实验一、太阳辐射、光照强度和日照百分率的测定

实验一、太阳辐射、光照强度和日照百分率的测定
实验一、太阳辐射、光照强度和日照百分率的测定

气象学实验报告

班级:植保检11-1 :舒学号:20116340

实验一、太阳辐射、光照强度和日照时数测定

一、实验目的

1.掌握太阳天空辐射表的使用,正确观测太阳直接辐射辐射、散射辐射、净辐射

2.掌握日照计的使用方法,正确光测光照强度

3.掌握日照时数、日照百分率的计算

二、实验器材

天空辐射表、净辐射表、照度计、紫外线照度计、日照记录纸

三、实验原理

1.辐射表示通过感应部位黑白相间的感应器产生热效应,转化为电动势

2.太阳直接辐射(S′m): 单位时间以平行光形式投射到地表单位水平面积上的太阳辐射能。

3.散射辐射(D):太线经大气散射后,单位时间以散射光形式到达地表单位水平面积上的太阳辐射能(散射辐射)。

4.太阳总辐射(Q= S′m +D) : 太阳直接辐射和散射辐射之和,称为太阳总辐射。

5.地面净辐射(B):单位时间,单位面积地面所吸收的辐射与放出的辐射之差(也称为地面辐射差额)。

四、实验步骤与结果

1.天空辐射表、净辐射表的观测、照度计的观测、紫外照度计的观测

表1 天空辐射、净辐射、散射辐射、光照强度、紫外线光照强度的时间变化情况

(W/m2) 2 3.19 94.5 213.5 233.9 275.8 339.5 204.8

3 1.93 98.9 205.3 243.6 281.3 346.1 209.9 散射辐射

(W/m2)

1 33.

2 99.5 85.

3 96.7 140.3 159.3 176.3

2 33.9 104.6 82.6 98.5 143.9 154.1 170.7

3 32.5 94.

4 87.9 94.9 137.6 165.7 182.

5 光照强度

(lx)

1 4290 34300 49900 54500 64000 62200 34200

2 4550 37800 51600 59300 62800 61700 33900

3 3980 30500 48900 49400 66500 64100 36500 紫外线光

照强度

(uw/m2)

1 25.8 112.

2 271 285 302 344 230

2 28.

3 124.

4 27

5 301 28

6 299 197

3 23 .1 100.9 267 276 33

4 387 259 从表1可以看出,

图1 天空辐射、直接辐射、净辐射和散射辐射的时间变化规律

图2 光照强度的时间变化规律

图3 紫外线强度的时间变化规律

2. 日照时数及光照百分率的计算(以为例)

(1)1993年9月23日的实照时数= 7.6 h 。(2)1993年9月23日的可照时数= 12h

δ = 23.5 sinNo

因1993年9月23日的N=0,所以δ = 23.5 sin0o=0

则这天的可照时数为12h

日照百分率=(7.6/12)×100﹪=63.33﹪

五、讨论

1.天空辐射、直接辐射、散射辐射、净辐射的日变化

由图1可知,天空辐射、直接辐射、净辐射从9点到15点大体上都呈先升高后降低的趋势,且在13点左右达到最大值。由于早上9点太阳未完全升起、大气透明度低等因素,辐射比较弱;随着太阳的升起、大气透明度增加,辐射逐渐增强直至太阳高度角最大时,辐射最强;再随时间推移,辐射减弱。总辐射、直接辐射与太阳高度角呈正相关,而太阳直接辐射越强,散射辐射越弱。

2光照强度和紫外线光照强度的日变化

由图2、3可知,光照强度和紫外线强度随时间的变化,先升高后降低。因为光照强度和紫外线强度也和太阳高度角呈正相关,而太阳高度角在9点到15点是先增加后降低。

3(特定时间)日照时数及日照百分率

秋分日和春风日昼夜平分,各为12小时,通过计算得知1993年9月23日的日照时数和日照百分率。实照时数说明太阳直接辐射的时数多少,日照百分率

说明晴阴状况。所以这天晴朗,天气比较好。

实验二、土壤温度、空气温度及空气湿度的测定

一、实验目的

1.熟悉测定气温和低温的几种仪器的构造和原理

2.掌握气温和土壤温度的观测方法

3.了解测定空气温度仪器的构造原理

4.掌握差算空气湿度的方法

二、实验器材

通风干湿表、百叶箱、地面温度计、最高温度计、最低温度计。

三、实验步骤

1.百叶箱空气温度的观测

2.通风干湿表空气温度的观测

3.地面温度,地面最高温度和最低温度的观测

4.空气相对湿度,水汽压,饱和差,露点温度的查算(湿度查算表)

表1百叶箱空气温度、通风干湿表空气温度、地面温度、地面最高温度和

(℃)

湿球1 2.1 2.8 2.7 4.6 3.4 4.6 4.0

2 2.1 2.7 2.7 4.6 3.4 4.5 4.1

3 2.0 2.8 2.6 4.8 3.3 4.6 4.0

地面温度(℃)1 2.0 9.0 16.0 19.2 21.5 20.5 16.5

2 2.0 9.0 15.9 19.2 21.6 20.5 16.4

3 2.1 9.0 16.0 19.1 21.6 20.5 16.4

地面最高温度(℃)1 18.5 20.0 22.5 26.0 29.6 29.8 30.0

2 18.5 20.1 22.6 26.0 29.7 29.8 29.9

3 18.

4 20.1 22.6 26.0 29.8 29.9 29.9

地面最低温度(℃)1 -1.5 -1.5 -1.5 -1.5 -1.6 -1.6 -1.5

2 -1.5 -1.4 -1.5 -1.6 -1.5 -1.5 -1.5

3 -1.

4 -1.

