中考数学二次函数归纳题之代数几何综合题

中考数学二次函数归纳题之代数几何综合题
中考数学二次函数归纳题之代数几何综合题

中考数学二次函数归纳题之代数几何综

合题

姓名:__________

指导:__________

日期:__________

6.如图已知抛物线y=ax2+bx+2 经过点A(﹣4,0)和B(1,0)两点,与y 轴交于点C.

(1)求抛物线的解析式;

(2)如图1,将直线AC 沿y 轴向下平移,得直线BD,BD 与抛物线交于另一点D,连接CD,CD 与x 轴交于点E,试判定△ADE 和△ABD 是否相似,并说明理由.

(3)如图2,在(2)的条件下,设点M 是△ABD 的外心.点Q 是线段AE 上的动点(不与点A,E 重合).

① 直接写出M 点的坐标:____________________.

② 设直线MQ 的函数表达式为y=kx+b.在射线MQ 绕点M 从MA 旋转到ME 的过程中,是否存在点Q,使得k 为整数.若存在,求出Q 点的坐标;若不存在,请说明理由.

【解析】

解:

(1)设抛物线的解析式为y=a(x﹣1)(x+4),将(0,2)代入解析式解得

a=-1/2,

∴ 抛物线解析式为y=-1/2 x2 - 3/2 x + 2 ;

(2)设直线AC 的解析式为y=kx l∴ △ADE∽△ABD ;

(3)

① 点M 是△ABD 的外心,则点M 在AB 的垂直平分线上,

设点M(-3/2,a),

∴ MD=MB,

∴ MD2=MB2,

∴ a = -5/2 ,

∴ M 点坐标为(-3/2,-5/2);

② ∵ A(﹣4,0),M(-3/2 , -5/2), E(-2 ,0),

∴ 可得直线AM 的解析式为y=﹣x﹣4,直线EM 的解析式为y=﹣5x﹣10,

∴ 可知当直线MQ 的k 值为整数时,k 值可以为﹣2,﹣3,﹣4,

当k=﹣2 时,直线MQ 为y=﹣2x﹣11/2,点Q 坐标为(﹣11/4,0);当k=﹣3 时,直线MQ 为y=﹣3x﹣7,点Q 坐标为(-7/3,0);

当k=﹣4 时,直线MQ 为y=﹣4x﹣17/2,点Q 坐标为(-17/8,0);∴ Q 点坐标为(﹣11/4,0)或(-7/3,0)或(-17/8,0).

【分析】

(1)

观察A、B 两点的纵坐标都是0 及C(0,2),通过设出抛物线的两根式把a 解出来,从而确定出抛物线的解析式,关键是要熟练掌握二次函数的图像和性质;

(2)

证明两个三角形相似,本题用的是“两边对应成比例且夹角相等” 这一判定条件。

直线平移K 值不变,关键是求出直线BD 的解析式,从而联立抛物线求出点D

的坐标来。

求直线BD 的解析式y = kx + b ,k = 1/2,b 是通过线段OB 两边的直角三角形相似求出来的。

再把直线CD 的解析式求出来,从而可求出点E 的坐标,线段AD 的长度是通过两点之间的距离公式求出来的,至此判定两边对应成比例的线段的长度都已经求出来了,从而可判定相似。

(3)

① 三角形的外心就是三角形外接圆的圆心,这个圆的圆心到三角形的三个顶点的距离都相等。

由图可知AB 是外接圆的一条弦,由“垂径定理” 可知点M 在线段AB 的垂直平分线上,从而通过坐标中点公式可求出点M 的横坐标,在通过两点之间的距离公式建立关于点M 的纵坐标的一个方程来,就可以求出点M 的坐标;

② 点Q 是线段AE 上的动点(不与点A,E 重合),先求出直线AM 的解析式为y=﹣x﹣4,直线EM 的解析式为y=﹣5x﹣10,可知-5 k -1 , 结合题目条件可知K 的取值有三种情况,把每种情况的函数解析式求出来,从而可求出点Q 的坐标。

中考数学复习检测第2部分专题突破专题十解答题突破—代数几何综合题(涉及二次函数)

