大学物理-光的等厚干涉 实验报告

大学物理-光的等厚干涉 实验报告
大学物理-光的等厚干涉 实验报告

大连理工大学

大学物理实验报告

院(系)材料学院专业班级

姓名学号实验台号

实验时间年月日,第周,星期第节

实验名称光的等厚干涉

教师评语

实验目的与要求:

1.观察牛顿环现象及其特点,加深对等厚干涉现象的认识和理解。

2.学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。

3.掌握读数显微镜的使用方法。

实验原理和内容:

1.牛顿环

牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成,结构如图所示。

当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空气膜,经空气膜和玻璃之间的上下界面反射的两束光存在光程差,它们在平凸透镜的凸面(底面)相遇后将发生干涉,干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆,称为牛顿环(如图所示。由牛顿最早发现)。由于同一干涉圆环各处的空气薄膜厚度相等,故称为等厚干涉。牛顿环实验装置的光路图如下图所示:

成绩

教师签字

设射入单色光的波长为λ, 在距接触点r k 处将产生第k 级牛顿环, 此处对应的空气膜厚度为d k , 则空气膜上下两界面依次反射的两束光线的光程差为

2

δ+

=k k nd

式中, n 为空气的折射率(一般取1), λ/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。

根据干涉条件, 当光程差为波长的整数倍时干涉相长, 反之为半波长奇数倍时干涉相消, 故薄膜上下界面上的两束反射光的光程差存在两种情况:

2

)

12(2

22

λ

λ

δ+=

+

=k k d k k

由上页图可得干涉环半径r k , 膜的厚度d k 与平凸透镜的曲率半径R 之间的关系

222)(k k r d R R +-=。 由于dk 远小于R , 故可以将其平方项忽略而得到2

2k k r Rd =。 结合以上

的两种情况公式, 得到:

λkR Rd r k k ==22

, 暗环...,2,1,0=k

由以上公式课件, r k 与d k 成二次幂的关系, 故牛顿环之间并不是等距的, 且为了避免背光因素干扰, 一般选取暗环作为观测对象。

而在实际中由于压力形变等原因, 凸透镜与平板玻璃的接触不是一个理想的点而是一个圆面; 另外镜面沾染回程会导致环中心成为一个光斑, 这些都致使干涉环的级数和半径无法准确测量。 而使用差值法消去附加的光程差, 用测量暗环的直径来代替半径, 都可以减少以上类型的误差出现。 由上可得:

λ

)(422n m D D R n

m --=

式中, D m 、D n 分别是第m 级与第n 级的暗环直径, 由上式即可计算出曲率半径R 。 由于式中使用环数差m-n 代替了级数k , 避免了圆环中心及暗环级数无法确定的问题。

凸透镜的曲率半径也可以由作图法得出。 测得多组不同的D m 和m , 根据公式m R D

m

λ42=,

可知只要作图求出斜率λR 4, 代入已知的单色光波长, 即可求出凸透镜的曲率半径R 。 2. 劈尖

将两块光学平玻璃叠合在一起, 并在其另一端插入待测的薄片或细丝(尽可能使其与玻璃的搭接线平行), 则在两块玻璃之间形成以空气劈尖, 如下图所示:

K=1,2,3,…., 明环 K=0,1,2,…., 暗环

当单色光垂直射入时, 在空气薄膜上下两界面反射的两束光发生干涉; 由于空气劈尖厚度相等之处是平行于两玻璃交线的平行直线, 因此干涉条纹是一组明暗相间的等距平行条纹, 属于等厚干涉。 干涉条件如下:

2

)

12(2

λ

δ+=+

=k d k k

可知, 第k 级暗条纹对应的空气劈尖厚度为

2

λ

k

d k =

由干涉条件可知, 当k=0时d 0=0, 对应玻璃板的搭接处, 为零级暗条纹。 若在待测薄物体出出现的是第N 级暗条纹, 可知待测薄片的厚度(或细丝的直径)为

2

λN

d =

实际操作中由于N 值较大且干涉条纹细密, 不利于N 值的准确测量。 可先测出n 条干涉条纹的距离l , 在测得劈尖交线到薄片处的距离为L , 则干涉条纹的总数为:

L l

n N =

代入厚度计算式, 可得厚度/直径为:

L l

n d 2λ=

主要仪器设备:

读数显微镜, 纳光灯, 牛顿环器件, 劈尖器件。

步骤与操作方法: 1. 牛顿环直径的测量

(1) 准备工作: 点亮并预热纳光灯; 调整光路, 使纳光灯均匀照射到读数显微镜的反光

镜上, 并调节反光镜片使得光束垂直射入牛顿环器件。 恰当调整牛顿环器件, 直至肉眼课件细小的正常完整的牛顿环干涉条纹后, 把牛顿环器件放至显微镜的中央并对

k=0, 1, 2,…

准。完成显微镜的调焦,使牛顿环的中央与十字交叉的中心对准后,固定牛顿环器

件。

(2)测量牛顿环的直径:

