linux,ip协议栈源代码分析,pdf

竭诚为您提供优质文档/双击可除linux,ip协议栈源代码分析,pdf

篇一:netfilter源代码分析详解

一、概述

https://www.360docs.net/doc/9b1094175.html,filter/iptables框架简介

netfilter/iptables是继2.0.x的ipfwadm、2.2.x的ipchains之后,新一代的linux防火墙机制。netfilter采用模块化设计,具有良好的可扩充性。其重要工具模块iptables连接到netfilter的架构中,并允许使用者对数据报进行过滤、地址转换、处理等操作。

netfilter提供了一个框架,将对网络代码的直接干涉降到最低,并允许用规定的接口将其他包处理代码以模块的形式添加到内核中,具有极强的灵活性。

2.主要源代码文件

linux内核版本:2.4.21

netfilter主文件:net/core/netfilter.c

netfilter主头文件:include/linux/netfilter.h

ipv4相关:

c文件:net/ipv4/netfilter/*.c

头文件:include/linux/netfilter_ipv4.h

include/linux/netfilter_ipv4/*.h

ipv4协议栈主体的部分c文件,特别是与数据报传送过程有关的部分:ip_input.c,ip_forward.c,ip_output.c,ip_fragment.c等

二、netfilter/iptables-ipv4总体架构netfilter主要通过表、链实现规则,可以这么说,netfilter是表的容器,表是链的容器,链是规则的容器,最终形成对数据报处理规则的实现。详细地说,netfilter/iptables的体系结构可以分为三个大部分:

https://www.360docs.net/doc/9b1094175.html,filter的hook机制

netfilter的通用框架不依赖于具体的协议,而是为每种网络协议定义一套hook函数。这些hook函数在数据报经过协议栈的几个关键点时被调用,在这几个点中,协议栈将数据报及hook函数标号作为参数,传递给netfilter框架。

对于它在网络堆栈中增加的这些hook,内核的任何模块可以对每种协议的一个或多个hook进行注册,实现挂接。这样当某个数据报被传递给netfilter框架时,内核能检测到是否有任何模块对该协议和hook函数进行了注册。若注册了,则调用该模块的注册时使用的回调函数,这样这些模块就有机会检查、修改、丢弃该数据报及指示netfilter将该数据报传入用户空间的队列。

这样,hook提供了一种方便的机制:在数据报通过linux 内核的不同位置上截获和操作处理数据报。

2.iptables基础模块

iptables基础模块实现了三个表来筛选各种数据报,具体地讲,linux2.4内核提供的这三种数据报的处理功能是相互间独立的模块,都基于netfilter的hook函数和各种表、链实现。这三个表包括:filter表,nat表以及mangle表。

3.具体功能模块

1.

1.数据报过滤模块

2.连接跟踪模块(conntrack)

3.网络地址转换模块(nat)

4.数据报修改模块(mangle)

5.其它高级功能模块

于是,netfilter/iptables总体架构如图

https://www.360docs.net/doc/9b1094175.html,/photo/24896_061206192251. jpg所示

三、hook的实现

https://www.360docs.net/doc/9b1094175.html,filter-ipv4中的hook

netfilter模块需要使用hook来启用函数的动态钩接,它在ipv4中定义了五个hook(位于文件

include/linux/netfilter_ipv4.h,line39),分别对应0-4的hooknum

简单地说,数据报经过各个hook的流程如下:

数据报从进入系统,进行ip校验以后,首先经过第一个hook函数

nF_ip_pRe_Routing进行处理;然后就进入路由代码,其决定该数据报是需要转发还是发给本机的;若该数据报是发被本机的,则该数据经过hook函数nF_ip_local_in处理以后然后传递给上层协议;若该数据报应该被转发则它被nF_ip_FoRwaRd处理;经过转发的数据报经过最后一个hook 函数nF_ip_post_Routing处理以后,再传输到网络上。本地产生的数据经过hook函数nF_ip_local_out处理后,进行路由选择处理,然后经过nF_ip_post_Routing处理后发送出去。

总之,这五个hook所组成的netfilter-ipv4数据报筛选体系如图

https://www.360docs.net/doc/9b1094175.html,/photo/24896_061206192311. jpg:(注:下面所说netfilter/iptables均基于ipv4,不再赘述)

详细地说,各个hook及其在ip数据报传递中的具体位置如图

https://www.360docs.net/doc/9b1094175.html,/photo/24896_061206192340. jpg

nF_ip_pRe_Routing(0)

数据报在进入路由代码被处理之前,数据报在ip数据报接收函数ip_rcv()(位于net/ipv4/ip_input.c,line379)的最后,也就是在传入的数据报被处理之前经过这个hook。在ip_rcv()中挂接这个hook之前,进行的是一些与类型、长度、版本有关的检查。

经过这个hook处理之后,数据报进入ip_rcv_finish()(位于

net/ipv4/ip_input.c,line306),进行查路由表的工作,并判断该数据报是发给本地机器还是进行转发。

在这个hook上主要是对数据报作报头检测处理,以捕获异常情况。涉及功能(优先级顺序):conntrack(-200)、mangle(-150)、dnat(-100)

nF_ip_local_in(1)

