语音放大电路设计报告

语音放大电路设计报告
语音放大电路设计报告

附件1:

课 程 设 计

题 目

语音放大电路的设计

学 院 专 业

通信工程 班 级 通信GJ1101

姓 名 董沛 指导教师

许建霞

语音放大电路的设计

1 绪论

1.1 课题背景及目的

在日常生活和工作中,经常会遇到这样一些问题:如在检修各种机器设备时,常常需要能依据故障设备的异常声响来寻找故障,这种异常声响的频谱覆盖面往往很广,需要高亮度的声音以传达消息,例如校园广播,大型会议等,而仅仅凭人们自己的喉咙是无法实现的,因而要用到信号放大器。声音信号频率低,在放大的过程中极易受到外界的干扰,又如:在打电话时,有时往往因声音太大或干扰太大而难以听清对方讲的话,于是需要一种既能放大语音信号又能降低外来噪声的仪器……诸如以上原因,具有类似功能的实用电路实际上就是一个能识别不同频率范围的小信号放大系统。所以本课题要求采用集成运算放大器完成语音放大电路。有利于培养我的技开发能力和创新精神,并有一定的实用意义。

2实验目的

通过实验培养市场素质,工艺素质,自主学习能力,分析问题解决问题的能力及团队精神;通过实验总结回顾所学的模拟电子技术基础理论和基础实验,掌握低频小信号放大电路和功放电路的设计方法。

3设计原理

3.1 已知条件

→2013 年

1 月 6 日

语音放大器是一个典型的多级放大器,其框图如上图所示,前置级主要完成对小信号的放大,一般要求输入阻抗高,输出阻抗低,频带要求要宽,噪声要小。有源滤波器主要实现对输入信号高低音的调整。功率放大级主要决定了输出功率的大小,非线性失真系数等指标,要求效率高,失真尽可能小,输出功率高。 因为max o P =5w,所以此时的输出电压L o R P V o max ==4.5V ,要使输入为10mV 的信号放大为4.5V 的输出,所需要的总放大倍数为

=

=i

v V V A 0

450

3.2性能指标

1)前置放大器

(1)输入信号Uid ≦10m V; (2)输入阻抗Ri=100K Ω; (3)共模抑制比KCMR ≧60dB 。 2)有源带通滤波器

带通频率范围300Hz~3KHz 。 3)功率放大器 ① 最大不失真输出功率Pomax ≥5W; ② 负载阻抗RL =4Ω; ③ 电源电压+5V,+12V, 4)输出功率连续可调

① 直流输出电压≤50mV(输出开路时); ② 静态电源电流≤100mA(输出短路时)。

3.3 要求

1)选取单元电路及元件

根据设计要求和已知条件,确定前置放大电路、有源带通滤波电路、功率放大电路的方案,计算和选取单元电路的元件参数。 2)置放大电路的组装与调试

测量置放大电路的差模电压增益AUd、共模电压增益AUc、共模抑制比KCMR、带宽BW?1、输入电压Ri?等各项技术指标,并与设计要求值行比较。

3)源带通滤波电路的组装与调试

量有源带通滤波电路的差模电压增益AUd、带通BW1,并与设计要求进行比较。

4)功率放大电路的组装与调试

测量功率放大电路的最大不失真输出功率Po,max、电源供给功率P??DC、输出效率η、直流输出电压、静态电源电流等技术指标。

5)整体电路的联调与试听

6)应用Multisim软件对电路进行仿真分析

3.4原理与参考电路

3.4.1前置放大电路

由于信号源提供的信号非常微弱,故一般在音调放大级前加一级前置放大级

在测量用的放大电路中,一般传感器送来的直流或低频信号,经放大后多用单端方式传输。典型情况下,信号的最大幅度可能仅有若干毫伏,共模噪声可能高达几伏。放大器输入漂移和噪声等因素对于总的精度至关重要,放大器本身的共模抑制特性也是同等重要的问题。因此前置放大电路应该是一个高输入阻抗、高共模抑制比、低漂移的小信号放大电路。在设计前置小信号放大电路时,可参考运算放大器应用的相关设计;

不同方案比较:

缺陷与不足:由于电路过于简单,不能对电路的整体增益进行合理的调节,而且反馈电路中没有电容,不能控制由于电路温度升高而引起的温度飘逸,误差较大;而且在电路中无串联电容使得电压稳定性不好,而且进入滤波电路的直流分量过大,引起噪声过大

3.4.2 有源滤波电路

有源滤波电路是用有源器件与RC 网络组成的滤波电路。

有源滤波电路的种类有低通(LPF)、高通(HPF)、带通(BPF)、带阻(BEF)滤波器,本实验着重讨论典型的二阶有源滤波器。

不同方案比较:

缺陷不足:电路基本符合要求,但是反馈电路中没有电容,不能控制温度漂移,R5与R6应该换成滑动变阻器,便于调节电路中的电流

3.4.3功率放大电路

功率放大的主要作用是向负载提供功率,要求输出功率尽可能大,转换功率尽可能高。非线性失真尽可能小。

不同方案比较:

比较:该电路基本符合要求,但是Multisim10中没有TD2003这个元件,不便于进行仿真,故我们利用TDA2030重新设计了一个电路,经测试,基本符合要求

3.5 单元电路中的线路连接

为了避免各级运算器之间的相互干扰,且过滤掉放大过程中的纹波,各级之间用100μf的电容进行连接。

4核心原件参数特点

4.1 LM324运放集成电路

LM324采用14脚双列直插塑料封装。它内部包含四组形式完全相同的运算放大器如图5.8(a )所示,除电源共用外,四组运放相互独立。每一组运算放大器可用图5.8(b )所示的符号来表示,它有5个引出脚,其中“U i+”、“U i-”为两个信号输入端,“U +”、“U -”为正、负电源端,“U o ”为输出端。两个信号输入端中,U i-为反相输入端,表示运放输出端U o 的信号与该输入端的相位相反;U i+为同相输入端,表示运放输出端U o 的信号与该输入端的相位相同。由于电源管脚是众所周知的,因此,为了简化,通常可以把电源端省略不画,把五脚符号画成只有两个输入端、一个输出端的三端符号。

