三种常用的缺失值填充方法_刘爱鹏

三种常用的缺失值填充方法_刘爱鹏
三种常用的缺失值填充方法_刘爱鹏

三种常用的缺失值填充方法

刘爱鹏

(华北电力大学 北京 102206)

摘 要: 介绍在遇到蛋白质数据链在同源建模中缺失数据需要填充的时候所使用的常用方法,其中包括线性的KNN 、SKNN 方法和非线性的SVD 方法,以及他们相比较起来的优缺点。

关键词: 缺失值;KNN ;SKNN ;SVD

中图分类号:TP311.13 文献标识码:A 文章编号:1671-7597(2011)1210188-01

在生物学发展中对蛋白质的研究越来越多,各种针对蛋白质的同源建其中*就是缺失的数值。我们的就是要找到一个矩阵Y ,使得它可以把模的结构数据的实验研究也越来越多,可是在我们使用同源建模的方法的数据填满,而且能够尽量的近似于原始的数据。

时候,由于蛋白质演化或变异的时候将会出现缺失值的情况。例如经过因为数据是缺失的,我们没有办法得到数据的平均值,我们以 来表PCA 处理降维处理过的蛋白质链可以分为严格保守部分和非保守部分,严示,代表平均值的最大似然估计。于是我们的问题就是要求 ,使格保守部分基本不缺值,大概占60%左右,而非保守部分则会含有缺失得 最小,其中 。我们先把平均值减值,当我们填补缺失值后将能够把可以利用的蛋白质数据链的百分比提高去,为的是免去位移向量的动作,不过现在平均值不知道,所以当作未知到80%左右,所以缺失值的填充问题很重要。针对生物数据缺失值的填充数一起求解。

问题的处理上要与一般的统计方法处理数据的形式不同,需要利用数据之根据SVD 方法,任何一个 的 矩阵都可以分解成

间的关系来准确的,合理的填充缺失值。

近年来,在处理这个问题上出现了一些填充缺失值比较准确地方法,我们另外令

如K 个最近邻的缺失值填充法(KNN )、有序的K 个最近邻填充法(SKNN )和奇异值分解法(SVD )。在这里,我分别的简单介绍下这三种方法。

1 KNN算法

基于K 个最近邻的缺失值填充算法其实是在考虑了生物蛋白质表达数所以我们就不用求整个的矩阵

据之间的相关性,因而预测结果较为准确。通过选定需要多少个最近邻的所以现在我们要求的有三个向量,分别是 , 和 ,蛋白质数据链,根据这些个近邻蛋白质链提供的信息,对缺失数据的目标而且我们只能根据已知的资料求解。我们把问题改成下面的样子:

蛋白质链的缺失值进行预测和估计。

首先我们要计算目标蛋白质链(也就是包含有缺失值的链)与其他链之间的欧式距离,然后在所有计算出来的距离中找到距离目标蛋白质链距离最小的K 个最近邻的蛋白质链,然后对选择出的K 个最近邻蛋白质链赋予与 相比,我们现在要把X 中有值的输入进去,去累加他的误差,并相应的权值,其相应位置(即目标链的缺失值位置)的加权平均值即为目使得误差最小。其实 就是 。

标蛋白质缺失值的估计值。

我们可以把有值的部分拉成一个向量,举个例子:

这个方法的好处就是简单、快速,缺点就是在对缺失数据较多的链填充的时候,性能和准确度不高。

2 SKNN算法

有序的最近邻的缺失值填充算法SKNN 是在KNN 算法的基础上提出而来显然,如果Y 中有P 个位置是有值的,那么我们就会得到一个向量

的,总的来说,两者在选择最近邻的蛋白质链和计算邻近蛋白质链加权系 其中 。当然,经过这样的调整,数的方法都是相同的。不同之处主要是SKNN 算法首先要根据数据集中的各 也必须重新定义为

条链的缺失率进行排序,从缺失率最小的蛋白质链开始填充。还有就是SKNN 算法不仅利用数据集中原有的蛋白质链,它还会将经过填充的蛋白质链也加入到相似的蛋白质的选择范围内。

SKNN 算法是KNN 算法的改进算法,在数据缺失率比较大的情况下具有继续上个例子,如果该矩阵相对应的 是平均值,而且假设

较好的填充效果。

,则 。同时我们也需要对v 和u 做出一点修正

上面的两种方法都是基于线性的方法,在实际应用的时候,都是比较简单,方便的,但是填充精度比其非线性的方法来说都低了很多。

3 SVD算法(wiberg’s method)

这个方法主要是在使用pca 的时候,数据是需要完整的,如果出现了缺失怎么办,那就使用wiberg ’s method ,也就是SVD 算法。

我们先假设有n 个m 维的数据,分别是x 1,x 2,,x n ,令X=

,只是我们还无法直接拿X 来用,因为里面很多的缺失值。给个具体的例子,我们可能要处理这样的数据。

定义B 和G

(下转第165页)

美研制出硼氮基液态储氢材料

美国化学家研制出一种硼氮基液态材料科学研究所的化学教授柳时元(音储氢材料,其能在室温下安全工作,在译)领导的科研团队研制的新储氢材料空气和水中也能保持稳定。

是一个圆环形的名叫硼氮甲基环戊烷的美国化学家研制出一种硼氮基液态硼氢化合物。该材料能在室温下工作、储氢材料,其能在室温下安全工作,在性能稳定。除此之外,该材料还能放空气和水中也能保持稳定,这项技术进氢,放氢过程环保、快速且可控;而步为科学家们攻克现今制约氢经济发展且,在放氢的过程中不会发生相变。该的氢存储和运输难题提供了解决方案。材料使用常见的氯化铁作为催化剂来放相关研究发表在《美国化学学会会刊》

氢,也能将放氢使用的能量加以回收利用。

重要的是,新储氢材料为液态而非固态。柳时元表示,液体氢化物储氢技氨硼烷会形成一个更大的分子并释放出术具有储氢量大,储存、运输、维护、氢气。但氨硼烷是一种固体材料,因保养安全方便,便于利用现有储油和运此,他们通过将环的数量从6环减少到5环输设备,可多次循环使用等优点。这将等结构修改,成功地制造出了这种液态减少全球从化石燃料过渡到氢能经济的的储氢材料,其蒸汽压比较低,而且,成本。“目前,科学家们研制出的储氢材释放氢气并不会改变其液体属性。

