基于MATLAB的时序逻辑电路设计与仿真

基于MATLAB的时序逻辑电路设计与仿真
基于MATLAB的时序逻辑电路设计与仿真

课程设计任务书

学生姓名:田鑫专业班级:电子科学与技术0703 班

指导教师:钟毅工作单位:信息工程学院

题目:

基于MATLAB的时序逻辑电路设计与仿真

初始条件:

MATLAB 软件微机

要求完成的主要任务:

深入研究和掌握数字电路中时序逻辑电路的理论知识。利用MATLAB强大的图形处理功能、符号运算功能和数值计算功能,实现时序逻辑电路的设计和仿真。

一、以寄存器为例仿真下列波形

并行寄存器输出波形(以基本RS触发器构造);

移位寄存器输出波形(用D触发器构造)

二、以双向移位寄存器为例实现子系统的设计和封装并仿真下列波形

4位双向移位寄存器并行输出波形;

4位双向移位寄存器串行右移输出波形;

4位双向移位寄存器串行左移输出波形

三、以扭环计数器为例仿真下列波形

扭环计数器的输出波形(以JK触发器实现)

时间安排:

学习MATLAB语言的概况第1天

学习MATLAB语言的基本知识第2、3天

学习MATLAB语言的应用环境,调试命令,绘图能力第4、5天

课程设计第6-9天

答辩第10天

指导教师签名:

年月日

系主任(或责任教师)签名:年月日

目录

摘要 (2)

Abstract (2)

绪论 (1)

1MATLAB简介 (2)

1.1 MATLAB程序设计 (2)

1.2 MATLAB的特点 (2)

1.3MATLAB程序设计 (2)

1.4 M文件 (2)

1.5 SIMULINK仿真设计 (3)

1.5.1创建和使用模型 (3)

1.5.2选择和定制模块 (3)

1.5.3建立和编辑模型 (4)

1.5.4配置子系统 (4)

1.5.5条件执行子系统 (4)

2 时序逻辑电路设计 (5)

2.1 锁存器和触发器 (5)

2.1.1 双稳态 (5)

2.1.2锁存器 (5)

2.1.3触发器 (5)

2.2 时序逻辑电路设计 (7)

2.2.1 移位寄存器 (7)

2.2.2 扭环计数器 (9)

3基于MATLAB的组合逻辑电路设计 (12)

3.1以寄存器仿真波形 (12)

3.1.1并寄存器的设计 (12)

3.1.2移位寄存器的设计 (15)

3.2以双向移位寄存器实现子系统的设计和封装仿真波形 (17)

3.3以扭环计数器为例仿真下列波形 (24)

4 收获、体会与建议 (26)

5致谢 (27)

6参考文献 (28)

摘要

MATLAB是当今最优秀的科技应用软件之一,具有强大的科学计算与可视化功能、简单易用、开放式可扩展环境。本文介绍了时序逻辑电路的MATLAB设计和仿真,在这种电路中,任意时刻的输出信号不但取决于当时的输入信号,还取决于电路当时的状态,或者说,还与以前的输入有关。具备这种逻辑功能特点的电路叫做时序逻辑电路。时序逻辑电路中需要将某一时刻的电路状态进行存储,利用触发器组成寄存器和计数器。在时序逻辑电路的仿真的过程中,将使用到SIMULINK中的触发器模块。同时也介绍了仿真中的子系统的设计和封装,进一步介绍MATLAB强大的数字处理功能。

关键词: 触发器,寄存器,计数器,仿真,封装

Abstract

Today is the most outstanding of MATLAB software technology application, strong scientific computing and visual function, easy-to-use, open extensible environment. The paper introduces the hardwave circuit design and simulation of MATLAB, in this circuit, arbitrary moment not only depend on the output signal was still depends on the input signal, and then the state, or circuit, and the relevant input before. Have this kind of logic function characteristics of the circuit is called the hardwave circuit. The hardwave circuit in a moment to store, the circuit state USES triggers composition registers and counter. In the hardwave circuit simulation process, will use the trigger module to SIMULINK. Also introduces the design and simulation of MATLAB, further introduced digital processing function of.

Keywords: flip-flop, register, counter, simulation, encapsulation

绪论

MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且mathwork也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++ ,JAVA的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。

1 MATLAB简介

1.1 MATLAB

MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。

MATLAB 的应用范围非常广,包括信号和图像处理、通讯、控制系统设计、测试和测量、财务建模和分析以及计算生物学等众多应用领域。附加的工具箱(单独提供的专用MATLAB 函数集)扩展了MATLAB 环境,以解决这些应用领域内特定类型的问题。

1.2 MATLAB的特点

MATLAB是当今最优秀的科技应用软件之一,它以强大的科学计算与可视化功能、简单易用、开放式可扩展环境,特别是所附带的30多种面向不同领域的工具箱支持,使得它在许多科学领域中成为计算机辅助设计和分析、算法研究和应用开发的基本工具和首选平台。MATLAB具有其他高级语言难以比拟的一些优点,编写简单,编程效率高,易学易懂,因此MATLAB语言也被通俗地称为演算纸式的科学算法语言。在控制、通信、信号处理及科学计算等领域中,MATLAB都被广泛地应用,已经被认可为能够有效提高工作效率、改善设计手段的工具软件,掌握了MATLAB就好比掌握了开启这些专业领域大门的钥匙。

1.3 MATLAB的程序设计

(1)行命令方式

行命令方式是在命令窗中写程序,每个程序只能是一行,因为计算机每次只能对一行命令做出反应,就像计算器那样工作。行命令方式适合于简单的语句编写。

(2)程序文本方式

程序文本方式也叫程序文件模式,它是把多行语句写成一个程序,保存在一个文件名下,让计算机来执行这个文件。程序文本方式的语句编写和修改是在文本编辑器中进行,它适合于复杂的语句编写

1.4 M文件

m文件的语法类似于c语言,但又有其自身特点。它只是一个简单的ASCII码文本文件,执行程序时逐行解释运行程序,matlab是解释性的编程语言。

m文件有两类:独立的m文件—称命令文件;可调用m文件—称函数文件。程序

文本方式分成脚本文件和函数文件。

1.5 SIMULINK仿真设计

Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。

1.5.1创建和使用模型

通过Simulink可使用大量的预定义模块快速地推导、建模和维护系统详细的模块图。Simulink提供层次化建模、数据管理、定制子系统工具,无论工程师的系统有多复杂,都可以轻松完成简明精确的模型描述.

1.5.2选择和定制模块

Simulink包含广泛的用于对系统建模的模块库。这些库包括:

? a. 连续和离散动态模块,如Integration和Unit Delay

? b. 算法模块,如Sum, Product, Lookup Table

? c. 信号结构模块,如Mux, Switch, Bus Selector

可定制这些内联的模块或直接在Simulink中创建新的模块然后将其放置到自己的库中.

