300MW各项指标对机组供电煤耗的影响系数表

300MW各项指标对机组供电煤耗的影响系数表

300MW各项指标对机组供电煤耗的影响系数表

各指标对煤耗影响

600MW机组各项指标对煤耗影响 1.负荷降低1%,机组的热耗将会增加0.089%~0.1%,煤耗 大约增加0.3%,1.1 g/kWh 2.主汽压降低1MPa,煤耗增加1.53g/kWh; 3.主汽温提高1℃,煤耗降低0.059 g/kWh; 4.再热汽温提高1℃,煤耗降低0.032 g/kWh; 5.再热器喷水减少1t/h,煤耗降低0.103 g/kWh; 6.凝汽器端差下降1℃,煤耗0.68 g/kWh; 7.真空上升1kPa,煤耗下降1.2 g/kWh; 8.给水温度提高1℃,煤耗下降0.05%,0.16 g/kWh; 9.排烟温度下降10℃,煤耗下降1.88 g/kWh; 10.锅炉效率提高1%,煤耗下降4 g/kWh; 11.氧量比标准上升1%,煤耗增加1.57 g/kWh; 12.空冷机组影响煤耗10 g/kWh;国电600MW亚临界机组 对标供电煤耗332 g/kWh; 300MW机组省煤节电经验数据 1.负荷降低10%,煤耗大约增加 2.95g/kWh,降低20%增加 6.92g/kWh,降低30%增加18.90g/kWh,降低40%增加 26.23g/kWh 2.主汽压降低1MPa,煤耗增加2.1g/kWh;降低2MPa,煤耗 增加3.58g/kWh;

3.主汽温降低5℃,煤耗增加0.95 g/kWh;主汽温降低10℃, 煤耗增加1.51 g/kWh; 4.再热汽温降低5℃,煤耗增加0.79 g/kWh;再热汽温降低 10℃,煤耗增加1.68 g/kWh; 5.真空度下降1%,煤耗增加3.6 g/kWh; 6.端差上升1℃(夏/冬),煤耗增加1.93 /0.85g/kWh 7.高加解列/低加解列,煤耗增加9.55/8.02g/kWh 8.给水温度下降10℃,煤耗增加0.95g/kWh; 9.给水调门压差增加1MPa,煤耗增加0.36g/kWh; 10.排烟温度上升10℃,煤耗增加1.66g/kWh; 11.空气预热器漏风率增大1%,煤耗增加0.14g/kWh; 12.飞灰含碳量增加1%,煤耗增加1.23 g/kWh; 13.排污率增大1%,煤耗增加1.18g/kWh; 14.厂用电率上升1%,煤耗增加3.78g/kWh;

一、发电机组可靠性

一、发电机组可靠性 2019年上半年全国燃煤火电等效可用系数同比上升、台平均非计划停运次数同比下降,但平均非计划停运时间同比增加;常规水电机组等效可用系数、台平均非计划停运次数和时间同比均有下降,见图1。 图1 2018-2019年上半年燃煤和水电机组等效可用系数对比情况 2019年二季度全国燃煤火电运行可靠性综合指标总体上升,等效可用系数同比上升,环比下降;常规水电机组运行可靠性综合指标总体略有降低,等效可用系数同比降低,环比增加,见图2。

图2 2019年二季度机组等效可用系数同比与环比情况2019年二季度燃煤火电机组等效可用系数达到90.2%,同比增加了1.22个百分点,环比降低了4.72个百分点;机组台平均利用小时为1012.94小时,同比降低了53.38小时,环比降低了50.64小时;机组台平均非计划停运次数和时间分别为0.12次和9.4小时,同比分别降低了0.07次和14.71小时,见图3,环比非计划停运次数增加了0.01次,但非计划停运时间减少了0.03小时,见图4;台平均计划停运时间为202.89小时,同比降低10.33小时,环比增加了106.94;前三类非计划停运即强迫停运台平均停运次数和时间分别为0.1次和7.35小时,同比分别降低了0.05次和7.29小时,环比强迫停运次数持平,但强迫停运时间增加了0.95小时;强迫停运共发生150次,环比增加了4次;强迫停运总时间为10556.27小时,占全部燃煤火电非计划停运总时间的80.76%,环比增加了10.75个百分点。

图3 2018-2019年二季度燃煤机组非计划停运次数和时间对比情况 图4 2019年一、二季度燃煤机组非计划停运次数和时间对比情况 其中,1000MW 等级燃煤机组利用小时1112.13小时,同比减少了159.99小时,环比增加了34.21小时;机组前三类非计划停运台平均停运次数和时间分别为0.09次和6.51小时,同比分别降低了0.08次和3.4小时,环比分别增加了0.03次和1.79小时;强迫停运共发生8次,累计强迫停运时间为566.32小时,环比分别增加3次和151.638小时。 2019年二季度常规水电机组等效可用系数为94.16%,同比减少了0.29个百分点,环比增加了5.03个百分点;机组台平均利用小时为1073.56小时,同比减少了112.36 小 0.19 0.12 0.040.080.120.160.22018年2019年 次/台