料基本上都是金属氢化物、吸附剂材料柳时元表示,新材料适合用于由燃以及氨硼烷等固体材料。液态储氢材料

料电池提供能量的便携式设备中,但这项在线版上。

不仅便于存储和运输,也可以利用现在技术还需要不断改进,主要是提高氢气的氢被人们视作化石燃料的最佳替代流行的液态能源基础设施。”柳时元说。

产量并研制出能效更高的再生机制。

物,但制氢、储氢和氢气的运输一直是研制出该液态储氢材料的关键是化制约氢能发展的重要环节。俄勒冈大学

学方法。刚开始,柳时元团队发现6环的

《科技日报》之,固定另外一边,就可以求出 。反复进行相同的步骤,直到收敛为止。当我们求出 和 的时候,数据重建的工作其实也就大功告成了。

由于SVD 方法是非线性的,它的填充精度比较高,不过区别于线性的权值加成,SVD 是通过迭代完成填充的,在过程中会改变原有的数据,甚至有可能出现不收敛的情况,所以使用的时候要注意收敛的情况。

国家自然科学基金项目(项目批准号:10904111)

为了求 最小,我们将 分别对 和 做偏微分,得

参考文献:

[1]BUTTE AJ,YE J,NIEDERFELLNER G,etal Determining significant fold differences in gene epression analysis[J].Pac.Symp.Biocomput,20

01,6:6-17.

[2]AL IZADEH AA,EISEN MB,DAVIS RE,etal Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling[J].Nature,其中的 和 分别是B 和G 的广义逆矩阵。

2000:403,503-511.

所以当我们真的开始填充数值的时候,我们需要首先猜测一组 、[3]KI-YEOL KM,BYOUNG-JN KM,GWAN-SU YI Reuse of imputed data in 和 并分成两边,一边是 和 ,另一边只放 。开始填充的时候要先固microarray analysis increases imputation efficiency[J].BMC Bioinforma 定其中的一边,假设是 ,那么我们可以算出G ,进而可以求出 。反

Tics 2004,5:160.

(上接第188页)

紧固件表面处理九大选择

1、电镀锌 电镀锌是商业紧固件最常用的镀层。它比较便宜,外观也较好看,可以有黑色、军绿色。然而,它的防腐性能一般,其防腐性能是锌镀(涂)层中最低的。一般电镀锌中性盐雾试验在72小时之内,也有采用特殊封闭剂,使得中性盐雾试验达200小时以上,但价格贵,是一般镀锌的5~8倍。 电镀锌加工过程易产生氢脆,所以10.9级以上的螺栓一般不采用镀锌的处理.虽然镀后可以用烘箱去氢,但因钝化膜在60℃以上时将遭破坏,因此去氢必须在电镀后钝化前进行。如此可操作性差,加工成本高。在现实中,一般生产厂不会主动去氢,除非特定客户的强制要求。 电镀锌的紧固件扭矩—预紧力一致性较差,且不稳定,一般不用于于重要部位的连接。为了改善扭矩—预紧力一致性,也可采用镀后涂覆润滑物质的方法改善和提高扭矩—预紧力一致性。 2、磷化 磷化相对镀锌便宜,耐腐蚀性能比镀锌差。磷化后应涂油,其耐腐蚀性能的高低与所涂油的性能有很大的关系。例如,磷化后涂一般的防锈油,中性盐雾试验也只有10~20小时。涂高档的防锈油,则可达72~96小时。但其价格是一般磷化涂油的2~3倍。 固件磷化常用的两种,锌系磷化和锰系磷化。锌系磷化润滑性能比锰系磷化好,锰系磷化抗腐蚀性,耐磨性镀锌较好。它的使用温度可达华氏225度到400度(107~204℃)。 工业用紧固件很多用磷化涂油处理。因为它扭矩—预紧力一致性很好,装配时能保证达到设计所预期的紧固要求,所以在工业中使用较多。特别是一些重要零部件的连接。如,钢结构连接副,发动机的连杆螺栓、螺母,缸盖、主轴承、飞轮螺栓,车轮螺栓螺母等。 高强度螺栓采用磷化,还可以避免氢脆问题,所以在工业领域10.9级以上的螺栓一般采用磷化表面处理。 3、氧化(发黑) 发黑+涂油是工业紧固件很流行的镀层,因为它最便宜,并且在油耗尽之前看起来不错。由于发黑几乎无防锈能力,所以无油后它很快就会生锈。就是在有油状态下,其中性盐雾试验也只能达到3~5小时。 发黑的紧固件扭矩—预紧力一致性也很差。如需提高,可以在装配时在内处螺纹上涂抹油脂后再旋合。 4、电镀镉 镉镀层耐腐蚀性能很好,特别是在海洋性大气环境下的耐腐蚀性较其他表面处理好。电镀镉的加工过程中的废液处理费用大,成本高,其价格约是电镀锌的15~20倍。所以在一般行

+紧固件常用防松方法

224 第21章 螺纹紧固件连接的防松 一、松动机理 螺纹连接在工作状态下可能会经受所有类别的变动载荷,包括极为激烈的振动和冲击载荷。在变动载荷的作用下,螺纹连接的失效通常是由其自身的松动和疲劳破坏所引起的。在一般情况下,螺纹连接抗振松的寿命比其材料和结构的疲劳寿命短得多,远在疲劳破坏之前,就已经出现了因松动而造成螺纹连接的松脱失效,或者出现了因松动而导致连接件和被连接件的过早疲劳破坏。螺纹连接的失效会影响产品和设备的正常运转,甚至会造成严重的后果。如何防止螺纹连接的松动是研制和设计螺纹紧固件的重要任务之一。 在通常的螺纹连接中,摩擦力产生于内外螺纹接触面或螺纹紧固件支承面与被连接件的接触面上。当螺纹连接开始松转时,克服螺纹接触面上的摩擦所需的力矩M 1为: ()αρ-= tg Qd M 2 2 1……………………………(公式21-1) 式中:Q ——作用于螺栓或螺钉上的预紧力,又称轴力或紧固系统的夹紧力; d 2——螺纹中径; ρ——摩擦角,对于三角形螺纹,β ρcos 1 M tg = ,M 1是螺纹接触面之间的摩擦系数,β是牙型半角; α——螺纹螺旋线的升角,又称导角。 螺纹紧固件被拧紧后,由于螺母或螺钉头支承面上的摩擦而产生的附加力矩M 2为: 2 2 22D Q M μ= …………………………(公式21-2) 式中:μ 2——螺母或螺钉头支承面与被连接件接触面之间的摩擦系数; D 2——螺母或螺钉头支承面的平均直径,在接触压力均匀的情况下,D 2的精确值是: ??? ? ??--=223 3232n n R R R R D ωω ,R ω和R n 分别是支承面的外半径和内半径,如果支承面不平或接触压力不均匀,D 2就可能随着支承面的内半径到外半径而变化。 综上所述,决定螺纹连接开始松转时的总力矩M 为: ()??????+-=+=22 22221D tg d Q M M M μαρ…………………(公式21-3) 分析公式21-3可知,仅在总力矩M 等于或小于零的情况下,螺纹紧固件才开始自行松 转。对于连接用螺纹,在受静载荷作用时,即使润滑条件很理想,其摩擦角也始终大于升角:ρ>α,即满足螺纹的自锁条件,使公式21-3括号内的总值不会等于或小于零,螺纹紧固件也就不会自行松转。但是在经受动载荷时,例如在振动和冲击的作用下,螺纹紧固件在螺纹和支承面上产生了微观的滑移,这种相对的微观运动使摩擦系数由相对高的静态值变为很低的动态值,螺纹连接在各个方向上处于自由摩擦状态。此时,作用在螺纹上的轴向力在圆周方向上形成一个导致螺母松转的内松出力矩,使螺母开始松转,就像一个在斜面上的重物,由于摩擦力的变小或消失而往下滑动一样。这种松转称为螺纹连接的自松。千万次的振动循环耗尽了螺纹连接的防松摩擦阻力,使其从细微的松转直到完全的松脱。 螺纹件在螺纹面和支承面上的微观滑移是怎样产生的呢?对于承受轴向动载荷的螺纹