5 -1.5 -1.5 -1.4 -1.5 -1.5

由表1可知,

图3 地面温度的时间变化规律

图2 干湿球温度的时间变化规律

表3 湿度差算表

四、讨论

1.由图1可知,随时间变化地面温度先升高后降低,在13点左右温度最高;而地面最高温度变化不明显但也随时间升高,最低温度保持不变。温度的变化与太阳辐射有关,辐射越强,温度越高。太阳辐射是地面温度的直接来源。

2.由图2可知,干湿球温度随时间变化而升高,但在11点以后变化不明显,上升速率缓慢。由于空气的水汽未达到饱和,湿球棉花上的水分就不断蒸发,从而带走热量,同时从流经温度计表面的空气吸收热量。当耗散的热量和吸收的热量达到平衡时,温度计就不在变化。空气湿度越小,蒸发越快,湿球温度计下降得越快,与干球温度计的差值越大。

3.由表3可知,空气湿度较大。因为地形是盆地,海拔较低,水域多(冬水田),蒸发较多,所以空气湿度大。(水汽压:空气中由于水汽重力产生的压力称为水汽压。饱和水汽压:空气中水汽含量达到一定程度后达到某一特定值称为饱和水汽压,用E表示。饱和差:一定温度条件下,空气实际水汽压与饱和水汽压的差值叫饱和差。露点温度:在空气中,水汽含量不变气压一定的条件下,当空气降低到水汽达到饱和水汽压时称为露点温度。)

实验三、降水及蒸发的测定

一、实验目的

1.了解蒸发器,雨量器的构造和观测方法

二、实验器材

雨量器,雨量杯,虹吸式雨量计,蒸发器

三、实验原理:

虹吸式雨量计是一种自动记录,适用于长时间将于观测的雨量计。当雨水进入铜质容器后,附表在浮力的作用下随水面上升而升高。随水量的记录纸自动划线记录。当雨量积满后通过虹吸作用吸出雨水再重复集水,直至降雨结束。通过记录纸观测降雨时间及降雨量。

四、实验步骤及结果

1.降雨的观测:0㎜

2.蒸发的观测

蒸发量=原液-剩余量=20㎜-(9.2+9.6)㎜=1.2 ㎜

蒸发量=原液+降雨量-剩余量=20㎜+ 0㎜– 18.8㎜=1.2㎜

3.降雨纸的读解(虹吸式雨量计)

由于条件限制,降雨量只有通过观察以前测好的记录纸进行试验

记录纸观测:20.7㎜

五、讨论

1. 因为冬季气温比较低,光照不强,水的蒸发率较低,进而蒸发量较少。

2. 位于盆地西部边缘,是青藏高原向平原的过渡地带,属于亚热带湿润季风气候区。总的气候特点是:冬无严寒、夏无酷热、四季分明、雨量充沛、雨热同

步、无霜期长、热量充足。春季回暖早、夏季气温较高、秋季多绵雨、冬季霜雪少,全年夜雨多、终年雾日少。

实验四、气压、风速、风向的观测

一、实验目的

1.了解测定气压仪器的构造原理和使用方法

2.了解测定风速风向的仪器构造原理和使用

二、实验器材

杯风速风向仪,空盒式气压表

三、实验步骤

1.风向的界定

2.风速风向的观测

3.空盒式气压表的观测

表1风向、风速和气压的时间变化情况

由表1可知,风向、风速不定,变化无常。

四、讨论

1.当风的来向与风向标成某一交角时,风对风向标产生压力,这个力可以分解成平行和垂直于风向标的两个风力。由于风向标头部受风面积比较小,尾翼受风面积比较大,因而感受的风压不相等,使风向标绕垂直轴旋转,直至风向标头部正好对风的来向。

2.由于是盆地地形,四周的山地起到阻碍的作用,它受到风的影响比较小,风向也不定。冬季副热带西风气流被青藏高高原所阻出现南北分支。省处在高原东侧两支西风的辐合区,低层是北支冷气流,上层是南支暖流。盆地区接地层受北支西风下沉气流控制,风力微弱、天气稳定。在这层厚度不大的冷空气上有南海高压送来的较暖湿空气滑行,使盆地多阴沉天气、日照少。

太阳直接辐射计算

太阳直接辐射计算导则 1 范围 本标准给出了太阳直接辐射计算的基本原则,不同条件下的计算方法和适用范围,以及对计算结果的检验要求。 本标准适用于水平面直接辐射和法向直接辐射的计算。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 33698—2017 太阳能资源测量直接辐射 GB/T 34325—2017 太阳能资源数据准确性评判方法 3 术语和定义 下列术语和定义适用于本文件。 3.1 直接辐射 direct radiation 从日面及其周围一小立体角内发出的辐射。 [GB/T 31163—2014,定义] 注:一般来说,直接辐射是由视场角约为5°的仪器测定的,而日面本身的视场角仅约为°,因此,它包括日面周围的部分散射辐射,即环日辐射。 3.2 法向直接辐射 direct normal radiation 与太阳光线垂直的平面上接收到的直接辐射。 注:从数值上而言,直接辐射与法向直接辐射是相同的;两者的区别在于,直接辐射是从太阳出射的角度而定义,法向直接辐射则是从地表入射的角度而定义。

[GB/T 31163—2014,定义] 3.3 水平面直接辐射 direct horizontal radiation 水平面上接收到的直接辐射。 [GB/T 31163—2014,定义] 3.4 散射辐射 diffuse radiation;scattering radiation 太阳辐射被空气分子、云和空气中的各种微粒分散成无方向性的、但不改变其单色组成的辐射。 [GB/T 31163—2014,定义] 3.5 [水平面]总辐射 global [horizontal] radiation 水平面从上方2π立体角(半球)范围内接收到的直接辐射和散射辐射之和。 注:改写GB/T 31163—2014,定义。 3.6 地外太阳辐射 extraterrestrial solar radiation 地球大气层外的太阳辐射。 [GB/T 31163—2014,定义] 3.7 辐照度 irradiance 物体在单位时间、单位面积上接收到的辐射能。 注:单位为瓦每平方米(W/m2)。 [GB/T 31163—2014,定义] 3.8 辐照量 irradiation 曝辐量 radiance exposure 在给定时间段内辐照度的积分总量。 注1:单位为兆焦每平方米(MJ/m2)或千瓦时每平方米(kWh/m2)。 注2:1 kWh/m2= MJ/m2;1MJ/m2≈ kWh/m2。

光电效应测普朗克常数-实验报告

综合、设计性实验报告 年级 ***** 学号********** 姓名 **** 时间********** 成绩 _________

一、实验题目 光电效应测普朗克常数 二、实验目的 1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律; 2、掌握用光电管进行光电效应研究的方法; 3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。 三、仪器用具 ZKY—GD—3光电效应测试仪、汞灯及电源、滤色片(五个)、光阑(两个)、光电管、测试仪 四、实验原理 1、光电效应与爱因斯坦方程 用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。为了解释光电效应现象,爱因斯坦提出了“光量子”的概念,认为对于频率为的光波,每个光子的能量为 式中,为普朗克常数,它的公认值是= 。 按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。爱因斯坦提出了著名的光电方程: (1)式中, 为入射光的频率,m为电子的质量,v为光电子逸出金属表面的初