图 5.8 集成运放符号及LM324管脚

由于LM324四运放电路具有电源电压范围宽,静态功耗小,可采用单、双电源方式使用,价格低廉等优点,因此被广泛应用在各种电路中。

注:集成运算放大器LM324的管脚图及基本参数见附录B

4.2 TDA2003集成功率放大器

我们在本次设计中依然采用常用的TDA2003集成功率放大器,TDA2003是TDA2002的改进型,其输出功率更大,电路特点及内设的各保护电路与TDA2002相同。它适用于收音机及其它设备中作音频放大。

U - U U i - + -

+ - LM324 + - 1 2 3 + -

4 5 6 7 U +

U -

8 9 10

11 12 13 14

(a) (b)

引脚功能定义:TDA2003为5脚单引直插式,其引脚功能如下: 1——同向输入 2——反向输入 3——地 4——输出 5——输入Vcc

集成功率放大器TDA2003的引脚图

5 Multisim10.0 仿真结果5.1前置放大电路

5.2有源滤波电路

5.3功率放大电路

6 调试电路及调试测量

6.1前置放大电路的调试:静态调试:调零和消除自激振荡。

动态调试:①在两输入端加差模输入电压Uid,测量输出电压Uod1,观测于记录输出电压与输入电压的波形,算出差模电压增益Aud1。

②在两输入端加共模输入电压Uic,测量输出电压Uoc1,算出共模电压增益Auc1。

6.2有源带通滤波器的调试:静态调试:调零和消除自激振荡

动态调试:调节输入信号的频率,使输出电压达到不失真的最大值。记录此时的电压值和频率。不断改变输入信号的频率,(变大和变小),当电压的幅

度为最大值的0.707倍时,分别记录此时的频率,即为上限截止频率和下限截止频率。由此计算通频带。

6.3功率放大电路的调试:

静态调试:将输入端对地短路,观察输出有无振荡,如果有振荡,采取消振措施以消除振荡。

测量最大输出功率Pomax:在输出信号不失真的条件下,对功率参数进行测试。输入f=1kHz的正弦输入信号,并逐渐加大输入电压的幅值直至输出电压Uo 的波形出现临界削波时,测量此时Rl两端的输出电压的最大值Uomax或有效值Uo,则Pomax=Uomax2/(2*RL)=Uo2/RL。

6.4系统联调:

经过以上对各级电路的局部调试后,可扩大到整个系统的联调。

①令输入信号Ui=0,(前置级对输入短路),测量输出的直流输出电压。

②输入f=1kHz的正弦信号,改变Ui的幅值,用示波器观察输出电压Uo波形变

化的情况,记录输出电压Uo最大不失真幅度所对应的输入电压Ui的变化范围。

③输入Ui为一定值的正弦信号(在Uo不失真范围内取值),改变输入信号的频

率,观察Uo的幅值变化情况,记录Uo下降到0.707Uo之内的频率变化范围。

④计算总的电压增益 Au3=Uo/Ui3。

6.5电路测量:

分别测量所要求的数据:

(1)前置放大器的电压放大倍数Au=100

(2)测量带通滤波器的通频带BW=300Hz-3000Hz

6.6效果测试

系统级联后,分别在输入端输入语音信号和音乐信号,观测效果。

6.7实验中遇到的问题及解决办法

(1)问题:前级放大器焊接完成后在示波器中没有信号输出

分析:电路中可能有虚焊短接情况

解决:用万用表仔细检查电路,逐个焊点进行测试,找出虚焊点并将其焊牢。

(2)问题:下限截频过低(170Hz)

分析:高通滤波器中电过大

解决:调节滑动变阻器

6.8元件清单:

7 设计感想和体会:

通过这次课程设计,让我深刻地体会到了在电子设计过程中应该十分细心,

而且应该有全局观。我在设计时因为没有考虑到后面的电路,只看眼前,不顾后面。结果

搞的后面布线布得一团糟。俗话说:“磨刀不误砍材工。”这句话应该是我以后在做设计时应

该牢记的。首先,应该对电路的布局有一个整体的考虑,做到元件的布置合理,避免出现短

路,断路等情况,而且应尽量使元件均匀地分布在整个电路板上,注意对称。其次,在焊接

过程要谨慎,避免出现接点之间的粘连和虚焊等情况。最后,要认真检查电路,在确认准确

无误后接通电源进行调试。

在调试过程中,会遇到许多麻烦。我发现电位器的调节作用有问题,原来是

接线接反了。还有,应该接在同一个点的线没有接在一起,但是这样还是不行,

经过仔细检查后发现,问题是两排接地线没有连在一起。但是,结果还是没有想

象中的那么完美。

在进行实物焊接前,应该对元器件进行检查,在确认无损坏的情况下再进行

焊接。语音放大器的最大缺点是噪音太大,可以多增加几级滤波电路来滤除纹波,

还可以通过改进元器件的性能还减少噪音。相信通过这些改进,可以在一定程度

上提高语音放大电路的性能。

参考文献

[1] 陈有卿.新颖集成电路制作精选[M].北京:人民邮电出版社,2005:55-57.

[2] 童诗白,华成英.模拟电子技术基础[M].北京:高等教育出版社,2001:32-33.

[3] 何希才.传感器及其应用电路[M].北京:电子工业出版社,2001: 110-111.

[4] 杨素行.模拟电子技术简明教材[M].北京:高等教育出版社,1998: 181-188.

[5] 方大千.实用电子控制电路[M].北京:国防工业出版社,2002:48-49.

[6] 孙建民.传感器技术[M].北京:清华大学出版社,2005: 98-100.

[7] 吴显鼎.集成电子电子线路设计手冊[M].福州:福建科技出版

社,2003:88-90.