2019-2020年中考数学复习检测第2部分专题突破专题十解答题突破—代数几何综合题(涉及二次函数) 类型一以几何图形为背景的综合题 【例1】(xx·苏州一模)如图1①,四边形ABCD中,AD∥BC,DC⊥BC,AD =6 cm,DC=8 cm,BC=12 cm.动点M在CB上运动,从C点出发到B点,速度每秒2 cm;动点N在BA上运动,从B点出发到A点,速度每秒1 cm.两个动点同时出发,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒). (1)求线段AB的长. (2)当t为何值时,MN∥CD? (3)设三角形DMN的面积为S,求S与t之间的函数关系式. (4)如图1②,连接BD,是否存在某一时刻t,使MN与BD互相垂直?若存在,求出这时的t值;若不存在,请说明理由. 图1

【例2】(xx·吉林)如图2,在等腰直角三角形ABC中,∠BAC=90°,AC=8 2 cm,AD⊥BC于点D,点P从点A出发,沿A→C方向以 2 cm/s的速度运动到点C停止,在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2) 图2 备用图 (1)当点M落在AB上时,x=____________; (2)当点M落在AD上时,x=____________; (3)求y关于x的函数解析式,并写出自变量x的取值范围.

1.(xx·宁夏)如图3,在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC 向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒 (0<x≤3),解答下列问题: (1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值; 图3 (2)是否存在x的值,使得QP⊥DP?试说明理由. 2.(xx·梅州)如图4,在Rt△ABC中,∠ACB=90°,AC=5 cm,∠BAC=60°,动点M 从点B出发,在BA边上以每秒2 cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒 3 cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN. 图4 (1)若BM=BN,求t的值; (2)若△MBN与△ABC相似,求t的值; (3)当t为何值时,四边形ACNM的面积最小?并求出最小值.

二次函数与几何综合压轴题题型归纳88728

学生: 科目: 数 学 教师: 刘美玲 一、二次函数和特殊多边形形状 二、二次函数和特殊多边形面积 三、函数动点引起的最值问题 四、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:?? ? ??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此 抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下:

已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解? ?? ?==0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。 (3)如图,B A 、是直线l 同旁的两个定点,线段a ,在直线l 上确定两点E 、F (E 在F 的左侧 ),使得四边形AEFB 的周长最小。 8、在平面直角坐标系中求面积的方法:直接用公式、割补法 三角形的面积求解常用方法:如右图,S △PAB =1/2 ·PM ·△x=1/2 ·AN ·△y 9、函数的交点问题:二次函数(c bx ax y ++=2 )与一次函数(h kx y +=) (1)解方程组???h kx y c bx ax y +=++= 2可求出两个图象交点的坐标。 (2)解方程组???h kx y c bx ax y +=++= 2,即()02 =-+-+h c x k b ax ,通过?可判断两个图象的交点 的个数 有两个交点 ? 0>?

代数几何综合题含答案

代数几何综合题 代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。 例1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作P C P B ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式; (2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。 解:(1) P C P B B O P O ⊥⊥, ∴∠+∠=?∠+∠ ∴∠=∠C P A O P B P B O O P B C P A P B O 90, A (2,0),C (2,y )在直线a 上 ∴∠=∠=? B O P P A C 90 ∴??B O PP A C ~ ∴ =P O A C B O P A ,∴=+||||||x y x 2 2 , x y x y x <<∴= -002 2,,∴=-+y x x 122 (2) x <0,∴x 的最大整数值为-1 , 当x =-1时,y =- 32,∴=CA 3 2

B O a B O Q C A Q O Q A Q B O C A //~,,∴∴=?? 设Q 点坐标为()m ,0,则A Q m =-2 ∴-=∴=m m m 2232 8 7 , ∴Q 点坐标为()8 7 0, 说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。关键是搞清楚用坐标表示的数与线段的长度的关系。 练习 1.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO. (1)求证:CD ∥AO ;(3分) (2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3分) (3)若AO +CD =11,求AB 的长。(4分) B

代数几何综合题(含答案)

代数几何综合题 x<0,连 1、如图,已知平面直角坐标系中三点A(2,0),B(0,2),P(x,0)() ⊥交过点A的直线a于点C(2,y) 结BP,过P点作PC PB (1)求y与x之间的函数关系式; (2)当x取最大整数时,求BC与PA的交点Q的坐标。 2.如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,⊙O的直径BD为6,连结CD、AO. (1)求证:CD∥AO; (2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围; (3)若AO+CD=11,求AB的长. B