从第6级开始逐级测量到第15级暗环的直径,使用单项测量法。

转动测微鼓轮,从零环处开始向左计数,到第15级暗环时,继续向左跨过直至第18

级暗环后反向转动鼓轮(目的是消除空程误差),使十字线返回到与第15级暗环外侧

相切时,开始读数;继续转动鼓轮,均以左侧相切的方式,读取第14,13,12.……

7,6级暗环的读数并记录。

继续转动鼓轮,使十字叉线向右跨过圆环中心,使竖直叉丝依次与第6级到第15级

的暗环的右内侧相切,顺次记录读数。

同一级暗环的左右位置两次读数之差为暗环的直径。

2.用劈尖测量薄片的厚度(或细丝直径)

(1)将牛顿环器件换成劈尖器件,重新进行方位与角度调整,直至可见清晰的平行干涉条纹,且条纹与搭接线平行;干涉条纹与竖直叉丝平行。

(2)在劈尖中部条纹清晰处,测出每隔10条暗纹的距离l,测量5次。

(3)测出两玻璃搭接线到薄片的有效距离L,测量5次。

* 注意,测量时,为了避免螺距的空程误差,读数显微镜的测微鼓轮在每一次测量过程中只能单方向旋转,中途不能反转。

数据记录与处理:

牛顿环第一次测量直径

第二次测量直径

劈尖干涉短距离(l)

劈尖干涉全距离(L)

结果与分析:(除了序号外, 没有标注的数据单位均为mm) 由牛顿环半径, 用逐差法计算平凸透镜的曲率半径: 由第一组数据获得的环直径:

由第二组数据获得的环直径:

由以上两组数据获得直径平均值为:

已知纳光灯的波长λ= 0.0000005893m

由公式λ

)(422n m D D R n

m --= 可以得到五个逐差得到的曲率半径值:

得到凸透镜曲率半径的最终结果:

R=0.87±0.02 m

用劈尖测量薄片厚度

10条暗纹的长度数据及其处理

得到10条暗纹的间距长度为: l=(1.30±0.03)*10-03 m

劈尖干涉条纹的整体长度数据及其处理

得到劈尖干涉条纹的整体长度为:

L=(40.4±0.2)*10-03 m

由以上数据, 得到薄片厚度d 的平均值为 d(avg)= 9.14484E-05 影响系数 Cl=0.07, CL=0.002, 得到d 的不确定度为m UL CL Ul Cl Ud -062210*2.00)*()*(=+=

可以得到, 薄片厚度d 为: d= (9.1±0.2)*10-05 m

讨论、建议与质疑:

1.如果牛顿环中心是亮斑而不是暗斑,说明凸透镜和平板玻璃的接触不紧密,或者说没有接触,

这样形成的牛顿环图样不是由凸透镜的下表面所真实形成的牛顿环,将导致测量结果出现误差,结果不准确。

2.牛顿环器件由外侧的三个紧固螺丝来保证凸透镜和平板玻璃的紧密接触,经测试可以发现,如

果接触点不是凸透镜球面的几何中心,形成的牛顿环图样将不是对称的同心圆,这样将会影响测量而导致结果不准确。因此在调节牛顿环器件时,应同时旋动三个紧固螺丝,保证凸透镜和平板玻璃压紧时,接触点是其几何中心。另外,对焦时牛顿环器件一旦位置确定后,就不要再移动,实验中发现,轻微移动牛顿环器件,都将导致干涉图样剧烈晃动和变形。

3.如果读数显微镜的视场不亮,可以有三个调节步骤:一,整体移动显微镜,使反光镜组对

准纳光灯;二,通过旋钮调节物镜下方的反光玻璃,使其成45度,正好将光线反射到牛顿环器件上;三,调节载物台下方的反光镜,是纳光灯的光线可以通过载物台玻璃照射到牛顿环器件。总之,调节反射光路,是解决视场偏暗的主要方法。