语音放大器的设计(全面)

电子电工教学基地 实 验 报 告 实验课程:模拟电路实验及仿真实验名称:语音放大电路的设计设计人员: 完成日期: 2012年6月27日

0、引言在电子电路中,输入信号常常受各种因素的影响而含有一些不必要的成份(即干扰),或者输入信号是不同频率信号混合在一起的信号,对前者应设法将不必要的成份衰减到足够小,而后者应设法将需要的信号提取出来。而且随着社会的发展,在我们的日常生活中也经常会出现一系列的问题:如在检修各种机器设备的时候,我们要根据故障设备的异常声来寻找故障,这种异常的声响的频谱覆盖面往往很广;同时另外的一种情况我们在打电话的时候,有时往往因声音或干扰太大而难以听清对方的声音,这时我们就需要一种既能放大语音信号又能降低外来噪声的仪器。而且语音放大电路目前的运用很广泛:适用于很多的家用电器上面的运用。例如:便携式收音机、对讲机等很多方面的运用。为了达到这样的一个目的,我们就要考虑到设计一个能识别300~3000HZ频率范围内的小信号放大系统,我们可以用设计一个集成运算放大器组成的语音放大电路。 一、设计目的及要求 【设计目的】1.通过实验培养学生的市场素质,工艺素质,自主学习的能力,分析问题解决问题的能力以及团队精神。 2.通过实验总结回顾所学的模拟电子技术基础理论和基础实验,掌握低频小信号放大电路和功放电路的设计方法。 【设计要求】 1)选取单元电路及元件 根据设计要求和已知条件,确定前置放大电路、有源带通滤波电路、功率放大电路的方案,计算和选取单元电路的原件参数。 2)前置放大电路的组装与调试 测量前置放大电路的差模电压增益AU、共模电压增益AUc、共模抑制比KCMR、带宽BW、输入电压Ri等各项技术指标,并与设计要求值进行比较。 3)有源带通滤波器电路的组装与调试 测量有缘带通滤波器电路的差模电压增益AUd、带通BW,并与设计要求进行比较。4)功率放大电路的组装与调试 测量功率放大电路的最大不失真输出功率Po,max、电源供给功率PDC、输出效率η、直流输出电压、静态电源电流等技术指标。 5)整体电路的联调与试听 6)应用Multisim软件对电路进行仿真分析

共射放大电路实验报告

实验报告 课程名称:电子电路设计实验 指导老师:李锡华,叶险峰,施红军 成绩:________ 实验名称:晶体管共射放大电路分析 实验类型:设计实验 同组学生姓名: 一、实验目的 1、学习晶体管放大电路的设计方法, 2、掌握放大电路静态工作点的调整和测量方法,了解放大器的非线性失真。 3、掌握放大电路电压增益、输入电阻、输出电阻、通频带等主要性能指标的测量方法。 4、理解射极电阻和旁路电容在负反馈中所起的作用及对放大电路性能的影响。 5、学习晶体管放大电路元件参数选取方法,掌握单级放大器设计的一般原则。 二、实验任务与要求 1.设计一个阻容耦合单级放大电路 已知条件:=+10V cc V , 5.1L R k =Ω,10,600i S V mV R ==Ω 性能指标要求:30L f Hz <,对频率为1kHz 的正弦信号15/,7.5v i A V V R k >>Ω 2.设计要求 (1)写出详细设计过程并进行验算 (2)用软件进行仿真 3.电路安装、调整与测量 自己编写调试步骤,自己设计数据记录表格 4.写出设计性实验报告 三、实验方案设计与实验参数计算 共射放大电路

(一).电路电阻求解过程(β=100) (没有设置上课要求的160的原因是因为电路其他参数要求和讲义作业要求基本一样,为了显示区别,将β改为100进行设计): (1)考虑噪声系数,高频小型号晶体管工作电流一般设定在1mA 以下,取I c =1mA (2)为使Q 点稳定,取2 5 BB CC V V =,即4V, (3)0.7 3.3BB E E V R k I -≈=Ω,恰为电阻标称值 (4)2 12 124:3:2 CC BB R V V V R R R R ==+∴= 取R 2为R i 下限值的3倍可满足输入电阻的要求,即R 2=22.5k , R 1=33.75k ; 1121 10=0.1,60,40cc B B V V IR I mA R K R K IR -== =Ω=Ω由 综上:取标称值R1=51k ,R2=33k (5) 25T T e E C V V r I I =≈=Ω (6)从输入电阻角度考虑: , 取(获得4V 足够大的正负信号摆幅)得: 从电压增益的角度考虑: >15V/V,取得 : ; 为 (二).电路频率特性 (1) 电容与低频截止频率 取 ;

模电音频功率放大器课程设计

课程设计报告 学生姓名:张浩学学号:201130903013 7 学 院:电气工程学院 班 级: 电自1116(实验111) 题 目: 模电音频功率放大电路设计 指导教师:张光烈职称: 2013 年 7月 4 日

1、设计题目:音频功率放大电路 2、设计任务目的与要求: 要求:设计并制作用晶体管和集成运算放大器组成的音频功率放大电路,负载为扬声器,阻抗8。 指标:频带宽50HZ~20kHZ,输出波形基本不失真;电路输出功率大于8W;输入灵敏度为100mV,输入阻抗不低于47KΩ。 模电这门课程主要讲了二极管,三极管,几种放大电路,信号运算与处理电路,正弦信号产生电路,直流稳压电源。功率放大器的作用是给音响放大器的负载RL(扬声器)提供一定的输出频率。当负载一定时,希望输出的功率尽可能大,输出的信号的非线性失真尽可能小,效率尽可能高。功率放大器的常见电路形式有OTL电路和OCL电路。有用继承运算放大器和晶体管组成的功率放大器,也有专集成电路功率放大器。本实验设计的是一个OTL功率放大器,该放大器采用复合管无输出耦合电容,并采用单电源供电。主要涉及了放大器的偏置电路克服交越失真,复合管的基本组合提高电路功率,交直流反馈电路,对称电路,并用multism软件对OTL 功率放大器进行仿真实现。根据电路图和给定的原件参数,使用multism 软件模拟电路,并对其进行静态分析,动态分析,显示波形图,计算数据等操作。 3、整体电路设计: ⑴方案比较: ①利用运放芯片 LM1875和各元器件组成音频功率放大电路,有保护电路,电源分别接+30v和-30v并且电源功率至少要50w,输出功率30w。 ②利用运放芯片TDA2030和各元器件组成音频功率放大电路,有保护电路,电源只需接+19v,另一端接地,负载是阻抗为8Ω的扬声器,输出功率大于8w。 通过比较,方案①的输出功率有30w,但其输入要求比较苛刻,添加了实验难度。而方案②的要求不高,并能满足设计要求,所以选取方案②来进行设计。 ⑵整体电路框图:

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大 电路实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验二 晶体管共射极单管放大器 一、实验目的 1.学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影 响。 3.熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +?