速度, 为被光线照射的金属材料的逸出功,2 21mv 为从金属逸出的光电子的最 大初动能。 由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。这个相对于阴极为负值的阳极电位0 U 被称为 光电效应的截止电压。 显然,有 (2) 代入(1)式,即有 (3) 由上式可知,若光电子能量W h <γ,则不能产生光电子。产生光电效应的最 低频率是h W = 0γ,通常称为光电效应的截止频率。不同材料有不同的逸出功, 因而 0γ也不同。由于光的强弱决定于光量子的数量,所以光电流与入射光的强 度成正比。又因为一个电子只能吸收一个光子的能量,所以光电子获得的能量与光强无关,只与光子γ的频率成正比,,将(3)式改写为 (4) 上式表明,截止电压 U 是入射光频率γ的线性函数,如图2,当入射光的频 率 γγ=时,截止电压 0=U ,没有光电子逸出。图中的直线的斜率 e h k = 是一 个正的常数: (5)

各大城市峰值日照时数资料

各大城市峰值日照时数资料 城市斜面日均辐射量(kJ/m2)峰值日照时数(h)计算公式(峰值日照时数) 哈尔滨15838 4.3997964 长春17127 4.7578806 沈阳16563 4.6012014 北京18035 5.010123 一、(斜面日均辐射量×2.778)/10000千焦/米2 = 斜面日均辐射量/ m2/3600s÷1000W/ m2 (h) 天津16722 4.6453716 呼和浩特20075 5.576835 太原17394 4.8320532 乌鲁木齐16594 4.6098132 二、(年总辐射量×0.0116)/365 千卡/厘米2 西宁19617 5.4496026 兰州15842 4.4009076 0.0116是单位转换系数银川19615 5.449047 西安12952 3.5980656 上海13691 3.80335981卡=4.18焦kal=4.18J 南京14207 3.94670461J=1W·S W= J/S 合肥13299 3.6944622 杭州12372 3.4369416 南昌13714 3.8097492注:此表是按公式一计算的福州12451 3.4588878 济南15994 4.4431332 郑州14558 4.0442124 武汉13707 3.8078046 长沙11589 3.2194242 广州12702 3.5286156 海口13510 3.753078 南宁12734 3.5375052 成都10304 2.8624512 贵阳10235 2.843283 昆明15333 4.2595074 拉萨24151 6.7091478 最简单、最有效、最准确的方法就是到美国NASA(航空航天局)的网站上查询数据,其中的一项就是每天每平方米的日辐射量:kwh/平米/天。 由于折算成了标准日照时间,也就是在标准日辐射强度下的日照时间,而国际电工委员会定义标准日辐射强度为1000w/平米;所以某地的日标准辐射量就相当于1000w的辐照照射了几个小时,而此小时数就是我们所说的标准日照时

光电效应测普朗克常数-实验报告要点

光电效应测普朗克常数-实验报告要点

综合、设计性实验报告 年级***** 学号********** 姓名**** 时间********** 成绩_________

一、实验题目 光电效应测普朗克常数 二、实验目的 1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律; 2、掌握用光电管进行光电效应研究的方法; 3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。 三、仪器用具 ZKY—GD—3光电效应测试仪、汞灯及电源、滤色片(五个)、光阑(两个)、光电管、测试仪 四、实验原理 1、光电效应与爱因斯坦方程 用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。为了解释光电效应现象, 爱因斯坦提出了“光量子”的概念,认为对于频率为的光波,每个光子的能 量为 式中,为普朗克常数,它的公认值是=6.626 。 按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。爱因斯坦提出了著名的光电方程: (1) 式中, 为入射光的频率,m为电子的质量,v为光电子逸出金属表面的初 速度,为被光线照射的金属材料的逸出功, 2 2 1 mv 为从金属逸出的光电子的

最大初动能。 由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。这个相对于阴极为负值的阳极电位0 U 被称为光电效应的截止电压。 显然,有 (2) 代入(1)式,即有 (3) 由上式可知,若光电子能量W h <γ,则不能产生光电子。产生光电效应的最 低频率是h W = 0γ,通常称为光电效应的截止频率。不同材料有不同的逸出功, 因而 0γ也不同。由于光的强弱决定于光量子的数量,所以光电流与入射光的强 度成正比。又因为一个电子只能吸收一个光子的能量,所以光电子获得的能量与光强无关,只与光子γ的频率成正比,,将(3)式改写为 (4) 上式表明,截止电压 U 是入射光频率γ的线性函数,如图2,当入射光的频 率 0γγ=时,截止电压00=U ,没有光电子逸出。图中的直线的斜率 e h k = 是一 个正的常数: (5) 由此可见,只要用实验方法作出不同频率下的 γ -0U 曲线,并求出此曲线的 斜率,就可以通过式(5)求出普朗克常数h 。其中 是电子的电 量。

全国各地太阳能总辐射量与年平均日照当量

全国各地太阳能总辐射量与年平均日照当量 地区类别地区 太阳能年辐射量 年日照时数 标准光照下 年平均日照 时间(时)MJ/m2·年 kWh/m2· 年 一宁夏北部、甘肃北部、 新疆南部、青海西部、 西藏西部 6680-84 00 1855-233 3 3200-3300 二河北西北部、山西北 部、内蒙古南部、宁 夏南部、甘肃中部、 青海东部、西藏东南 部、新疆南部 5852-66 80 1625-185 5 3000-3200 三山东、河南、河北 东南部、山西南部、 新疆北部、吉林、辽 宁、云南、陕西北部、 甘肃东南部、广东南 部、福建南部、江苏 北部、安徽北部、台 湾西南部 5016-58 52 1393-162 5 2200-3000

四湖南、湖北、广西、 江西、浙江、福建北 部、广东北部、陕西 南部、江苏南部、安 徽南部、黑龙江、台 湾东北部 4190-50 16 1163-139 3 1400-2200 五四川、贵州 3344-41 90 928-1163 1000-1400 附录B 江苏省部分地区的?、δ、ω、αs、γs值 城市名地理纬度 ?(o) 太阳赤纬 δ(o) 太阳时角 ω(o) 太阳高度 角 αs(o) 太阳方位 角 γs(o) 南京市南京0 0 江宁0 0 六合0 0 江浦0 0 溧水0 0 高淳0 0 苏州市 苏州0 0 张家港0 0 常熟0 0 太仓0 0 昆山0 0 吴县0 0 吴江0 0 无锡市无锡0 0 江阴0 0 宜兴0 0 常州市常州0 0 武进0 0 金坛0 0 溧阳0 0 镇镇江0 0

