高抗冲高刚性EPDM改性聚丙烯的研究

高抗冲高刚性EPDM改性聚丙烯的研究
高抗冲高刚性EPDM改性聚丙烯的研究

高抗冲高刚性EPDM改性聚丙烯的研究

郑明嘉1,黄 锐13,宋 波1,2,魏 刚1,3

(1.四川大学高分子科学与工程学院,四川成都610065;2.成都师范高等专科学校,四川成都611930;

3.四川工业学院,四川成都610039)

摘 要:加入超细改性无机刚性粒子提高三元乙丙橡胶(EPDM)的硬度,再与聚丙烯(PP)进行共混。研究了超细改性无机刚性粒子用量对EPDM硬度及流动性的影响,比较了PP与不同硬度EPDM的共混物在力学性能上的差异。结果表明:随着EPDM硬度的增加,共混物不仅韧性提高,弯曲模量也大幅度上升。选择合适的硬度,可制得高抗冲高刚性的EPDM改性PP共混材料。

关 键 词:高抗冲;高刚性;聚丙烯;三元乙丙橡胶

中图分类号:TQ325.1+4 文献标识码:B 文章编号:1001Ο9278(2003)08Ο0043Ο03

Study on EPDM Modif ied PP with High Impact Strength

and Flexural Modulus

ZHEN G Ming2jia1,HUAN G Rui1,SON G Bo1,2,WEI Gang1,3

(1.Collge of Polymer Science&Engineering,Sichuan University,Chengdu610065,China;2.Chengdu Normal

College,Sichuan611930,China;3.Sichuan University of Science and Technology,Sichuan610039,China)

Abctract:Modified EPDMs of different hardness were prepared by adding some ultra fine fillers into them,then blended with PP.Influences of loadings of ultra fine fillers on hardness and fluidity of the modified EPDM and mechanical properties of PP/modified EPDM were investigated.Results showed that as the hardness of modified EPDM increased the brittle2ductile transition moved to high rubber con2 tents and the flexural modulus increased profoundly,however.By selecting proper hardness of modified EPDM,PP/modified EPDM with both high impact strength and high modulus could be obtained.

K ey w ords:high impact strength;high modulus;polypropylene;ethylene2propylene2diene mischpoly2 mer

PP是性能优异的热塑性塑料,但抗冲击强度低的缺点影响了它在更宽领域的应用,所以如何对其进行增韧,一直是近年来研究的热点。在PP中加入EPDM、EPR或POE等弹性体进行共混,可以有效地改善PP的韧性,但在冲击强度大幅上升的同时,材料的模量却下降很快[1,2]。如果用于制造汽车保险杠等产品,就会因制件刚性不足而不得不增加壁厚,引起成本的上升[3~5]。我们在EPDM中加入超细改性无机刚性粒子以提高其硬度,然后再将其与PP共混。希望能够在有效地提高PP冲击韧性的同时,仍能保持甚至提

收稿日期:2003Ο02Ο28

3联系人高材料的刚性。

1 实验

1.1 原料

PP,T30S,中国石油独山子石化公司;

EPDM,1045,吉林化学工业股份有限公司有机合成厂;

超细改性无机刚性粒子,自制;

1010稳定剂,市售;

168稳定剂,市售。

1.2 实验设备

双辊筒开炼机,SK1608,上海橡胶机械厂;

双螺杆挤出机,TSS J225/32,成都晨光化工研究院;

第17卷 第8期中 国 塑 料Vol.17,No.8 2003年8月CHINA PLASTICS Aug.,2003

注射机,PS40E5ASE,日精树脂工业株式会社;

万能材料试验机,A G210TA,日本岛津;

缺口制样机,XQZ21,承德市金德检测仪器制造厂;

冲击试验机,X JJ25,承德试验机厂;

转矩流变仪,RHEOCORD SYSTEM40,Ahaake2 Buckchler Product。

1.3 试样制备

EPDM与超细改性无机刚性粒子于100℃下在双辊开炼机上塑炼15~20min.,拉成3mm厚的胶片,停放12h以上,然后切成(3×3×3)mm左右的粒子。

PP与EPDM或改性EPDM按不同比例混合,加入适量稳定剂。在双螺杆挤出机上造粒,机筒温度为150℃、160℃、180℃、190℃、200℃、195℃,螺杆转速为150r/min。

将造粒的共混料在注射机上注射成供力学性能测试的样条,注射机机筒温度为165℃、195℃、210℃,喷嘴温度为205℃。冲击样条在缺口制样机上铣出缺口。

1.4 性能测试

在(23±2)℃和常湿状态下按G B/T1040—92测试拉伸性能,按G B/T1843—1996测试悬臂梁冲击强度,按G B9341—88测量弯曲模量。

用肖氏硬度(A)计按G B2411—80测试EPDM和改性EPDM的硬度。

用流变仪在190℃和60r/min的转速下测试PP、EPDM和改性EPDM的平衡扭矩。

2 结果与讨论

2.1 EPDM及改性EPDM的硬度与扭矩

表1为EPDM和各改性EPDM的肖氏硬度值与扭矩。a#为纯EPDM,而b#、c#、d#、e#、f#为改性EPDM,其中的超细改性无机刚性粒子量之比为1∶2∶3∶4∶6。显然,随着超细改性无机刚性粒子用量的加大,改性料的硬度逐步增加,抵抗形变的能力变得更强了。

采用弹性体增韧PP,弹性体必须在PP中均匀分散才能有好的效果,为此弹性体的熔融粘度不能太大。PP、EPDM和改性EPDM在190℃、60r/min时的平衡扭矩值见表1。随着改性EPDM硬度的增加,其粘度 表1 EPDM及改性EPDM的肖氏硬度(A)、扭矩

Tab.1 Shore hardness(A)and torque of EPDM

and modified EPDM

胶号PP a#b#c#d#e#f#

硬度值—333745567092

扭矩/N?m7.712.612.515.118.819.321.4也不断上升。但与通常情况下进行硫化时粘度的增加相比,上升的幅度是很小的,不会对分散造成明显影响。

2.2 PP/EPDM和PP/改性EPDM的冲击强度

图1是PP与六种改性EPDM的共混物的冲击强度曲线。这里A代表PP与纯EPDM的共混物,B代表PP与EPDM b#的共混物,其余类推。可以看出,六条曲线中都出现了脆-韧转变。随着改性EPDM硬度的增加,曲线顺序向右移动,脆-韧转变刚发生时所需的弹性体量增加了。尽管如此,改性EPDM b#、c#、d#仍然保持了很高的增韧效率,经它们改性的PP共混物,脆-韧转变处曲线更陡,结果与用纯EPDM增韧的体系一样,都在体积分数为23%~26%时完成脆-韧转变达到一个高韧性平台区,冲击强度值高于65kJ/ m2,达到PP的12倍以上。继续增加硬度,改性EPDM 的增韧效率下降很快,如共混体系E和F,高韧性平台直到弹性体成分达到32%~33%(体积)时才出现,且对于体系F,最高冲击强度仅有51.5kJ/m2,比其它体系低了(15~30)kJ/m2。这说明改性EPDM的硬度不能提高太多,否则其分散相不能很好地起到应力集中和引发剪切破坏的作用。从本试验可以初步判断出改性EPDM的硬度不宜超过d#胶,即不超过56

