北师大版数学高二-4.3定积分的简单应用--定积分在物理中应用及简单几何体的体积学案

北师大版数学高二-4.3定积分的简单应用--定积分在物理中应用及简单几何体的体积学案
北师大版数学高二-4.3定积分的简单应用--定积分在物理中应用及简单几何体的体积学案

4.3定积分的简单应用—定积分在物理中应用及简单几何体的体积

一、学习目标:

1、了解定积分的几何意义及微积分的基本定理.

2、掌握利用定积分求变速直线运动的路程、变力做功等物理问题。

3、理解定积分概念形成过程的思想;

4、会根据该思想求简单旋转体的体积问题。

二、学习重点与难点:

重点:

1、定积分的概念及几何意义;

2、定积分的基本性质及运算在物理中应用。

3.利用定积分的意义和积分公式表解决一些简单的旋转体的体积问题;

难点:数学模型的建立及被积函数的确定。

三、学习方法:探究归纳,学练结合

四、学习过程 (一)、复习:

(1)、求曲边梯形面积的思想方法是什么?

(2)、定积分的几何意义是什么?

(3)、微积分基本定理是什么?

(二)、定积分的应用

【定积分在物理中应用】

1、求变速直线运动的路程

我们知道,作变速直线运动的物体所经过的路程s ,等于其速度函数v=v (t) ( v(t) ≥0) 在时间区间[a,b]上的定积分,即()b

a s v t dt =?

例 1。一辆汽车的速度一时间曲线如图1.7 一3 所示.求汽车在这1 min 行驶的路程.

2.变力作功

一物体在恒力F (单位:N )的作用下做直线运动,如果物体沿着与F 相同的方向移(单位:m),则力F 所作的功为W=Fs .

探究

如果物体在变力 F(x )的作用下做直线运动,并且物体沿着与 F (x) 相同的方向从x =a 移动到x=b (a

与求曲边梯形的面积和求变速直线运动的路程一样,可以用“四步曲”解决变力作功问题.可以得到

()b

a W F x dx =? 例2.如图1·7一4 ,在弹性限度内,将一弹簧从平衡位置拉到离平衡位置lm 处,求克服弹力所作的功.

练习:如果1N 能拉长弹簧1cm ,为了将弹簧拉长6cm ,需做功( )

A 0.18J

B 0.26J

C 0.12J

D 0.28J

例3.A 、B 两站相距7.2km ,一辆电车从A 站B 开往站,电车开出ts 后到达途中C 点,这一段的速度为1.2t(m/s),到C 点的速度为24m/s ,从C 点到B 点前的D 点以等速行驶,从D 点开始刹车,经ts 后,速度为(24-1.2t )m/s ,在B 点恰好停车,试求

(1)A 、C 间的距离;(2)B 、D 间的距离;(3)电车从A 站到B 站所需的时间。分析:作变速直线运动的物体所经过的路程s,等于其速度函数v=v(t)(v(t)≥0)在时间区间[a,b]上的定积分,即?b

a dt t v S )(=

【定积分在求简单几何体的体积中的应用】

问题:函数()y f x =,[],x a b ∈的图像绕x 轴旋转一周,所得到的几何体的体积V = 。 2[()]b

a V f x dx π=? 例4、如图,是常见的冰激凌的形状,其下方是一个圆锥,上方是

由一段抛物线弧绕其对称轴旋转一周所成的形状,尺寸如图所示,试求

其体积。

分析:解此题的关键是如何建立数学模型。将其轴载面按下图位置

放置,并建立坐标系。则A ,B 坐标可得,再求出直线AB 和抛物线方程,

“冰激凌”可看成是由抛物线弧OB 和线段AB 绕X 轴旋转一周形成的。

变式练习

如图一,是火力发电厂烟囱示意图。它是双曲线绕其一条对

称轴旋转一周形成的几何体。烟囱最细处的直径为m 10,最下端

的直径为m 12,最细处离地面m 6,烟囱高m 14,试求该烟囱占

有空间的大小。 (图一)

(精确到310m .)