企业核算成本常用的方法有以下几种

企业核算成本常用的方法有以下几种: 1、品种法 (1)定义 以产品品种作为成本计算对象的一种成本计算方法。 (2)成本对象 品种法的成本计算对象为:产品品种。实际工作中,可以将“品种法”之下的成本对象变通应用为:产 品类别、产品品种、产品品种规格。 (3)计算方法及要点 品种法在实际工作中的应用要点为:以“品种”为对象开设生产成本明细账、成本计算单;成本计算期一般采用“会计期间”;以“品种”为对象归集和分配费用;以“品种”为主要对象进行成本分析。 (4)适用范围 品种法适合于大批大量、单步骤生产的企业。如发电、采掘业、管理上只要求考核最终产品的企业。 2、分批法 (1)定义 以产品批别作为成本计算对象的一种成本计算方法。 (2)成本对象 产品的“批”。分批法是一种很广义的成本计算方法,在实际工作中,有“批号”、“批次”的定义。可以按照下列方式确定成本对象:产品品种、存货核算中分批实际计价法下的“批”、生产批次、制药等企业的产品“批号”、客户订单——即按照客户订单计算成本的方法、其他企业需要并自定义的“批” (3)计算方法及要点 品种法在实际工作中的应用要点为:以“批号”、“批次”为成本计算对象开设生产成本明细账、成本计算单。成本计算期一般采用“工期”,一般不存在生产费用在完工产品和在产品之间分配。若生产费用在 完工产品、在产品间分配采用定额法。 (4)适用范围 单件、小批生产企业、按照客户定单组织生产的企业——因而也称“订单法” 3、分步法

(1)定义 以产品生产阶段、“步骤”作为成本计算对象,计算成本的一种方法。 (2)成本对象 分步法下的“步”同样是广义的,在实际工作中有丰富的、灵活多样的具体内涵和应用方式,分步法下之“步”在实际应用中,可以定义为下列“步”含义:部门——即计算考核“部门成本”、车间、工序、特定的 生产、加工阶段、工作中心,上述情况的随意组合。 (3)计算方法及要点 较之其他方法,分步法在具体计算方式方法上很有不同,这主要是因为它按照生产加工阶段、步骤计 算成本所导致的。 在分步法下,有下列一系列特定的计算流程、方法和含义,分步法成本核算一般有如下要点:按照“步”作为成本计算对象、归集费用、计算成本、成本计算期一般采用“会计期间”法、期末往往存在本期完工产 品、期末在产品,需要采用一定的方法分配生产费用。 (4)适用范围:大批大量多步骤多阶段生产的企业;管理上要求按照生产阶段、步骤、车间计算成本; 冶金、纺织、造纸企业、其他一些大批大量流水生产的企业等。 4、分类法 (1)定义 以“产品类”作为成本计算对象、归集费用、计算成本的一种方法。 (2)成本对象 分类法的成本对象为产品“类”,在实际工作中,可以定义为:产品自然类别、管理需要的产品类别。 (3)计算方法及要点 分类法下成本核算的方法要点,可概括如下:以“产品类”为成本计算对象,开设成本计算单;“产品类”的成本计算方法同于“品种”;某“类产品”的成本计算出来后,按照下列方法再分配到具体品种,以计算品种的成本;类中选定某产品为“标准产品”;定义其他产品与标准产品的换算系统;按照换算系统之比例将“类 产品”的成本分解计算到具体品种产品的成本。 (4)适用范围 分类法适合于产品品种规格繁多,并且可以按照一定的标准进行分类的企业。如:鞋厂、轧钢厂等。 5、ABC成本法

心理学研究中缺失值处理方法比较

Advances in Psychology 心理学进展, 2019, 9(11), 1843-1849 Published Online November 2019 in Hans. https://www.360docs.net/doc/985783563.html,/journal/ap https://https://www.360docs.net/doc/985783563.html,/10.12677/ap.2019.911222 Comparison of Methods for Processing Missing Values in Psychological Research An Wang Hangzhou College of Preschool Teacher Education of Zhejiang Normal University, Hangzhou Zhejiang Received: Oct. 9th, 2019; accepted: Oct. 31st, 2019; published: Nov. 7th, 2019 Abstract Missing data is a common but difficult problem to deal with. This paper briefly introduces several mechanisms of missing data and some general methods to deal with missing data. And the charac-teristics of all kinds of missing data processing method and the suitable conditions are compared. Keywords Missing Value, Missing Mechanism, Filling Methods 心理学研究中缺失值处理方法比较 王安 浙江师范大学杭州幼儿师范学院,浙江杭州 收稿日期:2019年10月9日;录用日期:2019年10月31日;发布日期:2019年11月7日 摘要 数据缺失是一个常见但难以处理的问题。文章简要介绍了数据缺失的几种机制,以及处理缺失数据的一般性方法,并对各种缺失数据的处理方法的特点及适用情况进行了比较。 关键词 缺失值,缺失机制,填补方法