图2—1 共射极单管放大器实验电路图 I E = E BE B R U U -≈Ic U CE = U C C -I C (R C +R E ) 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。 2)检查接线无误后,接通电源。 3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。然后测量U B 、U C ,记入表2—1中。 表2—1 测 量 值 计 算 值 U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2 60 2 B2所有测量结果记入表2—1中。 5)根据实验结果可用:I C ≈I E = E E R U 或I C =C C CC R U U -

语音放大电路设计

内容摘要 本文介绍了一种语音放大电路,它由前置放大器、带通滤波器和功率放大器组成,能对300——3000Hz的语音信号进行放大,降低外来噪声。并用Multisim 进行仿真实验,以期达到所要求的效果。 关键字:前置放大器带通滤波器功率放大器

目录 一、设计目的 (1) 二、设计题目及分析 (1) 三、概要设计 (1) 四、详细设计 (1) 五、测试分析 (6) 六、附录 (7)

一、设计目的 在电子电路中,输入语音信号往往混杂着噪声和其他不同频率成分的干扰,因此我们设计该电路,使其尽可能减小噪声,滤除300——3000Hz以为的频率成分,同时,尽可能地放大有用信号,从而得到清晰的语音信号,并将它通过扬声器输出。 二、设计题目及分析 此语音放大器由三部分组成,原理框图如图2-1。 图2-1 语音放大器原理框图 其中,各级要求如下。 ①前置放大器的输入信号≤5mV,输入阻抗为10KΩ,可用元件741运算放大器。 ②带通滤波器3dB带通范围:300——3000Hz。 ③功率放大器输出功率Po≥0.5W,输出阻抗Ro=4Ω,输出功率连续可调,可用元件 LM386功率放大器。 ④电源电压为±12V。 三、概要设计 (1)假设带通滤波器通带增益为0dB,且功率放大器采用LM386的20倍接法,若要提供足够的功率(扬声器8Ω,输出功率≥0.5W),则可设功率放大器的输入信号有效值为100mV,此时8Ω的扬声器获得功率为0.5W,故在此前置放大器级,假设输入信号为5mV,至少需要对其放大30倍。在此前置放大器放大倍数选为50倍,若采用运算放大器的反向组态,则反馈电阻采用500KΩ的电阻,此时输入阻抗为10KΩ。(2)带通滤波器可由低通滤波器和高通滤波器串联组成。其中,低通滤波器截止频率为3KHz,高通滤波器截止频率为300Hz。为了确保通带增益为0dB,此处高通滤波器和低通滤波器均采用有源滤波器,由于运放数量的限制,此电路中仅使用二阶滤波器,相对于一阶滤波器,它能较快的收敛,滤波器设计可由Filter Solution软件辅助完成。 (3)该功率放大器可直接采用20倍放大的接法,为了能够达到输出功率连续可调,可在信号输入端与地之间接入可调电阻,输出阻抗可在电路正常工作后,能够输出不失真的情况下,通过在输出端串接电阻使输出阻抗Ro=4Ω。 四、详细设计 (1)前置放大器 前置放大器亦为小信号放大器。语音信号属于低频信号,多采用单端方式传输,其中混有噪声和其他频率分量,在此级应尽量一致低频分量和噪声等,放大有用信号。故在信号输入放大器前,接入一隔直电阻,去掉直流成分,由3中分析,放大器采用741的反相组态,放大倍数为50倍,反馈电阻为500KΩ,输入阻抗10KΩ。具体电路如图4-1所示。

单管放大电路实验报告王剑晓

单管放大电路实验报告

电03 王剑晓 2010010929 单管放大电路报告 一、实验目的 (1)掌握放大电路直流工作点的调整与测量方法; (2)掌握放大电路主要性能指标的测量方法; (3)了解直流工作点对放大电路动态特性的影响; (4)掌握发射极负反馈电阻对放大电路动态特性的影响; (5)掌握信号源内阻R S对放大电路频带(上下截止频率)的影响; 二、实验电路与实验原理

实验电路如课本P77所示。 图中可变电阻R W是为调节晶体管静态工作点而设置的。 (1)静态工作点的估算与调整; 将图中基极偏置电路V CC、R B1、R B2用戴维南定理等效成电压源,得到直流通路, 如下图1.2所示。其开路电压V BB和内阻R B分别为: V BB= R B2/( R B1+R B2)* V CC; R B= R B1// R B2; 所以由输入特性可得: V BB= R B I BQ+U BEQ+(R E1+ R E2)(1+Β) I BQ; 即:I BQ=(V BB- U BEQ)/[Β(R E1+ R E2)+ R B]; 因此,由晶体管特性可知: I CQ=ΒI BQ; 由输出回路知: V CC= R C I CQ + U CEQ+(R E1+ R E2) I EQ; 整理得: U CEQ= V CC-(R E1+ R E2+ R C) I CQ; 分析:当R w变化(以下以增大为例)时,R B1增大,R B增大,I BQ减小;I CQ减 小;U CEQ增大,但需要防止出现顶部失真;若R w减小变化相反,需要考虑底部 失真(截止失真); (2)放大电路的电压增益、输入电阻和输出电阻 做出电路的交流微变等效模型: 则:

音频功率放大电路课程设计报告

, 课程设计 课程名称_模拟电子技术课程设计 题目名称音频功率放大电路 $ 学生学院 专业班级 学号 学生姓名__ 指导教师 : 2010 年 6 月 20 日

— 音频功率放大电路课程设计报告 一、设计题目 题目:音频功率放大电路 二、设计任务和要求 ` 1)设计任务 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。 2)设计要求 频带宽50H Z ~20kH Z ,输出波形基本不失真;电路输出功率大于8W; 输入灵敏度为100mV,输入阻抗不低于47KΩ。 三、原理电路设计 功率放大电路: % 功率放大电路通常作为多级放大电路的输出级。功率放大器的常见电路形式有OTL电路和OCL电路。在很多电子设备中,要求放大电路的输出级能够带动某种负载,例如驱动仪表,使指针偏转;驱动扬声器,使之发声;或驱动自动控制系统中的执行机构等。也就是把输入的模拟信号经被放大后,去推动一个实际的负载工作,所以要求放大电路有足够大的输出功率,这样的放大电路统称为功率放大电路。而音频功率放大器的作用就是给音响放大器的负载RL(扬声器)提供一定的输出功率。当负载一定时,希望输出的功率尽可能大,输出的信号的非线形失真尽可能地小,效率尽可能的高。随着半导体工艺,技术的不断发展,输出功率几十瓦以上的集成放大器已经得到了广泛的应用。功率VMOS管的出现,也给功率放大器的发展带来了新的生机。总之,功率放大器的主要任务是向负载提供较大的信号功率,故功率放大器应具有以下几个主要特点: 1. 输出功率要足够大 工作在大信号状态下,输出电压和输出电流都很大.要求在允许的失真条件下,