4.该实验中获得的感触是,耐心,细心,是实验成功的重要保证。另外,长期使用读数显微

镜容易导致视疲劳,建议改进成由电子显示屏输出的样式,而不用肉眼直接观察。

大学物理 练习6 光的干涉

班级______________学号____________姓名________________ 练习六 光的干涉 一、选择题 1.在折射率n=的厚玻璃中,有一层平行玻璃表面的厚度为mm d 3105.0-?=的空气隙, 今以波长λ=400nm 的平行单色光垂直照射厚玻璃表面,如图所示,则从玻璃右侧向玻 璃看去,视场中将呈现( ) A 、亮影; B 、暗影; C 、明暗相间的条纹; D 、均匀明亮。 2. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是 ( ) (A )使屏靠近双缝; (B )使两缝的间距变小; (C )把两个缝的宽度稍微调窄; (D )改用波长较小的单色光源。 3.在双缝干涉实验中,若单色光源S 到两缝1S 、2S 距离相等,则观察屏上中央明纹中心位于图中O 处, 现将光源S 向下移动到示意图中的S '位置,则 ( ) (A )中央明条纹向下移动,且条纹间距不变; (B )中央明条纹向上移动,且条纹间距增大; (C )中央明条纹向下移动,且条纹间距增大; (D )中央明条纹向上移动,且条纹间距不变。 4.用单色光垂直照射牛顿环装置,设其平凸透镜可以在垂直的方向上移动,在透镜离开平玻璃的过程中, 可以观察到这些环状干涉条纹 ( ) (A )向右平移; (B )向中心收缩; (C )向外扩张; (D )向左平移。 5.如图所示,波长为λ的平行单色光垂直入射在折射率为2n 的薄膜上,经上下两个表面 反射的两束光发生干涉。若薄膜厚度为e ,而且321n n n >>,则两束反射光在相遇点的 位相差为( ) (A )λπ/42e n ; (B )λπ/22e n ; (C )λππ/42e n +; (D )λππ/42e n +-。 6.两个直径相差甚微的圆柱体夹在两块平板玻璃之间构成空气劈尖,如图所示,单色光垂直照射,可看到 等厚干涉条纹,如果将两个圆柱之间的距离L 拉大,则L 范围内的干涉条纹 ( ) (A )数目增加,间距不变; (B )数目增加,间距变小; (C )数目不变,间距变大; (D )数目减小,间距变大。 二、填空题 1.双缝干涉实验中,若双缝间距由d 变为d ',使屏上原第十级明纹中心变为第五级明纹中心,则='d d : ;若在其中一缝后加一透明媒质薄片,使原光线光程增加λ5.2,则此时屏中心处为第 级 纹。 2.用600=λnm 的单色光垂直照射牛顿环装置时,第4级暗纹对应的空气膜厚度为_________m 。 3.在牛顿环实验中,平凸透镜的曲率半径为,当用某种单色光照射时,测得第k 个暗纹半径为,第k +10个 暗纹半径为,则所用单色光的波长为___________nm 。 4.在垂直照射的劈尖干涉实验中,当劈尖的夹角变大时,干涉条纹将向 方向移动,相邻条纹间的距离 将变 。 5.在空气中有一劈尖形透明物,其劈尖角rad 100.14 -?=θ,在波长700=λnm 的单色光垂直照射下,测 得干涉相邻明条纹间距l=,此透明材料的折射率n =___________。 三、计算题 1.用很薄的云母片(n =纹的位置上。如果入射光波长为550nm ,试问此云母片的厚度为多少 S S 3 n e

等厚干涉实验报告(2)

大学物理实验报告(等厚干涉) 、实验目的: 1?、观察牛顿环和劈尖的干涉现象。 2、了解形成等厚干涉现象的条件极其特点。 3、用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚度。 二、实验原理: 1.牛顿环 牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成,结构如图所示。 当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空 气膜,经空气膜和玻璃之间的上下界面反射的两束光存在光程差,它们在平凸透镜的凸面(底面)相遇后将发生干涉,干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆,称为牛顿环(如图所示。由牛顿最早发现)。由于同一干涉圆环各处的空气薄膜厚度相等,故称为等厚干涉。牛顿环实验装置的光路图如下图所示: 设射入单色光的波长为入,在距接触点r k处将产生第k级牛顿环,此处对应的空气膜厚度为d k,则空 气膜上下两界面依次反射的两束光线的光程差为 - 扎 =2nd k 亠— 2 式中,n为空气的折射率(一般取1),入/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。 下界面上的两束反射光的光程差存在两种情况: 根据干涉条件,当光程差为波长的整数倍时干涉相长, 反之为半波长奇数倍时干涉相消, 故薄膜上 2k K=1,2,3,….,明环

(2k 1) 2K=0,1,2,….,暗环

2 2 2 由上页图可得干涉环半径r k,膜的厚度d k与平凸透镜的曲率半径R之间的关系R =(R-d k) - r k o o 由于dk远小于R,故可以将其平方项忽略而得到2Rd k二r k o结合以上的两种情况公式,得到: *5 r k =2Rd k二kR,, k= 0,1,2…,暗环 由以上公式课件,r k与d k成二次幕的关系,故牛顿环之间并不是等距的,且为了避免背光因素干扰, 般选取暗环作为观测对象。 而在实际中由于压力形变等原因,凸透镜与平板玻璃的接触不是一个理想的点而是一个圆面;另外镜 要作图求出斜率4R,,代入已知的单色光波长,即可求出凸透镜的曲率半径R o 2.劈尖 将两块光学平玻璃叠合在一起,并在其另一端插入待测的薄片或细丝(尽可能使其与玻璃的搭接线平行) 则在两块玻璃之间形成以空气劈尖,如下图所示: 当单色光垂直射入时,在空气薄膜上下两界面反射的两束光发生干涉;由于空气劈尖厚度相等之处是平行于两玻璃交线的平行直线,因此干涉条纹是一组明暗相间的等距平行条纹,属于等厚干涉。干涉条件如下: k =2d k - =(2k 1) 2 k=0, 1,2,… 可知,第k级暗条纹对应的空气劈尖厚度为 面沾染回程会导致环中心成为一个光斑, 这些都致使干涉环的级数和半径无法准确测量。而使用差值法消去附加的光程差,用测量暗环的直径来代替半径, 都可以减少以上类型的误差出现。由上可得: 2 2 d m — d n R 二--------- 4(m - n) ■ 式中,D m、D n分别是第m级与第n级的暗环直径,由上式即可计算出曲率半径由于式中使用环数差m-n代替了级数k,避免了圆环中心及暗环级数无法确定的问题。 凸透镜的曲率半径也可以由作图法得出。测得多组不同的D m和m,根据公式D2m = 4R m , 可知只 Hi