■—A ○—B ▲—C +—D ◆—E —F

图1 共混物冲击强度随EPDM体积含量变化的情况Fig.1 Impact strength of the composites versus

volume contents of EPDM

2.3 PP/EPDM和PP/改性EPDM的屈服强度

图2是各共混体系屈服强度随EPDM体积含量增加的变化情况。六条曲线中C、D、E、F基本重叠在了一起,屈服强度呈线性下降。共混物A、B的变化情况也很类似,曲线前半部分与其余四条完全重叠,体系B 只在EPDM含量超过28%后低了2MPa~3MPa,A 在15%后低了2MPa~5MPa。各共混体系屈服强度变化规律的相似说明了EPDM改性PP体系的屈服强度主要决定于基体的体积含量。分散的EPDM相在体系的应变达到基体相PP的屈服应变时已不能再承受

 ?44

 ?高抗冲高刚性EPDM改性聚丙烯的研究 

应力,因而EPDM 用量增加时,材料屈服强度下降了。至于体系A 和B ,估计由于其分散相太软,在应力作用下类似于空洞,使基体应力更加集中,所以屈服强度较之另四种还略低一些

■—A ○—B ▲—C +—D ◆—E —F

图2 共混物屈服强度随EPDM 体积含量变化的情况

Fig.1 Y ield strength of the composites versus

volume contents of EPDM

2.4 PP/EPDM 和PP/改性EPDM 的弯曲模量

纯EPDM 与PP 共混后,材料的弯曲模量下降很

快。从图3可以看出,当EPDM 的用量达到25%时,共混物的模量下降到了PP 的一半。而采用改性后的

■—A

 ○—B ▲—C +—D ◆—E —F

图3 共混物弯曲模量随EPDM 体积含量变化的情况

Fig.3 Flexible modulus of the com posites versus

volume contents of EPDM

EPDM ,随着其硬度的增加,PP/改性EPDM 的模量上

升很快。体系C 的模量在EPDM 含量小于25%范围内高于PP ,体系D 在33%以内高于PP ,而对于体系E 和F ,模量变得更高,在试验的范围内都大于PP 。这是因为改性EPDM 的分散相在小应变下能很好地与基体一起承担应力,且硬度越大,承担能力越强,甚至可能超过PP 基体的承受能力,所以才会造成共混物模量高于纯PP 的情况。

3 结论

(1)在EPDM 中添加超细改性无机刚性粒子,随

着用量增加,其硬度逐渐变大,熔融粘度也相应增加。

(2)用硬度增加的改性EPDM 增韧PP ,脆-韧转变规律与添加纯EPDM 类似。对于b #、c #、d #三种改性EPDM ,其增韧效率与纯EPDM 基本相同。

(3)EPDM 硬度提高后,与PP 的共混物的屈服强度略高于PP/EPDM 。

(4)随着改性EPDM 硬度的增加,共混体系的模量大幅上升。

(5)对于C 、D 共混体系,选择适当的PP/弹性体配比,在屈服强度保持较高值的同时,可以制得高韧性、高模量的材料。参考文献:

[1] 洪定一.塑料工业手册—聚烯烃[M ].北京:化学工业出

版社,1999.580.

[2] 吴培熙,张留诚.聚合物共混改性[M ].北京:中国轻工出

版社,1996.198.

[3] 林明德,俞 强.PP/弹性体/滑石粉复合材料研究状况

[J ].中国塑料,2002,16(4):6~10.

[4] 贾秀峰,郑梅梅,李敬泽,谢续明,陈年欢.可涂装性聚丙

烯汽车保险杠的研制[J ].塑料加工,2000,29(2):28~34.

[5] 朴成浩,赵国光.用二元乙丙胶改性聚丙烯研制汽车保险

杠专用料[J ].化工科技,1998,6(1):19~22.

南通聚甲醛(POM)生产工厂建设开工

宝理塑料株式会社,三菱瓦斯化学株式会社,韩国工程塑料株式会社以及Ticona 三公司,于2003年7月11日在中国江苏省南通市南通经济技术开发区举行了由当地合资公司宝泰菱工程塑料(南通)有限公司主持的POM 生产工厂的开工典礼。

新建的工厂计划于2004年底完工,届时将具有年产6万吨的生产能力。

POM 树脂可分为均聚甲醛高聚物和共聚甲醛高聚物两大类。新建的工厂主要生产共聚甲醛高聚物。共聚甲醛高聚物在很宽的

温度范围和复杂的化学环境中都能保持良好的强度特性、耐久性以及自润滑性。此外,还可用于注射成型、挤出成型等各种成型方法,用它制成的棒材及板材很容易进行机械加工。共聚甲醛高聚物已经广泛地应用于汽车工业、IT 产业、电器机械、办公设备、耗材等各个领域中。

中国现在的POM 树脂市场规模估计在150000吨左右。预计今后每年将以10%速度增长。合资各方都希望通过宝泰菱工程塑料(南通)有限公司建立的生产工厂扩大其POM 树脂在亚洲太平洋地区的市场份额。

 2003年8月中 国 塑 料?45 ? 

聚丙烯材料改性研究

聚丙烯材料改性研究 摘要:利用共混的方法,针对聚丙烯制品在实际应用中出现韧性差,易燃烧的缺点,重点研究了增塑剂POE 不同的量对聚丙烯抗冲击强度的影响,以及氢氧化镁对聚丙烯燃烧性能的影响。本次试验采用了高混机对所用原料进行共混,再将共混的原料放入双螺杆挤出机中挤出造粒,然后将制成的粒料利用注射机制作我们所需的的标准样条,最后对标准样条测试抗冲击强度和氧指数。结果显示,POE 增塑剂的量越多,则对聚丙烯的韧性改善更好,氢氧化镁由于加的量比较少,对聚丙烯的阻燃作用不明显。 关键词:聚丙烯;改性;造粒;增塑;阻燃 1前言 聚丙烯,是由丙烯聚合而制得的一种热塑性树脂。按甲基排列位置分为等规聚丙烯(isotactic polypropylene)、无规聚丙烯(atactic polypropylene)和间规聚丙烯(syndiotactic polypropylene)三种。甲基排列在分子主链的同一侧称等规聚丙烯,若甲基无秩序的排列在分子主链的两侧称无规聚丙烯,当甲基交替排列在分子主链的两侧称间规聚丙烯。一般工业生产的聚丙烯树脂中,等规结构含量约为95%,其余为无规或间规聚丙烯。工业产品以等规物为主要成分。聚丙烯也包括丙烯与少量乙烯的共聚物在内。通常为半透明无色固体,无臭无毒。由于结构规整而高度结晶化,故熔点可高达167℃。耐热、耐腐蚀,制品可用蒸汽消毒是其突出优点。密度小,是最轻的通用塑料。缺点是耐低温冲击性差,较易老化,但可分别通过改性予以克服。 采用相容剂技术和反应性共混技术对PP 进行共混改性是当前PP 共混改性发展的主要特点。它能在保证共混材料具有一定的拉伸强度和弯曲强度的前提下大幅度提高PP 耐冲击性。相容剂在共混体系中可以改善两相界面黏结状况,有利于实现微观多相体系的稳定,而宏观上是均匀的结构状态。反应型相容剂除具有一般相容剂的功效外,在共混过程中还能在两相之间产生分子链接,显著提高共混材料性能。 PP/弹性体二元共混体系虽有很好的韧性效果,但往往降低了材料的强度和刚度,耐热性能也有所降低。在二元共混体系中加入有增容作用或协同效应的物质,形成多元共混体系,则其综合性能可得到进一步提高。为了提高增韧PP 的硬度、热变形温度及尺寸稳定性,可使用经偶联剂活化处理的填料或增强材料进行补强。例如采用弹性体/无机刚性粒子/PP 三元复合增韧体系实现PP 的增韧增强,提高材料的综合性能,并且具有较低的成本。 溴系阻燃剂效率高、用量少,对材料的性能影响小,并且溴系阻燃剂价格适中。与其它类型的阻燃剂相比,溴系阻燃剂效能/价格比更具有优越性,我国供出口电子电气类产品中70%~80%都用此类阻燃剂。但是,近年来欧盟一些国家认为溴系阻燃剂燃烧时会产生有毒致癌的多溴代苯并恶瑛(PBDD)和多溴代二苯并呋喃(PBDF)。欧盟出台了禁令,在欧盟国家销售的所有电子电气设备,不能含有多溴联苯及多溴二苯醚。阻燃剂的种类众多,其用量和性能都各自不同,需要在不同的情况下选用不同的阻燃剂。现如今,聚丙烯的阻燃剂正向着高效、低烟、绿色、环保和低成本的方向发展。所以本次实验采用比较绿色的阻燃剂氢氧化镁。 本次实验采用POE 对聚丙烯增韧;氢氧化镁对聚丙烯进行阻燃改性,由于加入氢氧化镁的量太多,挤出机挤出较困难,所以同时加入少量三氧化二锑(Sb 2O 3)来减少氢氧化镁用量, 降低加工难度。 2.实验 2.1配方设计