3.如图,A 、B 两点的坐标分别是(x 1,0)、(x 2,O),其中x 1、x 2是关于x 的方程x 2 +2x+m-3=O 的两根,且x 1<0

1、已知抛物线)0(22 >--=m m x x y 与y 轴的交于C 点,C 点关于抛物线对称轴的对称点为C ′。 (1)求抛物线的对称轴及C 、C ′的坐标(可用含m 的代数式表示); (2)如果点Q 在抛物线的对称轴上,点P 在抛物线上,以点C 、C ′、P 、Q 为顶点的四边形是平行四边形,求Q 点和P 的坐标(可用含m 的代数式表示); (3)在(2)的条件下,求出平行四边形的周长。 2、如图,抛物线)0(2≠++=a c bx ax y 与x 轴、y 轴分别相交于 A (-1,0)、 B (3,0)、 C (0,3)三点,其顶点为 D . (1)求:经过A 、B 、C 三点的抛物线的解析式; (2)求四边形ABDC 的面积; (3)试判断△BCD 与△COA 是否相似若相似写出证明过程;若不相似,请说明理由. A B D C o x y

二次函数的定义专项练习30题(有答案)

二次函数的定义专项练习 30 题(有答案) 1.下列函数中,是二次函数的有( ) ① y=1﹣ x 2② y= ③ y=x (1﹣x )④ y= ( 1﹣ 2x )( 1+2x ) A 1 个 B 2 个 C 3 个 D 4 个 5.若 y=(m 2+m ) 是二次函数,则 m 的值是( ) A m=1 ±2 B m=2 C m= ﹣ 1 或 D m=3 . . . m=3 . 6.下列函数 ,y=3x 2, ,y=x (x ﹣2),y=(x ﹣ 1)2﹣ x 2 中,二次函数的个数 为 ( 7.下列结论正确的是( ) 二次函数中两个变量的值是非零实数 二次函数中变量 x 的值是所有实数 2 形如 y=ax +bx+c 的函数叫二次函数 2 二次函数 y=ax +bx+c 中 a ,b ,c 的值均不能为零 8.下列说法中一定正确的是( ) A . y=ax 2 是二次函数 B . 二次函数自变量的取值范围是所有实数 C . 二次方程是二次函数的特例 D . 二次函数自变量的取值范围是非零实数 3.下列具有二次函数关系的是( ) A . 正方形的周长 y 与边长 x B . 速度一定时,路程 s 与时间 t C . 三角形的高一定时,面积 y 与底边长 x D . 正方形的面积 y 与边长 x 4.若 y= ( 2﹣ m ) 是二次函数,则 m 等于( ) 2.下列结论正确的是 ( ) D 不能确定 A C ﹣ 2 ±2 B 2 A . B . C . D .

2 A . 函数 y=ax 2+bx+c (其中 a ,b , c 为常数)一定是二次函数 B . 圆的面积是关于圆的半径的二次函数 C . 路程一定时,速度是关于时间的二次函数 D . 圆的周长是关于圆的半径的二次函数 2 9.函数 y=( m ﹣ n )x 2+mx+n 是二次函数的条件是( ) A . m 、n 是常数,且 m ≠0 B . m 、 n 是常数,且 m ≠n C . m 、n 是常数,且 n ≠0 D . m 、 n 可以为任何常数 10.下列两个量之间的关系不属于二次函数的是( ) A . 速度一定时,汽车行使的路程与时间的关系 B . 质量一定时,物体具有的动能和速度的关系 C . 质量一定时,运动的物体所受到的阻力与运动速度的关系 D . 从高空自由降落的物体,下降的高度与下降的时间的关系 11.下列函数中, y 是 x 二次函数的是( ) A y=x ﹣1 B y=x 2+ ﹣ 10 C 2 y=x +2x D 2 y =x ﹣ 1 . . . . 12.下面给出了 6 个函数: 其中是二次函数的有( ) A 1 个 B 2个 C 3 个 2 13.自由落体公式 h= gt 2(g 为常量),h 与 t 之间的关系是( ) A 正比例函数 B 一次函数 C 二次函数 D 以上答案都不对 14.如果函数 y= ( k ﹣ 3) +kx+1 是二次函数,那么 k 的值一定是 ___________ . 15.二次函数 y= ( x ﹣2) 2﹣ 3 中,二次项系数为 __________ ,一次项系数为 ___________ 为 _________ . 16.已知函数 y=(k+2) 是关于 x 的二次函数,则 k= __________ . 17.已知二次函数 的图象是开口向下的抛物线, m= ___________ . 22 18.当 m __________ 时,关于 x 的函数 y= (m 2﹣1)x 2+(m ﹣1) x+3 是二次函数. 2 2 2 19. y=(m 2﹣ 2m ﹣3)x 2+(m ﹣1)x+m 2是关于 x 的二次函数要满足的条件是 ___________ . ① y=3x 2﹣1;② y=﹣ x 2 ﹣3x ; ③ y= ; 2 ④ y=x (x +x+1 );⑤ y= ⑥ y= ,常数项