30万机组供电煤耗率影响因素分析及控制的论述

关于330MW机组供电煤耗率影响因素分析及 控制的论述 王华王振华 关键词:燃煤机组、供电煤耗、节能、降耗 摘要:山东魏桥铝电有限公司热电厂,结合当前国家节能减排要求,通过对机组选型、系统优化、运行精调细控等各方面努力,使机组供电煤耗率降至较低水平,在积极响应国家节能降耗的同时,为企业创造了丰硕的经济效益。 为实现燃煤热电机组节能降耗的目标,我厂在电厂设计建设初期就综合考虑选用先进设备及系统、技术,并且在实际生产运行中,对系统运方严调细控,由细节入手,充分考虑现场实际并积极吸取兄弟单位先进经验,在降低机组供电煤耗率,提高企业经济效益方面取得了良好的效果,具体论述如下。 1.影响机组供电煤耗率原因分析 山东魏桥铝电有限公司热电厂装机容量为4×330MW燃煤机组,采用固态排渣,一次再热,平衡通风,全钢结构,半露天岛式布置,亚临界自然循环汽包炉。针对燃煤锅炉,影响其供电标煤耗的因素很多,主要因素有两方面,具体分析如下: 1.1.系统工艺及环境因素 影响机组供电煤耗率高低因素中系统工艺因素主要包括给水泵选型、制粉系统选型、脱硫脱硝系统工艺、锅炉类型、机组类型、机组冷却方式等。环境因素主要是指机组所处区域环境温度、气压等因素。 机组选用汽动给水泵与配备电动给水泵相比,国产300MW机组,一般供电煤耗率能降低1g/KWh;制粉系统采用中速磨与普通钢球磨相比,因钢球磨电耗的增加,导致其供电煤耗率比中速磨高出1.7g/KWh左右;脱硝系统采用选择性催化还原SCR装置BMCR工况时,比采用选择性非催化还原SNCR装置的供电煤耗率要低0.02%;机组选用供热机组比纯凝机组,从2011年全国机组数据分析来看,300MW机组供电煤耗率大约低11.89g/KWh。我们单位在机组设计选型时,即充分考虑以上各因素,给水泵选用汽动为主,电泵配合的方式。脱硝工艺选用选择性催化还原SCR装置。主机选用供热机组,从硬件方面为降低供电煤耗率打下良好的基础。 1.2.运行控制因素 在机组选型建设一定的情况下,运行控制与调整因素对供电煤耗率的高低影响极大,主要包括机组负荷率高低、每年机组启停的次数多少、运行蒸汽参数高低、系统管道效率、锅炉热效率、汽机热耗率、厂用电率、煤质管控、机组热电比、机组一次调频动作频率等方面。 在其他条件相同的情况下,机组负荷率降低,供电煤耗率则会增加;机组启停次数增加,则也会使供电煤耗率增加;另外蒸汽参数降低、热力系统管道保温不善、系统内漏、锅炉排污增加、采暖、蒸汽吹灰以及煤质偏离设计值过大、入厂煤与入炉煤热值偏差大、热电比降

浅淡火电厂煤耗指标的管理

浅淡火电厂煤耗指标的管理 摘要:煤耗率是火电厂的综合性经济指标,是衡量火电厂运行水平及经营管理水平的标志。随着电煤价格的一路飙升,加强煤耗指标的管理,努力促使其不断降低,是火电厂降低燃料成本,提高经济效益的重要途径。 关键词:火电厂煤耗指标管理 一、引言 我国是世界上为数不多的能源消费以煤为主的国家,在我国电源结构中,火电设备容量约占总装机的75%,火电机组年发电量占总发电量的80%以上,火力发电在相当长的时期内仍将在中国电源结构中占主要地位。随着电力技术的不断发展,火电机组结构不断优化,大容量和新技术机组所占比例的不断提高,全国火电机组的平均供电煤耗由2000年的394g/kWh降低到2004年的379g/kWh,2005年300MW机组平均供电煤耗338.6 g/kWh,平均厂用电率为5.26%;600MW 机组平均供电煤耗326.86 g/kWh,平均厂用电率为4.75%;各类机组的运行可靠性和经济性水平逐年提高,但全国火电机组平均效率仅约33.9%(比国际先进水平低6-7个百分点),平均供电煤耗比国外仍高约50克标煤,我国火电机组的整体运行水平与国际先进水平仍然存在不小的差距,存在较大的下降空间。 随着我国电力体制的改革,电力市场的竞争机制已逐步形成,发电企业已从“生产性企业”向“经营性企业”转变。受国家“市场煤、计划电”的影响,近几年电煤价格一路上涨,火电厂的燃料成本达到了发电总成本的70%甚至更高。因此,火电厂要在恶劣的经营环境下生存下去,就必须要降低燃料成本,燃料的价格、煤质与煤耗是影响火电厂燃料成本的三个最主要因素,燃料价格以及煤质受外部市场环境的影响,属于不可控因素。因此,加强煤耗指标的管理,努力促使其不断降低,是火电厂降低燃料成本,提高经济效益的重要途径。 二、供电煤耗的计算 供电煤耗是火电厂的一项重要经济技术指标,它反映火电厂管理和生产的综合水平,影响供电煤耗的因素是多方面的,包括设备的健康水平、负荷率、运行调整、节能管理、燃料质量、发电量、厂用电率、锅炉效率、汽机效率、管道效率等指标。供电煤耗的计算有正平衡法和反平衡法两种,原电力工业部《火力发电厂按入炉煤量正平衡计算发供电煤耗的方法(试行)》规定,火力发电厂供电煤耗统一以入炉煤计量煤量和入炉煤机械取样分析的低位发热量按正平衡法计算,按照反平衡计算进行校核。正平衡法计算煤耗通常作为表征机组运行性能的轮廓指标,反平衡计算煤耗可为改善机组的性能提供决策依据。 发改委2004年发布的《火力发电厂技术经济指标计算方法》(DL/T 904)进一步对煤耗的计算进行了明确:

影响供电煤耗的主要因素

影响供电煤耗的主要因素 为了提高全厂职工节能降耗的意识,明确节能降耗工作的方向与重点,现将我厂四台机组供电煤耗的各种影响因素提供给大家,期望大家共同努力,把我厂供电煤耗指标提高到新的水平。(以下内容仅供参考,今后我们将逐步修订完善。)1、主汽压力变化1MPa影响煤耗1.13g/KWh2、主汽温度变化10℃影响煤耗1.16g/KWh3、再热汽压力变化1%影响煤耗0.36 g/KWh4、再热汽温度变化10℃影响煤耗 0.73g/KWh5、再热汽减温水流量变化10T/h影响煤耗 1.24 g/KWh6、真空下降1Kpa(1mmHg=0.133KPa)影响煤耗 2.44 g/KWh7、循环水进水温度变化1℃影响煤耗0.5—0.8 g/KWh8、高加全停影响煤耗14—18 g/KWh9、汽水损失1%影响煤耗1.4—2 g/KWh10、厂用电率1%影响煤耗 3.5—3.6 g/KWh11、厂用汽变化1%影响煤耗2.5 g/KWh12、排烟温度降低10℃影响煤耗2.2 g/KWh13、生活区供暖系统用汽影响煤耗0.65 g/KWh14、燃油多耗1000吨影响煤耗1.1 g/KWh15、除氧器每小时多排汽1吨影响煤耗0.3 g/KWh16、锅炉飞灰可燃物增加5%影响煤耗 1.5 g/KWh17、锅炉灰渣可燃物升高5%影响煤耗0.72 g/KWh18、甲、乙大旁路、主蒸汽管道泄漏水汽1吨影响煤耗0.47 g/KWh19、发电机负荷由300MW降至250MW影响煤耗3 g/KWh左右。