交联溴化丁基橡胶与聚丙烯共混改性的研究全解

目录 摘要 (Ⅰ) 关键词 (Ⅱ) Abstract (Ⅲ) Key Words (Ⅲ) 1 文献综述 (1) 1.1 丁基橡胶简介 (1) 1.2 丁基橡胶的用途 (1) 1.3 丁基橡胶的缺点 (3) 1.4 橡胶与聚丙烯共混的究 (3) 1.5 溴化丁基橡胶的再生利用 (5) 1.6 本课题的研究意义及目的 (7) 2 实验部分 (7) 2.1 实验的试剂与仪器 (7) 2.2 溴化丁基橡胶与聚丙烯的共混 (8) 3 结果与讨论 (9) 3.1 相容剂氯化聚乙烯的用量对橡塑共混物拉伸性能的影响 (9) 3.2 共混比对橡塑共混物拉伸性能的影响 (10) 3.3 共混温度对橡塑共混物拉伸性能的影响 (11) 3.4 共混时间对橡塑共混物拉伸性能的影响 (12) 3.5 硫化温度对橡塑共混物拉伸性能的影响 (13) 4 结论 (14) 参考文献 (15) 致谢 (17)

交联溴化丁基橡胶与聚丙烯共混改性的研究 摘要:通过交联溴化丁基橡胶与聚丙烯的共混改性,使得交联的溴化丁基橡胶具有较好的机械性能以及加工性能,本文研究了共混比、相容剂用量、开炼温度、开炼时间、硫化温度等相关工艺条件。结果表明在橡塑共混比为 3:1,相容剂用量为总质量的7%,开炼温度与时间为150℃、10min,硫化温度为170℃时,可获得综合性能较好的共混胶料。 关键词:交联溴化丁基橡胶;聚丙烯;氯化聚乙烯 The blends modification of Crosslinked bromobutyl rubber and polypropylene Abstract:In the interest of fine mechanical properties and processing performance, the crosslinked bromobutyl rubber was modified by blend with the polypropylene in this paper. The blend ratio of the crosslinked bromobutyl rubber and the polypropylene, the dosage of inosculating reagent, the mixing temperature, the mixing time, vulcanization temperature, and other related conditions were researched. The result show that: the optimal blend ratio was 3:1 in the rubber blend, the dosage of inosculating reagent was 7% of the mass percent, the mixing temperature and time were 150℃and 10min, the vulcanization temperature is 170℃. the obtained blend rubber was material with better integration performance. Key Words: Crosslinked bromobutyl rubber;Polypropylene;Chlorinated polyethylene

2020年(塑料橡胶材料)聚丙烯塑料的改性及应用(三)

(塑料橡胶材料)聚丙烯塑料的改性及应用(三)

热塑性低烟无卤阻燃电缆料性能

玻纤增强聚丙烯的抗蠕变性得到改善,能够比聚碳酸酯、耐热ABS、聚甲醛等塑料的性能更好。此外在150℃下保持1500小时,其拉伸强度和热变形温度都不会下降,在沸水和水蒸汽中可长期使用。 玻纤增强聚丙烯的加工流动性因玻纤的存在有所下降,但和其它塑料相比,仍然属良好的加工流动性。提高成型加工温度可使其流动性得到改善。

2改性聚丙烯发展动向

聚丙烯在生产数量迅速发展的同时,也在性能上不断出新,使其应用的广度和深度不断变化,近年来或者通过在聚合反应时加以改进,或者在聚合后造粒时采取措施,有壹些更具独特性能的聚丙烯新的品种问世,如透明聚丙烯、高熔体强度聚丙烯等。 2.1透明改性 PP的结晶是造成不透明的主要原因,利用急冷冻结PP的结晶趋向,能够得到透明的薄膜,但有壹定壁厚的制品,因热传导需要时间,芯层不可能迅速被冷却冻结,因此对于有壹定厚度的制品不能指望用急冷的办法提高透明度,必须从PP的结晶规律和影响因素入手。 经壹定技术手段得到的改性PP,可具有优良的透明性和表面光泽度,甚至能够和典型的透明塑料(如PET、PVC、PS等)相媲美。透明PP更为优越的是热变形温度高,壹般可高于110℃,有的甚至可达135℃,而上述三种透明塑料的热变形温度都低于90℃。由于透明PP的性能优势明显,近年来在全球都得以迅速发展,应用领域从家庭日用品到医疗器械,从包装用品到耐热器皿(微波炉加热用),都在大量使用。 PP的透明性提高可通过以下三种途径: (1)采用茂金属催化剂聚合出具有透明性的PP; (2)通过无规共聚得到透明性PP; (3)在普通聚丙烯中加入透明改性剂(主要是成核剂)提高其透明性。 4.1.1国内外发展态势 据日本理化株式会社介绍,日本7%的PP为透明PP,透明PP的产量在400kt/a之上。日本透明PP市场以微波炉炊具及家具俩方面的消耗量最大。日本出光化学X公司制造出和PVC具有同样透明性和光泽性的透明PP,当下能够广泛替代普通透明PVC制作文具、笔记本壹类的包装物,价格只相当于PVC的20%-30%,1999年出售了1200t透明PP。