额外的模块库扩展了Simulink的特殊应用功能,如对航空航天、通讯、无线电频率、信号处理、视频和图像处理和其他领域的应用.

启动Simulink时可以在工具栏点击;同样也可以在MATLAB命令窗口中输入Simulink,结果是在桌面上出现一个称为Simulink Library Browser的窗口,在这个窗口中列出了按功能分类的各种模块的名称;同样也可以通过单击MATLAB主窗口菜单选择File→New→Model,弹出一个Untitled的Simulink模型窗口,再选择View →Show Library Browser,弹出Simulink Library Brower模块库窗口。图1.1所示为Simulink Library Brower窗口。

图1.1 Simulink Library Brower窗口

1.5.3建立和编辑模型

Simulink在使用时,从Library Browser中拖放模块到图形编辑器、然后用线连接模块来建立模块之间的数学关系,从而完成模型的建立,同时可以通过使用图形编辑功能来对模型布局,如拷贝、粘贴、撤销、对齐、分布和改变尺寸等.

Simulink user interface使得在屏幕上的所见所用都可以得到全面控制。用户可以添加指令和子菜单到编辑器和文件菜单中,也可以对菜单、菜单项和对话框进行禁用和隐藏等控制.

1.5.4配置子系统

Simulink中的配置子系统可以在一个模型中将子系统与设计变量相关联,该功能通过共享部件设计方式简化了设计过程和管理,因为一个模型可以代表一类设计.

1.5.5条件执行子系统

条件执行子系统可以通过控制逻辑信号的使能或非使能来改变系统的动态行为。在Simulink中用户可以根据特定的时间或事件来创建控制信号,使得子系统以使能或触发的模式来执行.同时,Simulink中提供了逻辑模块,可用于对简单的控制指令来建模,从而控制使能或触发子系统。

2 时序逻辑电路设计

时序逻辑电路在任一时刻的输出信号不仅与当时的输入信号有关,并且与原来状态有关。也就是说,时序电路中具有逻辑运算功能的组合电路外,还必须有能够记忆电路状态的存储单元或延迟单元,这些存储或延迟逻辑单元主要由锁存器或触发器来实现。

时序电路是状态以来的,成为状态机,时序逻辑电路具有以下特征:时序逻辑电路由组合电路和存储电路组成;时序逻辑电路的状态与时间因素相关,即时序电路在任一时刻的状态变量不仅是当前的输入信号的函数,而且还是电路以前状态的函数,时序电路的输出信号由输入信号和电路的状态共同决定。

2.1 锁存器和触发器

2.1.1 双稳态

双稳态电路一般有一个输出端和两个输入端(“+”、“-”端各一个),当输入端的“+”

端有触发信号时,输出端不管原来是什么状态,都会立即变为高电平,且一直稳定地输出高电平。如果当输入端的“-”端有触发信号时,输出端不管原来是什么状态,都会立即变为低电平,且一直稳定地输出低电平。

2.1.2锁存器

锁存器是一种对脉冲电平敏感的存储单元电路,它们可以在特定输入脉冲电平作

用下改变状态。输出端的状态不会随输入端的状态变化而变化,只有在有锁存信号时

输入的状态被保存到输出,直到下一个锁存信号。通常只有0和1两个值。图2.1为RS基本锁存器,表2.1为其真值表。

表2.1 SR基本锁存器真值表

图2.1 基本SR锁存器

2.1.3 触发器

触发器(Flip Flop)是一种可以存储电路状态的电子元件。最简单的是由两个或非门,两个输入端和两个输出端组成的RS触发器(见图)。复杂一些的有带时钟(CLK)段和D(Data)端,在CLK端为高电平时跟随D端状态,而在CLK端变为低电平的

瞬间锁存信号的D触发器。更常用的是两个简单D触发器级联而成的在时钟下跳沿所

存信号的边缘D 触发器,广泛应用于计数器、运算器、存储器等电子部件。常见的还有JK 触发器和T 触发器。

1. SR 触发器

SR 触发器基本表示及状态图和真值表见下。

图2.2 SR 触发器逻辑符号 图2.3 SR 触发器状态图

表2.2 SR 触发器真值表

,这是SR 触发器满足的基本条件。 2. D 触发器

D 触发器基本表示及状态图和真值表见下。其中D Q n =+1。

图2.4 D 触发器逻辑符号 图2.5 D 触发器状态图

)(01约束条件=+=+SR Q R S Q n

n

表2.3 D 触发器真值表

3. JK 触发器

JK 触发器基本表示及状态图和真值表见下。n n n Q K Q J Q +=+1

图2.6 JK 触发器逻辑符号 图2.7 JK 触发器状态图

表2.4 JK 触发器真值表

2.2 时序逻辑电路设计

2.2.1 移位寄存器

移位寄存器:不但可以寄存数码,在移位脉冲作用下,寄存器中的数码还可根据需要向左或向右移动。

1.基本(单向)移位寄存器

(1)右移寄存器(D 触发器组成的4位右移寄存器)

结构特点:左边触发器的输出端接右邻触发器的输入端。

图2.8 右移寄存器逻辑图

图2.9 右移寄存器状态图

2. 双向移位寄存器

将右移寄存器和左移寄存器组合起来,并引入一控制端S 便构成既可左移又可右移的双向移位寄存器。

Q Q Q Q CP CR

D 并 行 输 出

图2.10 双向移位寄存器逻辑图

2.2.2 扭环计数器

扭环计数器可以进一步提高电路状态的利用率,图2.11所示扭环计数器,有效循环中的状态数提高至8个,但电路仍无法自启动。

图2.11基本扭环计数器

图2.12是可以自启动的扭环计数器,电路工作原理如下。

图2.12改进型扭环计数器

(1)写方程式。

Q Q 1

3

2

CR

SL D D OR (左移)

S 并 行 输 出

CP

CP

将驱动方程代入D 触发器的特性方程D Q =+1n ,得到扭环计数器的状态方程。

(2)列状态转换真值表,画出状态转换图。

设扭环计数器现态n

0n 1n 2n 3Q Q Q Q =0000,代入状态方程进行推导,得表2.5所示的状态转换

真值表。

根据状态转换真值表,画出状态转换图,见图2.13。

图2.13改进型扭环计数器状态转换图

(3)检查电路自启动能力。 经检查,该电路能够自启动。 (4)画出电路时序图,见图2.14。 图2.14改进型扭环计数器时序图

(5)电路逻辑功能说明。

由以上分析,4位扭环计数器有效循环有8种状态,可计8个数。

扭环计数器的优点是每次状态变化只有一个触发器翻转,译码器不存在竞争冒险现象,电路比较简单。缺点是电路状态利用率仍然不高。

1

35CP Q 0Q 1Q

2

7

Q 3

Q 3Q 2Q 1Q 0

0000

011011011011

0111

11101111

10010100

001010100011100011000001

0101

3基于MATLAB的组合逻辑电路设计

3.1以寄存器仿真波形

3.1.1并寄存器的设计

这个设计中使用基本RS触发器构造一个2为并行寄存器。所谓并行寄存器就是能够同时存储几个数据源数据的寄存器。

(1)RS触发器功能介绍

SIMULINK中提供了基本RS触发器模块。首先运行MATLAB中运行Simulink,然后新建一个模型,将RS触发器的模块添加到模型中,RS触发器位置是:Simulink Extras--Flip Flops--S-R Flip-Flop.如图3.1所示。