很多,如下: 1、负荷率 2、机组效率 3、真空 4、厂用电率 5、给水温度 6、高加投入率 7、凝气器端差 8、排烟温度 9、凝结水过冷度 10、低加组投入率 11、主蒸汽温度 12、主蒸汽压力

各指标对煤耗影响精选文档

各指标对煤耗影响精选 文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

600MW机组各项指标对煤耗影响 1.负荷降低1%,机组的热耗将会增加%~%,煤耗大约增 加%,1.1 g/kWh 2.主汽压降低1MPa,煤耗增加1.53g/kWh; 3.主汽温提高1℃,煤耗降低0.059 g/kWh; 4.再热汽温提高1℃,煤耗降低0.032 g/kWh; 5.再热器喷水减少1t/h,煤耗降低0.103 g/kWh; 6.凝汽器端差下降1℃,煤耗0.68 g/kWh; 7.真空上升1kPa,煤耗下降1.2 g/kWh; 8.给水温度提高1℃,煤耗下降%,0.16 g/kWh; 9.排烟温度下降10℃,煤耗下降1.88 g/kWh; 10.锅炉效率提高1%,煤耗下降4 g/kWh; 11.氧量比标准上升1%,煤耗增加1.57 g/kWh; 12.空冷机组影响煤耗10 g/kWh;国电600MW亚临界机组 对标供电煤耗332 g/kWh; 300MW机组省煤节电经验数据 1.负荷降低10%,煤耗大约增加 2.95g/kWh,降低20%增加 6.92g/kWh,降低30%增加18.90g/kWh,降低40%增加 26.23g/kWh

2.主汽压降低1MPa,煤耗增加2.1g/kWh;降低2MPa,煤 耗增加3.58g/kWh; 3.主汽温降低5℃,煤耗增加0.95 g/kWh;主汽温降低 10℃,煤耗增加1.51 g/kWh; 4.再热汽温降低5℃,煤耗增加0.79 g/kWh;再热汽温降 低10℃,煤耗增加1.68 g/kWh; 5.真空度下降1%,煤耗增加3.6 g/kWh; 6.端差上升1℃(夏/冬),煤耗增加 /0.85g/kWh 7.高加解列/低加解列,煤耗增加8.02g/kWh 8.给水温度下降10℃,煤耗增加0.95g/kWh; 9.给水调门压差增加1MPa,煤耗增加0.36g/kWh; 10.排烟温度上升10℃,煤耗增加1.66g/kWh; 11.空气预热器漏风率增大1%,煤耗增加0.14g/kWh; 12.飞灰含碳量增加1%,煤耗增加1.23 g/kWh; 13.排污率增大1%,煤耗增加1.18g/kWh; 14.厂用电率上升1%,煤耗增加3.78g/kWh;

影响火力发电厂供电煤耗的主要影响因素

影响火力发电厂供电煤耗的主要影响因素 摘要:本文主要针对影响火力发电厂供电煤耗的主要因素展开分析和讨论,通 过根据供电煤耗正、反平衡经验计算公式进行逐步推理,得出相关因素的影响程度,提出了相关调整和控制措施,进一步为火力发电机组经济运行提供了指导性 意见,同时为火电机组设计、建设和调试运行提供了经验借鉴。 一、概述 火力发电厂每向外提供1kWh电能平均耗用的标准煤量,它是按照电厂最终 产品供电量计算的消耗指示,是国家对火电厂的重要考核指标,根据计算方法的 不同供电煤耗分为正平衡供电煤耗、反平衡供电煤耗两种方法。近些年来,国家 鼓励相关火力电力企业继续担当我国的主体能源重任,加快清洁高效技术改进, 进一步推进“上大压小”和“能源利用节约”政策,不断淘汰高耗能、高污染机型, 保证火电机组容量等级结构持续向大容量、高参数、低耗能方向发展,促使供电 标准煤耗等主要耗能指标大幅下降,同时各大电力企业正努力向污染零排放、提 高发电设备利用率、保证发电煤耗低于310g/kW.h的目标全力进军,争取是火力 发电在国家绿色发展的整体形势中迎来新生机。 二、影响供电煤耗的主要因素 (一)发电煤耗的正平衡计算公式 bf=Bb/Wf (式一) 式中:bf—发电煤耗,g/kW.h;Bb—发电标煤耗量,t;Wf—发电量,kW.h; bg=bf/(1-η)(式二) 式中:bg—供电煤耗,g/kW.h;η—厂用电率,%; Bb=By×Qy/29307(式三) 式中:By—发电原煤耗量,t;Qy—原煤入炉煤热值,kJ/kg; 综合上述发电煤耗正平衡计算公式可知,影响发电煤耗的因素主要有负荷率,原煤的发热量、厂用电率。 1、负荷率对供电煤耗的影响 通过对比锡林发电两台机组一年生产指标来看,在燃煤煤种不变情况下,机 组平均负荷在机组容量50%以上时,供电煤耗平均在306g/kW.h;机组平均负荷 在机组容量80%以上时,供电煤耗平均在295 g/kW.h;机组满负荷运行时,供电 煤耗平均在287 g/kW.h。由此可知,负荷率越高,供电煤耗下降较多,满负荷时,要低于设计供电煤耗。 2、原煤发热量对供电煤耗的影响 原煤发热量是影响供电煤耗最主要的一个影响因素,通过对比运行数据分析 可知,原煤发热量每变化100kJ/kg时,影响供电煤耗约2.5g/kW.h,原煤耗煤量 称重值不变时,化验的原煤发热量越高,标煤耗煤量越大,供电煤耗越大。 3、厂用电率对供电煤耗的影响 根据式二可知,发电厂用电率对火力发电机组供电煤耗有着直接影响,其中 通过分析锡林发电两台机组供电煤耗变化趋势可知,生产厂用电率每升高0.1个 百分点,供电煤耗变化约3.5 g/kW.h,是影响煤耗因素中最大的一个指标。 (二)发电煤耗的反平衡计算公式 bf=qr/(29307×ηgd×ηgl)(式四) 式中:bf—发电煤耗,g/kW.h;qr—热耗,kJ/kW.h;ηgd—管道效 率,%;ηgl—锅炉效率,%。