成本核算的主要内容和基本流程 基本方法

第一部分成本核算的主要内容和一般流程是什么 成本核算的主要内容:1.材料成本、人工成本、制造费用;2.其中材料成本的计算尤为重要,一般分为主要材料和辅助材料。人工成本和制造费用能确定产品成本归属的直接计入产品,不能明确划分成本归属的,根据实际生产工艺确定分配标准。 一般流程:1、根据生产方式确定成本核算的方法,常用的方法为:品种法、分批法、分步法。实际运用中,这三种可以相互结合。如果公司具备完善的信息管理制度,如ERP等数据管理软件,而且运行良好(虽然绝大部分公司的ERP徒具形式,或仅仅勉强达到数据统计功能,但也对成本核算的细节起到一定帮助)。2、基本资料收集:2.1《BOM表》,即生产工艺流程标准及材料用量标准。这是实际生产成本分配标准的重要参考资料之一;2.2车间材料领、用、存明细表,这个不用说了,主要材料的统计,重要性不问可知。关键是要根据确定的成本核算方法设定统计表的项目格式。或按订单统计,或按产品品种统计,或根据生产步骤统计,或三者结合。2.3仓库材料进、出、存明细表,这个是为了检验车间领、用存明细表的正确性,也是十分重要的;仓库成品进、销、存明细表,这个是成本报表的重要采用数据《生产成本表》、《销售成本表》。2.4员工工资明细表,人工成本原始资料。关键是要分部门统计,如果有计件工资更好。2.5制造费用明细表,按部分统计,这个要在原始单据在最初入帐时都要按部门记帐。这个是分步法成本核算的基础之一。3、成本报表与成本分析:3.1成本报表主表是《产品生产成本表》和《产品销售成本表》,这个做起来不复杂,关键是之前的资料统计要细致,才能计算的相对精确。3.2成本分析的一般分析方式主要是盈亏分析和保本点分析。3.3深入的分析是品 究的人,应该明白我所讲的全面性问题和重要性问题了。希望更多对成本有研究人来阐述自己的观点! 成本核算岗工作流程 (一)生产部门日常费用报销 审核原始凭证完整、合法、金额正确、原始凭证与支出证明单是否一致——→审核并更正原始凭证按规范粘贴和折叠——→审核审批手续是否完备——→审核部门费用支出进度(如超计划额度,可拒绝报销)——→编制记账凭证 借:制造费用——车间部门——相关明细科目 贷:库存现金/银行存款/其他应收款 ——→涉及现金的凭证传出纳岗,不涉及现金的凭证传主管岗复核。 注: (1)非工资性费用支出须取得税务局监制的发票或收据,填写规范,大小写一致,无涂改痕迹,增值税票须严格遵守填写规范。 (2)保证凭证及附件左上角整齐,附件长宽折叠以记账凭证大小为度,不能带有订书钉。 (3)费用审核要点有:计划额度内费用须经部门负责人、分管领导、财务负责人审批;计划外费用须有总经理批示的报告;市内交通费(出租车费)、通讯费须经总经办登记;招聘费用须有人力资源部部长审核;差旅费须附审批后的行程安排表,招待费须附经审批的招待费用明细表。 (4)准确使用明细科目。 (5)支取现金的凭证编制完毕,若遇出纳无现金时,应暂时保存记账凭证,待出纳取回现金时通知领款。 (6)报销人有前期欠款时,报销费用一律先冲抵欠款,由管理费用岗开具还款收据。

回归中缺失值处理方法

回归中缺失值处理方法文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

在《SPSS统计分析方法及应用》一书中,对时间序列数据缺失处理给出了几种解决方法,可以供我们设计的时候参考: 新生成一个由用户命名的序列,选择处理缺失值的替代方法,单击Change按钮。替代方法有以下几种: ①Series mean:表示用整个序列的均值作为替代值。 ②Mean of nearby points:表示利用邻近点的均值作为替代值。对此用Span of nearby points框指定数据段。在Number后输入数值k,以表示缺失值为中心,前后分别选取k个数据点。这样填补的值就是由这2k 个数的平均数。也可以选择All,作用同Series mean选项。 “附(邻)近点的跨度”:系统默认的是2,即缺失值上下两个观察值作为范围。若选择“全部”,即将所有的观察值作为临近点。 ③Median of nearby points:表示利用邻近点的中位数作为替代值。数据指定方法同上。 ④Linear interpolation:为线性插值法,表示利用缺失值前后两时点数据的某种线性组合进行填补,是一种加权平均。 线性插值法应用线性插值法填补缺失值。用该列数据缺失值前一个数据和后一个数据建立插值直线,然后用缺失点在线性插值函数的函数值填充该缺失值。如果前后值有一个缺失,则得不到缺失值的替换值。 ⑤Linear trend at point:为线性趋势值法,表示利用回归拟合线的拟合值作为替代值。 缺失点处的线性趋势法应用缺失值所在的整个序列建立线性回归方程,然后用该回归方程在缺失点的预测值填充缺失值。

+紧固件常用防松方法

---------------------------------------------------------------最新资料推荐------------------------------------------------------ +紧固件常用防松方法 第 21 章螺纹紧固件连接的防松一、松动机理螺纹连接在工作状态下可能会经受所有类别的变动载荷,包括极为激烈的振动和冲击载荷。 在变动载荷的作用下,螺纹连接的失效通常是由其自身的松动和疲劳破坏所引起的。 在一般情况下,螺纹连接抗振松的寿命比其材料和结构的疲劳寿命短得多,远在疲劳破坏之前,就已经出现了因松动而造成螺纹连接的松脱失效,或者出现了因松动而导致连接件和被连接件的过早疲劳破坏。 螺纹连接的失效会影响产品和设备的正常运转,甚至会造成严重的后果。 如何防止螺纹连接的松动是研制和设计螺纹紧固件的重要任务之一。 在通常的螺纹连接中,摩擦力产生于内外螺纹接触面或螺纹紧固件支承面与被连接件的接触面上。 当螺纹连接开始松转时,克服螺纹接触面上的摩擦所需的力矩 M1 为:M1 ?Qd 2 tg ?? ? ? ? ……………………………(公式 21-1)2式中:Q——作用于螺栓或螺钉上的预紧力,又称轴力或紧固系统的夹紧力; d2——螺纹中径;ρ ——摩擦角,对于三角形螺纹, tg? ?M1 ,M1 是螺纹接触面之间的摩擦系数,β cos ?是牙型半角; 1/ 34

α ——螺纹螺旋线的升角,又称导角。 螺纹紧固件被拧紧后,由于螺母或螺钉头支承面上的摩擦而产生的附加力矩 M2 为:M2 ?Q? 2 D 2 …………………………(公式 21-2)2式中:?2——螺母或螺钉头支承面与被连接件接触面之间的摩擦系数; D2——螺母或螺钉头支承面的平均直径,在接触压力均匀的情况下,D2 的精确值是:D2 ?3 3 ? ? Rn 2 ? R? ? ? 2 2 ? ,Rω 和Rn 分别是支承面的外半径和内半径,如果支承面 3? R ? R n ? ? ?不平或接触压力不均匀,D2 就可能随着支承面的内半径到外半径而变化。 综上所述,决定螺纹连接开始松转时的总力矩 M 为:? D ? ?d M ? M 1 ? M 2 ? Q ? 2 tg ?? ? ? ? ? 2 2 ? …………………(公式 21-3)2 ? ?2分析公式 21-3 可知,仅在总力矩 M 等于或小于零的情况下,螺纹紧固件才开始自行松转。 对于连接用螺纹,在受静载荷作用时,即使润滑条件很理想,其摩擦角也始终大于升角:ρ >α ,即满足螺纹的自锁条件,使公式 21-3 括号内的总值不会等于或小于零,螺纹紧固件也就不会自行松转。 但是在经受动载荷时,例如在振动和冲击的作用下,螺纹紧固件在螺纹和支承面上产生了微观的滑移,这种相对的微观运动使摩擦系数由相对高的静态值变为很低的动态值,螺纹连接在各个方向上处于自由摩擦状态。 此时,作用在螺纹上的轴向力在圆周方向上形成一个导致螺母松