然后在这个模块上右击鼠标,单击弹出菜单中的“Look Under Mask”(查看下封装下的电路)命令,可以看到这个模块内部电路,如图3.1所示。

设计一个2位并行寄存器需要两个RS触发器,而且需要这个寄存器下在一个始终的激励下,先从输入端读入数据,并存储一段时间,然后在下个周期将信号输出,同时读入新的信号。这将需要将时钟源信号作为输入信号的控制端,同时由于输入信号RS不能同时为1,所以最好将它们通过一个非门联系起来,使得它们永远分开为高定平。

图3.1 RS触发器模块及内部电路

(2)用基本RS触发器构造并行寄存器

第一步:添加模块有五个模块。

RS触发器,Simulink Extras—Flip Flops—S-R Flip-Flop.;时钟源,Simulink Extras—Flip Flops—Clock;脉冲源,Simulink—Sources—Pulse Generator; 逻辑运算模块,Simulink—Math Operations—Logical Operator; Simulink—Sink—Scope.将它们全部拖入一个新建模型中。

第二步:修改模块参数

首先我们双击RS触发器模块,将会看到如图3.2所示的对话框。在对话框里只有一个参数填写,就是触发器的初始状态,即Q端的初始值,默认值0。复制两个。双击时钟源,将会看到图3.3所示对话框。填写参数时钟周期,采用默认值2。接着讲逻辑运算模块复制4个,通过双击模块将这4个设置为2输入与非门。

图3.2 RS触发器参数设置图3.3 时钟源参数设置

将脉冲源的Pulse Type选择Sample based。将表3.1内容填入图3.4所示的对话框中。

3.1 并行寄存器脉冲源参数设置

图3.4 脉冲源参数设置

最后将示波器输入端口该为5个,完成参数设计。

第三步:连线及仿真

将各模块摆放合适,参照图3.5连线。示波器分别件事时钟源,两个脉冲模型和两个触发器的输出信号。完成连线,将示波器上的线通过双击进行标注。最后将整个模型保存在MATLAB的work的子目录下。仿真时间默认为10秒,单击工具栏上图标,开始仿真。最后双击示波器观察输出波形,如图3.6所示。

图3.5 2位并行寄存器电路图

图3.6 并行寄存器输出

从波形看出,在时钟源位于低电平时,触发器输出维持它在时钟下跳前的值,对于

D1D0输入的变化没有改变,而当时钟源位于高电平时,输入的信号全部送入输出端,这是一个不稳定的因素,也是电平触发的触发器的一个缺点。而且发现两个触发器完全独立工作,互不影响,这就是并行的特点。

3.1.2移位寄存器的设计

在这个设计中,将使用另一种触发器,D触发器,来实现移位寄存器。所谓移位寄存器就是只能接收一个输入源的寄存器,它将这个输入依次通过寄存器堆进行缓存。

(1)D触发器功能介绍

在上面的介绍中已讲过D触发器的功能与其真值表,在这就不多概述。

(2)用D触发器构造移位寄存器

第一步:添加模块

方法同上,分别找到6个模块,D触发器,时钟源,单位延迟单元,常数源,脉冲源,示波器。

运行Simulink,将这些模块拖入新建模型中。

第二步:修改模块参数

D触发器复制4个即可,时钟源依然默认2即可,双击单位延时模块,可以看到对话框,修改参数初始值为1,抽样时间改为0.1,复制这个单元3个。脉冲源设置幅度为1,周期为3,脉宽为1,相位延迟为0,采样时间为0.3。然后将这个脉冲命名为INPUT。常数源设置为1,最后将示波器输入端设置为6个。

第三步:连线及仿真

将各模块摆放整齐,参照图3.7连线。然后同样保存好。

单击Simulink菜单下的Parameters命令,将仿真时间设为20秒,单击工具栏中的运行图标,开始仿真。然后双击示波器观察波形,如图3.8所示。

图3.7 4位移位寄存器

图3.8 移位寄存器输出波形

开关电源《基于MatlabSimulink的BOOST电路仿真》

基于Matlab/Simulink 的BOOST电路仿真 姓名: 学号: 班级: 时间:2010年12月7日

1引言 BOOST 电路又称为升压型电路, 是一种直流- 直流变换电路, 其电路结构如图1 所示。此电路在开关电源领域内占有非常重要的地位, 长期以来广泛的应用于各种电源设备的设计中。对它工作过程的理解掌握关系到对整个开关电源领域各种电路工作过程的理解, 然而现有的书本上仅仅给出电路在理想情况下稳态工作过程的分析, 而没有提及电路从启动到稳定之间暂态的工作过程, 不利于读者理解电路的整个工作过程和升压原理。采用matlab仿真分析方法, 可直观、详细的描述BOOST 电路由启动到达稳态的工作过程, 并对其中各种现象进行细致深入的分析, 便于我们真正掌握BOO ST 电路的工作特性。 图1BOO ST 电路的结构 2电路的工作状态 BOO ST 电路的工作模式分为电感电流连续工作模式和电感电流断续工作模式。其中电流连续模式的电路工作状态如图2 (a) 和图2 (b) 所示, 电流断续模式的电路工作状态如图2 (a)、(b)、(c) 所示, 两种工作模式的前两个工作状态相同, 电流断续型模式比电流连续型模式多出一个电感电流为零的工作状态。 (a) 开关状态1 (S 闭合) (b) 开关状态2 (S 关断) (c) 开关状态3 (电感电流为零) 图2BOO ST 电路的工作状态

3matlab仿真分析 matlab 是一种功能强大的仿真软件, 它可以进行各种各样的模拟电路和数字电路仿真,并给出波形输出和数据输出, 无论对哪种器件和哪种电路进行仿真, 均可以得到精确的仿真结果。本文应用基于matlab软件对BOO ST 电路仿真, 仿真图如图3 所示,其中IGBT作为开关, 以脉冲发生器脉冲周期T=0.2ms,脉冲宽度为50%的通断来仿真图2 中开关S的通断过程。 图3BOO ST 电路的PSp ice 模型 3.1电路工作原理 在电路中IGBT导通时,电流由E经升压电感L和V形成回路,电感L储能;当IGBT关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而在负载侧得到高于电源的电压,二极管的作用是阻断IGBT导通是,电容的放电回路。调节开关器件V的通断周期,可以调整负载侧输出电流和电压的大小。负载侧输出电压的平均值为: (3-1) 式(3-1)中T为开关周期, 为导通时间,为关断时间。