目的地为本地主机的数据报在ip数据报本地投递函数ip_local_deliver()(位于net/ipv4/ip_input.c,line290)的最后经过这个hook。

经过这个hook处理之后,数据报进入

ip_local_deliver_finish()(位于net/ipv4/ip_input.c,

spark+openfire 源代码部署

spark+openfire二次开发(一) 文章分类:Java编程 1.准备工作: 到官网上下载Openfire 3.6.4,并通过svn下载openfire、Spark和SparkWeb 的源代码 官网地址如下: https://www.360docs.net/doc/9b1094175.html,/downloads/index.jsp 注意官网上最新的Spark版本是2.5.8,其jdk环境最好使用1.6的版本。 2.环境搭建——spark源码安装配置 双击openfire_3_6_4.exe进行openfire的安装,安装过程很简单,不介绍了。 本例的开发环境是基于Eclipse的。 1)选择File——New——Project——Java Project。 输入项目工程名spark Contents中选择"Create project from existiing source",然后把spark 文件所在的文件夹加进去..

点击Finish。 2)生成Spark: 点击Window::Show View::Ant 右击Ant面板,选择Add Buildfiles 展开spark::build文件夹,选择build.xml,点击"OK" 在Ant面板,展开Spark,双击"release",等一段时间,会提示"Build Successful"。 3)运行Spark: 点击Run::Open Debug Dialog...,出现"Run"窗口 选择"Java Application",右键点击"New"按钮. 在"Main"标签页,将New_configuration换成Spark. 点击Project::Browse按钮,选择Spark,再点OK.

CycloneTCP协议栈移植与使用简介

Arda Technology Arda Tech P.F.FU 2014-12-19 Ver 0.1 #elif defined(USE_XXXXXX) #include "os_port_xxxxxx.h"

NicType type;//控制器类型。0:以太网接口,1:PPP接口,2:6LowPan接口 NicInit init;//控制器初始化函数指针 NicTick tick;//控制器周期性事务处理函数指针 NicEnableIrq enableIrq;//打开控制器中断函数指针 NicDisableIrq disableIrq;//关闭控制器中断函数指针 NicEventHandler eventHandler;//控制器中断响应函数指针,这个是下半段的中断处理部分。 NicSetMacFilter setMacFilter;//配置多播MAC地址过滤函数指针 NicSendPacket sendPacket;//发送包函数指针 NicWritePhyReg writePhyReg;//写PHY寄存器函数指针 NicReadPhyReg readPhyReg;//读PHY寄存器函数指针 bool_t autoPadding;//是否支持自动填充 bool_t autoCrcGen;//是否支持自动生成CRC校验码 bool_t autoCrcCheck;//是否支持自动检查CRC错误 NicSendControlFrame sendControlFrame;//发送控制帧函数指针 NicReceiveControlFrame receiveControlFrame;//接收控制帧函数指针 NicPurgeTxBuffer purgeTxBuffer;//清除发送缓冲函数指针 NicPurgeRxBuffer purgeRxBuffer;//清除接受缓存函数指针 xxxxEthInitGpio(...)//用于在init中初始化GPIO。 xxxxEthInitDmaDesc(...)//用于在init中初始化DMA任务描述符列表。 XXXX_Handler(...)//用于MAC中断的上半段处理。 xxxxEthReceivePacket(...)//用于在eventHandler中收包,把数据从dma的缓冲复制到外部缓冲。xxxxEthCalcCrc(...)//计算CRC值,这个函数基本上是固定的。 xxxxEthDumpPhyReg(...)//用于调试的打印PHY寄存器列表值。

Apache_Spark源码走读系列篇二

超人学院—Apache Spark源码走读之Task运行期之函数调用关系分析 欢迎转载,转载请注明出处,超人学院。 概要 本篇主要阐述在TaskRunner中执行的task其业务逻辑是如何被调用到的,另外试图讲清楚运行着的task其输入的数据从哪获取,处理 的结果返回到哪里,如何返回。 准备 1.spark已经安装完毕 2.spark运行在local mode或local-cluster mode local-cluster mode local-cluster模式也称为伪分布式,可以使用如下指令运行 MASTER=local[1,2,1024] bin/spark-shell [1,2,1024]分别表示,executor number, core number和内存大小,其中内存大小不应小于默认的512M Driver Programme的初始化过程分析 初始化过程的涉及的主要源文件 1.SparkContext.scala 整个初始化过程的入口 2.SparkEnv.scala 创建BlockManager, MapOutputTrackerMaster, ConnectionManager, CacheManager 3.DAGScheduler.scala 任务提交的入口,即将Job 划分成各个stage的关键 4.TaskSchedulerImpl.scala 决定每个stage可以运行几个task, 每个task分别在哪个executor上运行 5.SchedulerBackend