大学物理实验报告-等厚干涉

得分教师签名批改日期深圳大学实验报告 课程名称:大学物理实验(一) 实验名称:实验等厚干涉 学院:物理科学与技术学院 专业:课程编号: 组号:16 指导教师: 报告人:学号: 实验地点科技楼509 实验时间:2011 年06 月20 日星期一 实验报告提交时间:年月日

1、实验目的 _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ 2、实验原理 _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________

大学物理 第18章 光的干涉习题思考题的解答

习题 18-1.杨氏双缝的间距为mm 2.0,距离屏幕为m 1,求:(1)若第一到第四明纹距离为 mm 5.7,求入射光波长。(2)若入射光的波长为 A 6000,求相邻两明纹的间距。 解:(1)根据条纹间距的公式:m d D k x 0075.010 2134=???=?=?-λ λ 所以波长为: A 5000=λ (2)若入射光的波长为 A 6000,相邻两明纹的间距: mm d D x 310210600014 10 =???==?--λ 18-2.图示为用双缝干涉来测定空气折射率n 的装置。实验前,在长度为l 的两个相同密封玻璃管内都充以一大气压的空气。现将上管中的空气逐渐抽去,(1)则光屏上的干涉条 纹将向什么方向移动;(2)当上管中空气完全抽到真空,发现屏上波长为λ的干涉条纹移过N 条。计算空气的折射率. 解:(1)当上面的空气被抽去,它的光程减小,所以它将通过增加路程来弥补,所以条纹向下移动。 (2)当上管中空气完全抽到真空,发现屏上波长为λ的干涉条纹移过N 条。 可列出:λN n l =-)(1 解得: 1+=l N n λ 18-3.在图示的光路中,S 为光源,透镜 1L 、2L 的焦距都为f , 求(1)图中光线SaF 与光线SOF 的光程差为多少?。 (2)若光线SbF 路径中有长为l , 折射率为n 的玻璃, 那么该光 线与SOF 的光程差为多少?。 解:(1)图中光线SaF 与光线SOF 的几何路程相同,介质相同,所以SaF 与光线SoF 光程差为0。 (2)若光线SbF 路径中有长为l , 折射率为n 的玻璃, 那么光程差为几何路程差与 介质折射率差的乘积,即 )(1-n l 18-4.在玻璃板(折射率为50.1)上有一层油膜(折射率为30.1)。已知对于波长为nm 500和nm 700的垂直入射光都发生反射相消,而这两波长之间没有别的波长光反射相消,求此油膜的厚度。 解:油膜上、下两表面反射光的光程差为2 ne ,由反射相消条件有 2ne=(2k+1)λ/2=(k+1/2)λ (k=0,1,2,…) ① 当λ1=5000A 时,有 2ne=(k 1+1/2)λ1=k 1λ1+2500 ②

大学物理实验课后答案

实验一霍尔效应及其应用 【预习思考题】 1.列出计算霍尔系数、载流子浓度n、电导率σ及迁移率μ的计算公式,并注明单位。 霍尔系数,载流子浓度,电导率,迁移率。 2.如已知霍尔样品的工作电流及磁感应强度B的方向,如何判断样品的导电类型? 以根据右手螺旋定则,从工作电流旋到磁感应强度B确定的方向为正向,若测得的霍尔电压为正,则样品为P型,反之则为N型。 3.本实验为什么要用3个换向开关? 为了在测量时消除一些霍尔效应的副效应的影响,需要在测量时改变工作电 流及磁感应强度B的方向,因此就需要2个换向开关;除了测量霍尔电压,还要测量A、C间的电位差,这是两个不同的测量位置,又需要1个换向开关。总之,一共需要3个换向开关。 【分析讨论题】 1.若磁感应强度B和霍尔器件平面不完全正交,按式(5.2-5)测出的霍尔系数比实际值大还是小?要准确测定值应怎样进行? 若磁感应强度B和霍尔器件平面不完全正交,则测出的霍尔系数比实际值偏小。要想准确测定,就需要保证磁感应强度B和霍尔器件平面完全正交,或者设法测量出磁感应强度B和霍尔器件平面的夹角。 2.若已知霍尔器件的性能参数,采用霍尔效应法测量一个未知磁场时,测量误差有哪些来源? 误差来源有:测量工作电流的电流表的测量误差,测量霍尔器件厚度d的长度测量仪器的测量误差,测量霍尔电压的电压表的测量误差,磁场方向与霍尔器件平面的夹角影响等。 实验二声速的测量 【预习思考题】 1. 如何调节和判断测量系统是否处于共振状态?为什么要在系统处于共振的条件下进行声速测定? 答:缓慢调节声速测试仪信号源面板上的“信号频率”旋钮,使交流毫伏表指针指示达到最大(或晶体管电压表的示值达到最大),此时系统处于共振状态,显示共振发生的信号指示灯亮,信号源面板上频率显示窗口显示共振频率。在进行声速测定时需要测定驻波波节的位置,当发射换能器S1处于共振状态时,发射的超声波能量最大。若在这样一个最佳状态移动S1至每一个波节处,媒质压缩形变最大,则产生的声压最大,接收换能器S2接收到的声压为最大,转变成电信号,晶体管电压表会显示出最大值。由数显表头读出每一个电压最大值时的位置,即对应的波节位置。因此在系统处于共振的条件下进行声速测定,可以容易和准确地测定波节的位置,提高测量的准确度。 2. 压电陶瓷超声换能器是怎样实现机械信号和电信号之间的相互转换的? 答:压电陶瓷超声换能器的重要组成部分是压电陶瓷环。压电陶瓷环由多晶结构的压电材料制成。这种材料在受到机械应力,发生机械形变时,会发生极化,同时在极化方向产生电场,这种特性称为压电效应。反之,如果在压电材料上加交