一次函数的与几何图形综合的题目(含答案)

一次函数与几何图形综合专题讲座 思想方法小结 : (1)函数方法. 函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题. (2)数形结合法. 数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用. 知识规律小结 : (1)常数k ,b 对直线y =kx +b (k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b =0时,直线经过原点; 当b ﹤0时,直线与y 轴的负半轴相交. ②当k ,b 异号时,即-k b >0时,直线与x 轴正半轴相交; 当b =0时,即- k b =0时,直线经过原点; 当k ,b 同号时,即-k b ﹤0时,直线与x 轴负半轴相交. ③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b =0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b =0时,图象经过第二、四象限;

当b <O ,b <O 时,图象经过第二、三、四象限. (2)直线y =kx +b (k ≠0)与直线y =kx (k ≠0)的位置关系. 直线y =kx +b (k ≠0)平行于直线y =kx (k ≠0) 当b >0时,把直线y =kx 向上平移b 个单位,可得直线y =kx +b ; 当b ﹤O 时,把直线y =kx 向下平移|b |个单位,可得直线y =kx +b . (3)直线b 1=k 1x +b 1与直线y 2=k 2x +b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2?y 1与y 2相交; ②?? ?=≠2 12 1b b k k ?y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2) ; ③???≠=21 21,b b k k ?y 1与y 2平行; ④?? ?==2 121, b b k k ?y 1与y 2重合. 例题精讲: 1、直线y =-2x +2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC =OB (1) 求AC (2) 在OA 的延长线上任取一点P ,作PQ ⊥BP ,交直线AC 于Q ,试探究BP 与PQ 的数量关系, 并证明你的结论。 (3) 在(2)的前提下,作PM ⊥AC 于M ,BP 交AC 于N ,下面两个结论:①(MQ +AC )/PM x y

初三数学代数几何综合题

代数几何综合题 【题型特征】代数、几何知识相结合的综合题是以几何知识为主体,以代数知识为工具(背景),来确定图形的形状、位置、大小(坐标)的问题.解答时往往需要从代数几何的结合点或在几何图形中寻找各元素之间的数量关系或在代数条件中探讨各个量的几何模型,进行数与形之间的互相转化,使问题得到解决. 为了讲解方便,我们将代数几何综合题按题目叙述的背景分为:坐标系、函数为背景的代数几何综合题和以几何图形为背景的代数几何综合题. 【解题策略】几何图形为背景的代数几何综合题,建立函数表达式的常见思路是:利用图形的面积公式建立函数表达式;或利用勾股定理或解直角三角形知识建立函数表达式;或利用相似三角形的线段成比例建立函数表达式. 类型一坐标系、函数为背景 典例1(2015·湖南怀化)如图(1),在平面直角坐标系中,AB=OB=8,∠ABO=90°,∠yOC=45°,射线OC以每秒2个单位长度的速度向右平行移动,当射线OC经过点B时停止运动,设平行移动x秒后,射线OC扫过Rt△ABO的面积为y. (1)求y与x之间的函数表达式; (2)当x=3秒时,射线OC平行移动到O'C',与OA相交于点G,如图(2),求经过G,O,B三点的抛物线的表达式; (3)现有一动点P在(2)中的抛物线上,试问点P在运动过程中,是否存在三角形POB的面积S=8的情况?若存在,求出点P的坐标,若不存在,请说明理由. (1)

(2) 【全解】 (1)∵AB=OB,∠ABO=90°, ∴△ABO是等腰直角三角形. ∴∠AOB=45°. ∵∠yOC=45°, ∴∠AOC=(90°-45°)+45°=90°. ∴AO⊥CO. ∵C'O'是CO平移得到, ∴AO⊥C'O'. ∴△OO'G是等腰直角三角形. ∵射线OC的速度是每秒2个单位长度, ∴OO'=2x. ∴其以OO'为底边的高为x. ∴点G的坐标为(3,3). 设抛物线表达式为y=ax2+bx,

1、2014二次函数与代数综合题题(学生版)