江市丹徒0 0 扬中0 0 丹阳32 0 0 句容0 0 扬州市扬州0 0 江都0 0 刑江0 0 仪征0 0 高邮0 0 宝应0 0 泰州市泰州0 0 晋江0 0 泰兴0 0 姜堰0 0 兴 化 0 0 南通市南通0 0 通州0 0 启东0 0 海门0 0 海安0 34 0 如皋0 0 如东0 0 徐州市徐州0 0 奉县0 0 沛县0 0 赣榆0 0 东海0 0 新沂0 0 邳县0 0 睢宁0 0 铜山0 0 淮安市淮安0 0 楚州0 0 洪泽0 0 盱眙33 0 0 涟水0 0 金湖0 0 盐城市盐城0 0 滨海0 0 阜宁0 0

黑体辐射实验

黑体辐射实验 任何物体都有辐射和吸收电磁波的本领。物体所辐射电磁波的强度按波长的分布与温度有关,称为热辐射。处于热平衡状态物体的热辐射光谱为连续谱。一切温度高于0K 的物体都能产生热辐射。黑体是一种完全的温度辐射体,能吸收投入到其面上的所有热辐射能,黑体的辐射能力仅与温度有关。任何普通物体所发射的辐射通量都小于同温度下的黑体发射的辐射通量;其辐射能力不仅与温度有关,还与表面的材料的性质有关。所有黑体在相同温度下的热辐射都有相同的光谱,这种热辐射特性称为黑体辐射。黑体辐射的研究对天文学、红外线探测等有着重要的意义。黑体是一种理想模型,现实生活中是不存在的,但却可以人工制造出近似的人工黑体。辐射能力小于黑体,但辐射的光谱分布与黑体相同的温度辐射体称为灰体。 [实验目的] 1.理解黑体辐射的概念。 2.验证普朗克辐射定律。 3.验证斯特藩一玻耳兹曼定律。 4.验证维恩位移定律。 5. 学会测量一般发光光源的辐射能量曲线。 [实验原理] 1.黑体辐射的光谱分布—普朗克辐射定律 德国物理学家普朗克1900年为了克服经典物理学对黑体辐射现象解释上的困难,推导出一个与实验结果相符合的黑体辐射公式,他创立了物质辐射(或吸收)的能量只能是某一最小能量单位(能量量子)的整数倍的假说,即量子假说,对量子论的发展有重大影响。他利用内插法将适用于短波的维恩公式和适用于长波的瑞利—金斯公式衔接,提出了关于黑体辐射度的新的公式—普朗克辐射定律,解决了“紫外灾难”的问题。在一定温度下,单位面积的黑体在单位时间、单位立体角内和单位波长间隔内辐射出的能量定义为单色辐射度,普朗克黑体辐射定律为: 式中:第一辐射常数) (1074.3221621m W hc C ??==-π第二辐射常数)(104398.122K m k hc C ??== -其中,h 为普朗克常数,c 为光速,k 为玻耳兹曼常数。 黑体光谱辐射亮度由下式给出: 图1-1给出了T L λ随波长变化的图形。每一条曲线上都标出黑体的绝对温度。与诸曲线的最大值相交的对角直线表示维恩位移定律。

太阳直接辐射计算

太阳直接辐射计算导则 1范围 本标准给出了太阳直接辐射计算的基本原则,不同条件下的计算方法和适用范围,以及对计算结果的检验要求。 本标准适用于水平面直接辐射和法向直接辐射的计算。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。 凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 33698 —2017 太阳能资源测量直接辐射 GB/T 34325 —2017 太阳能资源数据准确性评判方法 3术语和定义 下列术语和定义适用于本文件。 3.1 直接辐射direct radiati on 从日面及其周围一小立体角内发出的辐射。 [GB/T 31163 —2014,定义5.11] 注:一般来说,直接辐射是由视场角约为5。的仪器测定的,而日面本身的视场角仅约为0.5 °,因此,它包括日面周围的部分散射辐射,即环日辐射。 3.2 法向直接辐射direct no rmal radiati on 与太阳光线垂直的平面上接收到的直接辐射。 注:从数值上而言,直接辐射与法向直接辐射是相同的;两者的区别在于,直接辐射是从太阳岀射的角度而定义,法向直接辐射则是从地表入射的角度而定义。 [GB/T 31163 —2014,定义5.12] 3.3 水平面直接辐射direct horizo ntal radiation 水平面上接收到的直接辐射。 [GB/T 31163 —2014,定义5.13] 3.4 散射辐射diffuse radiati on ;scatteri ng radiati on

太阳辐射被空气分子、云和空气中的各种微粒分散成无方向性的、但不改变其单色组成的辐射。 [GB/T 31163 —2014,定义5.14] 3.5 [ 水平面] 总辐射global [horizontal] radiation 水平面从上方2 n立体角(半球)范围内接收到的直接辐射和散射辐射之和。注:改写GB/T 31163 —2014,定义 5.15 。 3.6 地外太阳辐射extraterrestrial solar radiation 地球大气层外的太阳辐射。 [GB/T 31163 —2014,定义5.3] 3.7 辐照度irradiance 物体在单位时间、单位面积上接收到的辐射能。注:单位为瓦每平方米(W/m2)。 [GB/T 31163 —2014,定义6.3] 3.8 辐照量irradiation 曝辐量radiance exposure 在给定时间段内辐照度的积分总量。注1:单位为兆焦每平方米(MJ/m2)或千瓦时每平方米(kWh/m2)。 注2: 1 kWh/m2=3.6 MJ/m 2; 1MJ/ni ?0.28 kWh/m2。注3:改写GB/T 31163—2014,定义 6.5 。 3.9 法向直接辐照度direct normal irradiance 与太阳光线垂直的平面上单位时间、单位面积上接收到的直接辐射能。注:单位为瓦每平方米(W/m2)。 3.10 法向直接辐照量direct normal irradiation 在给定时间段内法向直接辐照度的积分总量。 注:单位为兆焦每平方米(Mj/m)或千瓦时每平方米(kwh/m)。 3.11 水平面直接辐照度direct horizontal irradiance 水平面上单位时间、单位面积上接收到的直接辐射能。 注:单位为瓦每平方米(W/m2)。 3.12 水平面直接辐照量direct horizontal irradiation 在给定时间段内水平面直接辐照度的积分总量。