迈克尔逊干涉仪实验报告精品

1 2 1 2 1 2 1 2 1 2 实验目的: 1) 学会使用迈克尔逊干涉仪 2) 观察等倾、等厚和非定域干涉现象 3) 测量氦氖激光的波长和钠光双线的波长差。 实验仪器: 氦氖激光光源、钠光灯、迈克尔逊干涉仪、毛玻璃屏实验原理: 1:迈克尔逊干涉仪的原理: 迈克尔逊干涉仪的光路图如图所示,光源 S 出 发的光经过称 45。 放置的背面镀银的半透玻璃板 P 1 被分成互相垂直的强度几乎相等的两束光, 光 路 1 通过 M 1 镜反射并再次通过 P 1 照射在观察平 面 E 上,光路 2 通过厚度、折射率与 P 1 相同的玻 璃板 P 2 后由 M 2 镜反射再次通过 P 2 并由 P 1 背面的 反射层反射照射在观察平面 E 上。图中平行于 M 的M ' 是M 经 P 反射所成的虚 1 2 2 1 像,即 P 到 M 与 P 到 M ' 的光程距离相等,故从 P 到M 的光路可用 P 到M ' 等 价替代。这样可以认为 M 与 M ' 之间形成了一个空气间隙, 这个空气间隙的厚度 可以通过移动 M 1 完成,空气间隙的夹角可以通过改变 M 1 镜或 M 2 镜的角度实现。 当 M 与M ' 平行时可以在观察平面 E 处观察到等倾干涉现象,当 M 与M ' 有一 1 2 1 2 定的夹角时可以在观察平面 E 处观察到等厚干涉现象。 2:激光器激光波长测量原理: 由等倾干涉条纹的特点,当 θ =0 时的光程差 δ 最大,即圆心所对应的

1 2 1 2 干 涉级别最高。转动手轮移动 M1,当 d 增加时,相当 于增大了和 k 相应的θ 角 ,可以看到圆 环一个个从中心 “冒出” ;若 d 减小时,圆环逐渐 缩小, 最后“淹没”在中心处。 每“冒” 出或“ 缩”进一个干涉环,相应的光程差改变了一个波长, 也就是 M 与 M ’ 之间距离 变化了半个波长。 若将 M 与 M ’ 之间距离改变了 △d 时,观察到 N 个干涉环变化,则 △d=N 由此可测单色光 的波长。 3:钠光双线波长差的测定: 在使用迈克尔逊干涉仪观察低压钠黄灯双线的等倾干涉条纹时,可以看到 随着动镜 M 1 的移动,条纹本身出现了由清晰到模糊再到清晰的周期性变化,即 反衬度从最大到最小再到最大的周期性变化, 利用这一特性, 可测量钠光双线波长差,对于等倾干涉而言,波长差的计算公式为: 实验内容与数据处理: (1) )观察非定域干涉条纹 1) 通过粗调手轮打开激光光源, 调节激光器使其光束大致垂直于平面反光镜 M 2 入射,取掉投影屏 E ,可以看到两排激光点 2) 粗调手轮移动 M 1 镜的位置,使得通过分光板分开的两路光光程大致相等 3) 调节M 1 、M 2 镜后面的两个旋钮, 使两排激光点重合为一排,并使两个最 亮的光点重合在一起。此时再放上投影屏 E ,就可以看到干涉条纹。 4) 仔细调节 M 、 M 镜后面的两个旋钮,使 M 与 M ' 平行,这时在屏上可 以看到同心圆条纹,这些条纹为非定域条纹。 5) 转动微调手轮,观察干涉条纹的形状、疏密及中心“吞” 、“吐”条纹随光程差 改变的变化情况。

等厚干涉牛顿环实验报告材料97459

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一.实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二.实验仪器 读数显微镜钠光灯牛顿环仪

三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 2222222)(r d Rd R r d R R ++-=+-= 由于r R >>,可以略去d 2得

R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来2λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1,0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何中心。实际测量时,我们可以通过测量距中心较远的两个暗环半径r m 和r n 的平方差来计算曲率半径R 。因为 λMR r m =2 λnR r n =2 两式相减可得 λ)(22n m R r r n m -=-

大物实验报告光的等厚干涉

大学物理实验报告 实验名称:光的等厚干涉 学院:机电工程学院 班级:车辆151班 姓名:吴倩萍 学号:5902415034 时间:第8周周三下午3:45开始 地点:基础实验大楼313 一、实验目的: 1.观察牛顿环和劈尖的干涉现象。 2.了解形成等厚干涉现象的条件及特点。 3.用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚度。 二、实验仪器: 牛顿环装置、钠光灯、读数显微镜、劈尖等。 三、实验原理:

在平面玻璃板BB上放置一曲率半径为R的平凸透镜AOA,两者之间便形成一层空气薄层。当用单色光垂直照射下来时,从空气上下两个表面反射的光束1和光束2在空气表面层附近相遇产生干涉,空气层厚度相等处形成同一级的干涉条纹,这种干涉现象称为等厚干涉。 1.用牛顿环测量平凸透镜表面的曲率半径 (1)安放实验仪器。(2)调节牛顿环仪边框上三个螺旋,使在牛顿环仪中心出现一组同心干涉环。将牛顿环仪放在显微镜的平台上,调节45°玻璃板,以便获得最大的照度。(3)调节读数显微镜调焦手轮,直至在显微镜内能看到清晰的干涉条纹的像。适当移动牛顿环位置,使干涉条纹的中央暗区在显微镜叉丝的正下方,观察干涉条纹是否在显微镜的读数范围内,以便测量。(4)转动测微鼓轮,先使镜筒由牛顿环中心向左移动,顺序数到第24暗环,再反向至第22暗环并使竖直叉丝对准暗环中间,开始记录。在整个测量过程中,鼓轮只能沿同一个方向依次测完全部数据。将数据填入表中,显然,某环左右位置读数之差即为该环的直径。用逐差法求出R,并计算误差。 2.用劈尖干涉法则细丝直径 (1)将被测细丝夹在两块平板玻璃的一端,另一端直接接触,形成劈尖,然后置于读数显微镜载物台上。(2)调节叉丝方位

光的等厚干涉 实验报告——大连理工大学大学物理实验报告

大连理工大学 大学物理实验报告 院(系)材料学院专业材料物理班级0705 姓名学号实验台号 实验时间2020 年10 月04 日,第周,星期二第5-6 节 实验名称光的等厚干涉 教师评语 实验目的与要求: 1.观察牛顿环现象及其特点,加深对等厚干涉现象的认识和理解。 2.学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。 3.掌握读数显微镜的使用方法。 实验原理和内容: 1.牛顿环 牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成,结构如图所示。 当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空气膜,经空气膜和玻璃之间的上下界面反射的两束光存在光程差,它们在平凸透镜的凸面(底面)相遇后将发生干涉,干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆,称为牛顿环(如图所示。由牛顿最早发现)。由于同一干涉圆环各处的空气薄膜厚度相等,故称为等厚干涉。牛顿环实验装置的光路图如下图所示: 成绩 教师签字

设射入单色光的波长为λ, 在距接触点r k 处将产生第k 级牛顿环, 此处对应的空气膜厚度为d k , 则空气膜上下两界面依次反射的两束光线的光程差为 2 2λ δ+ =k k nd 式中, n 为空气的折射率(一般取1), λ/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。 根据干涉条件, 当光程差为波长的整数倍时干涉相长, 反之为半波长奇数倍时干涉相消, 故薄膜上下界面上的两束反射光的光程差存在两种情况: 2 ) 12(2 22 2λ λ λ δ+= + =k k d k k 由上页图可得干涉环半径r k , 膜的厚度d k 与平凸透镜的曲率半径R 之间的关系 222)(k k r d R R +-=。 由于dk 远小于R , 故可以将其平方项忽略而得到2 2k k r Rd =。 结合以上 的两种情况公式, 得到: λkR Rd r k k ==22 , 暗环...,2,1,0=k 由以上公式课件, r k 与d k 成二次幂的关系, 故牛顿环之间并不是等距的, 且为了避免背光因素干扰, 一般选取暗环作为观测对象。 而在实际中由于压力形变等原因, 凸透镜与平板玻璃的接触不是一个理想的点而是一个圆面; 另外镜面沾染回程会导致环中心成为一个光斑, 这些都致使干涉环的级数和半径无法准确测量。 而使用差值法消去附加的光程差, 用测量暗环的直径来代替半径, 都可以减少以上类型的误差出现。 由上可得: λ )(422n m D D R n m --= 式中, D m 、D n 分别是第m 级与第n 级的暗环直径, 由上式即可计算出曲率半径R 。 由于式中使用环数差m-n 代替了级数k , 避免了圆环中心及暗环级数无法确定的问题。 凸透镜的曲率半径也可以由作图法得出。 测得多组不同的D m 和m , 根据公式m R D m λ42=, 可知只要作图求出斜率λR 4, 代入已知的单色光波长, 即可求出凸透镜的曲率半径R 。 2. 劈尖 将两块光学平玻璃叠合在一起, 并在其另一端插入待测的薄片或细丝(尽可能使其与玻璃的搭接线平行), 则在两块玻璃之间形成以空气劈尖, 如下图所示: K=1,2,3,…., 明环 K=0,1,2,…., 暗环

等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告 This manuscript was revised on November 28, 2020

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光 学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻 璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的