归纳总结:求旋转体的体积和侧面积

由曲线()y f x =,直线,x a x b ==及x 轴所围成的曲边梯形绕x 轴

旋转而成的旋转体体积为2

[()]b a V f x dx π=?.其侧面积为

'22()1[()]b

a S f x f x dx π=+?侧. 求体积的过程就是对定积分概念的进一步理解过程,总结求旋转体体积公式步骤如下:

1.先求出()y f x =的表达式;2.代入公式()2b a V f x dx π=

?,即可求旋转体体积的值。 (三)、课堂小结:

1本节课主要学习了利用定积分求一些曲边图形的面积与体积,即定积分在几何中应用,以及定积分在物理学中的应用,要掌握几种常见图形面积的求法,并且要注意定积分的几何意义,不能等同于图形的面积,要注意微积分的基本思想的应用与理解。

2、求体积的过程就是对定积分概念的进一步理解过程,总结求旋转体体积公式步骤如下:

1).先求出()y f x =的表达式;2).代入公式()2b a V f x dx π=

?,即可求旋转体体积的

值。

五、学后反思

根据定积分的定义,定积分既有几何背景,又有物理背景,进而定积分与这些知识有着天然的联系。譬如:求几何图形的面积,求路程、平均速度、电荷量、电压、功、质量等。上述种种尽管形式相异,然而所采用的思想方法均是:化曲为直,以不变代变,逼近,从某个角度而言充分展现了数学思想方法的高度抽象性及应用的广。 第四课时4.3定积分的简单应用

——定积分在物理中应用及简单几何体的体积答案

例 1。解:由速度一时间曲线可知:

3,010,()30,10401.590,4060.t t v t t t t ≤≤??=≤≤??-+≤≤?

因此汽车在这 1 min 行驶的路程是:

104060010403[30( 1.590)s tdt dt t dt =++-+??? 21040260

0104033|30|(90)|1350()24

t t t t m =++-+= 答:汽车在这 1 min 行驶的路程是 1350m .

例2.解:在弹性限度内,拉伸(或压缩)弹簧所需的力 F ( x )与弹簧拉伸(或压缩)的长度 x 成正比,即 F ( x )= kx , 其中常数 k 是比例系数.由变力作功公式,得到

220011|()22l l W kxdx x kl J ===?答:克服弹力所作的功为212

kl J . 练习: A

略解:设kx F =,则由题可得010.=k ,所以做功就是求定积分1800106

0..=?xdx 。 例3.略解:(1)设A 到C 的时间为t 1则 1.2t=24, t 1=20(s),则AC =?==20

020*********)(|..m t tdt

(2)设D 到B 的时间为t 21则24-1.2t 2=0, t 21=20(s),则DB =?==20

02002240602124)(|..m t dt t )-(

(3)CD=7200-2?240=6720(m),则从C 到D 的时间为280(s),则所求时间为20+280+20=320(s )

例4解:将其轴载面按下图位置放

置,并建立如图的坐标系。则),(012A , ),(44B ,设抛物线弧OA 所在的抛物线方程为:px y 22=,代入),(44B 求得:2=p

∴抛物线方程为:x y 42

=(0≥y ) 设直线AB 的方程为:12+=qy x ,代入),(44B 求得:

2-=q ∴直线AB 的方程为:62

1+-=x y ∴所求“冰激凌”的体积为:3401242232246212)()()(cm dx x dx x ππ=?????

?+-+?? 变式练习 答案:321659m .

高二定积分的简单应用(理科)

年 级 高二 学科 数学 内容标题 定积分的简单应用(理科) 编稿老师 胡居化 一、教学目标 1. 能用定积分知识解决在物理学中的一些简单问题及求曲边图形的面积等问题 2. 体会数与形结合的思想、等价转化的数学思想的应用. 二、知识要点分析 1. 定积分在物理学中的简单应用 (1)变速直线运动的路程:作变速直线运动的物体在时间t=a 到时间t=b (a

(2)求曲边图形面积的一般步骤: (a )画图,并将图形分割成若干个曲边梯形 (b )对每个曲边梯形确定其存在的范围,从而确定积分的上下限. (c )确定被积函数 (d )求出各曲边梯形的面积和,即各种定积分的绝对值之和. 【典型例题】 知识点一:定积分在物理学中的简单的应用 例1:一物体在力F ?? ?>+≤≤=) 2(,43) 20(,10)(x x x x (单位:N )的作用下沿力F 相同的方向, 从x=0处运动到x=4处(单位:米),这力F (x )所做的功是( ) A . 44 B . 46 C . 48 D . 50 【题意分析】本题考查物理学中的变力做功问题,物体在x=0到x=4距离内所做的功是函 数F (x )在区间[0,4]上的定积分. 【思路分析】由已知F (x )的表达式是分段函数,故物体所做的功是函数F (x )在[0,2],[2,4]上的积分之和. 【解题步骤】由定积分的物理意义知: ????++=+=42202042)43(10)()(dx x dx dx x F dx x F W =4222 0|)42 3(|10x x x ++ =46, 故选(B ) 【解题后的思考】本题考查的知识点是利用定积分求变力做功的问题,易错点是:认为F (x )在区间[0,4]内所做的功是 ? +4 )43(dx x . 例2:一物体做变速直线运动,其v -t 曲线(如图所示),求物体在s s 62 1 -内的运动路程. 【题意分析】本题考查物理学中变速直线运动路程问题,由v (t )曲线知:0)(≥t v ,故在 s s 621-间的物体运动的路程是v (t )在区间]6,2 1 [上的定积分.