聚丙烯改性

聚丙烯纤维的表面改性 学院:同济大学浙江学院 姓名:董瀚 学号:090736 摘要:结合聚丙烯( PP) 纤维分子结构特点、表面特性以及在水泥基材料应用中存在的问题, 研究了等离子处理方法对聚丙烯纤维表面的改性技术。 关键词:聚丙烯纤维; 表面改性;等离子处理 Research Progress in Surface Modification Technology of PP Fiber ABSTRACT:In this article, we discussed the molecule structure and surface characteristics of PP fiber and the problems whenthey were used in cement matrix material. The surface modification technology of PP fiber was also researched with corona treatment with coupling agent. KEYWORDS:polypropylene fiber; surface modification;corona treatment 1 前言 近年来, 聚丙烯( PP) 纤维在抗裂要求较高的混凝土工程中得到迅速的推广应用, 其出色的阻裂效果已得到试验及工程的证实。但同时也存在一些致命缺点: 表面光滑; 表面能低; 分子链上不含任何活性基团, 而且表面疏水, 以致于纤维在水泥基材料中不易分散; 与水泥基材的物理化学粘接性能较差等,严重制约了其在水泥基材料中的应用。因此对纤维表面进行适当的改性, 提高其在水泥基材料基体中的分散性和界面结合力是聚丙烯纤维扩大应用的关键所在。本文主要介绍等离子处理方法(塑性开裂性能的缺陷)。 2 PP 纤维的结构和性能 聚丙烯是一种结构规整的结晶型聚合物, 为乳白色, 无味, 无毒, 质轻, 是聚烯烃的一种, 密度为0190~ 0. 91g/ cm3, 不溶于水, 熔点为165 ℃ , 燃点为590 ℃; 耐热性能良好; 聚丙烯几乎不吸水, 耐蚀性能良好, 与大多数化学品, 如酸、碱和有机溶剂接触不发生作用; 物理机械性能良好, 抗拉强度330 ~414MPa, 极限伸长率200% ~ 700% , 弹性模量为3.92~ 4. 90GPa; 耐光性能差【1】。 聚丙烯纤维是聚丙烯切片经纺丝、拉伸工艺制成的纤维级产品, 其抗拉强度、极限伸长率以及弹性模量随制作工艺不同而变化较大【2】。聚丙烯纤维虽然具有很好的力学性能, 耐化学侵蚀, 但也存在一些致命缺点, 分子不带有极性基团、表面呈化学惰性和憎水性、在水泥基材料的应用中存在与基材的粘结性和抗蠕变性能较差的缺点。 众所周知, 水泥基材料耐久性的重要地位并不亚于强度和其它性能, 而耐久性不足最终都归结为材料开裂。在水泥基材料中掺入高弹性模量的钢纤维, 其作用主要是阻止硬化材料破坏时的裂缝扩展, 使硬化材料在开裂后仍能保持一定的抗拉强度。与钢纤维相比, 聚丙烯纤维的掺入能有效的抑制早期( 塑性期和硬化初期) 水泥基材料由于离析、泌水、收缩等因素形成的原生裂隙的发生和发展, 减少原生裂隙的数量和尺寸。因此, 聚丙烯纤维和钢纤维的阻裂效应是不同的, 它们分别改善了不同时期水泥基材料的性能。在一些对水泥基材料裂缝要求严格的工程中, 掺用聚丙烯纤维则有可能获得更为满意的效果, 因钢纤维在材料开裂后方能发挥阻裂效应,有些场合并无实际意义, 而水泥基材料在早期易发生塑性开裂性能的缺陷, 却可通过掺入聚丙烯纤维得到解决和改善。

聚丙烯抗冲改性的研究进展

聚丙烯抗冲改性的研究进展 [摘要] 综述了近年来有关反应器内抗冲改性聚丙烯研究的最新进展, 介绍了反应器内抗冲改性聚丙烯的生产工艺及多区循环流反应器在丙烯多段聚合中的应用; 介绍了反应器内抗冲改性聚丙烯的形态、结构与性能的关系; 介绍了 反应器内抗冲改性聚丙烯的研究方法及增韧机理。 [关键词] 聚丙烯; 抗冲改性; 共聚物; 结构与性能. 聚丙烯( PP)质轻、价廉, 具有良好的加工性能,应用范围广。PP的很多应用领域要求它具有较好的韧性。均聚PP在低温时变脆, 抗冲改性PP是通过在均聚PP中加入橡胶相制备的。以提高PP抗冲强度为目的的改性大多采用物理共混方法, 将PP和两种或两种以上的其它聚合物以机械共混方法进行混合, 可以得到一种宏观上均匀的聚合物共混物,在一定程度上提高共混物的性能。一方面, 以这种混合方式得到的PP与改性成分达不到真正均匀分布的状态, 故不能显提高共混物的冲击强度; 另一方面, 由于增加了共混工艺, 提高了生产抗冲改性PP的成本。因此, 研究人员想在聚合过程中完成共混工艺, 在反应器内直接合成抗冲改性的PP, 这样不仅可以简化工艺、降低生产成本, 而且还可以使PP和改性成分的混合程度达到亚微观状态, 从而有效地改善PP的抗冲性能。 本文对反应器内抗冲改性PP的生产工艺、形态结构、研究方法、增韧机理等方面的最新进展进行了综述。 1 应器内抗冲改性PP的生产工艺 反应器内抗冲改性PP的生产建立在第四代球形M gC l2 负载Z ieg ler- N atta 催化剂的基础上[ 1 ] 。第四代球形M gC l2 负载Z ieg ler- N a tta 催化剂具有以下特点[ 2] : ( 1)比表面积大; ( 2)孔隙率高, 孔径分布均匀; ( 3)活性中心在催化剂上分布均匀; ( 4)催化剂既具有一定的强度, 又能被聚合物增长时产生 的压力将内部结构破碎成较小颗粒, 并均匀地分布在膨胀着的聚合物内部; ( 5)单体可以自由地扩散到催化剂内部而发生聚合。由于聚合过程中的复制效应, 均聚过程中生成的丙烯均聚物复制了催化剂的某些特点, 如呈规则的球形、具有较高的孔隙率、活性中心在聚合物粒子内部分布均匀等。 反应器内抗冲改性PP 的生产一般采用两步法: 第一步先合成丙烯均聚物, 形成高立构规整度的聚合物, 为最终产品提供足够强的刚性, 这一步一般采用液相本体聚合或气相聚合工艺; 第二步合成乙丙共聚物(橡胶相), 为最终产品提供韧性, 共聚阶段一般采用气相共聚工艺; 最终产品的机械性 能实际上是刚性和韧性的平衡。气相共聚是反应器内抗冲改性PP 合成的关键步骤, 特殊的催化剂结构形态使本体聚合阶段获得的PP粒子具有较高的流动性和多孔性, 完全可以满足气相共聚的要求。合适的气相共聚工艺可以自由地调控共聚物的含量、组成及分子结构。气相共聚也保证了共聚物能均匀地分散在已形成的PP均聚物基体中, 这样既可以得到较高的橡胶相含量, 又不致使橡胶相过