同步时序逻辑电路的习题 数字逻辑

第五章 同步时序逻辑电路的习题 一、基本知识点 1、时序逻辑电路的一般结构 特点:a 、有存储电路(记忆元件);有组合电路(特殊时可没有) b 、包含反馈电路,电路功能与“时序”相关 c 、输出不仅与输入(X )有关,而且与存储状态(Y )有关 分类:(1)Mealy 型 Z =F (X ,Q ) 输出是电路的输入和现态的函数(注意输出与输入有直接关系) (2)Moore 型 Z =F (Q ) 输出仅仅是电路现态的函数(注意输出与输入没有直接关系) 同步时序逻辑电路:各触发器共用同一时钟信号,即电路中各触发器状态的转换时刻在统一时钟信号控制下同步发生。 异步时序逻辑电路:电路没有统一的时钟信号对状态变化进行同步控制,输入信号的变化将直接引起电路状态的变化。 //本课程将较少讨论异步时序逻辑电路 2、同步时序逻辑电路的描述 注意:任一个同步时序逻辑电路的结构和功能可用3组函数表达式完整地描述。 (1)激励函数表达式:存储电路输入Y 与电路输入X 和现态Q 之间的关系 Y =F (X ,Q ) //现态Q 就是上图存储电路原始的输出y k (2)次态函数表达式:电路的次态Q n+1与激励函数Y 和现态Q 之间关系 Q n+1=F (Y ,Q ) //次态Q n+1就是上图存储电路再次触发后的输出y k n+1 (3)输出函数表达式:电路的输出Z 和输入X 和当前现态Q 的关系 Mealy 型 Z =F (X ,Q ) Moore 型 Z =F (Q ) 输入信号 输出信号 X 1 X 2 X n Z 1 Z 2 Z m y s 过去输入 现态 现在输入 } 输出 输出 所有输入 现态

同步时序电路的设计步骤

同步时序电路的设计步骤 同步时序电路的设计步骤 同步时序电路的分析是根据给定的时序逻辑电路,求出能反映该电路功能的状态图。状态图清楚地表明了电路在不同的输入、输出原状态时,在时钟作用下次态状态的变化情况。同步时序电路的设计的设计是分析的反过程,其是根据给定的状态图或通过对设计要求的分析得到的状态图,设计出同步时序电路的过程。 这里主要讨论给定状态图的情况下的同步时序电路的设计,对于具体的要求得到状态图的过程一般是一个较复杂的问题,这是暂不讲。根据已知状态图设计同步时序电路的过程一般分为以下几步: 1.确定触发器的个数。首先根据状态的个数来确定所需要触发器的个数,如给定的状态个数为n,由应满足 n≤2K,K为实现这来状态所需要的触发器的个数。(实际使用时可能给定的状态中存在冗余项,这时一般还须对状态进行化简。) 2.列出状态转移真值表。根据状态列出状态转移真值表,也称状态表、状态转移表。 3.触发器选型。选择合适的触发器,通常可选的触发器有:JK-FF,D-FF,T-FF,一般使用较广的为JK-FF。根据状态图和给出的触发器的型号写出其输入方程,通常在写输入方程时须对其进行化简,以使电路更简单。 4.求出输出方程。根据状态表,求出输出逻辑函数Z的输出方程,还过有些电路没有独立的输出,这一步就省了。 5.画出逻辑图。根据输入方程、输出方程画出逻辑电路图。 6.讨论设计的电路能否自启动。在设计的电路中可能出现一些无关的状态,这些状态能否经过若干个时钟脉冲后进行有效的状态。 同步时序电路设计举例 例按下图状态图设计同步时序电路。 1.根据状态数确定触发器的数目:由状态图可以看出,其每个状态由两个状态,故可用两个触发器。其变量可 用Q 1,Q 表示; 2.根据状态图列出状态表:状态表的自变量为输入变量x和触发器当前状态Q 1 n,Q n,而应变量为触发器的次态 Q 1n+1Q n+1、及输出z,列表时将自变量的所有组合全部列出来,其中当Q 1 n Q n=01的状态为不出现,其输出可看作任意 项处理。

基于MATLAB的Boost电路仿真

知识就堤力量— 基于Matlab 的Boost 电路仿真 姓名: 学号: 班级:

知识就堤力量 1、前言 由于DC/DC开关电源具有高效率,高功率密度和高可靠性等优点,越来越广泛地应用于通信、计算机、工业设备和家用电器等领域。在近几十年里,开关电源技术得到了长足的发展。在很多场合下,需要从低压电源变换到高压电源,Boost变换器是最基本,也是最常用的一种变换器。 在电力电子系统的研究中,仿真研究由于其高效、高精度及高的经济性与可靠性而得到大量应用。近二十年来,仿真已逐渐成为电力电子技术研究的有力工具。Matlab语言的强大仿真功能和方便性受到广大使用者的广泛爱好。本文对Boost变换器电路进行简单的介绍,采用Matlab来完成建模和仿真。 2、Boost电路的工作状态 Boost变换器的电路结构如下图所示: iT. n Boost电路的结构 ⑻开关状态1 (S闭合)(b)开关状态2 (S关断)

3、Matlab 仿真分析 Matlab 是一种功能强大的仿真软件,它可以进行各种各样的模拟电路和数 字电路仿真,并给出波形输出和数据输出,无论对哪种器件和哪种电路进行仿真, 均可以得到精确的仿真结果。采用 Matlab 仿真分析方法,可直观、详细的描述 Boost 电路由启动到达稳态的工作过程,并对其中各种现象进行细致深入的分 析,便于我们真正掌握Boost 电路的工作特性。仿真图如下所示: 电路工作原理: 在电路中IGBT 导通时,电流由E 经升压电感L 和V 形成回路,电感L 储能; 当IGBT 关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而 在负载侧得到高于电源的电压,二极管的作用是阻断 IGBT 导通是,电容的放电 回路。调节开关器件V 的通断周期,可以调整负载侧输出电流和电压的大小。 4- Vo |t\a ?E MeJsnuramQ Stfi?RLC Ewnch HR ltd g e Sours I ll c —— ScQpe (c)开关状态3 (电感电流为零) Scoptl V Current Measurement Diode KDT Cm rue nt Measuremehti C T

实验十 Moore型同步时序逻辑电路的分析与设计

实验十Moore型同步时序逻辑电路的分析与设计 一.实验目的: 1.同步时序逻辑电路的分析与设计方法 2.掌握时序逻辑电路的测试方法。 二.实验原理: 1.Moore同步时序逻辑电路的分析方法: 时序逻辑电路的分析,按照电路图(逻辑图),选择芯片,根据芯片管脚,在逻辑图上标明管脚号;搭接电路后,根据电路要求输入时钟信号(单脉冲信号或连续脉冲信号),求出电路的状态转换图或时序图(工作波形),从中分析出电路的功能。 2.Moore同步时序逻辑电路的设计方法: (1)分析题意,求出状态转换图。 (2)状态分析化简:确定等价状态,电路中的等价状态可合并为一个状态。(3)重新确定电路状态数N,求出触发器数n,触发器数按下列公式求:2n-1