应用文-三种成本核算方法的应用与比较

三种成本核算方法的应用与比较 '\r\n 【摘要】随着企业内外 的变化,成本核算方法也在不断地 。文章对比了制造成本法、作业成本法和资源消耗 三种方法在成本核算上的特点、优势、存在的问题,并通过举例进行论证、评价、分析,揭示了成本核算方法的发展趋势。 【关键词】制造成本法; 作业成本法; 资源消耗会计; 成本核算 随着我国 的发展和市场的成熟,竞争愈发激烈,企业要想获得和保持持久竞争优势,成本信息的有效性和相关性不可忽视。而成本核算是企业获得成本信息最重要的手段,因此,成本核算方法的选择非常重要。本文就我国目前采用的制造成本法、西方广泛采用的作业成本法,以及成本会计的新发展——资源消耗会计的理论与 作一比较和分析。 一、制造成本法 (一)制造成本法的核算特点 制造成本法是制造企业传统的成本核算方法,该核算方法将企业一定期间的费用划分为为产品生产而发生的生产费用和与产品生产过程无关的期间费用两部分。只有生产费用才能最终计入产品的生产成本,而期间费用计入当期损益,与当期产品成本的计算无关。 1.核算内容。制造成本法将企业的制造成本划分为三个基本制造成本项目:直接材料、直接人工和制造费用。当然,在企业有需要的时候,可以增加成本项目,例如,废品产生较多的企业,可以增加“废品损失”成本项目;燃料消耗较多的企业,可以增加“燃料”成本项目等等。制造成本法在核算时,主要是将企业的生产费用划分为料、工、费三个基本的成本项目,然后进行核算,继而计算出产品成本计算对象的成本。 2.核算方法。制造成本法的核算方法包含三种基本的成本计算方法,即品种法、分批法和分步法。这三种基本成本计算方法在成本计算对象、成本计算期以及期末生产费用的分配上各有不同。因此,不同的企业,其生产特点不同,生产工艺和生产 的差别导致了企业在采用制造成本法进行成本核算时,选择成本计算方法的不同。 3.核算过程。成本核算过程,也称成本核算流程,即从费用的发生到产品成本的得出这一过程的核算。一般说来,制造成本法下,无论是哪一种成本计算方法,其核算过程都应该是类似的。生产费用可以分为为直接计入的生产费用和间接计入的生产费用两种。在成本项目中,如果可以辨清某项费用的发生是专属于某一个成本计算对象,那么这项费用即属于直接计入该成本计算对象的生产费用;反之,则是间接计入的生产费用,需要采用相应的分配方法分配计入产品生产成本中。计入某一成本计算对象的直接计入费用和间接计入费用之和便是该成本计算对象的成本。 (二)制造成本法成本核算的弊端 1.制造费用的核算。采用制造成本法核算成本时,制造费用的分配方法有生产工时比例分配法、机器工时比例分配法、年度 分配率分配法等。制造费用属于企业的间接费用,按照基本生产车间来归集,并于期末分配至不同的成本计算对象。在传统的劳动密集型企业里,直接人工所占的比重较大,制造费用占的比重较小,因而用上述分配方法来分配制造费用,即便有不合理之处,但因为比重较小,通常也不会严重扭曲产品成本;又因为该方法的简便易行,被多数制造业企业乐于采用。但是,在

回归中缺失值处理方法

在《SPSS统计分析方法及应用》一书中,对时间序列数据缺失处理给出了几种解决方法,可以供我们设计的时候参考: 新生成一个由用户命名的序列,选择处理缺失值的替代方法,单击Change按钮。替代方法有以下几种: ①Series mean:表示用整个序列的均值作为替代值。 ②Mean of nearby points:表示利用邻近点的均值作为替代值。对此用Span of nearby points框指定数据段。在Number后输入数值k,以表示缺失值为中心,前后分别选取k个数据点。这样填补的值就是由这2k个数的平均数。也可以选择All,作用同Series mean选项。 “附(邻)近点的跨度”:系统默认的是2,即缺失值上下两个观察值作为范围。

若选择“全部”,即将所有的观察值作为临近点。 ③Median of nearby points:表示利用邻近点的中位数作为替代值。数据指定方法同上。 ④Linear interpolation:为线性插值法,表示利用缺失值前后两时点数据的某种线性组合进行填补,是一种加权平均。 线性插值法应用线性插值法填补缺失值。用该列数据缺失值前一个数据和后一个数据建立插值直线,然后用缺失点在线性插值函数的函数值填充该缺失值。如果前后值有一个缺失,则得不到缺失值的替换值。 ⑤Linear trend at point:为线性趋势值法,表示利用回归拟合线的拟合值作为替代值。 缺失点处的线性趋势法应用缺失值所在的整个序列建立线性回归方程,然后用该回归方程在缺失点的预测值填充缺失值。 *注意:如果序列的第一个和最后一个数据为缺失值,只能利用序列均值和线性趋势值法处理,其他方法不适用。

螺栓常用的防松方法有三种之令狐文艳创作

常用的防松方法有三种:摩擦防松、机械防松和永久防松。 令狐文艳 机械防松和摩擦防松称为可拆卸防松,而永久防松称为不可拆卸防松。 常用的永久防松有:点焊、铆接、粘合等。这种方法在拆卸时大多要破坏螺纹紧固件,无法重复使用。 常见摩擦防松有:利用垫片、自锁螺母及双螺母等。 常见的机械防松方法:利用开口销、止动垫片及串钢丝绳等。机械防松的方法比较可靠,对于重要的联接要使用机械防松的方法。 下面分述如下。 (1)摩擦防松 ①弹簧垫片防松 弹簧垫圈材料为弹簧钢,装配后垫圈被压平,其反弹力能使螺纹间保持压紧力和摩擦力,从而实现防松 ②对顶螺母防松 利用螺母对顶作用使螺栓式中受到附加的拉力和附加的摩擦力。由于多用一个螺母,并且工作不十分可靠,目前已经和少使用了。 ③自锁螺母防松