发电系统裕度表生成及可靠性指标计算21页word文档

实验一发电机组停运表生成 一、实验目的 1、熟悉发电机组停运表的生成原理; 2、掌握用计算机编程形成发电机组停运表的方法。 二、实验原始数据及内容 1、实验原始数据: 某发电系统有A、B、C 三台发电机组,其容量分别为30MW、40MW 和50MW,强迫停运率分别为0.04、0.06 和0.08,平均修复时间为38.0208333 天。 2、实验内容: (1)编制形成发电机组停运的程序; (2)形成实验数据给出的三台发电机组停运表。 三、实验程序形成框图 四、实验程序结果 1、输入显示 2、结果显示 3、总结果显示 五、程序代码清单 实验一与实验三的程序编写在一个程序中,程序代码在实验三中。 六、心得体会 在编写第一个程序时c语言和matlab差距不太大,所要的数据也不多。 七、参考资料 1、电力系统规划基础

实验二负荷停运表生成 一、实验目的 1、熟悉负荷停运表的生成原理; 2、掌握用计算机编程形成负荷停运表的方法。 二、实验原始数据及实验内容 1、实验原始数据 某系统最大负荷为100MW,负荷曲线如图1 所示。 图1 某系统的日负荷曲线 2、实验内容 (1)编制形成负荷停运表的程序; (2)形成图1 所示的负荷停运表。 三、实验程序形成框图 以下两个框图:第一个是整个程序的形成框图,第二个是负荷频率表程序的形 成框图。 (2)负荷频率表的程序形成框图如下: 四、实验程序结果 1、输入系统的相关信息: 2、负荷频率表的形成矩阵结果如下:

3、负荷停运表的形成矩阵结果如下:

五、程序代码清单 clear; PM=input('请输入系统的日负荷曲线对应的最大负荷PM: PM ='); L=input('请输入系统的日负荷曲线对应的负荷L:L='); DX=input('请输入步长DX:DX='); T=length(L);%根据日负荷曲线确定周期T%%%%%%%%%%%%%%%%%%%% n=PM/DX+1;FHTYB=zeros(n,5); %定义负荷停运表矩阵初值%%%%%%%%%%%%%% M=zeros(n,1); for i=1:n FHTYB(i,1)=i-1; end %使负荷停运表矩阵第一列为序号%%%%%%%%%%%%%%%%%%%%%%%%%%% for i=1:n FHTYB(i,2)= FHTYB(i,1)*DX;

火力发电厂如何降低供电煤耗

火力发电厂如何降低供电煤耗 一、供电煤耗率是供电标准煤耗率的简称,供电煤耗率是指火电厂向厂外每供出1kW.h电量所消耗的标准煤量[g/(kW.h)],计算公式为:供电煤耗率=发电煤耗率/(1-厂用电率)=标准煤耗量/供电量 1、下列用电量和燃料不计入发电厂用电率和供电煤耗: 1)新设备或大修后设备的烘炉、煮炉、暖机、空载运行的电力; 2)新设备在未移交生产前的带负荷试运行期间,耗用的电量; 3)计划大修以及基建、更改工程施工用的电力; 4)发电机作调相运行时耗用的电力; 5)自备机车、船舶等耗用的电力; 6)升降压变压器(不包括厂用电变压器)、变波机、调相机等消耗的电力; 7)修配车间、车库、副业、综合利用、集体企业、外供及非生产用(食堂、宿舍、幼儿园、学校、医院、服务公司和办公室等)的电力。 2、供电量是指在报告期内机组向电网和电厂非生产用电提供的电能。 供电量=发电量-发电(供热)厂用电量-电网购入电量 购入电量是指电厂为生产所需,从其他独立发电企业、其他电网经营企业、自备电厂购入的电量,一般通过厂内高压备用变压器输入。 非生产用电量是指生活用电、机组大修用电、技改工程施工用电和新建机组启动用电等。 上网电量是指电厂在报告期内输送给电网的电量,即厂、网间协议确定

的电厂并网点计量关口有功电能表计抄见电量。 上网电量=发电量-发电(供热)厂用电量-非生产用电量-主变压器和线路损失电量-电网购入电量 (4)机组负荷率修正系数按表1选取。 表1 机组负荷率修正系数 (5)机组启停调峰修正系数按表2选取。 机组启停调峰修正系数 表2 二、影响供电煤耗率的主要因素 1、蒸汽压力和温度越高,机组容量越大,发电煤耗率越小, 见表5(数据包括脱硫设施) 表5 不同参数下机组设计和运行供电煤耗率

影响供电煤耗的因素大汇总.

导读:供电煤耗又称供电标准煤耗,是火力发电厂每向外提供1kWh电能平均耗用的标准煤量(单位:克/千瓦时、g/kWh)。它是按照电厂最终产品供电量计算的消耗指示,是国家对火电厂的重要考核指标之一。 以下为影响供电煤耗因素汇总,以供参考。 1、主汽压力上升1MPa影响供电煤耗下降1.65g/kW.h 控制措施:主汽压升高会使汽机热耗下降,但一般情况下,运行时不宜超过设计值,以免控制不好,引起超压。 计算公式:详细的计算方法是对整个热力系统进行计算,先得到作功的变化和吸热量的变化,再得到煤耗的变化。或者由制造厂的修正曲线先得到热耗的变化,再得到煤耗的变化。并且还要考虑其他因素同时变化时,对主汽压引起变化的影响。粗略估算可采用下式: B*[C1/(1+C1)]/ηb/(1-ηe),B——是煤耗,C1——是主汽压对热耗的修正系数,ηb——是锅炉效率,ηe——是厂用电率。 2、主汽压力下降1MPa影响供电煤耗上升1.89g/kW.h 控制措施:运行时,对80%以上工况尽量向设计值靠近,80%以下工况目标值不一定是设计值,目标值的确定需要通过专门的滑参数优化试验确定。 计算公式:估算公式与主汽压力上升相同。 3、主汽温度每下降10℃影响供电煤耗上升1.26g/kW.h 控制措施:主汽温偏低一般与过热器积灰、火焰中心偏低、给水温度偏高、燃烧过量空气系数低、饱和蒸汽带水、减温水门内漏等因素有关。运行时,应按规程要求吹灰、根据煤种变化调整风量、一、二次风配比。 计算公式:详细的计算方法是对整个热力系统进行计算,先得到作功的变化和吸热量的变化,再得到煤耗的变化。或者由制造厂的修正曲线先得到热耗的变化,再得到煤耗的变化。并且还要考虑其他因素同时变化时,对主汽温引起变化的影响。粗略估算可采用下式: B*[C2/(1+C2)]/ηb/(1-ηe),B——是煤耗,C2——是主汽温对热耗的修正系数,ηb——是锅炉效率,ηe——是厂用电率。 4、主汽温度每上升10℃影响供电煤耗下降1.14g/kW.h 控制措施:主汽温升高会使汽机热耗下降,但一般情况下,运行时不宜超过设计值,以免控制不好,引起超温。