1.最简单的单机运行模式的话,看LocalBackend.scala 2.如果是集群模式,看源文件 SparkDeploySchedulerBackend 初始化过程步骤详解 步骤1:根据初始化入参生成SparkConf,再根据SparkConf来创建SparkEnv, SparkEnv中主要包含以下关键性组件 1. BlockManager 2. MapOutputTracker 3. ShuffleFetcher 4. ConnectionManager private[spark] val env = SparkEnv.create( conf, "", conf.get("spark.driver.host"), conf.get("spark.driver.port").toInt, isDriver = true, isLocal = isLocal) SparkEnv.set(env) 步骤2:创建TaskScheduler,根据Spark的运行模式来选择相应的SchedulerBackend,同时启动taskscheduler,这一步至为关键 private[spark] var taskScheduler = SparkContext.createTaskScheduler(this, master, appName) taskScheduler.start() TaskScheduler.start目的是启动相应的SchedulerBackend,并启动定时器进行检测 overridedef start() { backend.start() if (!isLocal && conf.getBoolean("spark.speculation", false)) {

Zigbee协议栈原理基础

1Zigbee协议栈相关概念 1.1近距离通信技术比较: 近距离无线通信技术有wifi、蓝牙、红外、zigbee,在无线传感网络中需求的网络通信恰是近距离需求的,故,四者均可用做无线传感网络的通信技术。而,其中(1)红外(infrared):能够包含的信息过少;频率低波衍射性不好只能视距通信;要求位置固定;点对点传输无法组网。(2)蓝牙(bluetooth):可移动,手机支持;通信距离10m;芯片价格贵;高功耗(3)wifi:高带宽;覆盖半径100m;高功耗;不能自组网;(4)zigbee:价格便宜;低功耗;自组网规模大。?????WSN中zigbee通信技术是最佳方案,但它连接公网需要有专门的网关转换→进一步学习stm32。 1.2协议栈 协议栈是网络中各层协议的总和,其形象的反映了一个网络中文件传输的过程:由上层协议到底层协议,再由底层协议到上层协议。 1.2.1Zigbee协议规范与zigbee协议栈 Zigbee各层协议中物理层(phy)、介质控制层(mac)规范由IEEE802.15.4规定,网络层(NWK)、应用层(apl)规范由zigbee联盟推出。Zigbee联盟推出的整套zigbee规范:2005年第一版ZigBeeSpecificationV1.0,zigbee2006,zigbee2007、zigbeepro zigbee协议栈:很多公司都有自主研发的协议栈,如TI公司的:RemoTI,Z-Stack,SimpliciTI、freakz、msstatePAN 等。 1.2.2z-stack协议栈与zigbee协议栈 z-stack协议栈与zigbee协议栈的关系:z-stack是zigbee协议栈的一种具体实现,或者说是TI公司读懂了zigbee 协议栈,自己用C语言编写了一个软件—---z-stack,是由全球几千名工程师共同开发的。ZStack-CC2530-2.3.1-1.4.0软件可与TI的SmartRF05平台协同工作,该平台包括MSP430超低功耗微控制器(MCU)、CC2520RF收发器以及CC2591距离扩展器,通信连接距离可达数公里。 Z-Stack中的很多关键的代码是以库文件的形式给出来,也就是我们只能用它们,而看不到它们的具体的实现。其中核心部分的代码都是编译好的,以库文件的形式给出的,比如安全模块,路由模块,和Mesh自组网模块。与z-stack 相比msstatePAN、freakz协议栈都是全部真正的开源的,它们的所有源代码我们都可以看到。但是由于它们没有大的商业公司的支持,开发升级方面,性能方面和z-stack相比差距很大,并没有实现商业应用,只是作为学术研究而已。 还可以配备TI的一个标准兼容或专有的网络协议栈(RemoTI,Z-Stack,或SimpliciTI)来简化开发,当网络节点要求不多在30个以内,通信距离500m-1000m时用simpliciti。 1.2.3IEEE802.15.4标准概述 IEEE802.15.4是一个低速率无线个人局域网(LowRateWirelessPersonalAreaNetworks,LR-WPAN)标准。定义了物理层(PHY)和介质访问控制层(MAC)。 LR-WPAN网络具有如下特点: ◆实现250kb/s,40kb/s,20kb/s三种传输速率。 ◆支持星型或者点对点两种网络拓扑结构。 ◆具有16位短地址或者64位扩展地址。 ◆支持冲突避免载波多路侦听技术(carriersensemultipleaccesswithcollisionavoidance,CSMA/CA)。(mac层) ◆用于可靠传输的全应答协议。(RTS-CTS) ◆低功耗。 ◆能量检测(EnergyDetection,ED)。 ◆链路质量指示(LinkQualityIndication,LQI)。 ◆在2.45GHz频带内定义了16个通道;在915MHz频带内定义了10个通道;在868MHz频带内定义了1个通道。 为了使供应商能够提供最低可能功耗的设备,IEEE(InstituteofElectricalandElectronicsEngineers,电气及电子工程师学会)定义了两种不同类型的设备:一种是完整功能设备(full.functionaldevice,FFD),另一种是简化功能设备