螺母一端制成非圆形收口或开缝后径向收口。当螺母拧紧后,收口胀开,利用收口的弹力使旋合螺纹间压紧。这种防松结构简单、防松可靠,可多次拆装而不降低防松性能。 ④弹性圈螺母防松 螺纹旋入处嵌入纤维或尼龙来增加摩擦力。该弹性圈还起防止液体泄漏的作用。 2)机械防松 ①槽形螺母和开口销防松 槽形螺母拧紧后,用开口销穿过螺栓尾部小孔和螺母的槽,也可以用普通螺母拧紧后进行配钻销孔。 ②圆螺母和止动动垫片 使垫圈内舌嵌入螺栓(轴)的槽内,拧紧螺母后将垫圈外舌之一褶嵌于螺母的一个槽内。 ③止动垫片 螺母拧紧后,将单耳或双耳止动垫圈分别向螺母和被联接件的侧面折弯贴紧,实现防松。如果两个螺栓需要双联锁紧时,可采用双联止动垫片。 ④串联钢丝防松 用低碳钢钢丝穿入各螺钉头部的孔内,将各螺钉串联起来,使其相互制动。这种结构需要注意钢丝穿入的方向, 3)永久防松 ①冲边法防松 螺母拧紧后在螺纹末端冲点破坏螺纹

spss缺失值处理

spss数据录入时缺失值怎么处理 录入的时候可以直接省略不录入 分析的时候也一般剔除这样的样本。但也有替换的方法,一般有: 均值替换法(mean imputation),即用其他个案中该变量观测值的平均数对缺失的数据进行替换,但这种方法会产生有偏估计,所以并不被推崇。 个别替换法(single imputation)通常也被叫做回归替换法(regression imputation),在该个案的其他变量值都是通过回归估计得到的情况下,这种 方法用缺失数据的条件期望值对它进行替换。这虽然是一个无偏估计,但是却倾向于低估标准差和其他未知性质的测量值,而且这一问题会随着缺失信息的增多而变得更加严重。 多重替代法(multiple imputation)(Rubin, 1977) 。 ?它从相似情况中或根据后来在可观测的数据上得到的缺省数据的分布情况给每个缺省数据赋予一个模拟值。结合这种方法,研究者可以比较容易地,在不舍弃任何数据的情况下对缺失数据的未知性质进行推断(Little and Rubin,1987; ubin,1987, 1996)。 (一)个案剔除法(Listwise Deletion) 最常见、最简单的处理缺失数据的方法是用个案剔除法(listwise deletion),也是很多统计软件(如SPSS和SAS)默认的缺失值处理方法。在这种方法中如果任何一个变量含有缺失数据的话,就把相对应的个案从分析中剔除。如果缺失值所占比例比较小的话,这一方法十分有效。至于具体多大的缺失比例算是“小”比例,专家们意见也存在较大的差距。有学者认为应在5%以下,也有学者认为20%以下即可。然而,这种方法却有很大的局限性。它是以减少样本量来换取信息的完备,会造成资源的大量浪费,丢弃了大量隐藏在这些对象中的信息。在样本量较小的情况下,删除少量对象就足以严重影响到数据的客观性和结果的正确性。因此,当缺失数据所占比例较大,特别是当缺数据非随机分布时,这种方法可能导致数据发生偏离,从而得出错误的结论。 (二)均值替换法(Mean Imputation) 在变量十分重要而所缺失的数据量又较为庞大的时候,个案剔除法就遇到了困难,因为许多有用的数据也同时被剔除。围绕着这一问题,研究者尝试了各种各样的办法。其中的一个方法是均值替换法(mean imputation)。我们将变量的属性分为数值型和非数值型来分别进行处理。如果缺失值是数值型的,就根据该变量在其他所有对象的取值的平均值来填充该缺失的变量值;如果缺失值是非数值型的,就根据统计学中的众数原理,用该变量在其他所有对象的取值次数最多的值来补齐该缺失的变量值。但这种方法会产生有偏估计,所以并不被推崇。均值替换法也是一种简便、快速的缺失数据处理方法。使用均值替换法插补缺失数据,对该变量的均值估计不会产生影响。但这种方法是建立在完全随机缺失(MCAR)的假设之上的,而且会造成变量的方差和标准差变小。 (三)热卡填充法(Hotdecking)

几种常见的缺失数据插补方法

几种常见的缺失数据插补方法 (一)个案剔除法(Listwise Deletion) 最常见、最简单的处理缺失数据的方法是用个案剔除法(listwise deletion),也是很多统计软件(如SPSS和SAS)默认的缺失值处理方法。在这种方法中如果任何一个变量含有缺失数据的话,就把相对应的个案从分析中剔除。如果缺失值所占比例比较小的话,这一方法十分有效。至于具体多大的缺失比例算是“小”比例,专家们意见也存在较大的差距。有学者认为应在5%以下,也有学者认为20%以下即可。然而,这种方法却有很大的局限性。它是以减少样本量来换取信息的完备,会造成资源的大量浪费,丢弃了大量隐藏在这些对象中的信息。在样本量较小的情况下,删除少量对象就足以严重影响到数据的客观性和结果的正确性。因此,当缺失数据所占比例较大,特别是当缺数据非随机分布时,这种方法可能导致数据发生偏离,从而得出错误的结论。 (二)均值替换法(Mean Imputation) 在变量十分重要而所缺失的数据量又较为庞大的时候,个案剔除法就遇到了困难,因为许多有用的数据也同时被剔除。围绕着这一问题,研究者尝试了各种各样的办法。其中的一个方法是均值替换法(mean imputation)。我们将变量的属性分为数值型和非数值型来分别进行处理。如果缺失值是数值型的,就根据该变量在其他所有对象的取值的平均值来填充该缺失的变量值;如果缺失值是非数值型的,就根据统计学中的众数原理,用该变量在其他所有对象的取值次数最多的值来补齐该缺失的变量值。但这种方法会产生有偏估计,所以并不被推崇。均值替换法也是一种简便、快速的缺失数据处理方法。使用均值替换法插补缺失数据,对该变量的均值估计不会产生影响。但这种方法是建立在完全随机缺失(MCAR)的假设之上的,而且会造成变量的方差和标准差变小。 (三)热卡填充法(Hotdecking)