《定积分》教学设计与反思

《定积分》教学设计与反思 学习目标 1、通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分. 2、通过实例体会用微积分基本定理求定积分的方法. 教学重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分. 教学难点:了解微积分基本定理的含义. 一、自主学习: 1.定积分的定义:, 2.定积分记号: 思想与步骤 几何意义. 3.用微积分基本定理求定积分 二、新知探究 新知1:微积分基本定理: 背景:我们讲过用定积分定义计算定积分,但如果要计算,其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 探究问题1:变速直线运动中位置函数S(t)与速度函数v(t)之间的联系 设一物体沿直线作变速运动,在时刻t时物体所在位移为S(t),速度为v(t)(), 则物体在时间间隔内经过的位移记为,则 一方面:用速度函数v(t)在时间间隔求积分,可把位移= 另一方面:通过位移函数S(t)在的图像看这段位移还可以表示为 探究问题2: 位移函数S(t)与某一时刻速度函数v(t)之间的关系式为 上述两个方面中所得的位移可表达为 上面的过程给了我们启示 上式给我们的启示:我们找到了用的原函数(即满足)的数值差来计算在上的定积分的方法。 定理如果函数是上的连续函数的任意一个原函数,则

该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法。 例1.计算下列定积分: 新知2:用定积分几何意义求下列各式定积分: 若求 新知3:用定积分求平面图形的面积 1、计算函数在区间的积分 2、计算函数在区间的积分 3、求与在区间围成的图形的面积 通过此题的计算你发现了什么? 教学反思 本课的教学设计,是在新课程标准理念指导下,根据本班学生实际情况进行设计的。从实施情况来看,整堂课学生情绪高涨、兴趣盎然。在教学中,教师一改往日应用题教学的枯燥、抽象之面貌,而是借用学生已有的知识经验和生活实际,有效地理解了微积分的基本定理,具体反思如下: 1、改变定理的表述形式,丰富信息的呈现方式。 根据高中学生的认知特点,我在教学过程中,出示例题、习题时,呈现形式力求多样、新颖,让学生多种感官一起参与,以吸引学生的注意力,培养对数学的兴趣。本课的教学中,我大胆地改变了教材中实例分析顺序,重组和创设了这样一个情境,从而引入速度关于时间的定积分背景,即切合学生的生活实际,又让学生发现了定理的实际意义,理解了定理的本质,激发了学生学习的兴趣。并更好地为下一环节的自主探索、主动发展作好充分的准备。 2、突出数学应用价值,培养学生的应用意识和创新能力 《数学课程标准》中指出,要让学生能够“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。”本课的设计充分体现了这一理念,例题中涉及路程和速度,让学生感受到数学与生活的密切联系,通过自己的探究,运用数学的思维方式解决问题,又能运用掌握的知识去研究解决生活的其它数学问题,,培养了学生的应用意识。

北师大版数学高二选修2试题 4.3定积分的简单应用--简单几何体的体积

4.3定积分的简单应用 定积分在物理中应用及简单几何体的体积同步练习 1.物本做变速度直线运动经过的路程s ,等于其速度函数v = v (t ) (v (t )≥0 )在时间区间 [a ,b ]上的 定积分 ,即?=b a dt t v s )(. 2.质点直线运动瞬时速度的变化为v (t ) = – 3sin t ,则 t 1 = 3至t 2 = 5时间内的位移是 ()dt t ?-5 3sin 3.(只列式子) 3.变速直线运动的物体的速度v (t ) = 5 – t 2,初始位置v (0) = 1,前2s 所走过的路程为 3 25 . 4.如果物体沿恒力F (x )相同的方向移动,那么从位置x = a 到x = b 变力所做的功W = F (b —a ). 5.如果物体沿与变力F (x )相同的方向移动,那么从位置x = a 到x = b 变力所做的 功W =?b a dx x F )(. 6.一物体在力F (x ) =10(02)34(2)x x x ≤≤?? +>?(单位:N )的作用下沿与力F (x )做功为( B ) A .44J B .46J C .48J D .50J 7.证明:把质量为m (单位kg )的物体从地球的表面升高h (单位:m )处所做的功W = G ·() Mmh k k h +,其中G 是地球引力常数,M 是地球的质量,k 是地球的半径. 证明:根据万有引力定律,知道对于两个距离为r ,质量分别为m 1、m 2的质点,它们之间的引力f 为f = G ·122 m m r ,其中G 为引力常数. 则当质量为m 物体距离地面高度为x (0≤x ≤h )时,地心对它有引力f (x ) = G ·2 ()Mm k x +故该物体从地面升到h 处所做的功为 0()h W f x =?d x =20() h Mm G k x ?+?·d x = GMm 201()h k x +? d (k + 1) = GMm 01()|h k x -+ =11()() Mnh GMm k G k h k k h -+=?++. 8.直线2y x =,1x =,2x =与x 轴围成的平面图形绕旋x 轴转一周得到一个圆台,