光电效应实验报告书

光电效应测普朗克常量 姓名:梁智健 学院:材料成型及控制工程166班 学号:5901216163 台号:22 时间:2017-10-16 实验教室:309 【实验目的】 1、验证爱因斯坦光电效应方程,并测定普朗克常量h。 2、了解光电效应规律,加深对光的量子性的理解。 3、学会用作图法处理数据。 4、研究光电管的伏安特性及光电特性。 【实验仪器】 1.光电效应测定仪 2.光电管暗箱 3.汞灯灯箱以及汞灯电源箱。 【实验原理】 1、当光照射在物体上时,光的能量只有部分以热的形式被 物体所吸收,而另一部分则转换 为物体中某些电子的能量,使这 些电子逸出物体表面,这种现象 称为光电效应。在光电效应这一 现象中,光显示出它的粒子性, 所以深入观察光电效应现象,对 认识光的本性具有极其重要的意 义。普朗克常数h是1900年普朗克 为了解决黑体辐射能量分布时提 出的“能量子”假设中的一个普

适常数,是基本作用量子,也是粗略地判断一个物理体系是否需要用量子力学来描述的依据。 1905年爱因斯坦为了解释光电效应现象,提出了“光量子”假设,即频率为v 的光子其能量为h v ?。当电子吸收了光子能量h v ?之后,一部分消耗与电子的逸出功W ,另一部分转换为电子的动能212 m v ?,即爱因斯坦光电效应方程 212m hv mv W =+(1) 2、光电效应的实验示意图如图1所示,图中GD 是光电管, K 是光电管阴极,A 为光电管阳 极,G 为微电流计,V 为电压表, E 为电源,R 为滑线变阻器,调 节R 可以得到实验所需要的加 速电位差AK U 。不同的电压AK U ,回路中有不同的电流I 与之对 应,则可以描绘出如图2所示的 AK U -I 伏安特性曲线。 (1)饱和电流的强度与光强成 正比 加速电压AK U 越大,电流I 越大,当AK U 增加到一定值后,电流达到最大值H I ,H I 称为饱和电流,而且H I 的大小只与光强成正比。 (2)遏制电压的大小与照射光的频率成正比 如图3所示,电源E 反向连接,即当加速电压AK U 变为负值时,电流I 会迅速较少,当加速电压AK U 负到一定值Ua 时,电流0I =,这个电压Ua 叫做遏制电压,4所示。 212 a mv e U =?(2)

黑体辐射实验

实验十 黑体辐射实验 实验者:头铁的小甘 引言: 任何物体,只要温度大于绝对零度,就会向周围发生辐射,这称为温度辐射。 黑体是指能够完全吸收所有外来辐射的物体,处于热平衡时,黑体吸收的能量等 于辐射的能量,由于黑体具有最大的吸收本领,因而黑体也就具有最大的辐射本 领。这种辐射是一种温度辐射,辐射的光谱分布只与辐射体的温度有关,而与辐 射方向及周围环境无关。 6000o K 5000o K 4000o K 3000o K 图 1 黑体辐射能量分布曲线 黑体辐射 p lanck 公式 十九世纪末,很多著名的科学家包括诺贝尔奖获得者,对黑体辐射进行了 大量实验研究和理论分析,实验测出黑体的辐射能量在不同温度下与辐射波长的 关系曲线如图 1 所示,对于此分布曲线的理论分析,历上曾引起了一场巨大的风 波,从而导致物理世界图像的根本变革。维恩试图用热力学的理论并加上一些特 定的假设得出一个分布公式-维恩公式。这个分布公式在短波部分与实验结果符 合较好,而长波部分偏离较大。瑞利和金斯利用经典电动力学和统计物理学也得 出了一个分布公式,他们得出的公式在长波部分与实验结果符合较好,而在短波 部分则完全不符。如图 2。因此经典理论遭到了严重失败,物理学历史上出现了 一个变革的转折点。 实验原理: Planck 提出:电磁辐射的能量只能是量子化的。他认为以频率ν做谐振动 的振子其能量只能取某些分立值,在这些分立值决定的状态中,对应的能量应该 是某一最小能量的 h ν整数倍,即 E=nh ν,n=1,2,3,…,h 即是普朗克常数。在 此能量量子化的假定下,他推导出了著名的普朗克公式 )() 1(35 1 2--= Wm e C E T C T λλλ

实验一、太阳辐射、光照强度和日照百分率的测定1

气象学实验报告 班级:植保检11-1 姓名:李舒学号:20116340 实验一、太阳辐射、光照强度和日照时数测定 一、实验目的 1.掌握太阳天空辐射表的使用,正确观测太阳直接辐射辐射、散射辐射、净辐射 2.掌握日照计的使用方法,正确光测光照强度 3.掌握日照时数、日照百分率的计算 二、实验器材 天空辐射表、净辐射表、照度计、紫外线照度计、日照记录纸 三、实验原理 1.辐射表示通过感应部位黑白相间的感应器产生热效应,转化为电动势 ): 单位时间内以平行光形式投射到地表单位水平面积上的2.太阳直接辐射(S′ m 太阳辐射能。 3.散射辐射(D):太阳光线经大气散射后,单位时间内以散射光形式到达地表单位水平面积上的太阳辐射能(散射辐射)。 +D) : 太阳直接辐射和散射辐射之和,称为太阳总辐射。 4.太阳总辐射(Q= S′ m 5.地面净辐射(B):单位时间内,单位面积地面所吸收的辐射与放出的辐射之差(也称为地 面辐射差额)。 四、实验步骤与结果 1.天空辐射表、净辐射表的观测、照度计的观测、紫外照度计的观测

从表1可以看出, 图1 天空辐射、直接辐射、净辐射和散射辐射的时间变化规律 图2 光照强度的时间变化规律 图3 紫外线强度的时间变化规律

2. 日照时数及光照百分率的计算(以雅安为例) (1)1993年9月23日的实照时数= 7.6 h 。 (2)1993年9月23日的可照时数= 12h δ = 23.5 sinNo 因1993年9月23日的N=0,所以δ = 23.5 sin0o=0 则这天的可照时数为12h 日照百分率=(7.6/12)×100﹪=63.33﹪ 五、讨论 1.天空辐射、直接辐射、散射辐射、净辐射的日变化 由图1可知,天空辐射、直接辐射、净辐射从9点到15点大体上都呈先升高后降低的趋势,且在13点左右达到最大值。由于早上9点太阳未完全升起、大气透明度低等因素,辐射比较弱;随着太阳的升起、大气透明度增加,辐射逐渐增强直至太阳高度角最大时,辐射最强;再随时间推移,辐射减弱。总辐射、直接辐射与太阳高度角呈正相关,而太阳直接辐射越强,散射辐射越弱。 2光照强度和紫外线光照强度的日变化 由图2、3可知,光照强度和紫外线强度随时间的变化,先升高后降低。因为光照强度和紫外线强度也和太阳高度角呈正相关,而太阳高度角在9点到15点是先增加后降低。 3(特定时间)日照时数及日照百分率 秋分日和春风日昼夜平分,各为12小时,通过计算得知1993年9月23日雅安的日照时数和日照百分率。实照时数说明太阳直接辐射的时数多少,日照百分率说明晴阴状况。所以这天雅安晴朗,天气比较好。 实验二、土壤温度、空气温度及空气湿度的测定 一、实验目的 1.熟悉测定气温和低温的几种仪器的构造和原理 2.掌握气温和土壤温度的观测方法 3.了解测定空气温度仪器的构造原理 4.掌握差算空气湿度的方法 二、实验器材 通风干湿表、百叶箱、地面温度计、最高温度计、最低温度计。 三、实验步骤 1.百叶箱空气温度的观测