(7)利用卡诺图如图2,求状态方程、驱动方程。 (8)自启动检验:将各无效状态代入状态方程,分析状态转换情况,画出完整的 状态转换图,如图3所示,检查是否能自启动。

基于matlab的电路仿真

基于matlab的电路仿真 杨泽辉51130215 %基于matlab的电路仿真 %关键词: RC电路仿真, matlab, GUI设计 % 基于matlab的电路仿真 %功能:产生根据输入波形与电路的选择产生输出波形 close all;clear;clc; %清空 figure('position',[189 89 714 485]); %创建图形窗口,坐标(189,89),宽714,高485;Na=['输入波形[请选择]|输入波形:正弦波|',... '输入波形:方形波|输入波形:脉冲波'];%波形选择名称数组; Ns={'sin','square','pulse'}; %波形选择名称数组; R=2; % default parameters: resistance 电阻值 C=2; % default parameters: capacitance电容值 f=10; % default parameters: frequency 波形频率 TAU=R*C; tff=10; % length of time ts=1/f; % sampling length sys1=tf([1],[1,1]); % systems for integral circuit %传递函数; sys2=tf([1,0],[1,1]); % systems for differential circuit a1=axes('position',[0.1,0.6,0.3,0.3]); %创建坐标轴并获得句柄; po1=uicontrol(gcf,'style','popupmenu',... %在第一个界面的上方创建一个下拉菜单'unit','normalized','position',[0.15,0.9,0.2,0.08],... %位置 'string',Na,'fontsize',12,'callback',[]); %弹出菜单上的字符为数组Na,字体大小为12, set(po1,'callback',['KK=get(po1,''Value'');if KK>1;',... 'st=char(Ns(KK-1));[U,T]=gensig(st,R*C,tff,1/f);',... 'axes(a1);plot(T,U);ylim([min(U)-0.5,max(U)+0.5]);',... 'end;']); %pol触发事件:KK获取激发位置,st为当前触发位置的字符串,即所选择的波形类型; %[U,T],gensing,产生信号,类型为st的值,周期为R*C,持续时间为tff, %采样周期为1/f,U为所产生的信号,T为时间; %创建坐标轴al;以T为x轴,U为y轴画波形,y轴范围。。。 Ma=['电路类型[请选择]|电路类型:积分型|电路类型:微分型']; %窗口2电路类型的选择数组; a2=axes('position',[0.5,0.6,0.3,0.3]);box on; %创建坐标轴2; set(gca,'xtick',[]);set(gca,'ytick',[]); %去掉坐标轴的刻度 po2=uicontrol(gcf,'style','popupmenu',... %在第二个窗口的位置创建一个下拉菜单,同1 'unit','normalized','position',[0.55,0.9,0.2,0.08],... 'string',Ma,'fontsize',12,'callback',[]); set(po2,'callback',['KQ=get(po2,''Value'');axes(a2);',... %po2属性设置,KQ为选择的电路类型,'if KQ==1;cla;elseif KQ==2;',... %1则清除坐标轴,2画积分电路,3画微分电路 'plot(0.14+0.8i+0.02*exp(i*[0:.02:8]),''k'');hold on;',... 'plot(0.14+0.2i+0.02*exp(i*[0:.02:8]),''k'');',... 'plot(0.84+0.2i+0.02*exp(i*[0:.02:8]),''k'');',... 'plot(0.84+0.8i+0.02*exp(i*[0:.02:8]),''k'');',... 'plot([0.16,0.82],[0.2,0.2],''k'');',... 'plot([0.16,0.3],[0.8,0.8],''k'');',... 'plot([3,4,4,3,3]/10,[76,76,84,84,76]/100,''k'');',... 'plot([0.4,0.82],[0.8,0.8],''k'');',... 'plot([0.6,0.6],[0.8,0.53],''k'');',... 'plot([0.6,0.6],[0.2,0.48],''k'');',... 'plot([0.55,0.65],[0.53,0.53],''k'');',... 'plot([0.55,0.65],[0.48,0.48],''k'');',... 'text(0.33,0.7,''R'');',...

基于MATLAB的整流电路仿真分析

密级:公开 科学技术学院 NANCHANG UNIVERSITY COLLEGE OF SCIENCE AND TECHNOLOGY 学士学位论文 THESIS OF BACHELOR (2008—2012年) 题目基于MATLAB的整流电路仿真分析 学科部: 专业: 班级: 学号: 学生姓名: 指导教师: 起讫日期:

目录 摘要 ............................................................................................................... Ⅰ矚慫润厲钐瘗睞枥庑赖。Abstract . (Ⅱ) 第一章三相桥式全控整流电路的仿真....................................................... 0聞創沟燴鐺險爱氇谴净。 1.1 电路的构成及工作特点.................................................................. 0残骛楼諍锩瀨濟溆塹籟。 1.2 建模及仿真...................................................................................... 1酽锕极額閉镇桧猪訣锥。 1.3参数设置及仿真............................................................................... 2彈贸摄尔霁毙攬砖卤庑。 1.4 故障分析.......................................................................................... 3謀荞抟箧飆鐸怼类蒋薔。 1.5 小结.................................................................................................. 4厦礴恳蹒骈時盡继價骚。第二章基于MATLAB的单相桥式整流电路仿真分析................................. 5茕桢广鳓鯡选块网羈泪。 2.1单相桥式半控整流电路................................................................ 5鹅娅尽損鹌惨歷茏鴛賴。 2.2 单相桥式半控整流电路带纯电阻性负载情况............................ 7籟丛妈羥为贍偾蛏练淨。 2.3 单相桥式全控整流电路.............................................................. 12預頌圣鉉儐歲龈讶骅籴。 2.4 单相桥式全控整流电路带纯电阻性负载情况.......................... 14渗釤呛俨匀谔鱉调硯錦。 2.5 单相桥式全控整流电路带电阻电感性负载情况...................... 16铙誅卧泻噦圣骋贶頂廡。结论 .............................................................................................................. 18擁締凤袜备訊顎轮烂蔷。参考文献:................................................................................................... 19贓熱俣阃歲匱阊邺镓騷。致谢 .............................................................................................................. 20坛摶乡囂忏蒌鍥铃氈淚。

同步时序逻辑电路分析与设计

“电工学(二)数字逻辑电路”课程实验报告 实验/实训项目同步时序逻辑电路分析与设计 实验/实训地点 实验/实训小组 实验/实训时间 专业电器工程及其自动化 班级 姓名 学号 指导老师