语音放大电路设计精编版

语音放大电路设计精编 版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

一、语音放大电路的设计 通常语音信号非常微弱,需要经过放大、滤波、功率放大后驱动扬声器。 要求: (1)采用集成运算放大器LM324和集成功放LM386N-4设计一个语音放大电路; 假设语音信号的为一正弦波信号,峰峰值为5mV,频率范围为100Hz~1KHz,电路总体原理图如下所示; 具体 设计 方案 可以 参照 以下 电路: 图4 语音放大电路 前置放大电路: 采用同相比例放大器,放大倍数为: A V=1+100KΩ 10KΩ =11

带通滤波电路为: 带通滤波器A1的放大倍数计算: A vf1=1+ 27KΩ 100KΩ =1.27 A vf2=1+ 27KΩ 100KΩ =1.27 则带通滤波器的放大倍数为: A V=A vf1?A vf2 =1.272=1.6129 采用低通和高通二阶有源巴特沃斯滤波器器串联连接,按照设计要求低通滤波器截止频率为1KHz,高通滤波器截止频率大于100Hz: f high= 1 2πRC = 1 2π15K?0.1μ =106Hz f low= 1 2πRC = 1 2π15K?0.01μ =1061Hz 功率放大电路: 是一个三级放大电路:第一级为差分放大电路;第二级为共射放大电路;第三级为准互补输出级功放电路。 外接元件最少的用法: 静态时输出电容上电压为V CC2 ?,最大不失真输出电压的峰-峰值为电压V CC,最大输出 P=(CC √2 ) 2 R L = V CC2 R L = (1)仔细分析以上电路,弄清电路构成,指出前置放大器的增益为多少dB?通带滤波器的增益为多少dB? 前级放大器的增益为21dB,带通滤波器的增益为 (2)参照以上电路,焊接电路并进行调试。 a、将输入信号的峰峰值固定在5mV,分别在频率为100Hz和1KHz的条件下测 试前置放大的输出和通带滤波器的输出电压值,计算其增益,将计算结果同上面分析的理论值进行比较。 经过实际测量,前级放大器的实际增益约为20dB,带通滤波器的增益约为 0dB。 b、能过改变10K殴的可调电阻,得到不同的输出,在波形不失真的条件下,测 试集成功放LM386在如图接法时的增益; 调节电位器,可得功放的实际增益约为25dB。 c、将与LM386的工作电源引脚即6引脚相连的10uF电容断开,观察对波形的 影响,其作用是什么?

单级共射放大电路实验报告(完整资料).doc

【最新整理,下载后即可编辑】 单级共射放大电路实验报告 1.熟悉常用电子仪器的使用方法。 2.掌握放大器静态工作点的调试方法及对放大 器电路性能的影响。 3.掌握放大器动态性能参数的测试方法。 4.进一步掌握单级放大电路的工作原理。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 4.交流毫伏表 5.直流稳压源 三、预习要求 1.复习基本共发射极放大电路的工作原理,并进 一步熟悉示波器的正确使用方法。 2.根据实验电路图和元器件参数,估算电路的静 态工作点及电路的电压放大倍数。 3.估算电路的最大不失真输出电压幅值。 4.根据实验内容设计实验数据记录表格。 四、实验原理及测量方法 实验测试电路如下图所示:

1.电路参数变化对静态工作点的影响: 放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。放大器的静态工作点是指放大器输入端短路时,流过电路直流电流IBQ、ICQ及管子C、E极之间的直流电压UCEQ和B、E 极的直流电压UBEQ。图5-2-1中的射极电阻BE1、RE2是用来稳定放大器的静态工作点。其工作原理如下。 ○1用RB和RB2的分压作用固定基极电压UB。 由图5-2-1可各,当RB、RB2选择适当,满足I2远大于IB时,则有

UB=RB2·VCC/(RB+RB2)式中,RB、RB2和VCC都是固定不随温度变化的,所以基极电位基本上是一定值。 ○2通过IE的负反馈作用,限制IC的改变,使工作点保持稳定。具体稳定过程如下: T↑→IC↑→IE↑→UE↑→UBE ↓→IB↓→IC↓ 2.静态工作点的理论计算: 图5-2-1电路的静态工作点可由以下几个关系式确定 UB=RB2·VCC/(RB+RB2) IC≈IE=(UB-UBE)/RE UCE=VCC-IC(RC+RE) 由以上式子可知,,当管子确定后,改变V CC、RB、RB2、RC、(或RE)中任一参数值,都会导致静态工作点的变化。当电路参数确定后,静态工作点主要通过RP调整。工作点偏高,输出信号易产生饱和失真;工作点偏低,输出波形易产生截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很大时,静态工作点的设置应偏低,以减小电路的表态损耗。3.静态工作点的测量与调整: 调整放大电路的静态工作点有两种方法(1)将放大电路的输入端电路(即Ui=0),让其工作在直流状态,用直流电压表测量三极管C、E间的电压,调整电位器RP使UCE稍小于电源电压的1/2(本实

语音放大器设计实验报告

模拟电子技术课程设计 语 音 放 大 器 姓名:伍慧兰 学号:2015550828 班级:15通信工程1班 指导老师:罗光明 目录 一、设计目的 (2) 二、知识点和设计内容 (2) 三、设计方案 (3) 四、实验原理与参考电路 (4) (一)实验原理图如图1-2 (4) (二)实验原理 (5) 1) 前置放大器 (5) 2) 有源带通滤波器 (5) 3) 功率放大器 (6)