缺失值处理

缺失值 1. is.na 确实值位置判断 注意: 缺失值被认为是不可比较的,即便是与缺失值自身的比较。这意味着无法使用比较运算 符来检测缺失值是否存在。例如,逻辑测试myvar == NA的结果永远不会为TRUE。作为替代,你只能使用处理缺失值的函数(如本节中所述的那些)来识别出R数据对象中的缺失值。 2. na.omit() 删除不完整观测 manyNAs library(DMwR) manyNAs(data, nORp = 0.2) Arguments data A data frame with the data set. nORp A number controlling when a row is considered to have too many NA values (defaults to 0.2, i.e. 20% of the columns). If no rows satisfy the constraint indicated by the user, a

warning is generated. 按照比例判断缺失. 3. knnImputation K 近邻填补 library(DMwR) knnImputation(data, k = 10, scale = T, meth = "weighAvg", distData = NULL) ? 1 ? 2 Arguments Arguments data A data frame with the data set k The number of nearest neighbours to use (defaults to 10) scale Boolean setting if the data should be scale before finding the nearest neighbours (defaults to T) meth String indicating the method used to calculate the value to fill in each NA. Available values are ‘median’ or ‘weighAvg’ (the default). distData Optionally you may sepecify here a data frame containing the data set that should be used to find the neighbours. This is usefull when filling in NA values on a test set, where you should use only information from the training set. This defaults to NULL, which means that the neighbours will be searched in data Details This function uses the k-nearest neighbours to fill in the unknown (NA) values in a data set. For each case with any NA value it will search for its k most similar cases and use the values of these cases to fill in the unknowns.

大数据缺失值处理

这些缺失值不仅意味着信息空白,更重要的是它会影响后续数据挖掘和统计 分析等工作的进行。一般对缺失值处理的方法包括删除不完整记录、当作特殊值处理或者插补空值。显然,插补的方法不管从量上还是质上,对数据的处理结果都要好于前两种。目前国内外已提出了很多有关缺失值填充的方法。尽管这些方法在各自的应用环境下都得到了很好的效果,但仍然存在一些不足。比如,一些模型像决策树需要指定类属性与条件属性,这样的模型每处理一个属性就要训练一次模型,效率很低。其次,很多算法对高维数据的处理能力有限,引入无用的变量不仅影响执行效率,而且会干扰最终填充效果。第三、在没有真值作为对比的情况下,无法评价不同属性的填充效果。最后,很多算法只适用于小数据集,远远无法满足目前对大量数据的处理要求。为解决上述问题,本文给出了一个基于贝叶斯网和概率推理的填充方法。与常用的贝叶斯网构建算法不同,本文针对缺失值填充这一特定的应用前提,从挖掘属性相关性入手构建网络。建立贝叶斯网时不设定任何目标属性,由影响最大的属性作为根。这一过程不需要用户对数据有太多了解,完全由算法自动完成。根据贝叶斯网自身的条件独立性假设可以分解对多维联合概率的求解,降低在处理高维数据时的复杂度。填充值根据概率推理结果得到。推理产生的概率信息能够反映填充值的不确定程度,即概率越小,准确率越低,反之,准确率越高。这就为评价填充质量提供了一个参考。为使算法适用于混合属性集,本文在贝叶斯网中加入了对连续属性的处理,所有属性的填充均在一个模型下完成。针对大数据集,应用并行技术来解决效率问题。本文给出了算法在Map-Reduce 中的实现。实验部分分别验证了贝叶斯网构建算法和概率推理算法的有效性并对比分析了整个填充算法的准确率;并行处理部分给出了并行效率并分析了影响并行性能的因素。

十二种经典的螺栓防松设计

十二种经典的螺栓防松设计 常用的防松方法有三种:摩擦防松、机械防松和永久防松。机械防松和摩擦防松称为可拆卸防松,而永久防松称为不可拆卸防松。 常用的永久防松有:点焊、铆接、粘合等,这种方法在拆卸时大多要破坏螺纹紧固件,无法重复使用。常见摩擦防松有:利用垫片、自锁螺母及双螺母等。常见的机械防松方法:利用开口销、止动垫片及串钢丝绳等。 今天咱们分享12种比较流行或者说在网上分享比较多的防松设计,希望这些设计能给大家提供选择或者带来帮助。

1. 双螺母 对顶防松螺母原理:双螺母防松时产生两个摩擦力面,第一摩擦力面是螺母与被紧固件之间,第二摩擦力面是螺母与螺母之间。安装时,第一摩擦力面的预紧力为第二摩擦力面的80%。在冲击和振动载荷作用时,第一摩擦力面的摩擦力会减小和消失,但同时,第一螺母会被压缩导致第二摩擦力面的摩擦力进一步加大。螺母松退必须克服第一摩擦力和第二摩擦力,由于第一摩擦力减小的同时第二摩擦力会增大。这样防松效果就会比较好。

唐氏螺纹防松原理:唐氏螺纹紧固件也是采用双螺母防松,但是,两个螺母的旋转方向相反。在冲击和振动载荷作用时,第一摩摩擦力面的摩擦力会减小和消失, 第一螺母(图中右旋)会产生松退趋势,即螺母向左旋转。但是第二螺母(图中左旋)的旋向与第一螺母的旋向相反,因此第一螺母的松退力直接转换成第二螺母的拧紧力。这样,螺母万万不会松退。

2. 30°楔形螺纹防松技术 在30°楔形阴螺纹的牙底处有一个30度的楔形斜面,当螺栓螺母相互拧紧时,螺栓的牙尖就紧紧地顶在阴螺纹的楔形斜面上,从而产生了很大的锁紧力。

由于牙形的角度改变,使施加在螺纹间接触所产生的法向力与螺栓轴成60度角,而不是像普通螺纹那样的30度角。显然30°楔形螺纹法向压力远远大于扣紧压力,因此,所产生的防松摩擦力也就必然大大增加了。 施必牢螺纹结构示意图 从下面的图可以看到二个箭头所表示的力均为Pɑ,传统的60度角螺纹的法向压力P=1.15Pɑ;而30°楔形螺纹由于牙底有一个30度角的楔形斜面,其法向压力的角度、大小均有改变,法向压力P=2Pɑ。 这样,30°楔形螺纹与传统60度螺纹,二者的法向压力之比≈12∶7,防松摩擦力相应地增加了。30°楔形螺纹的楔形面还可以消除普通螺纹受力不均匀、脱扣咬死等问题。 3. 自锁螺母 自锁螺母一般是靠摩擦力自锁,咱们上面提到的30°楔形螺纹防松应该属于自锁螺母的范畴。