Linux操作系统源代码详细分析

linux源代码分析:Linux操作系统源代码详细分析 疯狂代码 https://www.360docs.net/doc/9b1094175.html,/ ?:http:/https://www.360docs.net/doc/9b1094175.html,/Linux/Article28378.html 内容介绍: Linux 拥有现代操作系统所有功能如真正抢先式多任务处理、支持多用户内存保护虚拟内存支持SMP、UP符合POSIX标准联网、图形用户接口和桌面环境具有快速性、稳定性等特点本书通过分析Linux内核源代码充分揭示了Linux作为操作系统内核是如何完成保证系统正常运行、协调多个并发进程、管理内存等工作现实中能让人自由获取系统源代码并不多通过本书学习将大大有助于读者编写自己新 第部分 Linux 内核源代码 arch/i386/kernel/entry.S 2 arch/i386/kernel/init_task.c 8 arch/i386/kernel/irq.c 8 arch/i386/kernel/irq.h 19 arch/i386/kernel/process.c 22 arch/i386/kernel/signal.c 30 arch/i386/kernel/smp.c 38 arch/i386/kernel/time.c 58 arch/i386/kernel/traps.c 65 arch/i386/lib/delay.c 73 arch/i386/mm/fault.c 74 arch/i386/mm/init.c 76 fs/binfmt-elf.c 82 fs/binfmt_java.c 96 fs/exec.c 98 /asm-generic/smplock.h 107 /asm-i386/atomic.h 108 /asm- i386/current.h 109 /asm-i386/dma.h 109 /asm-i386/elf.h 113 /asm-i386/hardirq.h 114 /asm- i386/page.h 114 /asm-i386/pgtable.h 115 /asm-i386/ptrace.h 122 /asm-i386/semaphore.h 123 /asm-i386/shmparam.h 124 /asm-i386/sigcontext.h 125 /asm-i386/siginfo.h 125 /asm-i386/signal.h 127 /asm-i386/smp.h 130 /asm-i386/softirq.h 132 /asm-i386/spinlock.h 133 /asm-i386/system.h 137 /asm-i386/uaccess.h 139 //binfmts.h 146 //capability.h 147 /linux/elf.h 150 /linux/elfcore.h 156 /linux/errupt.h 157 /linux/kernel.h 158 /linux/kernel_stat.h 159 /linux/limits.h 160 /linux/mm.h 160 /linux/module.h 164 /linux/msg.h 168 /linux/personality.h 169 /linux/reboot.h 169 /linux/resource.h 170 /linux/sched.h 171 /linux/sem.h 179 /linux/shm.h 180 /linux/signal.h 181 /linux/slab.h 184 /linux/smp.h 184 /linux/smp_lock.h 185 /linux/swap.h 185 /linux/swapctl.h 187 /linux/sysctl.h 188 /linux/tasks.h 194 /linux/time.h 194 /linux/timer.h 195 /linux/times.h 196 /linux/tqueue.h 196 /linux/wait.h 198 init/.c 198 init/version.c 212 ipc/msg.c 213 ipc/sem.c 218 ipc/shm.c 227 ipc/util.c 236 kernel/capability.c 237 kernel/dma.c 240 kernel/exec_do.c 241 kernel/exit.c 242 kernel/fork.c 248 kernel/info.c 255 kernel/itimer.c 255 kernel/kmod.c 257 kernel/module.c 259 kernel/panic.c 270 kernel/prk.c 271 kernel/sched.c 275 kernel/signal.c 295 kernel/softirq.c 307 kernel/sys.c 307 kernel/sysctl.c 318 kernel/time.c 330 mm/memory.c 335 mm/mlock.c 345 mm/mmap.c 348 mm/mprotect.c 358 mm/mremap.c 361 mm/page_alloc.c 363 mm/page_io.c 368 mm/slab.c 372 mm/swap.c 394 mm/swap_state.c 395 mm/swapfile.c 398 mm/vmalloc.c 406 mm/vmscan.c 409

TCPIP协议栈实践报告

《专业综合实践》 训练项目报告训练项目名称:TCP/IP协议栈

1.IP协议 IP协议是TCP/IP协议的核心,所有的TCP,UDP,IMCP,IGCP的数据都以IP数据格式传输。要注意的是,IP不是可靠的协议,这是说,IP协议没有提供一种数据未传达以后的处理机制--这被认为是上层协议--TCP或UDP要做的事情。所以这也就出现了TCP是一个可靠的协议,而UDP就没有那么可靠的区别。这是后话,暂且不提 1.1.IP协议头如图所示