五、实验的主要元器件 (7) (一)元器件清单 (7) (二)部分器件的使用介绍 (8) 1) LM324芯片 (8) 2) TDA2030引脚图与应用电路参数 (12) 六、实验步骤 (13) (一)电路仿真实验 (13) (二)硬件实物实验 (19) 1) 前置放大器的焊接与调试 (19) 2) 有源带通滤波器 (20) 七、实验中的问题提出与解决方法 (24) 八、注意事项 (25) 九、实验感想 (26) 参考资料 (27) 语音放大器设计 一、设计目的 1、了解语音识别知识; 2、掌握集成运算放大器的工作原理及其应用; 3、掌握低频小信号放大电路、带通滤波器和功放电路的设计方法; 4、培养应用现代工具对模拟电子系统进行仿真测试、制作调试、故障检查及分析的能力; 5、培养市场素质、工艺素质、自主学习能力、分析问题解决问题的能力以及团队精神; 6、培养文献查阅与综述和撰写课程设计报告的能力。 二、知识点和设计内容 本实验的知识点为分立元件放大器或集成运放、有源滤波器、集

成功率放大器;涉及电子电路各个模块之间的联合调试技术。 三、设计方案 语音放大器设计的基本设计思路 分析可知本语音放大器应包括输入电路、前置放大器、有源带通滤波器、功率放大器、扬声器等几部分组成,如图1-1所示。 前置放大器可采用集成运算放大器,有源带通滤波器可采用LPF 和HPF 串联构成,功率放大电路选用集成功放。 设计的性能指标 通常语音信号非常微弱,需要经过放大、滤波、功率放大后才能驱动扬声器发声。假设语音信号为峰峰值不大于10mV 频率范围100Hz~3kHz 的正弦波,要求驱动8Ω1W 的扬声器。具体性能指标如下: 1、前置放大器:输入信号Uid ≤10mV ;输入阻抗Ri ≥100k Ω 2、有源带通滤波器:通带100Hz~3kHz ;增益Au=1 3、功放:最大不失真输出功率Pomax ≥1W ;负载阻抗R L =8Ω 4、输出功率连续可调;直流输出电压≤50mV ;静态电源电流≤100mA 输入 电路 前置 放大 带通 滤波 功率 放大 图1-1 语音放大电路原理框图

运算放大电路实验报告

实验报告 课程名称:电子电路设计与仿真 实验名称:集成运算放大器的运用 班级:计算机18-4班 姓名:祁金文 学号:5011214406

实验目的 1.通过实验,进一步理解集成运算放大器线性应用电路的特点。 2.掌握集成运算放大器基本线性应用电路的设计方法。 3.了解限幅放大器的转移特性以及转移特性曲线的绘制方法。 集成运算放大器放大电路概述 集成电路是一种将“管”和“路”紧密结合的器件,它以半导 体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、 二极管、电阻和电容等元件及它们之间的连线所组成的完整电路 制作在一起,使之具有特定的功能。集成放大电路最初多用于各 种模拟信号的运算(如比例、求和、求差、积分、微分……)上, 故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟 信号的处理和产生电路之中,因其高性价能地价位,在大多数情 况下,已经取代了分立元件放大电路。 反相比例放大电路 输入输出关系: i o V R R V 12-=i R o V R R V R R V 1 212)1(-+=

输入电阻:Ri=R1 反相比例运算电路 反相加法运算电路 反相比例放大电路仿真电路图

压输入输出波形图 同相比例放大电路 输入输出关系: i o V R R V )1(12+=R o V R R V R R V 1 2i 12)1(-+=

输入电阻:Ri=∞ 输出电阻:Ro=0 同相比例放大电路仿真电路图 电压输入输出波形图

差动放大电路电路图 差动放大电路仿真电路图 五:实验步骤: 1.反相比例运算电路 (1)设计一个反相放大器,Au=-5V,Rf=10KΩ,供电电压为±12V。

语音放大电路的设计

语音放大电路的设计 一. 实验目的 1. 掌握低频小信号放大电路的工作原理和设计方法。 2. 深入了解集成运放和集成功放的工作原理。 3. 掌握电子电路的设计过程及装配与调试方法。 二. 实验内容 设计一个语音放大电路,话筒(拾音器)的输入信号小于10mv ,放大电路的指标; 1. 输入阻抗大于100ΩK ,共模抑制比大于60dB 。 2. 通带频率范围300Z H ~3Z kH 。 3. 最大不失真输出功率不低于1W ,负载阻抗Ω=16L R ,电源电压 10V 。 三. 实验要求 设计电路,给出两种以上方案进行比较,然后采用multisim 等仿真软件对各单元电路进行计算机模拟仿真,选取合理的参数,最后选取合适的元器件,连接电路,进行系统联调和性能指标测试。 四.实验原理 话筒的输出信号一般只有5mv 左右而共模噪声可能高达几伏,故在设计时,须考虑放大器的输入漂移和噪声因素及放大器本身的共模抑制比这些重要因素。前置放大电路应该是一个高输入阻抗、高共模抑制比、低温漂,且能与高阻抗话筒配接的小信号放大电路。 人耳可以听到的音频信号范围约为20Z H ~20Z kH ,而人的发音器官可以发出的声音频率为80Z H ~3.4Z kH ,但语音信号的频率通常在300Z H ~3Z kH ,所以前置放大后,需采用带通滤波电路。

因电路的最终输出需推动扬声器完成电(信号)到声(信号)的转换,故输出级需采用功率放大电路,以便输出功率尽可能地大,转换效率尽可能地高,非线性失真尽可能地小。功放电路形式很多,可采用集成功率放大器(比如LM386)。 语音放大电路须有以下几个组成部分: 输入输出 根据设计要求,先确定总的电压放大倍数,同时考虑各级基本放大电路所能达到的放大倍数,分配和确定各级的电压放大倍数。然后根据已分配和确定的各级电压放大倍数和设计要求,比如滤波器的上下限截止频率,选取合理的设计方案以及合适的元件参数。最后在实验板上搭接电路,分级调试,直至完成整机的调试及功能测试。 四.实验报告撰写要求 1.前置放大电路 前置放大器 有源带通滤波器 (语音滤波器) 功率放大器