聚丙烯改性

专业:08高分子1班学号:08206020135 姓名:金从伟 聚丙烯改性 引言:聚丙烯因其具有良好的加工性能和物理、力学、化学性能而获得广泛应 用。是目前增长速度最快的通用型热塑性塑料。聚丙烯的主要应用领域为学向拉丝制品,膜片制品及包装容器制品。但近年来将普通聚丙烯经过填充、增强、共混改性再作为原料制作汽车,电器.仪表等工业配套零部件也已成为其主要的应用领域。 关键词:聚丙烯;改性 1.物理改性 物理改性由于工艺过程简单,生产周期短。所制得材料性能优良。近年来已成为高分子材料一个新的研究热点。常用的改性方法主要有共混改性、填充改性、增强改性等。 1.1 共混改性 共混改性是将聚丙烯与橡胶或其它热塑性树脂的弹性体共混制备共混物。最古老和最简单的方法是机械掺合法。共混改性可明显改进低温脆性、冲击强度和耐寒性等。如聚丙烯与乙丙橡胶顺丁橡胶、聚异丁烯等共混,可提高冲击强度3~7倍,提高耐寒性8~ l0倍。聚丙烯除了二元共混体外,还采用了三元共混体系。如玻璃纤维增强聚丙烯和橡胶共混,不但改善了冲击韧性和耐寒性,同时刚性和抗蟠变性能也得到保证,其制品的力学性能可与ABs相媲美。 1.2填充改性 为了开拓聚丙烯在工程塑料应用领域中的用途,需要提高聚丙烯的刚性和耐热性,可以添加填充材料,如滑石粉、碳酸钙硫酸钡、云母、石膏、石棉、术粉、炭黑、硅藻粉和高岭土等。填充性主要是提高聚丙烯的刚性、耐热性和尺寸稳定性,并可降低成本 1.3增强改性 用玻璃纤维和碳纤维作为增强材料,其最大特点是基体树脂聚丙烯的化学稳定性强,可提高抗张、抗弯曲和冲击强度,降低成型收缩率。经增强后的聚丙烯,其性能与尼龙、聚甲醛、聚碳酸脂等工程塑料相当。玻璃纤维增强聚丙烯既保持了聚丙烯成本低的特点,且在玻璃纤维增强热塑性塑料 中,其比重最小,困而在重量和秽_格上占有优势,且具有流动性大、成型条件幅脚宽、耐水性和耐化学侵蚀性好的特点。所以,聚丙烯中添加玻璃纤维后,其耐热刚性、尺寸稳定性、耐蠕变性和机械强度等都有很大的提高,可作为工程塑料而广泛应用。同时,其要食品卫生方面无害,尤其是电性质良好 1.4添加助剂改性 为使聚丙烯性能适合各方面的需要,添加抗氧剂和紫外线吸收剂可提高聚丙烯的耐气展性}添加阻燃剂可降低聚丙烯的易燃性;添加成核剂可增强聚丙烯的透明性和光泽性。并可缔短成型周期等}添加其它助剂如抗氧剂、润滑剂、热稳定剂、发泡剂、着色剂等,可以改善聚丙烯的耐老化性、加工稳定性,抗静电性能等。 2. 化学改性

聚丙烯塑料的改性及应用

聚丙烯塑料的改性及应用 1、聚丙烯在合成树脂生产中占据重要地位,发展极为迅速 聚丙烯是五大通用合成树脂中的一个重要品种,在国内外的发展均十分迅速。在全球塑料用五大合成树脂中,聚丙烯的产量占有1/4左右的份额,预计2006年世界五大通用合成树脂的总产能将达到1亿9千万吨,其中聚丙烯4878万吨,占总产能的25.6%[1]。而我国2004年聚丙烯树脂产量为474.88万吨,进口291.4万吨,出口1.53万吨,其表观消费量为764.7万吨,占当年全国五大通用树脂表观消费量总和2954万吨的25.9%。预计到2010年我国聚丙烯树脂的表观消费量将增加至1080万吨,较2004年增长40%以上。表1列出近期投产和正在建设的聚丙烯装置的地点和产能。 表1 近期投产和在建聚丙烯装置

在已宣布的新增产能中,中石化253万吨/年,中石油135万吨/年,而且大多数项目的产能都在30万吨以上,达到世界级规模。这些装置全部投产后,中石化的聚丙烯产能将超过巴赛尔公司,跃居全球榜首,中石油也将列位前五名之列,届时中国将成为生产聚丙烯树脂全球产能最大的国家。 另据报道,我国聚丙烯树脂的产量1995年仅为107.35万吨,到2005年达到522.95万吨,平均年递增38.7%,同期表观消费量也从212.92万吨增至823万吨,平均年递增28.7%,成为全球聚丙烯消费增长最快的国家[2]。 1 聚丙烯基本知识 1.1 树脂与塑料的定义和分类 树脂(Resin):高分子材料亦称高分子聚合物,分为天然高分子材料和合成高分子材料。在合成高分子材料中按塑料、橡胶、纤维三大用途分为合成树脂、合成橡胶和合成纤维三大类,其中用于塑料的合成树脂所占的比例最大,约占合成材料总量的2/3以上。 塑料(Plastics):以合成树脂为主要成分,添加有适量的填料、助剂、颜料,而且在加工过程中能流动成型的材料。 热塑性塑料(ThermoPlastics):能在特定温度范围内反复软化和冷却硬化的塑料。 热固性塑料(Thermosetting Plastics):在第一次成型之后,成为不熔、不溶性物料的塑料。

聚丙烯改性技术的研究进展

聚丙烯改性技术的研究进展 五大通用塑料中,聚丙烯(PP)发展历史虽短,却是发展最快的一种。与其他通用塑料相比,PP具有较好的综合性能,例如:相对密度小,有较好的耐热性,维卡软化点高于HDPE和ABS,加工性能优良;机械性能如屈服强度、拉伸强度及弹性模量均较高,刚性和耐磨都较优异;具有较小的介电率,电绝缘性良好,耐应力龟裂及耐化学药品性能较佳等。但由于PP成型收缩率大、脆性高、缺口冲击强度低,特别是在低温时尤为严重,这大大限制了PP的推广和应用。为此,从上世纪70年代中期,国内外就对PP改性进行了大量的研究,特别是在提高PP的缺口冲击强度和低温韧性方面,目前已成为国内外研究的重点和热点。 1 橡胶增韧PP 橡胶或热塑性弹性体以弹性微粒状分散结构增韧塑料,已被证实是增韧效果较为明显的一种方法。由于PP具有较大的晶粒,故在加工时球晶界面容易出现裂纹,导致其脆性。通过掺人各种含有柔性高分子链的橡胶或弹性体,可大幅度提高PP的冲击强度,改善低温韧性。传统的PP增韧剂有三元乙丙橡胶(EPDM)、二元乙丙橡胶(EPR)、苯乙烯与丁二烯类热塑性弹性体(SBS)、顺丁橡胶(BR)、丁苯橡胶(SBR)等,其中以EPDM或EPR取效果最好。 1.1 PP/乙丙橡胶共混体系 PP与乙丙橡胶都含有丙基,溶度参数相近,根据相似相容原理,它们之间应具有较好的相容性。由于乙丙橡胶具有高弹性和良好的低温性能,因此与PP 共混可改善PP的冲击性能和低温脆性。 李蕴能等研究了乙丙橡胶心P共混物的性能,得出结论:在相同橡胶含量下,增韧共聚PP的效果远优于增韧均聚PP,且增韧效果与橡胶的种类有关。通常情况下,EPR的增韧效果优于EPDM。通过实验发现,当橡胶含量为30%时,增韧效果最好;不同结晶度的EPR对PP的增韧效果也不一样,结晶度越低,其增韧效果越好。 刘晓辉等对不同PP心Pr)M共混物的力学性能进行了研究。结果表明:(1)随着体系中EPDM加入量的增多,材料的冲击强度明显上升,当EPDM含量为30%左右时,冲击强度出现极值;(2)冲击强度的提高和变化与EPDM在PP中的形态和分布有关;(3)EPDM的加入对共混晶体结构有影响,但晶体结构上的差