一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告 一、实验题目:迈克尔逊干涉仪 二、实验目的: 1. 了解迈克尔逊干涉仪的结构、原理和调节方法; 2. 观察等倾干涉、等厚干涉现象; 3. 利用迈克尔逊干涉仪测量He-Ne激光器的波长; 三、实验仪器: 迈克尔逊干涉仪、He-Ne激光器、扩束镜、观察屏、小孔光阑四、实验原理(原理图、公式推导和文字说明): 在图M 2′是镜子M 2 经A面反射所成的虚像。调整好的迈克尔逊干涉仪,在 标准状态下M 1、M 2 ′互相平行,设其间距为d.。用凸透镜会聚后的点光源S是 一个很强的单色光源,其光线经M 1、M 2 反射后的光束等效于两个虚光源S 1 、S 2 ′ 发出的相干光束,而S 1、S 2 ′的间距为M 1 、M 2 ′的间距的两倍,即2d。虚光源 S 1、S 2 ′发出的球面波将在它们相遇的空间处处相干,呈现非定域干涉现象,其 干涉花纹在空间不同的位置将可能是圆形环纹、椭圆形环纹或弧形的干涉条纹。 通常将观察屏F安放在垂直于S 1、S 2 ′的连线方位,屏至S 2 ′的距离为R,屏上 干涉花纹为一组同心的圆环,圆心为O。 设S 1、S 2 ′至观察屏上一点P的光程差为δ,则 )1 /) (4 1 ( ) 2 ( 2 2 2 2 2 2 2 2 2 - + + + ? + = + - + + = r R d Rd r R r R r d R δ (1) 一般情况下d R>>,则利用二项式定理并忽略d的高次项,于是有

??? ? ??+++=? ??? ??+-++?+=)(12)(816)(2)(4222 22222222222 2 r R R dr r R dR r R d R r R d Rd r R δ (2) 所以 )sin 1(cos 22θθδR d d + = (3) 由式(3)可知: 1. 0=θ,此时光程差最大,d 2=δ,即圆心所对应的干涉级最高。旋转微调鼓轮使M 1移动,若使d 增加时,可以看到圆环一个个地从中心冒出,而后往外扩张;若使d 减小时,圆环逐渐收缩,最后消失在中心处。每“冒出”(或“消失”)一个圆环,相当于S 1、S 2′的距离变化了一个波长λ大小。如若“冒出”(或“消失”)的圆环数目为N ,则相应的M 1镜将移动Δd ,显然: N d /2?=λ (4) 从仪器上读出Δd 并数出相应的N ,光波波长即能通过式(4)计算出来。 2. 对于较大的d 值,光程差δ每改变一个波长所需的θ的改变量将减小,即两相邻的环纹之间的间隔变小,所以,增大d 时,干涉环纹将变密变细。 五、实验步骤 六、实验数据处理(整理表格、计算过程、结论、误差分析): m m 105-5?=?仪 N=30

大物实验报告-光的等厚干涉

大学物理实验报告实验名称:光的等厚干涉 学院:机电工程学院 班级:车辆151班 姓名:吴倩萍 学号:5902415034 时间:第8周周三下午3: 45开始 地点:基础实验大楼313

一、实验目的: 1?观察牛顿环和劈尖的干涉现象。 2?了解形成等厚干涉现象的条件及特点。 3?用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚 度。 二、实验仪器: 牛顿环装置、钠光灯、读数显微镜、劈尖等。 三、实验原理: 在平面玻璃板BB上放置一曲率半径为R的平凸透镜AOA,两者之间便形成一层空气薄层。当用单色光垂直照射下来时,从空气上下两个表面反射的光束1和光束2在空气表面层附近相遇产生干涉,空气层厚度相等处形成同一级的干涉条纹,这种干涉现 象称为等厚干涉。 1.用牛顿环测量平凸透镜表面的曲率半径 (1)安放实验仪器。(2)调节牛顿环仪边框上三个螺旋,使在牛顿环仪中心出现一组同心干涉环。将牛顿环仪放在显微镜的平台上,调节45 °玻璃板,以便获得最大的照度。(3)调节读数显微镜调焦手轮,直至在显微镜内能看到清晰的干涉条纹的像。适当移动牛顿环位置,使干涉条纹的中央暗区在显微镜叉丝的正下方,观察干涉条纹是否在显微镜的读数范围内,以便测量。(4)

转动测微鼓轮,先使镜筒由牛顿环中心向左移动,顺序数到第 24暗环,再反向至第22暗环并使竖直叉丝对准暗环中间,开始记录。在整个测量过程中,鼓轮只能沿同一个方向依次测完全部数据。将数据填入表中,显然,某环左右位置读数之差即为该环的直径。用逐差法求出R,并计算误差。 2.用劈尖干涉法则细丝直径 (1)将被测细丝夹在两块平板玻璃的一端,另一端直接接触, 形成劈尖,然后置于读数显微镜载物台上。( 2)调节叉丝方位 和劈尖放置方位,使镜筒移动方向与干涉条纹相垂直,以便准确测出条纹间距。(3)用读数显微镜测出20条暗条纹间的垂直距离I,再测出棱边到细丝所在处的总长度L,求出细丝直径do (4) 重复步骤3,各测三次,将数据填入自拟表格中。求其平均值o 四、实验内容: 观察牛顿环 (1)接通钠光灯电源使灯管预热。 (2)将牛顿环装置放置在读数显微镜镜筒下,并将下面的反射 镜置于背光位置。 (3)待钠光灯正常发光后,调节光源的位置,使450半反射镜正对钠灯窗口,并且同高。