大学物理实验报告

实验五、光电效应测普朗克常量 普朗克常量是量子力学当中的一个基本常量,它首先由普朗克在研究黑体辐射问题时提 出,其值约为s J h ??=-34 10626069 .6,它可以用光电效应法简单而又较准确地求出。 光电效应是这样一种实验现象,当光照射到金属上时,可能激发出金属中的电子。激发方式主要表现为以下几个特点:1、光电流与光强成正比2、光电效应存在一个阈值频率(或称截止频率),当入射光的频率低于某一阈值频率时,不论光的强度如何,都没有光电子产生3、光电子的动能与光强无关,与入射光的频率成正比4、光电效应是瞬时效应,一经光线照射,立刻产生光电子(延迟时间不超过9 10-秒),停止光照,即无光电子产生。传统的电磁理论无法对这些现象对做出解释。 1905年,爱因斯坦借鉴了普朗克在黑体辐射研究中提出的辐射能量不连续观点,并应用于光辐射,提出了“光量子”概念,建立了光电效应的爱因斯坦方程,从而成功地解释了光电效应的各项基本规律,使人们对光的本性认识有了一个飞跃。1916年密立根用实验验证了爱因斯坦的上述理论,并精确测量了普朗克常数,证实了爱因斯坦方程。因光电效应等方面的杰出贡献,爱因斯坦与密立根分别于1921年和1923年获得了诺贝尔奖。 实验目的 1、 通过实验理解爱因斯坦的光电子理论,了解光电效应的基本规律; 2、 掌握用光电管进行光电效应研究的方法; 3、 学习对光电管伏安特性曲线的处理方法、并以测定普朗克常数。 实验仪器 GD-3型光电效应实验仪(GD Ⅳ型光电效应实验仪)

图1 光电效应实验仪 实验原理 1、 光电效应理论:爱因斯坦认为光在传播时其能量是量子化的,其能量的量子称为光子,每个 光子的能量正比于其频率,比例系数为普朗克常量,在与金属中的电子相互作用时,只表现为单个光子: h εν= (1) 2 12 h mv W ν= + (2) 上式称为光电效应的爱因斯坦方程,其中的W 为金属对逃逸电子的束缚作用所作的功,对特定种类的金属来说,是常数。 2、实验原理示意图 图2 图3

黑体辐射实验

黑体测量实验 【实验目的】1、理解和掌握黑体辐射的基本规律,加深对能量量子性的理解; 2、验证斯忒藩—波尔兹曼定律; 3、验证维恩—位移定律。【实验仪器】 WGH-10型黑体实验装置 【实验原理】 1、黑体辐射 任何物体,只要其温度在绝对零度以上,就向周围发射辐射,这称为温度辐射。黑体是一种完全的温度辐射体,即任何非黑体所发射的辐射通量都小于同温度下的黑体发射的辐射通量;并且非黑体的辐射能力不仅与温度有关,而且与表面的材料性质有关。而黑体的辐射能力则仅与温度有关。黑体的辐射亮度在各个方向都相同,即黑体是一个完全的余弦辐射体。 辐射能力小于黑体,但辐射的光谱分布与黑体相同的温度辐射体称为灰体。 2、黑体辐射定律 (1)黑体辐射的光谱分布—普朗克辐射定律 黑体的光谱辐射出射度为:???? ?? -=1251 T C T e C M λλλ 式中:第一辐射常数:2161m w 1074.3??=-C 第二辐射常数:K w 104396.122??=-C (2)黑体的全辐射出射度—忒藩—波尔兹曼定律 黑体的全辐射出射度为: 40 T d M M T b δλλ?∞ == T 为黑体的绝对温度,δ为 忒藩—波尔兹曼常数, () 428234 5K m w/10670.5152??==-c h k πδ

k 为波尔兹曼常数,h 为普朗克常数,c 为光速。 (3)维恩—位移定律 光谱亮度的最大值的波长λmax 与它的绝对温度T 成反比, T b =m a x λ b 为常数,K m 10896.23??=-b 【实验步骤】 1、将WGH-10型黑体实验装置电源的电压凋节旋钮凋节至最小值,然后打开电源和接收器的电源,过1~2分钟后,可以打开桌面上WGH-10型黑体实验系统的软件。 2、根据溴钨灯工作电流--色温对应表,凋节光源的驱动电流(不能超过 2.5A !)。 3、实验中要测量两个温度下的黑体 辐射曲线。学生可任意测两个温度(不 要高过2940K ,即不能使光源的驱动电 流超过2.5A )下的黑体辐射曲线。过高 的温度,对溴钨灯的工作寿命有很大的 影响,建议测量在2.5A 以下进行。 4、以驱动电流为2.5A ,对应溴钨灯(近 似为黑体)的色温为2940K 为例。先测 量一组仪器的基线,参数设置如图所示

年辐射量与日平均峰值日照时数的关系公式

年辐射量与日平均峰值日照时数的关系公式 1、若辐射量单位为cal/cm2 峰值日照小时数=辐射量*0.0116(换算系数) 备注:0.0116为将辐射量(cal/cm2)换算成峰值日照时数的换算系数。 推导过程: 峰值日照定义:1000W/ m2=0.1 W/ cm2, 1cal=4.1868J=4.1868W*s,1h=3600s 则:4.1868W*s/(3600s/h*0.1 W/ cm2)=0.0116h* cm2/cal (1)年平均峰值日照时数=年辐射量(cal/cm2)*0.0116 (2)每日的峰值日照时数=年平均峰值日照时数/365 (3)每日的峰值日照时数=年辐射量(cal/cm2)*0.0116/365=年辐射量(kcal/cm2)*0.032 例如:假定某地水平面辐射量为135 kcal/cm2,方阵面上的辐射量为148.5 kcal/cm2,则年峰值日照小时数为148500*0.0116=1722.6h,每日的峰值日照时数为1722.6/365=4.7小时。 2、若辐射量单位为MJ/ m2 峰值日照小时数=辐射量(MJ/ m2)/3.6(换算系数) 例如:假定某地方年水平面辐射量为5643 MJ/ m2,方阵上的辐射量为6207 MJ/ m2,则年峰值日照小时数6207/3.6=1724h;每日的峰值日照时数为1724/365=4.7h。 年峰值日照时数=年平均辐射量(MJ/ m2)/3.6(换算系数) 每日的峰值日照时数=年平均辐射量(MJ/ m2)/(3.6*365)=年平均辐射量(MJ/ m2)/1314=0.000076年平均辐射量(MJ/ m2)

ht黑体辐射出射度曲线绘制实验报告..