挨个解释它是教科书的活计,我感兴趣的只是那八位的TTL字段,还记得这个字段是做什么的么?这个字段规定该数据包在穿过多少个路由之后才会被抛弃(这里就体现出来IP协议包的不可靠性,它不保证数据被送达),某个ip数据包每穿过一个路由器,该数据包的TTL数值就会减少1,当该数据包的TTL成为零,它就会被自动抛弃。这个字段的最大值也就是255,也就是说一个协议包也就在路由器里面穿行255次就会被抛弃了,根据系统的不同,这个数字也不一样,一般是32或者是64,Tracerouter这个工具就是用这个原理工作的,tranceroute 的-m选项要求最大值是255,也就是因为这个TTL在IP协议里面只有8bit。 现在的ip版本号是4,所以也称作IPv4。现在还有IPv6,而且运用也越来越广泛了。 1.2.IP路由选择 当一个IP数据包准备好了的时候,IP数据包(或者说是路由器)是如何将数据包送到目的地的呢?它是怎么选择一个合适的路径来"送货"的呢? 最特殊的情况是目的主机和主机直连,那么主机根本不用寻找路由,直接把数据传递过去就可以了。至于是怎么直接传递的,这就要靠ARP协议了,后面会讲到。 稍微一般一点的情况是,主机通过若干个路由器(router)和目的主机连接。那么路由器就要通过ip包的信息来为ip包寻找到一个合适的目标来进行传递,比如合适的主机,或者合适的路由。路由器或者主机将会用如下的方式来处理某一个IP数据包 如果IP数据包的TTL(生命周期)以到,则该IP数据包就被抛弃。 搜索路由表,优先搜索匹配主机,如果能找到和IP地址完全一致的目标

基于Spark的机器学习资料43、其它SparkML算法简单介绍

Spark ML算法简单介绍 一、线性回归算法 线性回归(Linear Regression),数理统计中回归分析,用来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,其表达形式为y = w'x+e,e为误差服从均值为0的正态分布,其中只有一个自变量的情况称为简单回归,多个自变量的情况叫多元回归。 这个例子中近简化使用房屋面积一个因子作为自变量,y轴对应其因变量房屋价格。所以我们机器学习的线性回归就变为对于给定有限的数据集,进行一元线性回归,即找到一个一次函数y=y(x) + e,使得y满足当x={2104, 1600, 2400, 1416, 3000, ... }, y={400, 330, 369, 232, 540, ... } 如下图所示: 至于公式的求解,大家可以自己去看一下源码或者方程求解,这里就不讲解了。 二、逻辑回归算法 logistic回归本质上是线性回归,只是在特征到结果的映射中加入了一层函数映射,即先把特征线性求和,然后使用函数g(z)将最为假设函数来预测。g(z)可以将连续值映射到0和1上。 它与线性回归的不同点在于:为了将线性回归输出的很大范围的数,例如从负无穷到正无穷,压缩到0和1之间,这样的输出值表达为“可能性”才能说服广大民众。当然了,把大值压缩到这个范围还有个很好的好处,就是可以消除特别冒尖的变量的影响。

三、贝叶斯分类算法 贝叶斯定理 贝叶斯定理解决的是这样一个问题:已知在事件B发生的条件下,事件A的发生概率P(A|B),怎样得到事件A发生的条件下,事件B的发生概率P(B|A)?贝叶斯定理为我们打通了从P(A|B) 到P(B|A) 的道路。 P(B|A) = P(A|B) ×P(B) / P(A) 举例说明,假设已经有了100个email,其中: 垃圾邮件占比60%,即P(Spam) = 0.6 80%的垃圾邮件包含关键字“buy”,即P(Buy|Spam) = 0.8 20%的垃圾邮件不包含关键字“buy” 正常邮件占比40%,即P(NotSpam) = 0.4 10%的正常邮件包含关键字“buy”,即P(Buy|NotSpam) = 0.1 90%的正常邮件不包含关键字“buy” 现在,第101个email 进来了,它包含关键字“buy”,那么它是垃圾邮件的概率P(Spam|Buy) 是多少? P(Spam|Buy) = P(Buy|Spam) ×P(Spam) / P(Buy) P(Buy) = P(Buy|Spam) ×P(Spam) + P(Buy|NotSpam) ×P(NotSpam) P(Spam|Buy) = (0.8 ×0.6) / (0.8 ×0.6 + 0.1 ×0.4) = 0.48 / 0.52 = 0.923 由此得出,这个email 有92.3%的可能是一个垃圾邮件。 四、SVM支持向量机算法 支持向量机是一个类分类器,它能够将不同类的样本在样本空间中践行分割,其中生成的分隔面叫作分隔超平面。给定一些标记好的训练样本,SVM算法输出一个最优化的分隔超平面。 五、决策树算法 决策树就是通过一系列规则对数据进行分类的一种算法,可以分为分类树和回归树两类,分类树处理离散变量的,回归树是处理连续变量。 样本一般都有很多个特征,有的特征对分类起很大的作用,有的特征对分类作用很小,甚至没有作用。如决定是否对一个人贷款是,这个人的信用记录、收入等就是主要的判断依据,而性别、婚姻状况等等就是次要的判断依据。决策树构建的过程,就是根据特征的决定性程度,先使用决定性程度高的特征分类,再使用决定性程度低的特征分类,这样构建出一棵倒立的树,就是我们需要的决策树模型,可以用来对数据进行分类。 决策树学习的过程可以分为三个步骤:1)特征选择,即从众多特征中选择出一个作为当前节点的分类标准; 2)决策树生成,从上到下构建节点;3)剪枝,为了预防和消除过拟合,需要对决策树剪枝。 六、Kmeans聚类算法 聚类(clustering)与分类(classification)的不同之处在于:分类是一种示例式的有监督学习算法,它要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应,很多时候这个条件是不成立的,尤其是面对海量数据的时候;而聚类是一种观察式的无监督学习算法,在聚类之前可以不知道类别甚至不给定类别数量,由算法通过对样本数据的特征进行观察,然后进行相似度或相异度的分析,从而达到“物以类聚”的目的。 七、LDA主题模型算法 隐含狄利克雷分配(LDA,Latent Dirichlet Allocation)是一种主题模型(Topic Model,即从所收集的文档中推测主题)。甚至可以说LDA模型现在已经成为了主题建模中的一个标准,是实践中最成功的主题模型之一。 那么何谓“主题”呢?,就是诸如一篇文章、一段话、一个句子所表达的中心思想。不过从统计模型的角度来说,我们是用一个特定的词频分布来刻画主题的,并认为一篇文章、一段话、一个句子是从一个概率模型中生成的。也就是说在主题模型中,主题表现为一系列相关的单词,是这些单词的条件概率。形象来说,主题就是一个桶,里面装了出现概率较高的单词,这些单词与这个主题有很强的相关性。 LDA可以用来识别大规模文档集(document collection)或语料库(corpus)中潜藏的主题信息。它采用了词