根据经验值影响机组供电煤耗的几个系数关系简略说明

根据经验值影响机组供电煤耗的几个系数关系简略说明1、综合厂用电率与综合供电煤耗的关系: 综合供电煤耗=统计期内的供电标煤量/发电量(1—综合厂用电率),若综合厂用电率增加0.1%,则分母减小0.1%,既上网电量减少0.1%的发电量。假设有用下列公式表示上述关系:——A=B/(1-n)C 其中A—综合供电煤耗 B—统计期内的供电标煤量 C—发电量 n—综合厂用电率 若B、C不变的情况下,n增加01.%变为n’,则比较A的变化A’有 2、影响发电煤耗的主要因素有如下经验关系: 1)一般情况下,机组负荷率每变化10%,发电煤耗将变化3~6克/ 千瓦时。 2)一般来讲锅炉热效率对发电煤耗的影响约为1:1,即锅炉热效率 相对变化1%,发电煤耗相对变化1%。在其他条件不变的情况下,锅炉热效率越高,机组发电煤耗越低。 3)汽机热耗率对发电煤耗的影响也是1:1的关系,即热耗率相对变 化1%,发电煤耗同样变化1%。同样情况下机组热耗率越低、机组的发电效率越高、机组发电煤耗越低。 3、一般300MW燃煤机组负荷率每变化10%,发电厂用电率约变化0.3%左右。

4、入厂煤与入炉煤的热值差应控制在502J/g之内。 5、提高热效率的几个因素: 直接影响锅炉热效率的指标有:排烟温度、锅炉氧量(排烟氧量)、飞灰可燃物含量和炉渣可燃物含量。一般情况下300MW燃煤机组锅炉排烟温度每升高10o C,影响机组供电煤耗1.5g/(kW·h)左右;锅炉烟气含氧量每升高1%,影响机组供电煤耗升高0.9 g/(kW·h)左右;飞灰可燃物含量每升高1%,锅炉热效率降低0.3%,机组供电煤耗升高1.1 g/(kW·h),对于电站煤粉锅炉一般飞灰占总灰量的90%,炉渣占总灰量的10%。 6、锅炉主蒸汽参数对供电煤耗的影响。一般锅炉主蒸汽压力每增加1MPa,热耗将降低0.55~0.7%,机组供电煤耗降低 1.5~2.2 g/(kW·h),因此必须严格控制主蒸汽压力在一定范围内,波动范围应在±0.2MPa;一般锅炉主蒸汽温度(也叫主蒸汽温度,指锅炉末级过热器出口的过热蒸汽温度)每升高1 o C,热耗将增加0.03%,机组供电煤耗增加0.1 g/(kW·h),因此必须严格控制过热器温度在一定范围内,波动范围±5 o C。 7、锅炉再热蒸汽温度对供电煤耗的影响:指锅炉末级再热器出口的再热蒸汽温度。一般再热蒸汽温度每降低1o C,热损耗将增加0.025%,机组供电煤耗增加0.07 g/(kW·h)左右。 8、汽轮机主要参数对煤耗的影响:对200MW机组,高加停止运行,机组热效率降低3~5%,折合机组供电煤耗10 g/(kW·h)。所以,一般情况下高加投入率应≥95%。

发电设备可靠性评价规程

发电设备可靠性评价规程 1、范围 本规程规定了发电设备可靠性得统计及评价办法,适用于我国境内得所有发电企业(火电厂、水电厂(站)、蓄能水电厂、核电站、燃气轮电站)发电能力得可靠性评估。 2基本要求 2、1发电设备(以下如无特指,机组、辅助设备统称设备)可靠性,就是指设备在规定条件下、规定时间内,完成规定功能得能力。 2、2 本标准指标评价所要求得各种基础数据报告,必须准确、及时、完整地反映设备得真实情况。 2、3 “发电设备可靠性信息管理系统”程序、事件编码、单位代码,由“电力可靠性管理中心”(以下简称“中心”)组织编制,全国统一使用。 2、4 发电厂(站)或机组,不论其产权所属,均应纳入全国电力可靠性信息管理系统,实施行业管理。 3 状态划分 3、1发电机组(以下简称“机组")状态划分 ?全出力运行 ∣(FS) ∣ ?运行—∣?计划降低出力运行(IPD) ∣(S)∣∣?第1类非计划降低出力运行(IUD1) ∣∣降低出力运行-∣∣第2类非计划降低出力运行(IUD2) ∣?(IUND) ?非计划降低出力运行—∣第3类非计划降低出力运行(IUD3) ?可用-∣ (IUD)?第4类非计划降低出力运行(IUD4) ∣(A) ∣ ∣∣ ∣∣?全出力备用(FR) ∣?备用-∣ ∣(R) ∣?计划降低出力备用(RPD) ∣?降低出力备用—∣?第1类非计划降低出力备用(RUD1) ∣(RUND)?非计划降低出力备用—∣第2类非计划降低出力备用(RUD2) ∣ (RUD)∣第3类非计划降低出力备用(RUD3) ∣?第4类非计划降低出力备用(RUD4) ∣ ?在使用—∣ ∣(ACT)∣ ∣∣ ∣∣?大修停运(PO1) ∣∣?计划停运—∣小修停运(PO2) 机∣∣∣(PO) ?节日检修与公用系统计划检修停运(PO3) 组∣∣∣ —-∣?不可用-∣ 状∣ (U)∣ 态∣∣?第1类非计划停运(UO1)? ∣∣∣第2类非计划停运(UO2)∣—强迫停运(FO)