音频功率放大器实验报告

一、实验目的 1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能; 2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法; 3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。 4)培养设计开发过程中分析处理问题的能力、团队合作的能力。 二、实验要求 1)设计要求 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 2)实物要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出;

(5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 三、实验内容与原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1)前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,

专设—语音控制放大器及原理图

目录 1、课程设计目的 (1) 2、课程设计内容和要求 (1) 2.1、设计内容 (1) 2.2、设计要求 (1) 3、设计方案 (2) 3.1、设计思路 (2) 3.2、工作原理及硬件框图 (3) 3.3、硬件电路原理图 (6) 4、课程设计总结 (7) 5、参考文献 (8)

1、设计目的: ①掌握电子电路的一般设计方法和设计流程; ②学习使用PROTEL软件绘制电路原理图及印刷板图; 2、设计内容和要求(包括原始数据、技术参数、条件、设计要求等):2.1、设计内容 在电子电路中,输入信号常常受各种因素的影响而含有一些不必要的成份(即干扰),或者输入信号是不同频率信号混合在一起的信号,对前者应设法将不必要的成份衰减到足够小,而后者应设法将需要的信号提取出来。而且随着社会的发展,在我们的日常生活中也经常会出现一系列的问题:如在检修各种机器设备的时候,我们要根据故障设备的异常声来寻找故障,这种异常的声响的频谱覆盖面往往很广;同时另外的一种情况我们在打电话的时候,有时往往因声音或干扰太大而难以听清对方的声音,这时我们就需要一种既能放大语音信号又能降低外来噪声的仪器。而且语音放大电路目前的运用很广泛:适用于很多的家用电器上面的运用。例如:便携式收音机、对讲机等很多方面的运用。为了达到这样的一个目的,我们就要考虑到设计一个能识别300~3000HZ频率范围内的小信号放大系统,我们可以用设计一个集成运算放大器组成的语音放大电路。 2.2、设计要求 查阅语音识别的相关资料,掌握低频小信号放大电路和功放电路的设计方法,设计一个由集成运算放大器组成的语音放大电路。 电路要求: (1)前置放大器 输入信号:Uid <=10mv, 输入阻抗:Ri>=10k. (2)有源带通滤波器 带通频率范围:300~3000Hz (3)功率放大器 最大不失真输出功率:Pom>=5w 负载阻抗:RL==4. 根据设计要求和已知条件进行下面的分析,并计算和选取单电路的元件数:

负反馈放大电路实验报告

负反馈放大电路实验报告

3)闭环电压放大倍数为10s o sf -≈=U U A u 。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ。 图1 电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C 1~C 3容量为10μF ,C e 容量为47μF 。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f ,见图2,理由详见“五 附录-2”。 图2 两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。 3.3k ?

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) ? b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, 4.2 s R k ≈Ω,使得静态工作点满足:I DQ约为2mA,U GDQ < - 4V。记录并计算电路参数及静态工作点的相关数据(I DQ,U GSQ,U A,U S、U GDQ)。 实验中,静态工作点调整,实际4 s R k =Ω

第二级电路:通过调节R b2,2 40b R k ≈Ω,使得静态工作点满足:I CQ 约为2mA ,U CEQ = 2~3V 。记录电路参数及静态工作点的相关数据(I CQ ,U CEQ )。 实验中,静态工作点调整,实际2 41b R k =Ω c. 动态参数的调试 输入正弦信号U s ,幅度为10mV ,频率为10kHz ,测量并记录电路的电压放大倍数 s o11U U A u = 、s o U U A u =、输入电阻R i 和输出电阻R o 。 电压放大倍数:(直接用示波器测量输入输出电压幅值) o1 U s U o U 1 u A 输入电阻: 测试电路:

语音放大电路设计报告

附件1: 学号:0121112370724 课程设计 题目语音放大电路的设计 学院 专业通信工程 班级通信GJ1101 姓名董沛 指导教师许建霞 2013 年 1 月 6 日

语音放大电路的设计 1 绪论 1.1 课题背景及目的 在日常生活和工作中,经常会遇到这样一些问题:如在检修各种机器设备时,常常需要能依据故障设备的异常声响来寻找故障,这种异常声响的频谱覆盖面往往很广,需要高亮度的声音以传达消息,例如校园广播,大型会议等,而仅仅凭人们自己的喉咙是无法实现的,因而要用到信号放大器。声音信号频率低,在放大的过程中极易受到外界的干扰,又如:在打电话时,有时往往因声音太大或干扰太大而难以听清对方讲的话,于是需要一种既能放大语音信号又能降低外来噪声的仪器……诸如以上原因,具有类似功能的实用电路实际上就是一个能识别不同频率范围的小信号放大系统。所以本课题要求采用集成运算放大器完成语音放大电路。有利于培养我的技开发能力和创新精神,并有一定的实用意义。 2实验目的 通过实验培养市场素质,工艺素质,自主学习能力,分析问题解决问题的能力及团队精神;通过实验总结回顾所学的模拟电子技术基础理论和基础实验,掌握低频小信号放大电路和功放电路的设计方法。 3设计原理 3.1 已知条件 → → → → 语音放大器是一个典型的多级放大器,其框图如上图所示,前置级主要完 成对小信号的放大,一般要求输入阻抗高,输出阻抗低,频带要求要宽,噪声要小。有源滤波器主要实现对输入信号高低音的调整。功率放大级主要决定了输出

功率的大小,非线性失真系数等指标,要求效率高,失真尽可能小,输出功率高。 因为max o P =5w,所以此时的输出电压L o R P V o max ==4.5V ,要使输入为10mV 的信号放大为4.5V 的输出,所需要的总放大倍数为 = =i v V V A 0 450 3.2性能指标 1)前置放大器 (1)输入信号Uid ≦10m V; (2)输入阻抗Ri=100K Ω; (3)共模抑制比KCMR ≧60dB 。 2)有源带通滤波器 带通频率范围300Hz~3KHz 。 3)功率放大器 ① 最大不失真输出功率Pomax ≥5W; ② 负载阻抗RL =4Ω; ③ 电源电压+5V,+12V, 4)输出功率连续可调 ① 直流输出电压≤50mV(输出开路时); ② 静态电源电流≤100mA(输出短路时)。 3.3 要求 1)选取单元电路及元件 根据设计要求和已知条件,确定前置放大电路、有源带通滤波电路、功率放大电路的方案,计算和选取单元电路的元件参数。 2)置放大电路的组装与调试 测量置放大电路的差模电压增益AUd 、共模电压增益AUc 、共模抑制比KCMR 、带宽BW?1、输入电压Ri?等各项技术指标,并与设计要求值行比较。 3)源带通滤波电路的组装与调试 测