黑体辐射出射度曲线绘制 实验报告 姓名: 学号: 班级:

黑体辐射出射度曲线绘制 一、 实验目的: 学习和巩固黑体辐射定律,验证普朗克辐射定律、斯蒂芬—玻尔兹曼定律、维恩位移定律;了解单色仪的工作原理及基本结构。 二、 实验内容: 按照实验指导书的要求和步骤操作仿真黑体实验的装置,验证黑体相关定律。 三、 实验设备: WHS-型黑体实验装置,计算机,打印机等。 四、 实验原理: 黑体是一个能完全吸收并向外完全辐射入射在它上面的辐射能的理想物体。黑体的光谱辐射量和温度之间存在精确的定量关系,确定了黑体的温度,就可以确定其他的辐射量,因此黑体辐射定律在辐射度学中起了基准作用,占据十分重要的地位。 自然界中不存在绝对黑体,用人工的的方法可以制成尽可能接近绝对黑体的辐射源。钨的熔点约为3695K ,充气钨灯丝的光谱辐射分布和黑体十分相近,因此可以用来仿真黑体。CIE 规定分布温度2856K 的充气钨丝灯作为标准A 光源,以此实现绝对温度为2856K 的完全辐射题的辐射,即标准照明体A 。本次试验所用的WHS-1黑体实验装置就是以溴钨灯模拟黑体的辐射源,通过改变灯丝的电流来模拟改变黑体的色温。 描述黑体辐射定律的普朗克公式以波长表示的形式为: 1)exp(1),(2510-=T c c T M λλλ (1) 其中第一辐射常数21621m W 107418.32??==-hc c π;第二辐射常数K m 104388.122??==-k hc c ,k 为玻尔兹曼常数,c 为光速。 由于黑体是朗伯辐射体,因此可以得到黑体的光谱辐亮度表示式如下: 1)e x p (1 ),(2510-=T c c T L λπλλ (2)

实验七 黑体辐射

实验七 黑体辐射 Black-body Radiation 任何物体,只要其温度在绝对零度以上,就向周围发射辐射,这称为温度辐射;只要其温度在绝对零度以上,也要从外界吸收辐射的能量。处在不同温度和环境下的物体,都以电磁辐射形式发出能量,而黑体是一种完全的温度辐射体,即任何非黑体所发射的辐射通量都小于同温度下的黑体发射的辐射通量;并且,非黑体的辐射能力不仅与温度有关,而且与表面的材料的性质有关,而黑体的辐射能力则仅与温度有关。在黑体辐射中,存在各种波长的电磁波,其能量按波长的分布与黑体的温度有关。 实验目的(experimental purpose) 1.了解黑体实验的发展历史,明确光谱辐射曲线的广泛应用; 2.了解黑体实验仪器组件,明确测量过程与分析要素; 3.明确黑体实验设计思想,掌握黑体辐射原理与定律。 实验原理(experimental principle) 任何物体都具有不断辐射、吸收、发射电磁波的本领。辐射出去的电磁波在各个波段是不同的,也就是具有一定的谱分布。这种谱分布与物体本身的特性及其温度有关,因而被称之为热辐射。为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体——黑体(black body),以此作为热辐射研究的标准物体。 所谓黑体是指入射的电磁波全部被吸收,既没有反射,也没有 透射( 当然黑体仍然要向外辐射)。显然自然界不存在真正的黑体, 但许多地物是较好的黑体近似( 在某些波段上)。 黑体不仅仅能全部吸收外来的电磁辐射,且发射电磁辐 射的 能力比同温度下的任何其它物体强。 黑体辐射指黑体发出的电磁辐射。黑体辐射能量按波长的分布仅与温度有关。对于黑体的研究,使得自然现象中的量子效应被发现。

太阳直接辐射计算

太阳直接辐射计算导则 1 围 本标准给出了太阳直接辐射计算的基本原则,不同条件下的计算方法和适用围,以及对计算结果的检验要求。 本标准适用于水平面直接辐射和法向直接辐射的计算。 2 规性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 33698—2017 太阳能资源测量直接辐射 GB/T 34325—2017 太阳能资源数据准确性评判方法 3 术语和定义 下列术语和定义适用于本文件。 3.1 直接辐射 direct radiation 从日面及其周围一小立体角发出的辐射。 [GB/T 31163—2014,定义5.11] 注:一般来说,直接辐射是由视场角约为5°的仪器测定的,而日面本身的视场角仅约为0.5°,因此,它包括日面周围的部分散射辐射,即环日辐射。 3.2 法向直接辐射direct normal radiation 与太线垂直的平面上接收到的直接辐射。 注:从数值上而言,直接辐射与法向直接辐射是相同的;两者的区别在于,直接辐射是从太阳出射的角度而定义,法向直接辐射则是从地表入射的角度而定义。 [GB/T 31163—2014,定义5.12] 3.3 水平面直接辐射direct horizontal radiation 水平面上接收到的直接辐射。 [GB/T 31163—2014,定义5.13] 3.4 散射辐射diffuse radiation;scattering radiation 太阳辐射被空气分子、云和空气中的各种微粒分散成无方向性的、但不改变其单色组成的辐射。 [GB/T 31163—2014,定义5.14] 3.5 [水平面]总辐射global [horizontal] radiation