大学物理下册第三版课后答案18光的干涉

习题18 GG 上传 18-1.杨氏双缝的间距为mm 2.0,距离屏幕为m 1,求:(1)若第一级明纹距离为2.5mm ,求入射光波长。(2)若入射光的波长为6000A ,求相邻两明纹的间距。 解:(1)由L x k d λ= ,有:xd k L λ=,将0.2mm d =,1m L =,1 2.5mm x =,1k =代入,有:33 72.5100.210 5.0101 m λ---???= =?;即波长为:500nm λ=; (2)若入射光的波长为 A 6000,相邻两明纹的间距:7 3 161030.210D x mm d λ--???===?。 18-2.图示为用双缝干涉来测定空气折射率n 的装置。实验前,在长度为l 的两个相同密封玻璃管内都充以一大气压的空气。现将上管中的空气逐渐抽去,(1)则光屏上的干涉条纹将向什么方向移动;(2)当上管中空气完全抽到真空,发现屏上波长为λ的干涉条纹移过N 条。计算空气的折射率。 解:(1)当上面的空气被抽去,它的光程减小,所以它将 通过增加路程来弥补,条纹向下移动。 (2)当上管中空气完全抽到真空,发现屏上波长为λ的干涉 条纹移过N 条,可列出:λN n l =-)(1 得:1+= l N n λ 。 18-3.在图示的光路中,S 为光源,透镜1L 、2L 的焦距都为f , 求(1)图中光线SaF 与光线SOF 的光程差为多少?(2)若光线SbF 路径中有长为l ,折射率为n 的玻璃,那么该光线与SOF 的光程差为多少?。 解:(1)图中光线SaF 与光线SOF 的几何路程相同,介质相同,透镜不改变光程,所以SaF 与光线SOF 光程差为0。 (2)若光线SbF 路径中有长为l ,折射率为n 的玻璃,那么光程差为几何路程差与介质折射率差的乘积,即:(1)n l δ=-。 18-4.在玻璃板(折射率为50.1)上有一层油膜(折射率为30.1)。已知对于波长为nm 500和nm 700的垂直入射光都发生反射相消,而这两波长之间没有别的波长光反射相消,求此油膜的厚度。 解:因为油膜( 1.3n =油)在玻璃( 1.5n =玻)上,所以不考虑半波损失,由反射相消条件有:2(21) 122 n e k k λ =-= 油,,, 当12500700nm nm λλ==?????时,1122 2(21)22(21)2 n e k n e k λλ=? -=-??????油油?21 21217215k k λλ-==-, 因为12λλ<,所以12k k >,又因为1λ与2λ之间不存在'λ以满足' 2(21) 2 n e k λ=-油式, 即不存在21'k k k <<的情形,所以1k 、2k 应为连续整数,可得:14k =,23k =;

等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告 Final revision on November 26, 2020

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在 一块光学玻璃平板(平镜)上构成的,如图。平凸透 镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两

光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为

大学物理实验等厚干涉

《等厚干涉》参考答案和评分标准 预习报告(20分) 一.实验目的 a.复习与巩固等厚干涉原理,观察等厚干涉现象; b.利用牛顿环测量透镜球面的曲率半径; c.学会如何消除误差、正确处理数据的方法。 二. 实验仪器 读数显微镜、牛顿环装置、钠光灯 三. 实验原理 1.等厚干涉原理 2.利用牛顿环测一个球面镜的曲率半径 四. 实验内容和步骤 1.调整仪器 2.定性观察牛顿环 3.测量牛顿环各级直径,求出待测曲率半径及算出误差 评分要点: 1、要有实验名称、实验目的、实验原理、实验内容和步骤。(5分) 2、实验原理的书写要求用以自己的语言,言简意赅的语言表述清楚。(5分) 3、要绘制好填充测量数据所需要的表格。(5分)

4、报告的书写要整洁规范。(5分) 数据采集与实验操作(40分) 评分要点: 1、不能用手直接摸牛顿环的表面。(2分) 2、是否调出清楚的牛顿环。(10分) 3、对实验的原理是否掌握。(10分) 4、实验操作的熟练程度。(13分) 5、是否读出合理的数据。(5分) (注:实验后没有整理仪器及登记仪器使用情况另扣10分)数据记录和数据处理(30分) 08 .0= ? = , .0 R m R05 m

R=0.88±0.05(m) E =6% 评分要点: 1、是否列表记录数据,数据记录是否规范、清晰(10分) 2、数据处理过程是否完整(10分) 3、是否得出正确答案(R 在合理的范围5分,误差处理5分) 六.思考题 (10分) (1)、测量时,若实际测量的是弦长,而不是牛顿环的直径,则对测量结果会有何影响?为什么? 答:如图, 直线 AB 为实际测量的方向,与实际的圆心O 距离为OA 则AC 2-AB 2=(OC 2-OA 2)-(OB 2-OA 2)= OC 2-OB 2 所以(2AC )2-(2AB )2= (2OC )2-(2OB )2 即弦长的平方差等于直径的平方差。 所以对测量结果没有影响。 (2)、为什么相邻两暗环(或亮环)之间的距离,靠近中心的要比边缘的大? 答一: k k R k k R kR R k r r r kR r k k κ++= -+=-+=-=?=+1)1()1(1λλλλλ 所以靠近中心(k 越小,r ?越大)的环间距要比边缘的大。

相关文档
最新文档