音频放大器课设报告

课程设计说明书 课程设计名称:电子课程设计报告 课程设计题目:音频放大器设计 学院名称:信息工程学院 专业:班级: 学号:姓名: 评分:教师: 20 11 年 3 月 10 日

电子课程设计报告题目名称:音频放大器设计 姓名: 专业: 班级学号: 同组人: 教师: 负责部分:功率放大 2011年月日 音频放大器设计

本系统是基于三极管元件设计而成的一种音频放大器。有前置放大电路、带通滤波电路、混频电路、功率放大电路和电源电路五部分构成。前置放大电路主要由差分放大电路构成,外加恒流源提供偏置,抑制电路的温漂,提高共模增益比。然后通过由一个二阶压控电压源高通滤波器和一个二阶压控电压源低通滤波器构成的带通滤波器。再接入一个混频电路(可加入背景音乐)。最后通过电容耦合到功率放大电路中除去了直流对后级放大电路的影响。混频电路由一个简单的加法器构成。功率放大电路是由三极管构成的互补对称功率放大电路构成,即OCL电路,能有效克服交越失真。 关键字:差分放大滤波三极管互补对称 音频放大器设计

前言 (5) 第一章设计内容及要求 (6) 第二章系统设计方案选择 2.1 方案一 (7) 第三章系统组成及工作原理 3.1 系统组成 (8) 3.2 工作原理 (8) 第四章单元电路设计、参数计算、器件选择 4.1 语音前置放大电路 (9) 4.2 滤波电路 (9) 4.3 混频电路 (9) 4.4 功率放大电路 (9) 4.5 电源电路 (9) 第五章实验、调试及测试结果与分析 (11) 第六章收获与体会 (12) 参考文献 (13) 附录一 (14) 附录二 (15) 附录三 (16)

语音放大器设计

语音放大电路的设计 一、设计任务与要求: 1、通常语音信号非常微弱,需要经过放大、滤波、功率放大后驱动扬声器。 2、采用集成运算放大器LM324和集成功放LM386N-4设计一个语音放大电路;假设语音信号的为一正弦波信号,峰峰值为5mV ,频率范围为100Hz~1KHz 。 二、方案设计与论证: 1、原理图: 语音放大器亦为测量用小信号放大电路,在测量用的放大电路中,一般传感器送来的直流或低频信号,经放大后多用单端输出,在典型情况下,有用信号的最大幅度可能仅有若干毫伏,而共模噪声可能高到几伏,故放大器输入漂移和噪声等因素对于总的精度至关重要,放大器本身的共模抑制特性也同等重要。因此前置放大电路应是一个高输入阻抗、高共模抑制比、低漂移的小信号放大电路。 滤波器是一种选频电路,它是一种能使有用频率信号通过,而同时抑制或衰减无用频率信号的装置。 功率放大器的主要作用是向负载提供功率,要求输出功率尽可能大,转换效率尽可能高,非线性失真尽可能小。 三、电路原理图及元件: 1、电路原理图: 语音信号 前置放大 有源带通滤波 功率放大 扬声器

2、LM324原理及应用: LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。它的内部包含四组形式完全相同的运算放大器, 除电源共用外,四组运放相互独立。每一组运算放大器可用左图所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“V o”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端V o的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端V o的信号与该输入端的相位相同。LM324的引脚排列见图 +12V -12V - + 9.1K 10K 100K Ui +12V -12V - + 100K 27K 0.01uF 0.1uF 0.1uF 15K15K +12V -12V - + 100K 27K 0.1uF 0.01uF 15K15K 10K - + 2 3 6 4 5 LM386 +12V 0.05uF 10 ohm 1000uF 8 ohm 0.5W 7 10uF 10uF

负反馈放大电路实验报告

实验二由分立元件构成的负反馈放大电路 一、实验目的 1?了解N沟道结型场效应管的特性和工作原理; 2?熟悉两级放大电路的设计和调试方法; 3?理解负反馈对放大电路性能的影响。 二、实验任务 设计和实现一个由N沟道结型场效应管和NPN型晶体管组成的两级负反馈放大电路。结型场效应管的型号是2N5486,晶体管的型号是9011。 三、实验内容 1.基本要求:利用两级放大电路构成电压并联负反馈放大电路。 (1)静态和动态参数要求 1)放大电路的静态电流I DQ和I CQ均约为2mA结型场效应管的管压降U G DQ< - 4V ,晶体管的管压降U C EQ= 2?3V; 2)开环时,两级放大电路的输入电阻要大于90k Q,以反馈电阻作为负载时的电压放大倍数的数值 >120 ; 3)闭环电压放大倍数为A usf二U°,.U s、-10。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R模拟信号源的内阻;R为反馈电阻, 取值为100 k Q o Rt 图1电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中%选择910k Q, R1、R2应大于100k Q; G?G容量为10疔,C e容量为47犷。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R,见图2,理由详见五附录一2”。 i㈡ R T 井肘成大电谿 图2两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, R^^4.2kQ ,使得静态工作点满足:I D 哟为2mA U G DQ < -4V 。记录并计算电路参数及静态工作点的相关数据( I DQ , U G SQ LA ,U S 、U G D Q 。 实验中,静态工作点调整,实际 -4k '1 第二级电路:通过调节 氐,&2 : 40^ 1 ,使得静态工作点满足:I CQ 约为2mA U C EQ = 2? 3V 。记录电路参数及静态工作点的相关数据( | CQ L C EQ )。 实验中,静态工作点调整,实际 R b ^41k 11 c. 动态参数的调试 输入正弦信号 U S ,幅度为 10mV 频率为10kHz ,测量并记录电路的电压放大倍数 A1 =U °1 -U s 、A =U o.. U s 、输入电阻R 和输出电阻R °o XSC1 Rf1 100k| ?

相关文档
最新文档