04111202 黑体辐射出射度曲线绘制实验报告

黑体辐射出射度曲线绘制 一、目的:学习和巩固黑体辐射定律,验证普朗克辐射定律、斯蒂芬-玻尔兹曼等定律;了解单色仪的工作原理及基本结构。 二、内容:按照实验指导书的要求和步骤操作仿真黑体实验装置,验证黑体相关定律。 三、设备:WHS-型黑体实验装置,计算机,打印机等。四、 原理: 黑体是一个能完全吸收并向外完全辐射入射在它上面的辐射能的理想物体。 黑体的光谱辐射量和温度之间存在精确的定量关系,确定了黑体的温度,就可以确定其他的辐射量,因此黑体辐射定律在辐射度学中起了基准的作用,占据十分重要的地位。 自然界不存在绝对黑体,用人工的方法可以制成尽可能接近绝对黑体的辐射源。钨的熔点约为3695K ,充气钨丝灯的光谱辐射分布和黑体十分接近,因此可以用来仿真黑体。CIE 规定分布温度2856K 的充气钨丝灯作为标准A 光源,以此实现绝对温度为2856K 的完全辐射体的辐射,即标准照明体A 。本次实验所用的WHS-1黑体实验装置就是以溴钨灯模拟黑体的辐射源,通过改变灯丝的电流来模拟改变黑体的色温。 描述黑体辐射定律的普朗克公式以波长表示的形式为: (1) M 0(λ,T)= c 1 λ51 exp (c 2λT )?1式(1)中,第一辐射常数;第二辐射常数c 1=2π?c 2=3.7418?10?16W ?m 2 ;;为光速。 c 2=?c k =1.4388?10?2 m ?K k 为玻尔兹曼常数c 由于黑体是朗伯辐射体,因此可以得到黑体的光谱辐亮度表示式如下: (2) L 0(λ,T)= c 1 πλ51 exp (c 2λT )?1斯蒂芬-玻尔兹曼定律描述的是黑体的辐射出射度与温度之间的关系: (3) M 0(T )=σT 4 (W m 2)式(3)中, 称为斯蒂芬-玻尔兹曼常σ=c 1π415c 42=5.6696?10?8(W ?m 2?K ?4 )数。 黑体光谱辐射是单峰函数,其峰值波长满足维恩位移定律: (4) λm T =b (μm ?K)式(4)中,常数。 b = c 24.9651=2898 μm ?K 保护层查所有复杂设况进行自

黑体辐射定律.

基尔霍夫热辐射定律 基尔霍夫热辐射定律(Kirchhoff热辐射定律),德国物理学家古斯塔夫·基尔霍夫于1859年提出的传热学定律,它用于描述物体的发射率与吸收比之间的关系。 简介一般研究辐射时采用的黑体模型由于其吸收比等于1(α=1),而实际物体的吸收比则小于1(1>α>0)。基尔霍夫热辐射定律则给出了实际物体的辐射出射度与吸收比之间的关系。 ?M为实际物体的辐射出射度,M b为相同温度下黑体的辐射出射度。 而发射率ε的定义即为 所以有ε=α。 所以,在热平衡条件下,物体对热辐射的吸收比恒等于同温度下的发射率。 而对于漫灰体,无论是否处在热平衡下,物体对热辐射的吸收比都恒等于同温度下的发射率。 不同层次的表达式 对于定向的光谱,其基尔霍夫热辐射定律表达式为 对于半球空间的光谱,其基尔霍夫热辐射定律表达式为 对于全波段的半球空间,其基尔霍夫热辐射定律表达式为 ?θ为纬度角,φ为经度角,λ为光谱的波长,T为温度。

参考文献 ?杨世铭,陶文铨。《传热学》。北京:高等教育出版社,2006年:356-379。 ?王以铭。《量和单位规范用法辞典》。上海:上海辞书出版社 普朗克黑体辐射定律 普朗克定律描述的黑体辐射在不同温度下的频谱 物理学中,普朗克黑体辐射定律(也简称作普朗克定律或黑体辐射定律)(英文:Planck's law, Blackbody radiation law)是用于描述在任意温度T下,从一个黑体中发射的电磁辐射的辐射率与电磁辐射的频率的关系公式。这里辐射率是频率 的函数[1]: 这个函数在hv=2.82kT时达到峰值[2]。 如果写成波长的函数,在单位立体角内的辐射率为[3]

太阳辐射波长

太阳辐射 一、太阳辐射光谱和太阳常数 太阳辐射光谱 太阳辐射中辐射能按波长的分布,称为太阳辐射光谱,见图2.4。从图中可看出,大气上界太阳光谱能量分布曲线,与用普朗克黑体辐射公式计算出的6000K的黑体光谱能量分布曲线非常相似。因此可以把太阳辐射看作黑体辐射。太阳是一个炽热的气体球,其表面温度约为6000K,内部温度更高。根据维恩位移定律可以计算出太阳辐射峰值的波长λmax为0.475μm,这个波长在可见光的青光部分。太阳辐射主要集中在可见光部分(0.4~0.76μm),波长大于可见光的红外线(>0.76μm)和小于可见光的紫外线(<0.4μm)的部分少。在全部辐射能中,波长在0.15~4μm之间的占99%以上,且主要分布在可见光区和红外区,前者占太阳辐射总能量的约50%,后者占约43%,紫外区的太阳辐射能很少,只占总量的约7%。 太阳常数 太阳辐射通过星际空间到达地球表面。当日地距离为平均值,在被照亮的半个地球的大气上界,垂直于太阳光线,每秒每平方米的面积上,获得的太阳辐射能量称为太阳常数,用Rsc (Solar constant)表示,单位为(W/m2)。太阳常数是一个非常重要的常数,一切有关研究太阳辐射的问题,都要以它为参数。关于太阳常数的研究已有很长历史了,早在20世纪初,人们就已经通过各种观测手段估计它的取值,认为大约应在1350~1400W/m2之间。太阳常数虽然经多年观测,由于观测设备、技术以及理论校正方法的不同,其数值常不一致。据研究,太阳常数的变化具有周期性,这可能与太阳黑子的活动周期有关。在太阳黑子最多的年份,紫外线部分某些波长的辐射强度可为太阳黑子最少年份的20倍。近年来,气候学家指出,只要地球的长期气候发生1%的变化,就会引起太阳常数的变化。目前已有许多无人或有人操作的空间实验对太阳辐射进行直接观测,并在宇宙空间实验站设计了名为“地球辐射平衡”的课题,其中一个重要项目就是对太阳辐射进行长期监视。这些观测数据将对进一步了解大气物理过程及全球气候变迁的原因有很大帮助。1981年世界气象组织推荐的太阳常数值Rsc=1367±7(W/m2),通常采用1367W/m2。 二、太阳辐射在大气中的衰减 太阳辐射通过大气层后到达地球表面。由于大气对太阳辐射有一定的吸收、散射和反射作用,使投射到大气上界的辐射不能完全到达地表面。图2.4最下面的实曲线表示太阳辐射通过大气层被吸收、散射、反射后到达地表的太阳辐射光谱。

相关文档
最新文档