火电厂降低供电煤耗率的主要措施

1、使用新型的无油技术,如等离子点火技术、少油点火技术等)。 2、对送风机、吸风机、一次风机等动力进行变频改造。实践证明,采用性能较好的变频器不但可靠性高,而且风机节电率可达40%~60%。大型变频器基本上每千瓦费用为1000元。 3、采用先进的设计技术和加工工艺、采用先进的附属设备和部件,对汽轮机通流部分进行改造,可以提高机组容量和缸效率,从而大幅度地降低发电煤耗。对于国产机组,采用先进的高效叶型进行通流部分改造,煤耗至少可降低8g/kWh。 4、当煤质发生变化时,及时调整制粉系统运行方式,保证经济的煤粉细度,降低飞灰和炉渣可燃物,提高锅炉热效率。建议电厂按0.5Vdaf较核煤粉细度。煤粉过粗,达不到经济细度,导致炉膛着火延迟,使火焰中心升高,排烟温度升高;煤粉过细,燃烧提前,火焰中心下降,对汽温调整产生影响,同时也增加了制粉系统电耗。请参考《电站磨煤机及制粉系统选型导则》(DL/T466-2004)。该标准规定,无论无烟煤、贫煤和烟煤,其经济煤粉细度均按0.5Vdaf选取。 5、采用先进的煤粉燃烧技术。煤粉燃烧稳定技术可以使锅炉适应不同的煤种,特别是燃用劣质煤和低挥发分煤,而且能提高锅炉燃烧效率,实现低负荷稳燃,防止结渣,并节约点火用油。 6、采用高参数的大容量火电机组,不仅能减少大气污染,而且大大降低供电煤耗。 7、根据国际电工委员会(IEC)1985年和《电站汽轮机技术条件》(DL/T892-2004)规定:在任何12个月的运行期间,汽轮机任何一进口的平均温度不应超过其额定温度。机组可以在(额定温度+8)℃下长期运行,但全年平均温度不允许超过额定值;在(额定温度+8)~(额定温度+14)℃下,机组全年允许运行400h;在(额定温度+14)~(额定温度+28)℃下,机组全年允许运行80h,但每次不超过15min;超过(额定温度+28)℃,要停机。 8、负荷降低时,应及时停运1套制粉系统。实践证明,300MW锅炉,3套制粉系统运行比2套制粉系统运行,排烟温度要高出10℃左右。制粉系统停运时,应尽量停运上层的制粉系统,同时相应地降低给粉机出力,以延长停磨时间和降低火焰中心。 9、在低负荷下机组采用滑压运行方式。例如某电厂300MW机组当负荷降到240MW以下时采用1、2、4、5四只高压调门全开,3、6两只高压调门全关的滑压运行方式,供电煤耗降低4.1g/kWh。 10、每月进行一次真空严密性试验。 11、由于煤炭市场逐步放开,许多电厂的煤源、煤种不稳定,诸多煤炭指标严重偏离设计煤种,给锅炉安全经济运行带来了较大的影响,因此应通过完善燃料采购、配煤掺烧的管理,努力克服当前煤炭市场的不利因素,尽量提高入炉煤的质量,确保锅炉燃烧最大限度地接近设计煤质。凡燃烧非单一煤种的电厂,要实行配煤责任制,每天根据不同煤种和锅炉设备特性,研究确定掺烧方式和掺烧配比,并通知有关岗位执行,避免锅炉低负荷期间燃烧不稳灭

发电设备可靠性评价制度

发电设备可靠性评价规程 1. 范围 本规程规定了发电设备可靠性的统计及评价办法,适用于我国境内的所有发电企业(火电厂、水电厂(站)、蓄能水电厂、核电站、燃气轮电站)发电能力的可靠性评估。 2 基本要求 2.1 发电设备(以下如无特指,机组、辅助设备统称设备)可靠性,是指设备在规定条件下、规定时间内,完成规定功能的能力。 2.2 本标准指标评价所要求的各种基础数据报告,必须准确、及时、完整地反映设备的真实情况。 2.3 “发电设备可靠性信息管理系统”程序、事件编码、单位代码,由“电力可靠性管理中心”(以下简称“中心”)组织编制,全国统一使用。 2.4 发电厂(站)或机组,不论其产权所属,均应纳入全国电力可靠性信息管理系统,实施行业管理。 3 状态划分 3.1 发电机组(以下简称“机组”)状态划分

?全出力运行 ∣(FS) ∣ ?运行-∣?计划降低出力运行(IPD) ∣ (S) ∣∣?第1类非计划降低出力运行(IUD1) ∣∣降低出力运行-∣∣第2类非计划降低出力运行(IUD2) ∣? (IUND) ?非计划降低出力运行-∣第3类非计划降低出力运行(IUD3) ?可用-∣(IUD) ?第4类非计划降低出力运行(IUD4) ∣(A) ∣ ∣∣ ∣∣?全出力备用(FR) ∣?备用-∣ ∣(R) ∣?计划降低出力备用(RPD) ∣?降低出力备用-∣?第1类非计划降低出力备用(RUD1) ∣(RUND) ?非计划降低出力备用-∣第2类非计划降低出力备用(RUD2) ∣(RUD) ∣第3类非计划降低出力备用(RUD3) ∣?第4类非计划降低出力备用(RUD4) ∣ ?在使用-∣ ∣(ACT) ∣ ∣∣ ∣∣?大修停运(PO1) ∣∣?计划停运-∣小修停运(PO2) 机∣∣∣ (PO) ?节日检修和公用系统计划检修停运(PO3) 组∣∣∣ --∣?不可用-∣ 状∣(U) ∣ 态∣∣?第1类非计划停运(UO1)? ∣∣∣第2类非计划停运(UO2)∣-强迫停运(FO) ∣?非计划停运-∣第3类非计划停运(UO3)? ∣(UO) ∣第4类非计划停运(UO4) ∣?第5类非计划停运(UO5) ∣ ∣ ∣ ∣ ∣ ?停用(IACT) 3.2辅助设备的状态划分 ?运行(S)