过程、步骤、代一、实验原理 1. 集成计数器74LS290功能测试。 74LS290是二一五一十进制异步计数器,逻辑简图为图5.1所示。 74LS290具有下述功能: 直接置0(R 0(1),R 0(2)=1),直接置(S 0(1),S 0(2)=1) 二进制计数(CP 1输入Q A 输出) 五进制计数(CP 1输入Q A Q B Q C 输出) 十进制计数(两种接法如图5.2A 、B 所示) 按芯片引脚图分别测试上述功能,并填入表5.1、表5.2、表5.3中。 图5.1 74LS290逻辑图

图5.2 十进制计数器 2. 计数器级连 分别用2片74LS290计数器级连成二一五混合进制、十进制计数器。 (1)画出连线电路图。 (2)按图接线,并将输出端接到LED 数码显示器的相应输入端,用单脉冲作为输入脉冲验证设计是否正确。 (3)画出四位十进制计数器连接图并总结多级计数级连规律。 3. 任意进制计数器设计方法 采用脉冲反馈法(称复位法或置位法),可用74LS290组成任意(M )计数器,图5.3是用74LS290实现模7计数器的两种方案,图(A )采用复位法,即计到M 异步置0,图(B )采用置位法,即计数计到M-1异步置0。 表5.1 功能表 R 0(1) R 0(2) S 0(1) S 0(2) 输出 Q D Q G Q B Q A H H L X H H X L X X H H X L X L L X X L X L L X 表5.2 二一五混合时制 计数 输出 Q A Q D Q G Q B 0 1 2 3 4 5 6 7 8 9

Moore型同步时序逻辑电路的设计与分析

实验九Moore型同步时序逻辑电路的分析与设计 22920132203686 薛清文周2下午实验 一.实验目的: 1.同步时序逻辑电路的分析与设计方法 2.D,JK触发器的特性机器检测方法。 2.掌握时序逻辑电路的测试方法。 3.了解时序电路自启动设计方法。 4.了解同步时序电路状态编码对电路优化作用。 二.实验原理: 二、 1.Moore同步时序逻辑电路的分析方法: 时序逻辑电路的分析,按照电路图(逻辑图),选择芯片,根据芯片管脚,在逻辑图上标明管脚号;搭接电路后,根据电路要求输入时钟信号(单脉冲信号或连续脉冲信号),求出电路的状态转换图或时序图(工作波形),从中分析出电路的功能。 2.Moore同步时序逻辑电路的设计方法: (1)分析题意,求出状态转换图。 (2)状态分析化简:确定等价状态,电路中的等价状态可合并为一个状态。(3)重新确定电路状态数N,求出触发器数n,触发器数按下列公式求:2n-1

基于MATLAB的Boost电路仿真

基于Matlab的Boost 电路仿真 姓名: 学号: 班级:

1、前言 由于DC/DC开关电源具有高效率,高功率密度和高可靠性等优点,越来越广泛地应用于通信、计算机、工业设备和家用电器等领域。在近几十年里,开关电源技术得到了长足的发展。在很多场合下,需要从低压电源变换到高压电源,Boost变换器是最基本,也是最常用的一种变换器。 在电力电子系统的研究中,仿真研究由于其高效、高精度及高的经济性与可靠性而得到大量应用。近二十年来,仿真已逐渐成为电力电子技术研究的有力工具。Matlab语言的强大仿真功能和方便性受到广大使用者的广泛爱好。本文对Boost变换器电路进行简单的介绍,采用Matlab来完成建模和仿真。 2、Boost电路的工作状态 Boost变换器的电路结构如下图所示: Boost 电路的结构 (a) 开关状态1 (S 闭合) (b) 开关状态2 (S 关断)

(c) 开关状态3 (电感电流为零) 3、Matlab仿真分析 Matlab 是一种功能强大的仿真软件,它可以进行各种各样的模拟电路和数字电路仿真,并给出波形输出和数据输出,无论对哪种器件和哪种电路进行仿真,均可以得到精确的仿真结果。采用Matlab仿真分析方法,可直观、详细的描述Boost 电路由启动到达稳态的工作过程,并对其中各种现象进行细致深入的分析,便于我们真正掌握Boost电路的工作特性。仿真图如下所示: 电路工作原理: 在电路中IGBT导通时,电流由E经升压电感L和V形成回路,电感L储能;当IGBT关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而在负载侧得到高于电源的电压,二极管的作用是阻断IGBT导通是,电容的放电回路。调节开关器件V的通断周期,可以调整负载侧输出电流和电压的大小。

基于MATLAB的电力系统仿真

《电力系统设计》报告 题目: 基于MATLAB的电力系统仿学院:电子信息与电气工程学院 班级: 13级电气 1 班 姓名:田震 学号: 20131090124 日期:2015年12月6日

基于MATLAB的电力系统仿真 摘要:目前,随着科学技术的发展和电能需求量的日益增长,电力系统规模越来越庞大,超高压远距离输电、大容量发电机组、各种新型控制装置得到了广泛的应用,这对于合理利用能源,充分挖掘现有的输电潜力和保护环境都有重要意义。另一方面,随着国民经济的高速发展,以城市为中心的区域性用电增长越来越快,大电网负荷中心的用电容量越来越大,长距离重负荷输电的情况日益普遍,电力系统在人们的生活和工作中担任重要角色,电力系统的稳定运行直接影响着人们的日常生活。从技术和安全上考虑直接进行电力试验可能性很小,因此迫切要求运用电力仿真来解决这些问题。 电力系统仿真是将电力系统的模型化、数学化来模拟实际的电力系统的运行,可以帮助人们通过计算机手段分析实际电力系统的各种运行情况,从而有效的了解电力系统概况。本文根据电力系统的特点,利用MATLAB的动态仿真软件Simulink搭建了无穷大电源的系统仿真模型,得到了在该系统主供电线路电源端发生三相短路接地故障并由故障器自动跳闸隔离故障的仿真结果,并分析了这一暂态过程。通过仿真结果说明MATLAB电力系统工具箱是分析电力系统的有效工具。 关键词:电力系统;三相短路;故障分析;MATLAB仿真

目录 一.前言 (4) 二.无穷大功率电源供电系统仿真模型构建 (5) 1.总电路图的设计 (5) 2.各个元件的参数设定 (6) 2.1供电模块的参数设定 (6) 2.2变压器模块的参数设置 (6) 2.3输电线路模块的参数设置 (7) 2.4三相电压电流测量模块 (8) 2.5三相线路故障模块参数设置 (8) 2.6三相并联RLC负荷模块参数设置 (9) 3.仿真结果 (9)

基于MATLAB的电路模型仿真应用

基于MATLAB的电路模型仿真应用实验指导书 一、实验目的 1、掌握采用M文件及SIMULINK对电路进行仿真的方法。 2、熟悉POWERSYSTEM BLOCKSET 模块集的调用、设置方法。 3.进一步熟悉M脚本文件编写的方法和技巧。 二、实验原理 1、通过M文件实现电路仿真的一般仿真步骤为: (1)分析仿真对象——电路; (2)确定仿真思路——电路分析的方法; (3)建立仿真模型——方程; (4)根据模型编写出仿真程序; (5)运行后得到仿真结果。 2、采用SIMULINK仿真模型进行电路仿真 可以根据电路图利用SIMULINK中已有的电子元件模型直接搭建仿真模块,仿真运行得到结果。 通过SIMULINK仿真模型实现仿真为仿真者带来不少便利,它免除了仿真者在使用M文件实现电路仿真时需要进行理论分析的繁重负担,能更快更直接地得到所需的最后仿真结果。但当需要对仿真模型进行一定理论分析时,MATLAB的M 语言编程就有了更大用武之地。它可以更令灵活地反映仿真者研究电路的思路,可更加灵活地将自身