低密度聚乙烯(LDPE)共混改性聚丙烯(PP)

低密度聚乙烯(LDPE)共混改性聚丙烯(PP) 一、实验目的 通过本实验,使学生初步了解和掌握聚丙烯的性能以及聚合物共混改性的方法;了解标准试样的制备方法;了解并掌握简单的聚合物复合材料的表征方法和测试手段,为毕业论文实验打下良好的基础。聚丙烯(PP)的合成和应用可以追溯到上1950年,一位名叫Natta 教授成功地在实验室合成聚丙烯[1]。大半个世纪过去,几代科研人员的投入大量精力,已经把聚丙烯从实验室产品开发成为富有功能的合成树脂的主导成员。现今,聚丙烯是热塑性树脂中发展很成熟的种类之一。我国对聚丙烯的基础性研究已有半个世纪,生产技术从催化剂的获得到聚合工艺的精进,以及新产品和新应用领域的开发都有很大进步,然而,同国外同行研究成绩相比,我国从聚丙烯产品的开发到应用均还存在差距,因此,聚丙烯领域的相关研究还有很大空间[2]。 聚丙烯与聚乙烯,聚氯乙烯,聚苯乙烯,ABS 组成五大通用塑料,其增长速度最快、开发潜力最大的一类树脂[3]。聚丙烯作为热塑性树脂,具有很好的实用性,并且价格低廉,在人们的日常生活和工业生产制造等多个领域到处都发挥着重要作用。 聚丙烯(PP)具有比重小、耐热性好、耐腐蚀性好、成型加工容易、力学性能优异且原料来源丰富、价格低廉等优点[1],已经在全世界范围内大量生产和使用,其产量仅次于聚乙烯,成为第二大塑料品种[2]。聚丙烯的优点得以让其迅速发展,但同时聚丙烯的缺点却也限制了其在各行各业中的应用,比如聚丙烯强度不高、易老化、易燃、韧性差、

耐寒性差、低温易脆断、成型收缩率大、抗蠕变性能差、制品尺寸稳定性差、易产生翘曲变形等等[3]。因此,对聚丙烯的改性势在必行。从二十世纪六、七十年代起国内外就开始针对聚丙烯的缺点、对其如何改性进行了大量的研究,采用了多种方式对聚丙烯进行改性,提高了聚丙烯的性能,大大扩展了聚丙烯的应用范围[4-5]。 对聚丙烯的改性方法可划分为化学改性和物理改性。化学改性有共聚、接枝、交联等,物理改性有共混、填充、增强等。对聚丙烯的改性可以改善其性能的不足,同时又可以增加新的性质,可制备满足各行各业不同要求的专用料。改性方法中由于共混改性方法简单效果好、而且投资较少成为目前改性中使用最多的方 法。 二、实验原理 本实验通过聚丙烯(PP)/低密度聚乙烯(LDPE)共混改性,研究其性能的变化。 聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0.9-0.91g/cm3,是目前所有塑料中最轻的品种之一。它对水特别稳定,在水中的吸水率仅为0.01%,分子量约8万一15万。成型性好,但因收缩率大(为1%~2.5%).厚壁制品易凹陷,对一些尺寸精度较高零件,很难于达到要求,制品表面光泽好。 PP的熔体质量流动速率(MFR)通常在1~100。低MFR的PP 材料抗冲击特性较好但延展强度较低。对于相同MFR的材料,共聚

PP共混改性配方大全精编版

PP共混改性配方大全 聚丙烯是目前用量最大的通用塑料之一,但较高的结晶度也给 PP造成低温韧性差、成型收缩率大和缺口敏感性大等缺点,在一定 程度上限制了其更广泛的应用。共混改性是PP增韧的最有效途径。 它是利用组份之间的相容性或反应共混的原理,将两种或两种以上的聚合物与助剂在一定温度下进行机械共混,最终形成一种宏观上均匀,微观上相分离的新材料。通过对PP的共混故性,可以使其综合性能 大大提高,从而和工程塑料及聚合物合金在众多应用领域里竞争。 PP共混改性使用的主要共混物物及改性效果如下表: PP 接下来就是干货满满的具体改性配方和工艺啦! 1、PP/LDPE共混改性 配方 树脂PP100;相容剂PE-g-MAH5;LDPE20;润滑剂HSt0.3; 加工工艺 将PP与PE、相容剂及助剂按配方比例混合、搅拌、挤出造粒,制成改性材料。挤出机料筒温度为:一段210℃,二段215℃,三段210℃;螺杆长径比为25:1;螺杆转速为120~160r/min。 性能 PP与PE共混,可改善PP的韧性,增大低温下落球冲击强度。按配方比例的共混材料的屈服应力13.6MPa;屈服应变率为12.3%,断裂应力为4.78MPa;断裂应变率为114.6%。

2、PP/HDPE共混改性 配方 树脂PP57.35;抗氧剂10760.2;HDPE40;PEPQ0.2;交联剂叔丁基过氧基异丙苯0.15;加工助剂硬脂酸镁0.1;填充剂硅灰石2; 加工工艺 在常温常压下,将各组分按配方比例在高速混合机中混合10min,然后采用双螺杆挤出机进行熔融共混,挤出造粒。挤出温度150-220℃,螺杆转速为300r/min,经切粒、干燥工序制得PP/HDPE共混改性材料。 性能 拉伸强度34.8MPa,悬臂梁冲击强度49.3J/m。该材料表面消光效果良好,可用于包装、日用品和建筑材料等领域。 3、PP/LLDPE共混改性 配方 树脂PP(EPF30R)60-70;钛酸酯偶联剂(ND2-311)适量;LLDPE15-20;抗氧剂增韧剂POE(8150)5~10;光稳定剂适量;填充剂滑石粉(平均粒径12μm)10~15; 加工工艺 等高速混合机预热至110℃,加入一定量的无机填料,低速搅拌15min后,分三次加入填料质量分数为2%的偶联剂,每次加入偶联剂后,高速搅拌5min,然后放出填料备用。按配方比例准确称取PP、PE、POE、填料和其他助剂,混合后加入双螺杆挤出机料斗中,挤出