(完整word版)造成数据缺失的原因

造成数据缺失的原因 在各种实用的数据库中,属性值缺失的情况经常发全甚至是不可避免的。因此,在大多数情况下,信息系统是不完备的,或 者说存在某种程度的不完备。造成数据缺失的原因是多方面的,主要可能有以下几种: 1)有些信息暂时无法获取。例如在医疗数据库中,并非所有病人的所有临床检验结果都能在给定的时间内得到,就致使一部 分属性值空缺出来。又如在申请表数据中,对某些问题的反映依赖于对其他问题的回答。 2)有些信息是被遗漏的。可能是因为输入时认为不重要、忘记填写了或对数据理解错误而遗漏,也可能是由于数据采集设备 的故障、存储介质的故障、传输媒体的故障、一些人为因素等原因而丢失了。 3)有些对象的某个或某些属性是不可用的。也就是说,对于这个对象来说,该属性值是不存在的,如一个未婚者的配偶姓名 、一个儿童的固定收入状况等。 4)有些信息(被认为)是不重要的。如一个属性的取值与给定语境是无关的,或训练数据库的设计者并不在乎某个属性的取 值(称为dont-care value)。 5)获取这些信息的代价太大。 6)系统实时性能要求较高,即要求得到这些信息前迅速做出判断或决策。 处理数据缺失的机制 在对缺失数据进行处理前,了解数据缺失的机制和形式是十分必要的。将数据集中不含缺失值的变量(属性)称为完全变量

,数据集中含有缺失值的变量称为不完全变量,Little 和Rubin定义了以下三种不同的数据缺失机制: 1)完全随机缺失(Missing Completely at Random,MCAR)。数据的缺失与不完全变量以及完全变量都是无关的。 2)随机缺失(Missing at Random,MAR)。数据的缺失仅仅依赖于完全变量。 3)非随机、不可忽略缺失(Not Missing at Random,NMAR,or nonignorable)。不完全变量中数据的缺失依赖于不完全变量 本身,这种缺失是不可忽略的。 空值语义 对于某个对象的属性值未知的情况,我们称它在该属性的取值为空值(null value)。空值的来源有许多种,因此现实世界中 的空值语义也比较复杂。总的说来,可以把空值分成以下三类: 1)不存在型空值。即无法填入的值,或称对象在该属性上无法取值,如一个未婚者的配偶姓名等。 2)存在型空值。即对象在该属性上取值是存在的,但暂时无法知道。一旦对象在该属性上的实际值被确知以后,人们就可以用 相应的实际值来取代原来的空值,使信息趋于完全。存在型空值是不确定性的一种表征,该类空值的实际值在当前是未知的。但它 有确定性的一面,诸如它的实际值确实存在,总是落在一个人们可以确定的区间内。一般情况下,空值是指存在型空值。 3)占位型空值。即无法确定是不存在型空值还是存在型空值,这要随着时间的推移才能够清楚,是最不确定的一类。这种空值

机构设计--锁紧与防松Word版

在一个论坛上看到的,忘了作者是谁,向作者致谢. 机构设计——锁紧与防松 此处所讲的锁紧与防松仅适于可拆结构。对不不可拆结构,一般从配合上或用不可拆联接达到要求。锁紧机构主要工作原理相关是力学上的死点、压力角和摩擦角。其实际机构非常多,常用的有螺纹锁紧、偏心轮锁紧、斜面锁紧、四杆机构锁紧。 螺纹锁紧是最常用的,其产品已经标准化。在一般情况下推荐使用。使用螺纹锁紧时应注意配合的螺纹长度。一般说来,超过八个牙后多余的配合长度意义不大,少于三个牙则联接不可靠。螺纹锁紧的一个最大优点是行程长,全行程均可作为有效作用点,且各处增力均匀。其缺陷是当工作行程要求较长时,操作起来较麻烦。一般情况下均可采用,但在要求快换的情况下不宜单独使用。 偏心轮锁紧机构能快速锁紧,但其锁紧作用点较为固定且行程很小,对零件精度有一定的要求。对于塑胶件来说,因其容易产生蠕变而影响锁紧效果。对于锁紧点常作小范围变动的情况,可能偏心轮与螺纹锁紧配合使用。 斜面锁紧增力较小,行程较小,但行程有一定的调节能力,一般以斜锲的方式使用。在实际设计中,常利用塑胶的弹性在较小的锁紧力情况下使用。另外,也常用于调节零件间的间隙。一般不用于较大锁紧力的情况。 四杆机构锁紧行程可设计得很大,锁紧点较为固定。对于精度较高的机构可单独使用。除行程可以设计得较大外其它情况与偏心轮相似。一般与螺纹锁紧配合使用。其结构较为复杂,应用于经常使用的快换机构。 除以上常用的锁紧机构外,还有一类机构没有锁紧作用,但能在作用点附近自锁。这类机构常与锁紧机构配合,扩展锁紧机构的功能。这类机构除棘轮外没有固定的方式,一般是临时设计。压力角是机构中不考虑构件的惯性力和不计运动副的摩擦力的情况下,机构运动时从动件所受到的驱动力的作用线与该力作用点处运动的绝对速度方向线之间所夹的锐角。压力角越大,驱动越困难。当压力角的余角小于接触面间的摩擦角时,机构就能自锁。在设计自锁机构时,对摩擦角的取值应是机构工作所有可能环境的最小值。除此之外,此类机构还要求能在一定情况下能方便的解锁。此类机构与锁紧机构配合使用时可先解除锁紧,在没有锁紧力时一般可过改变驱动力的作用点的方式轻松解锁。在做自锁与锁紧机构设计时,一定要注意零件的刚度问题。如机构零件在作用过程中产生较大的变形,则很可能会达不到设计效果。 防松不仅对锁紧机构重要,对较恶劣环境下工作的联接也很重要。对于一般情况下的螺纹防松在《机械设计手册》上有所介绍,此处只考虑复杂受力环境下的机构防松。 防松的重要原理一个是固定;一个是弹性;还有一个是隔离作用力。对于固定防松的方式较为极端,也最有较。比如,一些狙击手用盐水将瞄准器与枪上的固定座浸泡,使之生锈。这种方式可使联接在受枪强大的反冲力的情况下仍不松动。在设计上,有用胶水固定,甚至在机构锁紧后直接焊接固定的极端情况。在要求可拆的情况下,也有附加一固定机构将锁紧部分固定起来的情况。但对于要求有一定调节量的情况这些方案就不适用了,这时一般利用弹性来达到防松的目的。机构(包括锁紧机构、联接机构、自锁机构)之所以在复杂受力情况下会松驰,主要原因是机构在复杂受力情况下产生少量的位移(这很正常,除用极端方式固定外不可避免)后,因其在锁紧方向的力要大于解锁方向的作用力,所以机构返回原位置较偏移原位置困难。在多次作用积累下,就会产生较大的位移,从而产使机构松驰,达不到预定设计效果。而在锁紧机构中加处弹性元件,则可起到两个作用。一是弹性元件可起到复位的作用,将产生的位移以弹性形变的方式出现。当外力情况变化时,弹性元件则以相应的弹性形变应对。在这种情况下,机构中的元件并无实质

相关文档
最新文档