影响发电厂煤耗指标的因素精编版

影响发电厂煤耗指标的 因素精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

发电厂经济效益的一个重要指标是煤耗,因此如何降低煤耗是发电厂节能的重点工作。降低机组的发电煤耗从反平衡角度分析,取决于降低汽轮机热耗和提高锅炉效率,同时加强管道的保温,提高管道传热效率。 对煤耗影响较大的几个因素具体分析如下: 1、汽轮机汽耗 降低汽轮机热耗的方法有: (l)通过对汽轮机通流部分及相关热力系统的改造,提高热循环效率、降低热耗; (2)运行中应及时地对主辅机进行调整,以保证机组在相应工况下参数、真空等指标处于经济运行状态; (3)提高设备健康水平,确保系统无负压泄漏,无额外热源漏人凝汽器,无回热系统故障等影响经济运行的缺陷。 2、锅炉热效率 提高锅炉效率应根据需要进行受热面、燃烧器等主辅设备的技术改造。运行中要及时调整燃烧和辅机运行,减少锅炉各项损失,特别是排烟损失和机械不完全燃烧损失。另外,要加强对来煤煤质的预报,杜绝严重偏离设计煤种的燃煤入厂、入炉。 3、负荷率和机组启停次数 机组启停次数对热耗和发电煤耗影响很大,统计资料表明,每次启停消耗的燃料约为本机组在满负荷下2~3h消耗的燃料,机组每次启停增加热耗约为3kJ/(kw˙h),相应煤耗增加约~(kw˙h)。负荷率每变化1%,机组热耗将变化%~%,大型机组的热耗增加 8~10kJ/(kw˙h),煤耗增~(kw˙h)。因此降低煤耗,一方面要增加负荷率,另一方面 要做好经济调度;必须提高大小修质量,减少停机次数;重要设备要有运行状态检测 手段,逐步实行状态检修。 4、凝汽器真空 气候变化引起凝汽器真空降低及真空系统泄漏均会引起热耗上升。真空每降低1kPa,热耗增加80kJ/(kw˙h),煤耗增加3g/(kw˙h)。凝汽器真空是影响机组发电煤耗的主要因素。 提高真空的主要措施是: ①降低循环水入口温度。当循环水人口温度在规定范围内时,循环水入口温度每降 低1℃,煤耗约降低10~(kw˙h)。 ②增加循环水量。 ③保持冷凝器管子的清洁,提高冷却效果。 ④维持真空系统严密。 5、主蒸汽参数的影响 (1)主蒸汽温度的影响 主蒸汽温度每升高1℃,煤耗减少(kw˙h)。但是如果主蒸汽温度升高超过允许范围,将引起调节级叶片过负荷,造成汽机主汽阀、调节汽阀、蒸汽室、动叶和高压轴封 等部件的机械强度降低或变形,导致设备损坏,因此汽温不能无限升高。如果主蒸汽温度降低,不但引起煤耗增加,而且使汽轮机的湿汽损失增加,效率降低。 (2)主蒸汽压力的影响 主蒸汽压力每升高1MaP,煤耗减少~2g/(kW˙h)。但是主蒸汽压力升高超过允许范围,将引起调节级叶片过负荷,造成主蒸汽压力管道、蒸汽室、主汽门、汽缸法兰及螺 栓等部件的应力增加,对管道和汽阀的安全不利;湿气损失增加,并影响叶片寿命。

各指标对煤耗影响

各指标对煤耗影响 This manuscript was revised on November 28, 2020

600MW机组各项指标对煤耗影响 1.负荷降低1%,机组的热耗将会增加0.089%~0.1%,煤耗 大约增加0.3%,1.1 g/kWh 2.主汽压降低1MPa,煤耗增加1.53g/kWh; 3.主汽温提高1℃,煤耗降低0.059 g/kWh; 4.再热汽温提高1℃,煤耗降低0.032 g/kWh; 5.再热器喷水减少1t/h,煤耗降低0.103 g/kWh; 6.凝汽器端差下降1℃,煤耗0.68 g/kWh; 7.真空上升1kPa,煤耗下降1.2 g/kWh; 8.给水温度提高1℃,煤耗下降0.05%,0.16 g/kWh; 9.排烟温度下降10℃,煤耗下降1.88 g/kWh; 10.锅炉效率提高1%,煤耗下降4 g/kWh; 11.氧量比标准上升1%,煤耗增加1.57 g/kWh; 12.空冷机组影响煤耗10 g/kWh;国电600MW亚临界机组 对标供电煤耗332 g/kWh; 300MW机组省煤节电经验数据 1.负荷降低10%,煤耗大约增加 2.95g/kWh,降低20%增加 6.92g/kWh,降低30%增加18.90g/kWh,降低40%增加 26.23g/kWh

2.主汽压降低1MPa,煤耗增加2.1g/kWh;降低2MPa,煤 耗增加3.58g/kWh; 3.主汽温降低5℃,煤耗增加0.95 g/kWh;主汽温降低 10℃,煤耗增加1.51 g/kWh; 4.再热汽温降低5℃,煤耗增加0.79 g/kWh;再热汽温降 低10℃,煤耗增加1.68 g/kWh; 5.真空度下降1%,煤耗增加3.6 g/kWh; 6.端差上升1℃(夏/冬),煤耗增加1.93 /0.85g/kWh 7.高加解列/低加解列,煤耗增加9.55/8.02g/kWh 8.给水温度下降10℃,煤耗增加0.95g/kWh; 9.给水调门压差增加1MPa,煤耗增加0.36g/kWh; 10.排烟温度上升10℃,煤耗增加1.66g/kWh; 11.空气预热器漏风率增大1%,煤耗增加0.14g/kWh; 12.飞灰含碳量增加1%,煤耗增加1.23 g/kWh; 13.排污率增大1%,煤耗增加1.18g/kWh; 14.厂用电率上升1%,煤耗增加3.78g/kWh;

火力发电机组可靠性评价实施办法

火力发电机组可靠性评价实施办法 第一章总则 第一条为提高发电机组运行可靠性水平,保障电力系统安全稳定可靠运行,依据《电力监管条例》、《电力安全生产监督管理办法》、《电力可靠性监督管理办法》,制定本办法。 第二条火力发电机组(以下简称“机组”)可靠性评价包括1000兆瓦、600兆瓦和300兆瓦三个容量等级常规火电机组,通过可靠性评价指标认定。 第三条可靠性评价工作应当坚持公正、公平、公开的原则。 第二章评价指标 第四条机组可靠性评价采用机组年度可靠性综合评价系数(GRCF)作为评价指标。 第五条机组可靠性综合评价系数是反映机组综合出力能力的指标,其公式为: GRCF = EAF+ B F +B MT+B R

式中: EAF 为机组台年平均等效可用系数。 B F 为机组强迫停运次数影响值:B F =-Σ(FOT× C F ),式中,FOT 为机组台年平均强迫停运次数,C F 为强迫停运影响系数,第一类非计划停运取值0.6%,第二类非计划停运取值0.5%,第三类非计划停运取值0.4%。 B MT 为机组最长连续运行时间影响值: B MT =%5.13232?- DA DA MT SH SH SH ,式中SH MT 为最长连续运行时间 (小时),SH DA 为机组所在电网统调大型火电机组年度平均运行小时。机组最长连续运行时间从评价年度的上一年度算起;若跨年度连续运行事件在评价年度内的时间不足30%的,则该事件按年度内时间比例占 30%计算持续时间。最长连续运行时间大于32SH DA 的,其值按3 2SH DA 计算。 B R 为备用时间权重影响值: B R =-max (RH -3 2RH DA ,0)/PH×C R ,式中,max ( )为取最大值函数,RH 为机组备用时间,RH DA 为机组所在电网统调大型火电机组年度平均备用小时,PH 为机组的统计期间小时,C R 为备用时间权重修正系数,取值10%。 第三章 评价工作实施