聚丙烯改性研究及其在输液瓶瓶盖中的应用

聚丙烯改性研究及其在输液瓶瓶盖中的应用 王以秀,张乃潮,唐雷,朱雪真,刘应福,李忠志 威高集团创新公司 大输液制剂作为常用药之一,临床需求量非常大。作为第一代输液产品玻璃瓶装大输液,由于玻璃瓶包装的生产工艺复杂,需反复清洗使用,易产生玻璃纤维,质量难以控制,存在对人体健康产生不良影响的诸多隐患,且运输成本高、易碎。同时使用后的玻璃瓶不便处理、污染环境,逐步淘汰是必然的趋势。随着人们医疗健康水平和科学技术不断提高,塑料包装大输液已成为当今国际输液包装发展的主流之一。 2006年全国各类输液的用量约为30多亿瓶,塑瓶输液约占20%,瓶盖料的用量将高达2500吨,产值达1亿元;预计未来几年塑瓶输液的需求量将占输液产量的40-50%,将达到15亿瓶,瓶盖料的用量将达6000吨,产值达2亿元。输液用改性聚丙烯瓶盖料目前国内只有几家公司生产,而市场瓶盖料的用量每年以10%的速度递增,面对如此巨大的市场,同时为了保证威高集团洁瑞医用制品有限公司的市场竞争力,我公司决定研制开发输液用改性聚丙烯瓶盖料。 目前,我公司已经大批量生产输液用改性聚丙烯瓶盖料,除了供威高集团药业公司使用,还对外销售。 1 实验部分 1.1主要原料 无规共聚聚丙烯(PP),乙烯—辛烯共聚物(POE),聚乙烯(PE),三元乙丙橡胶(EPDM),乙烯—醋酸乙烯共聚物(EVA)。 以上原料均为商品。 1.2 试验设备 双螺杆挤出机 南京橡塑机械厂制造的SJSH-40双螺杆挤出机组。其螺杆直径Φ为40mm,长/径比为36,各段温度控制在150-220℃。 1.3 性能检测 1.3.1 熔体指数 采用长春长城试验机厂生产的XNK—400Z型熔融指数仪,测试条件为230℃,

聚丙烯的共混改性

聚丙烯的共混改性 材料一班历晨 1205101018 摘要:聚丙烯,是由丙烯聚合而制得的一种热塑性树脂。按甲基排列位置分为等规,无规和间 规聚丙烯三种。 甲基排列在分子主链的同一侧称等规聚丙烯,若甲基无秩序的排列在分子主链的两侧无规聚丙烯,当甲基交替排列在分子主链的两侧称间规聚丙烯。一般工业生产的聚丙烯树脂中,等规结构含 量约为95%,其余为无规或间规聚丙烯。 关键字:聚丙烯共混改性、聚丙烯改性研究、改性制品八大应用 聚丙烯共混改性 PP/EVA共混体系 : 物理共混改性的方法分别制备出乙烯—醋酸乙烯含量为0~20wt%的聚丙烯(PP)/乙烯—醋酸乙烯(EVA)共混切片,以PP为皮层、PP/EVA共混物为芯层,采用熔融纺丝工艺制备出皮芯复合中空纤维。文中通过研究原材料的组成、EVA含量、复合比例、纺丝温度和挤出速率/卷绕速率匹配对熔融纺丝稳定性的影响,确定了最佳熔融纺丝工艺,同时对复合纤维的力学性能进行了测试。采用差示扫描量热分析仪(DSC)、声速仪、宽角X-射线衍射仪(WXRD)和扫描电子显微镜(SEM)等分析与检测手段对PP/EVA共混物及共混纤维进行相关性能测试,并经过浸泡,研究皮芯复合中空纤维对有机小分子物质的吸附性能。结果表明:1、当EVA含量为0~20wt%时,可以顺利的进行共混造粒。PP/EVA共混物的熔融指数随着EVA质量百分含量的增加而明显降低;随着温度的升高,共混物熔融指数在230℃后急剧升高,流动性明显改善;PP/EVA共混体系为热力学不相容体系。2、具有可纺性的PP/EVA共混物,经严格控制纺丝条件,可以纺制成一定直径且粗细均匀的皮芯复合中空纤维。最佳纺丝工艺条件为:EVA含量10wt%,皮芯复合比6/4,纺丝温度230℃,挤出速率39.69g/min,卷绕速率500m/min。3、随EVA含量的增加和拉伸倍数的增大,纤维的纤度和断裂强度单调减小。当EVA含量为10wt%,实际拉伸倍数为3.7时,纤维的纤度为9dtex,断裂强度和断裂伸长分别为3.0cN/dtex、39%。4、皮芯复合中空纤维通过纤维内部EVA中的极性基团吸附有机小分子物质,吸附量主要取决于纤维中EVA的含量。5、乙烯—醋酸乙烯与有机小分子物质的溶解度参数差异决定吸附量,两者的溶解度参数差异越小,吸附量越大,因此皮芯复合中空纤维对丙烯酸甲酯的吸附性能很好,对苯乙烯吸附性较好,对乙酸乙酯和柏树精油的吸附性相对较差。 6、拉伸倍数在0~4倍时,随着拉伸倍数的增加,纤维对有机小分子物质的吸附量降低;随着温度 的升高,纤维对有机小分子物质的吸附量在50℃时出现最大值. PP/TPEE共混体系:聚丙烯(PP)纤维是由等规聚丙烯经纺丝加工制得的纤维,具有质轻、强力高、 弹性好、化学稳定性好、制造成本低、再循环加工简便等特点,被广泛用于无纺布、卫生用品、绳 索等。但由于聚丙烯纤维大分子内不含任何极性基团,结构规整,结晶度高,疏水性强,分子内不 含能与染料发生作用的染座,所以丙纶的染色性能较差,严重影响了其在服用纺织品上的应用。因 此,对聚丙烯进行可染改性,是广大研究工作者一直关注的热点。其中在聚丙烯基体中通过加入含 染座的改性剂进行共混改性,是聚丙烯纤维可染改性的主要方法。但改性剂的添加,会对聚丙烯的 纺丝性能和纤维力学性能带来较大的影响,因此,选择适宜的改性添加剂及如何改善聚丙烯与改性 添加剂的相容性,是共混改性的难点。本文采用共混改性的方法,选用与PP溶解度参数较接近的聚 对苯二甲酸丁二醇酯(PBT)与聚四亚甲基醚二醇(PTMG)的嵌段共聚物(TPEE)作为改性添加剂,分别 以乙烯-辛烯共聚物接枝甲基丙烯酸缩水甘油酯(POE-g-GMA)、聚丙烯接枝甲基丙烯酸缩水甘油酯 (PP-g-GMA)、乙烯-醋酸乙烯共聚物(EVA)为相容剂,在双螺杆挤出机中按一定共混比例制得共混样 品;利用扫描电镜(SEM)、旋转流变仪、差示扫描量热仪(DSC)、X-射线衍射仪(XRD)、热重分析仪(TG)