想法在仿真环境中加以验证,促进理论分析的发展。因此,可根据自己的实际需要,进行相应的选择:采用SINMULIN模块搭建电路模型实现仿真非常直观高效,对迫切需要得到仿真结果的用户非常适用;当用户需要深刻理解及深入研究理论的用户来说,则选择编写M文件的方式进行仿真。 注意:本节实验的电路SINMULINK仿真原理,本节实验主要是应用提供的电路仿真元件搭建仿真模型,类似于传统仿真软件PSPICE 的电路仿真方法。采用SIMULINK进行电路仿真时元器件模型主要位于仿真模型窗口中SimPowerSystems节点下。其中本次实验可能用到的模块如下: ●“DC Voltage Source” 模块:位于SimPowerSystems 节点下的 “Electrical Sources”模块库中,代表一个理想的直流电压源; ●“Series RLC Branch” 模块:位于SimPowerSystems 节点下的 “Elements”模块库内,代表一条串联RLC 支路。通过对其参数的设置,可以将其变为代表单独的或电阻、或电容、或电感的支路。如设定:电 阻值Resistance=5,电感值Inductance=0,电容值Capacitance=inf,则表示一个电阻值为5 欧姆的纯电阻元件。 ●“Parallel RLC Branch”模块:位于SimPowerSystems 节点下的 “Elements”模块库内,代表一条并联RLC 支路。通过对其参数的设置,可以将其变为或电阻、或电容、或电感并联的支路。 ●“Current Measurement” 模块:位于SimPowerSystems 节点下下的 “Measurements”模块库内,用于测量所在支路的电流值。 ●“Voltage Measurement” 模块:位于SimPowerSystems 节点下下的 “Measurements”模块库内,用于测量电压值。 ●“Display” 模块:位于Simulink 节点下的“Sinks”模块库内,用于 输出所测信号的

同步时序逻辑电路的分析方法

时序逻辑电路的分析方法 时序逻辑电路的分析:根据给定的电路,写出它的方程、列出状态转换真值表、画出状态转换图和时序图,而后得出它的功能。 同步时序逻辑电路的分析方法 同步时序逻辑电路的主要特点:在同步时序逻辑电路中,由于所有触发器都由同一个时钟脉冲信号CP来触发,它只控制触发器的翻转时刻,而对触发器翻转到何种状态并无影响,所以,在分析同步时序逻辑电路时,可以不考虑时钟条件。 1、基本分析步骤 1)写方程式: 输出方程:时序逻辑电路的输出逻辑表达式,它通常为现态和输入信号的函数。 驱动方程:各触发器输入端的逻辑表达式。 状态方程:将驱动方程代入相应触发器的特性方程中,便得到该触发器的状态方程。 2)列状态转换真值表: 将电路现态的各种取值代入状态方程和输出方程中进行计算,求出相应的次态和输出,从而列出状态转换真值表。如现态的起始值已给定时,则从给定值开始计算。如没有给定时,则可设定一个现态起始值依次进行计算。 3)逻辑功能的说明: 根据状态转换真值表来说明电路的逻辑功能。 4)画状态转换图和时序图: 状态转换图:是指电路由现态转换到次态的示意图。 时序图:是在时钟脉冲CP作用下,各触发器状态变化的波形图。 5)检验电路能否自启动 关于电路的自启动问题和检验方法,在下例中得到说明。

2、分析举例 例、试分析下图所示电路的逻辑功能,并画出状态转换图和时序图。 解:由上图所示电路可看出,时钟脉冲CP加在每个触发器的时钟脉冲输入端上。因此,它是一个同步时序逻辑电路,时钟方程可以不写。 ①写方程式: 输出方程: 驱动方程: 状态方程: ②列状态转换真值表: 状态转换真值表的作法是: 从第一个现态“000”开始,代入状态方程,得次态为“001”,代入输出方程,得输出为“0”。

实验十 Moore型同步时序逻辑电路的分析与设计

实验十 Moore型同步时序逻辑电路的分析与设计 一、实验目的 1.掌握同步时序逻辑电路的分析、设计方法; 2.掌握时序逻辑电路的测试方法。 二、实验原理 1.Moore型同步时序逻辑电路的分析方法: 时序逻辑电路的分析,按照电路图,选择芯片,根据芯片管脚,在逻辑图上标明管脚号;大街电路后,根据电路要求输入时钟信号,要求出电路的状态转换图或时序图,从中分析出电路的功能。 2.Moore型同步时序逻辑电路的设计方法: (1)分析题意,求出状态转换图。 (2)状态化简:确定等价状态,电路中的等价状态可合并为一个状态。 (3)重新确定电路状态数N,求出触发器数你n,触发器数按下列公式求:2n-1

(8)功能仿真、时序仿真。 3.同步时序逻辑电路的设计举例: 试用D触发器设421码模5加法计数器。 (1)分析题意:由于是模5 (421码)加法计数器,其状态转换图如图1所示: (2)状态转换化简:由题意得该电路无等价状态。 (3)确定触发器数:根据,2n-1

(8)自启动检验:将各无效状态代入状态方程,分析状态转换情况,画出完整的状态转换图,如图3所示,检查是否能自启动。 (9)画出逻辑图,如图4 所示。 三、实验仪器 1.示波器1台 2.函数信号发生器1台 3.数字万用表1台 4.多功能电路实验箱1台

基于Matlab的电力系统自动重合闸建模与仿真讲解

实践课程设计报告 课程名称:Matlab上机 题目:基于MATLAB的电力系统自动重合闸 所在学院: 学科专业: 学号: 学生姓名: 指导教师: 二零一五年四

摘要 分析了单相自动重合闸的工作特性,并利用MATLAB软件搭建了220kv电力系统的自动重合闸的仿真模型,模拟系统发生单相接地、三相相间短路故障,断路器跳闸后自动重合闸的工作过程。 关键词:电力系统自动重合闸MATLAB 短路故障

目录 1 引言 (1) 2 模型中主要模块的选择和参数 (2) 2.1同步发电机模块 (2) 2.2 变压器模块 (2) 2.3 输电线路模块 (3) 2.3.1 150km线路模块 (3) 2.3.2 100km线路模块 (4) 2.1 电源模块 (5) 2.3 负载模块 (6) 2.3.1 三相串联RLC负载Load1 (6) 2.3.2 三相串联RLC负载Load4 (7) 2.4 断路器模块 (8) 2.5 测量模块 (9) 2.6 显示模块 (9) 2.7 其他模块 (9) 2.8 仿真参数设置 (10) 3 仿真结果及波形分析 (10) 3.1 线路单相重合闸 (10) 3.2 线路三相重合闸 (12) 总结 (13) 参考文献 (14)

