移测显微镜,两块光学平玻璃板,薄纸片,钠光灯及电 八、实验步骤: 1.用牛顿环测透镜的曲率半径 O 牛顿环 图2 ---- L

等厚干涉 物理实验报告

入射光 ' 图1 华南师范大学实验报告 学生姓名 学 号 专 业 化学 年级、班级 课程名称 物理实验 实验项目 等厚干涉 实验类型 □验证 □设计 □综合 实验时间 2012 年 3 月 14 实验指导老师 实验评分 一、实验目的: 观察牛顿环产生的等厚干涉条纹,加深对等厚干涉现象的认识。 二、实验原理: 牛顿环 在平面玻璃板BB '上放置一曲率半径为R 的平凸透镜AOA ',两者之间便形成一层空气薄层。当用单色光垂直照射下来时,从空气上下两个表面反射的光束1和光束2在空气表面层附近相遇产生干涉,空气层厚度相等处形成同一级的干涉条纹,这种干涉现象称为等厚干涉。在干涉条纹上,光程差相等处,是以接触点O 为中心,半径为r 的明暗相间的同心圆,其暗环的条件为:λkR r =2 (1) 其中k 为暗环级数,λ为单色光的波长。可见,测出条纹的半径r ,依(1)式便可计算出平凸透镜的半径R 。 三、实验仪器: 读数显微镜,牛顿环仪,汞光灯。 四、实验内容: 观察牛顿环 (1)接通钠光灯电源使灯管预热。 (2)将牛顿环装置放置在读数显微镜镜筒下,并将下面的反射镜置于背光位置。 (3)待钠光灯正常发光后,调节光源的位置,使450半反射镜正对钠灯窗口,并且同高。 (4)在目镜中观察从空气层反射回来的光,整个视场应较亮,颜色呈钠光的黄色,如果看不到光斑, 可适当调节45度半反射镜的角度及钠灯的高度和位置,直至看到反射光斑,并均匀照亮视场。 (5)调节目镜,在目镜中看到清晰的十字叉丝线的像。 (6)放松目镜紧固螺丝,转动目镜使十字叉丝线中的一条线与标尺平行,即与镜筒移动方向平行。 (7)转动物镜调节手轮(注意:要两个手轮一起转动)调节显微镜镜筒与牛顿环装置之间的距离。 先将镜筒下降,使45度半反射镜接近牛顿环装置但不能碰上,然后缓慢上升,直至在目镜中看到清晰的牛顿环像。 测量暗环的直径 (1)移动牛顿环装置,使十字叉丝线的交点与牛顿环中心重合。 (2)转动读数鼓轮,使十字准线从中央缓慢向左移至第31暗环(边移边数,十字叉丝竖线对准一环 数一环,不易数错),然后反方向自31暗环向右移动,使叉丝竖线依次对准30、29、28、27、

干涉法测微小量实验报告

干涉法测微小量 【实验目的】 1.了解等厚干涉的应用 2.掌握移测显微镜的使用方法 【实验仪器】 实验仪器: 牛顿环法测曲率半径实验的主要仪器有: 读数显微镜、Na光源、牛顿环仪 用劈尖测细丝直径实验的主要仪器有: 读数显微镜、Na光源、劈尖 【实验原理】 实验原理: 实验内容一:牛顿环法测曲率半径 图1

如图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差△’等于膜厚度e的两倍,即△’ =2e 此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差,与之对应的光程差为/2 ,所以相干的两条光线还具有/2的附加光程差,总的光程差为: (1) 当△满足条件: (2) 时,发生相长干涉,出现第K级亮纹。 而当: (3) 时,发生相消干涉,出现第k级暗纹。因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。 如图所示,设第k级条纹的半径为r k ,对应的膜厚度为e k ,则: (4) 在实验中,R的大小为几米到十几米,而e k 的数量级为毫米,所以R >>e k , e k 2相对于2R k 是一个小量,可以忽略,所以上式可以简化为 (5) 如果r k 是第k级暗条纹的半径,由式(1)和(3)可得: (6) 代入式(5)得透镜曲率半径的计算公式 (7) 对给定的装置,R为常数,暗纹半径 (8) 和级数k的平方根成正比,即随着k的增大,条纹越来越细。 同理,如果r k 是第k级明纹,则由式(1)和(2)得 (9)

相关文档
最新文档