橡胶_弹性体增韧改性聚丙烯研究进展_朱东升

橡胶/弹性体增韧改性聚丙烯研究进展 朱东升,张宝善,韩丹,孟富新 (江苏凯力高分子科技有限公司,江苏连云港 222000) 摘 要:介绍了聚丙烯(PP )增韧改性机理,重点综述了当前研究较多的橡胶/弹性体对PP 的增韧改性方法及未来PP 增韧改性的主要研究方向。 关键词:聚丙烯;增韧改性;橡胶;弹性体 中图分类号:TQ317 文献标识码:A 文章编号:1672–2191(2015)02–0034–06 收稿日期: 2014–10–13作者简介: 朱东升(1987–),男,在读硕士,从事树脂加工应用研究。 电子信箱: zhuds1987@https://www.360docs.net/doc/9816488836.html, 聚丙烯(PP )是三大通用塑料之一,其产量仅次于聚氯乙烯和聚乙烯。与其他通用热塑性塑料相比,PP 具有密度小、硬度大、介电常数小、耐热性好、耐化学药品等特点,且价廉、热变形温度高、易于加工等优点,使其在机械、化工、汽车、家电和包装等领域得到了广泛应用[1–2]。 由于近年来的迅速发展,PP 已成为塑料中产量增长最快的品种,但PP 也存在一些不足之处,如耐候性差、脆性较高、成型收缩率大、冲击强度低,特别是低温条件下,这些缺点和不足限制了PP 的应用和推广。未经改性的PP 根本不能作为工程结构部件使用,所以在实际生产中常采用改性的方法来赋予PP 新的性能。因此PP 改性特别是PP 增韧改性已成为高分子材料科学与工程中最活跃的领域之一[3–5]。 通过对PP 高性能化和工程化改性技术研究,提高了制品的性价比,推动了PP 的工程化进程,使PP 能从通用塑料跨入工程塑料行列,大大拓展了PP 的应用范围。 1 增韧机理 关于PP 的增韧机理,银纹–剪切带屈服理论是目前普遍为人们所接受的重要理论,主要包括银纹终止理论和剪切带屈服理论[6–8]。橡胶/弹性体增韧改性聚丙烯是迄今为止研究最多和增韧效果最明显的一类方法[9]。当橡胶/弹性体与PP 共混改性时,材料性能不仅与橡胶/弹性体分散相有关,而且也与PP 树脂连续相的特性有关。即作为分散相的橡胶/弹性体与PP 连续相需要具有较好的相容性,这时橡胶/弹性体会以一定的粒径分布 于PP 连续相中,从而形成一种具有良好相界面的两相或多相结构体系。在增韧改性体系中,橡胶/弹性体以微粒的形式随机分布在PP 连续相中,使PP 大而脆的球晶变成细而密的球晶,形成了所谓的“海–岛”结构。在受外力作用时,橡胶/弹性体粒子作为应力集中中心引发大量的银纹和产生剪切屈服形变,从而吸收大量能量,阻止和终止了银纹的发展,使之不致成为破坏性的裂纹。与此同时,生长的银纹遇到橡胶/弹性体粒子或银纹与银纹相遇时会使银纹转向和支化。银纹的支化和分裂增加了对能量的吸收,控制了银纹的发展,阻止其扩展为裂纹。 在很多情况下,银纹和剪切带会同时产生,并发生相互作用,使基体从脆性破坏变成韧性破坏。银纹和剪切带的大量产生及银纹与剪切带相互作用延缓了材料的破坏,从而达到增韧PP 的目的。 综上所述,橡胶/弹性体增韧PP 机理表明:橡胶/弹性体在增韧改性PP 过程中,其本身并不能吸收能量,而是在受到外力作用下作为应力集中中心引发PP 基体的剪切屈服和银纹化,从而使PP 基体发生脆–韧转变,进而实现对PP 的增韧。 2 橡胶/弹性体增韧PP 橡胶/弹性体是以弹性微粒状分散结构增韧塑料的,已被证实这是一种行之有效的方法,是目前研究最多、增韧效果最为明显的一类方法。2.1 PP/EPR 共混体系 二元乙丙橡胶(EPR )具有高弹性和良好的低

超临界二氧化碳制备辐射交联微孔聚丙烯材料的研究进展

第37卷第1期2019年2月辐射研究与辐射工艺学报J.Radiat.Res.Radiat.Process. https://www.360docs.net/doc/9816488836.html,/fushe/CN/volumn/home.shtml V ol.37,No.1 February2019 超临界二氧化碳制备辐射交联微孔聚丙烯材料的研究进展 杨晨光1,2邢哲1谭海容1吴国忠1 1(中国科学院上海应用物理研究所上海201800) 2(中国科学院大学北京100049) 摘要利用超临界CO 2 发泡技术制备的微孔聚合物材料具有发泡效率高,绿色环保及机械性能好等优点。 少量聚合物(例如聚丙烯)由于熔体强度较低,不足以支撑泡孔膨胀,容易造成发泡过程中孔壁破裂和泡 孔融合,严重影响发泡材料的力学性能。辐射交联可以使聚合物从二维结构变为三维网状结构,显著提高 聚合物熔体强度,明显拓宽聚合物的发泡温度区间。因此,辐射交联技术在超临界CO 2 发泡工艺中具有重 要的潜在应用。本文主要综述了超临界CO 2发泡改性聚丙烯发泡的研究进展以及辐射交联在超临界CO 2 发泡 聚丙烯工作中应用的可行性。 关键词聚丙烯,超临界CO 2 ,辐射交联,发泡,机械性能 中图分类号TL13 DOI:10.11889/j.1000-3436.2019.rrj.37.010101 Research progress in preparation of cross-linked polypropylene foam using supercritical CO 2 YANG Chenguang1,2XING Zhe1TAN Hairong1WU Guozhong1 1(Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai201800,China) 2(University of Chinese Academy of Sciences,Beijing100049,China) ABSTRACT Manufacture of microcellular plastic foams using supercritical CO 2 foaming technology has attracted considerable research attention from industries,owing to its numerous excellent advantages like efficient foaming, environmental preservation,good mechanical performance of polymer foam,and good appearance of finished products.Because the melt strength of some types of polymers(e.g.polypropylene(PP))is very low,i.e.they are easy to rupture and collapse,the mechanical properties of the obtained foams are poor.Radiation cross-linking can change the polymer from a2-dimensional structure to a3-dimensional network structure,significantly improving its melt strength,and making it favorable for foaming using supercritical CO 2 .Hence,radiation technology has great application potential in supercritical CO 2 foaming of polymers.This paper briefly summarized the characteristics of PP foaming using supercritical CO 2 and the application of radiation cross-linking in the same. KEYWORDS Polypropylene(PP),Supercritical CO 2 ,Radiation cross-linking,Foaming,Mechanical property CLC TL13 基金资助:国防基础科研核科学挑战计划(TZ2018004)资助 第一作者:杨晨光,男,1988年4月出生,2014年6月毕业于郑州大学,现为中国科学院上海应用物理研究所无机化学专业博士研究生,E-mail:yangchenguang@https://www.360docs.net/doc/9816488836.html, 通信作者:吴国忠,博士,研究员,E-mail:wuguozhong@https://www.360docs.net/doc/9816488836.html, 收稿日期:初稿2018-11-19;修回2018-12-06 Supported by National Defense Fundamental Science Research Nuclear Science Challenge Program(TZ2018004) First author:YANG Chenguang(male)was born in April1988,and received his bachelor’s degree from Zhengzhou University in June2014.Now he is a Ph.D.candidate at Shanghai Institute of Applied physics,Chinese Academy of Sciences,University of Chinese Academy of Sciences.E-mail:yangchenguang@https://www.360docs.net/doc/9816488836.html, Corresponding author:Ph.D.WU Guozhong,professor,E-mail:wuguozhong@https://www.360docs.net/doc/9816488836.html, Received19November2018;accepted06December2018 万方数据

相关文档
最新文档