基于Matlab的电力系统自动重合闸 1 引言 随着技术的发展,电力系统的规模越来越复杂。从实际条件与安全角度考虑,不太可能进行电力系统科研实验,因而电力系统数字仿真成为了电力系统研究、规划和设计的重要手段。电力系统仿真软件如BPA,EMTP,PSCAD/ EMTDC ,NETOMAC,PSASP,MATLAB等,正向着多功能,具有更高的可移植性方向发展。其中在MATLAB 中,电力系统模型可以在Simulink环境下直接搭建,Simulink电力系统元件库中有多种多样的电气模块,电力系统大多数元件都包含。其中,可以直接调用。电力系统大部分故障是瞬时性故障,因此采用自动重合闸后,电力系统发生瞬时性故障时供电的连续性、系统的稳定性得到很大的提高。此外,自动重合闸有效纠正由于断路器或继电保护误动作引起的误跳闸。 本文以MATLAB为工具,对简单系统的线路单相重合闸和线路三相重合闸进行分析与研究。 1.1 仿真模型的设计和实现 电力系统正常运行时可以认为是三相对称的,即电压、电流对称,且具有正弦波形。下图为理想情况下220kv电力系统的模型。 图 1 220kv电力系统模型

基于Matlab的交交变频电路仿真研究

摘要:本文首先以三相输入单相输出的交交变频电路为例介绍了交交变频电路的工作原理,接着以余弦交点法为例详细分析了交交变频电路的触发控制方法,最后用Matlab7.0 仿真软件对交交变频电路进行了建模和仿真研究。 关键词:交交变频;余弦交点法;Matlab仿真 Abstract: The principium of the AC-AC frequency converter with three phases input and one phase output is introduced in the first place.The control method of the AC-AC frequency converter is particularly analysed through discussing cosine-cross method in the second place. The AC-AC frequency converter’s simulation model is builded by the Matlab7.0 at last. Key words:AC-AC frequency converter; cosine-cross method; Matlab simulation 1、引言[1] 20世纪30年代交交变频电路就已经出现,当时采用的是水银整流器,曾经有装置用在电力机车上,由于原件性能的限制,没能得到推广。到20世纪70年代,随着晶闸管的问世交交变频电路曾经广泛应用于电机的变频调速。20世纪80年代随着全控器件的广泛应用,交交变频电路逐渐被交直交变频电路取代。近年来随着现代工业生产及社会发展的需要推动了交交变频技术的飞速发展,现代电力电子器件的发展和应用、现代控制理论和控制器件的发展和应用、微机控制技术及大规模集成电路的发展和应用为交流变频技术的发展和应用创造了新的物质和技术条件,交交变频电路又逐渐成为研究的热点。 2、交-交变频电路的工作原理[2][3] 交交变频电路的工作原理与相控整流器的工作原理基本相同,现在以三相输入单相输出的交交变频电路为例详细分析其工作原理。

基于MATLAB的电力系统仿真

《电力系统设计》报告题目: 基于MATLAB的电力系统仿 学院:电子信息与电气工程学院 班级: 13级电气 1 班 姓名:田震 学号: 日期:2015年12月6日 基于MATLAB的电力系统仿真 摘要:目前,随着科学技术的发展和电能需求量的日益增长,电力系统规模越来 越庞大,超高压远距离输电、大容量发电机组、各种新型控制装置得到了广泛的应用,这对于合理利用能源,充分挖掘现有的输电潜力和保护环境都有重要意义。另一方面,随着国民经济的高速发展,以城市为中心的区域性用电增长越来越快,大电网负荷中心的用电容量越来越大,长距离重负荷输电的情况日益普遍,电力系统在人们的生活和工作中担任重要角色,电力系统的稳定运行直接影响着人们的日常生活。从技术和安全上考虑直接进行电力试验可能性很小,因此迫切要求运用电力仿真来解决这些问题。 电力系统仿真是将电力系统的模型化、数学化来模拟实际的电力系统的运行,可以帮助人们通过计算机手段分析实际电力系统的各种运行情况,从而有效的了解电力系统概况。本文根据电力系统的特点,利用MATLAB的动态仿真软件Simulink搭建了无穷大电源的系统仿真模型,得到了在该系统主供电线路电源端发生三相短路接地故障并由故障器自动跳闸隔离故障的仿真结果,并分析了这一暂态过程。通过仿真结果说明MATLAB 电力系统工具箱是分析电力系统的有效工具。 关键词:电力系统;三相短路;故障分析;MATLAB仿真 目录 一.前言.............................................. 二.无穷大功率电源供电系统仿真模型构建............... 1.总电路图的设计......................................

实验二时序电路的设计及显示

实验二时序电路的设计及显示 一、实验目的: 1.了解教学系统中8位八段数码管显示模块的工作原理,设计标准扫描驱动电路模块,以备后面实验调用。 2.会电路图输入方法和VHDL语言方法输入的混合使用。 二、硬件要求: 1.GW48EDA/SOPC+PK2实验系统。 三、实验内容及预习要求: 1.计数器(counter): 计数器(counter)是数字系统中常用的时序电路,因为计数是数字系统的基本操作之一。计数器在控制信号下计数,可以带复位和置位信号。因此,按照复位、置位与时钟信号是否同步可以将计数器分为同步计数器和异步计数器两种基本类型,每一种计数器又可以分为进行加计数和进行减计数两种。在VHDL描述中,加减计数用“+”和“-”表示即可。 (1)同步计数器: 同步计数器与其它同步时序电路一样,复位和置位信号都与时钟信号同步,在时钟沿跳变时进行复位和置位操作。例2-1为带时钟使能的同步4位二进制减法计数器的VHDL模型:

count是一个带时钟使能的同步4位二进制减法计数器,计数范围F~0。每当时钟信号或者复位信号有跳变时激活进程。如果此时复位信号clr有效(高电平),计数器被复位,输出计数结果为0;如果复位信号无效(低电平),而时钟信号clk出现上升沿,并且计数器的计数使能控制信号en有效(高电平),则计数器count自动减1,实现减计数功能。图S2-1为带时钟使能的同步4位二进制减法计数器的仿真波形图: 图S2-1 带时钟使能的同步4位二进制减法计数器的仿真图形 LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY count IS PORT(clk,clr,en : IN STD_LOGIC; qa,qb,qc,qd : OUT STD_LOGIC); END count; ARCHITECTURE ONE OF count IS SIGNAL count_4 : STD_LOGIC_VECTOR(3 DOWNTO 0); BEGIN qa <= count_4(0); qb <= count_4(1);

相关文档
最新文档