二次函数与代数综合题 一、二次函数与一次函数关系 (相交,相切,相离) 1(基础练习).已知抛物线322--=x x y . (1)它与x 轴的交点的坐标为_______ (2)将该抛物线在x 轴下方的部分(不包含与x 轴的交点)记为G ,若直线b x y +=与G 只有一个公共点,则b 的取值范围是_______. 1.(相切) 已知抛物线C 1:22y x x =-的图象如图所示,把C 1的图象沿y 轴翻折,得到 抛物线C 2的图象,抛物线C 1与抛物线C 2的图象合称图象C 3. (1)求抛物线C 1的顶点A 坐标,并画出抛物线C 2的图象; (2)若直线y kx b =+与抛物线2(0)y ax bx c a =++≠有且只有一个交点时,称直线与抛物线相切. 若直线y x b =+与抛物线C 1相切,求b 的值; (3)结合图象回答,当直线y x b =+与图象C 3 有两个交点时,b 的取值范围.

2. (相交)在平面直角坐标系xOy 中,二次函数2(3)3(0)y mx m x m =+-->的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C 。 (1)求点A 的坐标; (2)当45ABC ∠=?时,求m 的值; (3)已知一次函数y kx b =+,点P (n ,0)是x 轴上的一个动点,在(2)的条件下,过点P 垂直于x 轴的直线交这个一次函数的图象于点M ,交二次函数 2(3)3(0)y mx m x m =+-->的图象于N 。若只有当22n -<<时,点 M 位于点N 的上方,求这个一次函数的解析式。

3.在平面直角坐标系x O y 中,抛物线 222--=mx mx y (0≠m )与y 轴交于点A ,其对称轴与x 轴交于点B 。 (1)求点A ,B 的坐标; (2)设直线l 与直线AB 关于该抛物线的对称轴对称,求直线l 的解析式; (3)若该抛物线在12-<<-x 这一段位于直线l 的上方,并且在32<

中考数学代数几何综合题2

中考数学代数几何综合题2 Ⅰ、综合问题精讲: 代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,近几年中考试题中的综合题大多以代数几何综合题的形式显现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数和几何知识解题. Ⅱ、典型例题剖析 【例1】(2005,温州,12分)如图,已知四边形ABCD 内接于⊙O,A 是BDC 的中点,AE⊥AC 于A ,与⊙O 及CB 的延长线分别交于点F 、E ,且BF AD =,EM 切⊙O 于M 。 ⑴ △ADC∽△EBA ;⑵ AC2=1 2 BC·CE; ⑶假如AB =2,EM =3,求cot∠CAD 的值。 解:⑴∵四边形ABCD 内接于⊙O,∴∠CDA=∠ABE, ∵BF AD =,∴∠DCA=∠BAE, ∴△CAD∽△AEB ⑵ 过A 作AH⊥BC 于H(如图) ∵A 是BDC 中点,∴HC=HB =1 2 BC , ∵∠CAE=900,∴AC 2 =CH·CE=12 BC·CE ⑶∵A 是BDC 中点,AB =2,∴AC=AB =2, ∵EM 是⊙O 的切线,∴EB·EC=EM 2 ① ∵AC 2 =12 BC·CE,BC·CE=8 ② ①+②得:EC(EB +BC)=17,∴EC 2 =17 ∵EC 2 =AC 2 +AE 2 ,∴AE=17-22=13 ∵△CAD∽△ABE,∴∠CAD=∠AEC, ∴cot∠CAD=cot∠AEC =AE AC =13 2 点拨:此题的关键是树立转化思想,将未知的转化为已知的.此题表现的专门突出.如,将∠CAD 转化为∠AEC 就专门关键. 【例2】(2005,自贡)如图 2-5-2所示,已知直线y=2x+2分 别与x 轴、y 轴交于点A 、B ,以线段AB 为直角边在第一象限内 作等腰直角△ABC ,∠BAC=90○ 。过C 作CD ⊥x 轴,D 为垂足. (1)求点 A 、B 的坐标和AD 的长; (2)求过B 、A 、C 三点的抛物线的解析式。

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

二次函数测试题及详细答案(绝对有用)

砺智教育二次函数 一、选择题:(共30分) 1. 抛物线3)2(2+-=x y 的对称轴是( ) A. 直线3-=x B. 直线3=x C. 直线 2-=x D. 直线2=x 2. 二次函数c bx ax y ++=2的图象如右图,则点), (a c b M 在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 已知二次函数c bx ax y ++=2,且0+-c b a ,则一定有( ) A. 042>-ac b B. 042=-ac b C. 042<-ac b D. ac b 42-≤0 4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式 是532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c D. 9-=b ,21=c 5. 已知反比例函数x k y = 的图象如右图所示,则二次函数222k x kx y +-=的图象大致为( )