ZigBee测试与协议分析

ZigBee测试与协议分析 1 前言 ZigBee协议栈包括物理层协议(IEEE802.15.4)和上层软件协议(ZigBee 2007以及其他的ZigBee网络协议)。本文将从这两方面来了解这些协议,通过介绍如何捕获及如何理解关键参数,深层次剖析ZigBee技术。有了这些本质性的认识,对于分析解决无线产品应用问题,会有很大的帮助。 2 物理层分析 ZigBee的物理层为IEEE802.15.4标准所规定,定义了ZigBee底层的调制编码方式。这些规约大多是芯片设计者需要关心的,对于应用开发来说,更关心的是衡量一个芯片、一个射频系统性能的参数。在过去的文章中,已介绍了输出功率、接收灵敏度和链路预算等参数,这一讲将更深入地介绍一个调制质量的参数:EVM。EVM指的是误差向量(包括幅度和相位的矢量),表征在一个给定时刻理想无误差基准信号与实际发射信号的向量差,。从EVM参数中,可以了解到一个输出信号的幅度误差及相位误差。 EVM是衡量一个RF系统总体调制质量的指标,定义为信号星座图上测量信号与理想信号之间的误差,它用来表示发射器的调制精度,调制解调器、PA、混频器、收发器等对它都会有影响。EVM数据和眼图。 了解完这个参数之后,再看看实际测试中是如何获取EVM参数的。 ZigBee物理层的测试,在产品研发、生产和维护阶段,可以分别采用不同的仪器。 (1)产品研发阶段要测量EVM参数,需要使用带协议解析的频谱仪,最好是自带相应协议插件的仪器,可以使用安捷伦PXA N9030A频谱分析仪+8960B插件(选配了ZigBee分析插件)。这些仪器可以测试出ZigBee调制信号的星座图、实时数据和眼图等信息,在芯片级开发过程中,需要考量高频电容电感以及滤波器等的单个及组合性能,特别需要注意的是ZigBee信号的临道抑制参数,利用PXA N9030A的高分辨率,可以查看点频的带外信号,这些细节在更换射频器件供应商时,需要仔细测量,一般数字电路抄板比较容易,因为器件性能的影响不是很大,只要值和封装对了就可以,但是射频前端的设计上,即使原样的封装、容值和感值,供应商不一样,射频参数也是不一样的,板材的选用也极大地影响着阻抗匹配,因此复制和再开发都有较大难度。合格的测试工具,加上有质量保证的射频器件供应商资源,方能真正具备RF设计能力。安捷伦PXA N9030A频谱分析仪。 (2)批量生产阶段在批量生产中,不可能将实验室的研发测试仪器搬到工厂,因此,需要便携小巧的测试设备,这时可用罗德与斯瓦茨公司的热功率探头,如NRP-Z22,做一个2.4 GHz的输出功率测试,保证能够输出公差允许的功率信号即可,因为在生产中,射频器件的焊接不良、馈线连接头的接触不良,都会造成输出功率的下降甚至消失。需要注意的是,探头非常容易被静电损坏,必须要带上防静电手套进行操作,返修过程如需要经过德国,则时间长,经费也不便宜,不是很严重的损坏倒是可以在深圳维修中心处理。NRP-Z22。 (3)应用阶段在现场出现问题时,ZigBee节点已经安装到现场,不能逐一拆下来测试,并且周围的电磁环境也是没办法在单个节点上检测到,这时就需要手持式的频谱仪进行现场勘查了,例如安捷伦公司的N9912A手持式频谱仪。使用该频谱仪,可以完成无线系统设计初期的现场勘查工作,检测现场各个地点是否有异常电磁干扰,对于ZigBee来说,当然是检测是否有持续的WIFI信号干扰了。同时,更为详细的现场勘查,还包括在定点进行数据发送,预期覆盖点进行信号强度分析,以实地评估墙体等障碍物的信号衰减,在已经架设好的ZigBee网络中,也可以检测信号覆盖,数据通信是否正常等。N9912A。