煤热值与供电煤耗的关系

煤热值与供电煤耗的关系-探讨 电厂一般上报煤耗报表采用的数据为:入炉煤的热值、皮带秤的煤量及关口表发电量的数据。 前一阵子帮某一电厂分析某月煤耗异常升高(与去年同期比较上升13g左右)原因:初步分析可能原因有三:1、机组经济性大幅下降导致煤耗升高;2、皮带秤计量偏大,实际煤量不大,造成统计煤耗高;3、入炉煤热值分析偏高,实际热值低,由此造成煤耗升高。 于是首先从机组经济性角度分析,结合机组实时数据对机组主要经济指标进行分析,发现除去一些客观因素(循环水温度、负荷率、老化等)造成煤耗上升4-5g左右,其他参数均正常。由此认为机组经济性恶劣值影响了4-5g煤耗升高,其余7-8g仍然需要查找。 接着,分析皮带秤计量是否异常:根据电厂煤场盘煤状况,没有盈余,并且电厂通过直加仓(不经过煤场堆放,直接入炉燃烧)发现,入炉皮带秤与入厂皮带秤计量相当,认为皮带秤准确。如果皮带秤计量偏大,则长期盘煤煤场应有盈余,加上两根皮带秤均每月实物校验两次,基本排除皮带秤问题。 最后就是入炉煤热值问题了。根据电厂采制化装置的要求,在入厂煤及入炉煤均安装采制化,通过采制化性能试验及直加仓(比较两套采制化装置),均没有发现问题。但是有个疑点,煤自动采样装置由于采用缩分装置,煤在制样过程中必然存在水分损失,而采制化装置验收标准中只要水分损失不大于1%,即认为正常。但是随着煤种变化(水分偏大)、天气原因(汽温高)等,有可能造成水分偏差大于1%,由此可能造成制样后煤热值偏大,根据经验大约热值偏大100大卡(神木煤)。由此造成入炉煤热值偏大1.6-1.8%,统计煤耗上升7-8g。与此前的怀疑一致。 但是由于上一年度统计煤耗据电厂讲,热值没有修正过,因此同比还是没法验证,还是没法解释。不知道有没有哪位专家分析过该方面的问题,给指点迷津下。 总体感觉,电厂统计煤耗一旦涉及到燃料管理部分,总归有说不清楚的地方,外人无法判别清楚

火力发电厂生产指标介绍

三、火力发电厂生产指标介绍 一、主要指标介绍 1、供电煤耗:指火力发电机组每供出单位千瓦时电能平均耗用的标准煤量。他是综合计算了发电煤耗及厂用电率水平的消耗指标。因此,供电标煤耗综合反映火电厂生产单位产品的能源消耗水平。 供电煤耗=发电耗用标准煤量(克)/供电量(千瓦时)=发电耗用标准煤量(克)/发电量X(1-发电厂用电率)(千瓦时) 2、影响供电煤耗的主要指标 1)锅炉效率:锅炉效率是指有效利用热量与燃料带入炉内热量的百分比。 2)空预器漏风率:是指漏入空气预热烟气侧的空气质量流量与进入空气预热器的烟气质量流量比。 3)主汽温度:主汽温度是汽轮机蒸汽状态参数之一,是指汽轮机进口的主蒸汽温度。 4)主汽压力:主汽压力也是汽轮机蒸汽参数状态之一,是指汽轮机进口的主蒸汽压力。 5)再热汽温:再热汽温度是汽轮机蒸汽参数状态之一,是指汽轮机进口的再热蒸汽温度。 6)排烟温度:排烟温度是指锅炉末级受热面(一般指)空气预热器后的烟气温度。对于锅炉末级受热面出口有两个或两个以上烟道,排烟温度应取各烟道烟气温度的算数平均值。 7)飞灰可燃物:是指锅炉飞灰中碳的质量百分比(%)。 8)汽轮机热耗率:是指汽轮机发电机组每发出一千瓦时电量所消耗的热量。以机组定期或修后热力试验数据为准。 9)真空度:是指汽轮机低压缸排气端真空占当地大气压的百分数。 10)凝汽器端差:是指汽轮机低压缸排汽温度与冷却水出口温度之差。 11)高加投入率:是指汽轮机高压加热器运行时间与机组运行时间的比值。 12)给水温度:是指机组高压给水加热器系统出口的温度值(℃)。

13)发电补给水率:是指统计期内汽、水损失水量,锅炉排污量,空冷塔补水量,事故放水(汽)损失量,机、炉启动用水损失量,电厂自用汽(水)量等总计占锅炉实际总蒸发量的比例。 注:以上指标偏离设计值对煤耗的影响见附表 3、综合厂用电率:是指统计期内综合厂用电量与发电量的比值,即: 综合厂用电率=(发电量/综合厂用电量)×100%。综合厂用电量是指统计期内发电量与上网电量的差值,反应有多少电量没有供给电网。 辅机单耗:吸、送风机、制粉系统、给水泵、循环水泵、脱硫等。 4、发电燃油量:是指统计期内用于发电的燃油消耗量。 5、发电综合耗水率:是指发单位发电量所耗用的新鲜水量(不含重复利用水)。在统计耗水量时应扣除非发电耗水量。 6、100MW及以上机组A、B级检修连续运行天数:是指100MW及以上机组经A、B级检修后一次启动成功且连续运行天数,期间任何原因发生停机则中断记录。 7、等效可用系数:等效可用系数是指机组可用小时与等效降出力停运小时的差值与统计期日历小时的比值。 8、机组非计划停运次数:机组非计划停运次数是指机组处于不可用状态且不是计划停运的次数。 二、保证生产指标的措施 1、深入开展能耗诊断,认真落实整改措施,不断提高能耗管理水平。 2、不断深化对标管理,通过运行优化、设备治理、科技创新、节能改造等技术手段,不断提高机组经济运行水平。 3、深化运行优化,加强耗差分析,确定最优经济运行方案,合理调整运行方式; 4、全面推行经济调度,明确各台机组调度顺序,提升机组安全、经济运行水平;

相关文档
最新文档