B x 6. 下面所示各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数 c ax y +=的大致图象,有且只有一个是正确的,正确的是( ) B D 7. 抛物线322+-=x x y 的对称轴是直线( ) A. 2-=x B. 2=x C. 1-=x D. 1=x 8. 二次函数2)1(2+-=x y 的最小值是( ) A. 2- B. 2 C. 1- D. 1 9. 二次函数c bx ax y ++=2的图象如图所示,若 c b a M ++=24c b a N +-=,b a P -=4,则( ) A. 0>M ,0>N ,0>P B. 0N ,0>P C. 0>M ,0P D. 0N ,0

代数几何综合题含答案

代数几何综合题 1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0) ()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式; (2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。 2.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO. (1)求证:CD ∥AO ; (2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)若AO +CD =11,求AB 的长. 3.如图,A 、B 两点的坐标分别是(x 1,0)、(x 2,O),其中x 1、x 2是关于x 的方程x 2+2x+m -3=O 的两根,且x 1<0--=m m x x y 与y 轴的交于C 点,C 点关于抛物线对称轴的对称点为C ′。 (1)求抛物线的对称轴及C 、C ′的坐标(可用含m 的代数式表示); (2)如果点Q 在抛物线的对称轴上,点P 在抛物线上,以点C 、C ′、P 、Q 为顶点的四边形是平行四边形,求Q 点和P 的坐标(可用含m 的代数式表示); (3)在(2)的条件下,求出平行四边形的周长。 B

打印版-圆与二次函数综合题精练(带答案)

圆与二次函数综合题 1、已知:二次函数y=x2-kx+k+4的图象与y轴交于点c,且与x轴的正半轴交于A、B两点(点A 在点B左侧)。若A、B两点的横坐标为整数。 (1)确定这个二次函数的解析式并求它的顶点坐标;(2)若点D的坐标是(0,6),点P(t,0)是线段AB上的一个动点,它可与点A重合,但不与点B重合。设四边形PBCD的面积为S,求S与t的函数关系式; (3)若点P与点A重合,得到四边形ABCD,以四边形ABCD的一边为边,画一个三角形,使它的面积等于四边形ABCD的面积,并注明三角形高线的长。再利用“等底等高的三角形面积相等”的知识,画一个三角形,使它的面积等于四边形ABCD的面积(画示意图,不写计算和证明过程)。 2、(1)已知:关于x、y的方程组有两个实数解,求m的取值范围; (2)在(1)的条件下,若抛物线y=-(m-1)x2+(m-5)x+6与x轴交于A、B两点,与y轴交于点C,且△ABC的面积等于12,确定此抛物线及直线y=(m+1)x-2的解析式; (3)你能将(2)中所得的抛物线平移,使其顶点在(2)中所得的直线上吗?请写出一种平移方法。 3、已知:二次函数y=x2-2(m-1)x+m2-2m-3,其中m为实数。 (1)求证:不论m取何实数,这个二次函数的图像与x轴必有两个交点;(2)设这个二次函数的 图像与x轴交于点A(x1,0)、B(x2,0),且x1、x2的倒数和为,求这个二次函数的解析式。 4、已知二次函数y1=x2-2x-3. (1)结合函数y1的图像,确定当x取什么值时,y1>0,y1=0,y1<0; (2)根据(1)的结论,确定函数y2= (|y1|-y1)关于x的解析式; (3)若一次函数y=kx+b(k 0)的图像与函数y2的图像交于三个不同的点,试确定实数k与b应满足的条件。 5、已知:如图,直线y= x+ 与x轴、y轴分别交于A、B两点,⊙M经过原点O及A、 B两点。 (1)求以OA、OB两线段长为根的一元二次方程; (2)C是⊙M上一点,连结BC交OA于点D,若∠COD=∠CBO, 写出经过O、C、A三点的二次函数的解析式; (3)若延长BC到E,使DE=2,连结EA,试判断直线EA与 ⊙M的位置关系,并说明理由。(河南省) 6、如图,已知点A(tan ,0)B(tan ,0)在x轴正半轴上,点A在点B的左 边,、是以线段AB为斜边、顶点C在x轴上方的Rt△ABC的两个锐角。 (1)若二次函数y=-x2- 5/2kx+(2+2k-k2)的图像经过A、B两点,求它的解析式; (2)点C在(1)中求出的二次函数的图像上吗?请说明理由。(陕西省)