传统协议栈和DPDK

一、传统协议栈之数据包从NIC到内核 1、从NIC到内存 概括地说,网络数据包进入内存(接收数据包)的流程为: 网线--> Rj45网口--> MDI 差分线 --> bcm5461(PHY芯片进行数模转换) --> MII总线 --> TSEC的DMA Engine 会自动检查下一个可用的Rx bd -->把网络数据包DMA 到Rx bd所指向的内存,即skb->data

1、首先,内核在主内存中为收发数据建立一个环形的缓冲队列(通常叫DMA环形缓冲区)。 2、内核将这个缓冲区通过DMA映射,把这个队列交给网卡; 3、网卡收到数据,就直接放进这个环形缓冲区了——也就是直接放进主内存了;然后,向系统产生一个中断; 4、内核收到这个中断,就取消DMA映射,这样,内核就直接从主内存中读取数据; 对应以上4步,来看它的具体实现: 1、分配环形DMA缓冲区 Linux内核中,用skb来描述一个缓存,所谓分配,就是建立一定数量的skb,然后把它们组织成一个双向链表 2、建立DMA映射 内核通过调用dma_map_single(struct device *dev,void *buffer,size_tsize,enumdma_data_direction direction) 建立映射关系。 struct device *dev,描述一个设备;buffer:把哪个地址映射给设备;也就是某一个skb——要映射全部,当然是做一个双向链表的循环即可;size:缓存大小;direction:映射方向——谁传给谁:一般来说,是“双向”映射,数据在设备和内存之间双向流动;对于PCI设备而言(网卡一般是PCI的),通过另一个包裹函数pci_map_single,这样,就把buffer交给设备了!设备可以直接从里边读/取数据。 3、这一步由硬件完成; 4、取消映射 ma_unmap_single,对PCI而言,大多调用它的包裹函数pci_unmap_single,不取消的话,缓存控制权还在设备手里,要调用它,把主动权掌握在CPU手里——因为我们已经接收到数据了,应该由CPU把数据交给上层网络栈;当然,不取消之前,通常要读一些状态位信息,诸如此类,一般是调用dma_sync_single_for_cpu() 让CPU在取消映射前,就可以访问DMA

linux内核IMQ源码实现分析

本文档的Copyleft归wwwlkk所有,使用GPL发布,可以自由拷贝、转载,转载时请保持文档的完整性,严禁用于任何商业用途。 E-mail: wwwlkk@https://www.360docs.net/doc/9b1094175.html, 来源: https://www.360docs.net/doc/9b1094175.html,/?business&aid=6&un=wwwlkk#7 linux2.6.35内核IMQ源码实现分析 (1)数据包截留并重新注入协议栈技术 (1) (2)及时处理数据包技术 (2) (3)IMQ设备数据包重新注入协议栈流程 (4) (4)IMQ截留数据包流程 (4) (5)IMQ在软中断中及时将数据包重新注入协议栈 (7) (6)结束语 (9) 前言:IMQ用于入口流量整形和全局的流量控制,IMQ的配置是很简单的,但很少人分析过IMQ的内核实现,网络上也没有IMQ的源码分析文档,为了搞清楚IMQ的性能,稳定性,以及借鉴IMQ的技术,本文分析了IMQ的内核实现机制。 首先揭示IMQ的核心技术: 1.如何从协议栈中截留数据包,并能把数据包重新注入协议栈。 2.如何做到及时的将数据包重新注入协议栈。 实际上linux的标准内核已经解决了以上2个技术难点,第1个技术可以在NF_QUEUE机制中看到,第二个技术可以在发包软中断中看到。下面先介绍这2个技术。 (1)数据包截留并重新注入协议栈技术

(2)及时处理数据包技术 QoS有个技术难点:将数据包入队,然后发送队列中合适的数据包,那么如何做到队列中的数

激活状态的队列是否能保证队列中的数据包被及时的发送吗?接下来看一下,激活状态的队列的 证了数据包会被及时的发送。 这是linux内核发送软中断的机制,IMQ就是利用了这个机制,不同点在于:正常的发送队列是将数据包发送给网卡驱动,而IMQ队列是将数据包发送给okfn函数。

mtcp协议栈

mTCP:A Highly Scalable User-level TCP Stack for Multicore Systems EunYoung Jeong,Shinae Woo,Muhammad Jamshed,Haewon Jeong Sunghwan Ihm*,Dongsu Han,and KyoungSoo Park KAIST*Princeton University Abstract Scaling the performance of short TCP connections on multicore systems is fundamentally challenging.Although many proposals have attempted to address various short-comings,inef?ciency of the kernel implementation still persists.For example,even state-of-the-art designs spend 70%to80%of CPU cycles in handling TCP connections in the kernel,leaving only small room for innovation in the user-level program. This work presents mTCP,a high-performance user-level TCP stack for multicore systems.mTCP addresses the inef?ciencies from the ground up—from packet I/O and TCP connection management to the application inter-face.In addition to adopting well-known techniques,our design(1)translates multiple expensive system calls into a single shared memory reference,(2)allows ef?cient?ow-level event aggregation,and(3)performs batched packet I/O for high I/O ef?ciency.Our evaluations on an8-core machine showed that mTCP improves the performance of small message transactions by a factor of25compared to the latest Linux TCP stack and a factor of3compared to the best-performing research system known so far.It also improves the performance of various popular applications by33%to320%compared to those on the Linux stack. 1Introduction Short TCP connections are becoming widespread.While large content transfers(e.g.,high-resolution videos)con-sume the most bandwidth,short“transactions”1dominate the number of TCP?ows.In a large cellular network,for example,over90%of TCP?ows are smaller than32KB and more than half are less than4KB[45]. Scaling the processing speed of these short connec-tions is important not only for popular user-facing on-line services[1,2,18]that process small messages.It is 1We refer to a request-response pair as a transaction.These transac-tions are typically small in size.also critical for backend systems(e.g.,memcached clus-ters[36])and middleboxes(e.g.,SSL proxies[32]and redundancy elimination[31])that must process TCP con-nections at high speed.Despite recent advances in soft-ware packet processing[4,7,21,27,39],supporting high TCP transaction rates remains very challenging.For exam-ple,Linux TCP transaction rates peak at about0.3million transactions per second(shown in Section5),whereas packet I/O can scale up to tens of millions packets per second[4,27,39]. Prior studies attribute the inef?ciency to either the high system call overhead of the operating system[28,40,43] or inef?cient implementations that cause resource con-tention on multicore systems[37].The former approach drastically changes the I/O abstraction(e.g.,socket API) to amortize the cost of system calls.The practical lim-itation of such an approach,however,is that it requires signi?cant modi?cations within the kernel and forces ex-isting applications to be re-written.The latter one typically makes incremental changes in existing implementations and,thus,falls short in fully addressing the inef?ciencies. In this paper,we explore an alternative approach that de-livers high performance without requiring drastic changes to the existing code base.In particular,we take a clean-slate approach to assess the performance of an untethered design that divorces the limitation of the kernel implemen-tation.To this end,we build a user-level TCP stack from the ground up by leveraging high-performance packet I/O libraries that allow applications to directly access the packets.Our user-level stack,mTCP,is designed for three explicit goals: 1.Multicore scalability of the TCP stack. 2.Ease of use(i.e.,application portability to mTCP). 3.Ease of deployment(i.e.,no kernel modi?cations). Implementing TCP in the user level provides many opportunities.In particular,it can eliminate the expen-sive system call overhead by translating syscalls into inter-process communication(IPC).However,it also in-

TI_zigbee协议栈结构分析应用

无线盛世《快速进入ZB世界》
Ver:1

进入Zigbee世界的准备工作
§ 首先,我们需具备一些硬件设备及平台。以下 我就罗列一下Zigbee开发基本工具: § 计算机:不管是设计电路还是编程开发都是离 不开它的。 § Zigbee开发板:对于初学者来说,Zigbee开发 板无疑是最佳选择。有了开发板,你可以在我 们成熟设计的基础上学习或者做自己的设计。 § Zigbee模块:集MCU,RF,天线设计于一体 的Zigbee模块。使用它,我们可省去设计天线 及IC周边电路设计的复杂工作。

进入Zigbee世界的准备工作
§ Zigbee仿真器:是集烧写程序、在线编程和在线仿真 功能于一身的开发过程工作中必不可少的开发工具。 编程器既能对CC243x芯片(其实包括TI产品中的CC 系列的大部分芯片)进行烧写程序(hex标准文件程序 ),也能对CC243x芯片进行在线编程和仿真,让我们 能方便地在线调试开发,从而大大地提高了开发效率 。 § Zigbee协议分析仪:ZigBee的设计开发者必不可少的 工具!ZigBee协议分析仪具有广泛的功能,包括:分 析以及解码在PHY、MAC、NETWORK/SECURITY、 APPLICATION FRAMEWORK、和APPLICATION PROFICES等各层协议上的信息包;显示出错的包以 及接入错误;指示触发包;在接收和登记过程中可连 续显示包。

进入Zigbee世界的准备工作
§ 再次,我们需要在将用于开发Zigbee的计 算机平台上安装这些软件: § Zigbee协议分析软件(sniffer) § 程序烧写软件(Flash Programmer) § IAR公司的EW8051 version 7.20I/W32 。

相关文档
最新文档