2019届中考数学总复习:代数几何综合问题

2019届中考数学总复习:代数几何综合问题 【中考展望】 代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键. 题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题. 题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口. 【方法点拨】 方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明. 函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等. 函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型. 几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力. 1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现. 2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等. 3.几何论证题主要考查学生综合应用所学几何知识的能力. 4.解几何综合题应注意以下几点: (1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系; (2)注意推理和计算相结合,力求解题过程的规范化; (3)注意掌握常规的证题思路,常规的辅助线作法; (4)注意灵活地运用数学的思想和方法. 【典型例题】 类型一、方程与几何综合的问题 1.如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE =10,则CE的长为_________.

试卷分类汇编_ 代数几何综合

代数几何综合 1、(2013年潍坊市压轴题)如图,抛物线c bx ax y ++=2 关于直线1=x 对称,与坐标轴交于C B A 、、三点,且4=AB ,点?? ? ??232,D 在抛物线上,直线是一次函数 ()02≠-=k kx y 的图象,点O 是坐标原点. (1)求抛物线的解析式; (2)若直线平分四边形OBDC 的面积,求k 的值. (3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于N M 、两点,问在y 轴正半轴上是否存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称?若存在,求出P 点坐标;若不存在,请说明理由. 答案:(1)因为抛物线关于直线x=1对称,AB=4,所以A(-1,0),B(3,0), 由点D(2,1.5)在抛物线上,所以? ??=++=+-5.1240 c b a c b a ,所以3a+3b=1.5,即a+b=0.5, 又12=- a b ,即b=-2a,代入上式解得a =-0.5,b =1,从而c=1.5,所以2 3 212++-=x x y . (2)由(1)知2 3 212++-=x x y ,令x=0,得c(0,1.5),所以CD//AB, 令kx -2=1.5,得l 与CD 的交点F(23 ,27k ), 令kx -2=0,得l 与x 轴的交点E(0,2 k ), 根据S 四边形OEFC =S 四边形EBDF 得:OE+CF=DF+BE, 即: ,5 11),272()23(272=-+-=+k k k k k 解得 (3)由(1)知,2)1(2 1 232122+--=++-=x x x y 所以把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为2 2 1x y - = 假设在y 轴上存在一点P(0,t),t >0,使直线PM 与PN 关于y 轴对称,过点M 、N 分别向y 轴作垂线MM 1、NN 1,垂足分别为M 1、N 1,因为∠MPO=∠NPO,所以Rt △MPM 1∽Rt △NPN 1,

2018北京二次函数代数综合题例讲(解析版)

二次函数的图象和性质重点落实什么能力? 2019北京中考26题重点题型------------ 必须会!!!!!! 例1 在平面直角坐标系xOy 中,抛物线 2443(0)y ax ax a a =-+-≠的顶点为A . (1)求顶点A 的坐标; (2)过点(0,5)且平行于x 轴的直线l ,与抛物线 2443(0)y ax ax a a =-+-≠交于B ,C 两点. ①当2a =时,求线段BC 的长; ②当线段BC 的长不小于6时,直接写出a 的取值范围. 代数变形能力:2 443(0)y ax ax a a =-+-≠通过配方转化为2 (2)(0)3y a x a =-≠- 几何作图能力:

考点: 二次函数的性质 分析: (1)配方得到y=ax2-4ax+4a-3=a (x-2)2-3,于是得到结论; (2)①当a=2时,抛物线为y=2x2-8x+5,如图.令y=5得到2x2-8x+5=5,解方程即可得到结论;②令y=5得到ax2-4ax+4a-3=5,解方程即可得到结论. 解答: (1)∵y =ax 2?4ax +4a ?3=a (x ?2)2?3, ∴顶点A 的坐标为(2,?3); (2)①当a =2时,抛物线为y =2x 2?8x +5,如图。 令y =5,得 2x 2?8x +5=5, 解得,x 1=0,x 2=4, ∴ a 2a 4线段BC 的长为4, ②令y =5,得ax 2?4ax +4a ?3=5, 解得,x 1= a a a 222 ,x 2=a a a 22-2 ∴线段BC 的长为 a 2a 4 ∵线段BC 的长不小于6,

九年级数学代数几何综合题解析提高班教师版

1 中考第一轮复习 代数与几何综合初步 本讲包括两个方面:数形结合思想、方程函数与几何的综合. 数形结合思想从解题方法上主要分为两类:一是用“形”来解决“数”的问题,体现在数列计算、公式证明等方面;二是用“数”来解决“形”的问题,体现在用方程、函数最值等来解决图形中的计算或最值问题. 方程函数与几何的综合这部分主要侧重在题型上,将代数式、方程、各种函数及各种几何图形综合在一起,不仅将第一轮复习的内容很好的综合,也能锻炼同学们灵活运用各种知识点、方法解决问题的能力. 一、数形结合思想 【例1】 (1)我国著名的数学家华罗庚曾说过:“数形结合百般好,割裂 分家万事非”,如图,在边长为1 的正方形纸板上,依次贴上面积为 2 1 , 41,81 ,…,n 2 1的长方形彩色纸片(n 为大于1的整数),请你用“数 形结合”的思想,依数形变化的规律,计算+++81 4121…+n 2 1=___________. (2)利用图形可以计算正整数的乘法,请根据以下四个算图所示规律在右图中画出232312? 的算图(标出相应的数字和曲线) . (2009海淀初三期中) (3)数形结合思想是中学数学解题中常用的数学思想,利用这种思想,可以将代数 问题转化为几何问题,也可以将几何问题转化为代数问题.通过数形结合将代数与几何完美的结合在一起,可以大大降低解题的难度,提高效率和正确率,甚至还可以达到令人意想不到的效果.教科书中利用几何图形证明乘法公式 () 2 222a b a ab b +=++的做法,就是一个非常典型的例子: 如图,a 、b 分别表示一条线段的长度,则a+b 可以表示两条线段之和,那么()2 a b + 就可以表示正方形的面积.同样, a b b a b

代数几何综合题.doc

代数儿何综合题一、基础题 (大兴,2010期末,18) 18.已知:如图,在山8C中,ZC = 90°,P为43上一点,且 点p不与点刀重合,过点户作PE1AB交刀C边于点点厅不与点。 重合,若力3 = 10,4。= 8,设,户的长为x,四边形PEC3周长为*. (1)求证:/^APE s MCB ; (2)写出y与x的函数关系式,并在直角坐标系中画出图象 (丰台,2010期末,21) 22.(本小题满分6分) 已知:如图,渔船原本应该从A点向正南方向行驶回到港口P,但由于受到海风的影响,渔船向西南方向驶去,行驶了240千米后到达B点,此时发现港口P在渔船的南 偏东60°的方向上,问渔船现在距港口P多远?(结果精确到0.1千米)(参考数据: V2M.41, V3M.73,际"24, ^6^2.45) (丰台,2010期末,25) 25.(本小题满分7分) RtAABC在平面直角坐标系中的初始位置如图1所示,ZC=90°, AB=6, AC=3,点A在x轴上由原点。开始向右滑动,同时点B在y轴上也随之向点O滑动,如图2所示;当点B滑动至与点。重合时,运动结束.在上述运动过程中,OG始终是一个以 AB为直径的圆.

(1)试判断在运动过程中,原点。与OG的位置关系,并说明理由; (2)设点C坐标为(x,y),试求出y与x的关系式,并写出自变量x的取值范围;(3)根据对问题(1)、(2)的探究,请你求出整个过程中点C运动的路径的长.

二、提高题 (吕平,2010期末,25) 25. (7分)已知,抛物线y^ax1轴的两个交点分别 为A(1,0), B(4, 0),与y轴的交点为C. (1)求出抛物线的解析式及点C的坐标; (2)点P是在直线x=4右侧的抛物线上的一动点,过P作PM lx轴,垂足为M,是否存在P点,使得以A, P,M为顶点的三角形与AOCB相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由. (朝阳,2010期末,24) 24.(本小题7 分)如图,在z^ABC 中,ZA=90°, AB=8, 过M点作MN〃BC交AC于点N.以MN为 直径作。0,并在。0中作内接矩形AMPN.令 AM=x. (1)用含x的代数式表示AIVINP的面积S; (2)当x为何值时,。。与直线BC相切? (3)在点M的运动过程中,设△MNP与梯形BCNM重合的 面积为V,求y关于x的函数关系式,并求x为何值时,y 的值最大,最大值是多少?/ P \ B ------------------ C (第24题) (朝阳,2010期末,25) 25.(本小题8分) 已知:在/XABC中,ZACB=90°, CD_LAB于点D,点E在AC上,BE交CD于点G, EF1BE交AB于点F.

相关文档
最新文档