定积分教学设计

定积分的简单应用 一、教学目标 1、 知识与技能目标: (1)应用定积分解决平面图形的面积、变速直线运动的路程问题; (2)学会将实际问题化归为定积分的问题。 2、 过程与方法目标: 通过体验解决问题的过程,体现定积分的使用价值,加强观察能力和归纳能力,强化数形结合和化归思想的思维意识,达到将数学和其他学科进行转化融合的目的。 3、 情感态度与价值观目标: 通过教学过程中的观察、思考、总结,养成自主学习的良好学习习惯,培养数学知识运用于生活的意识。 二、 教学重点与难点 1、重点:应用定积分解决平面图形的面积和变速直线运动的路程问题,在解决问题的过程中体验定积分的价值。 2、难点:将实际问题化归为定积分的问题,正确计算。 三、教学过程 (一)创设问题情境: 复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 引入:.计算 dx x ? --2 2 2 4 2.计算 ?-22 sin π πdx x 思考:用定积分表示阴影部分面积 选择X 为积分变量,曲边梯形面积为 (二)研究开发新结论 1计算由抛物线2 y x =在[]0,1上与X 轴在第一象限围成图形的面积S. 2计算由抛物线2 y x =在[]0,1上与X 轴在第一象限围成的图形的面积S. 总结解题步骤:1找到图形----画图得到曲边形. 2曲边形面积解法----转化为曲边梯形,做出辅助线. dx x f dx x f s b a b a ??-=)()(21

3定积分表示曲边梯形面积----确定积分区间、被积函数. 4计算定积分. (三)巩固应用结论 例1.计算由两条抛物线2y x =和2y x =所围成的图形的面积. 分析:两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得 到。 解:2 01y x x y x ?=??==?=??及,所以两曲线的交点为(0,0)、 (1,1),面积 S=1 20 x dx = -? ? ,所以 ?1 20S =x )dx 32 1 3023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象; 2.求交点; 3.用定积分表示所求的面积; 4.微积分基本定理求定积分。 巩固练习 计算由曲线36y x x =-和2y x =所围成的图形的面积. 例2.计算由直线4y x =- ,曲线y =x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯形的面积问题.与例 1 不同的是,还需把所求图形的面积分成两部分S 1和S 2.为了确定出被积函数和积分的上、下限,需要求出直线4y x =- 与曲线y =的横坐标,直线4y x =-与 x 轴的交点. 解:作出直线4y x =-,曲线y = 的草图,所求面积为图1. 7一2 阴影部分的面积. 解方程组4 y y x ?=?? =-?? 得直线4y x =-与曲线y =8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 28 4 4 [(4)]x dx = +--? ? ? -1

定积分在物理学中的应用

数学与计算科学学院 学年论文 题目定积分在物理学中的应用 姓名邓花蝶 学号 1209403047 专业年级 2012级数学与应用数学 指导教师耿平 2015年 9 月 1 日

定积分在物理学中的应用 ——求刚体的转动惯量 摘要 众所周知,物理学是一门综合性极高的学科,我们在学习的过程常都 会将课堂理论知识和实践活动有机的结合在一起,然而,在物理学中,我 们通常都会遇到很多难题,比如解积分困难等。因此当前我们在对物理学 的学习中,就要将定积分应用到其中。定积分是高等数学的重要组成部分, 在物理学中也有广泛的应用。微元法是将物理问题抽象成定积分非常实用 的方法。本文主要利用"微元法"的思想求物理学中几种常见均匀刚体的 转动惯量。 关键词 定积分;物理应用;微元法; 转动惯量;均匀刚体 The application of definite integral in physics ——For the moment of inertia of rigid body Abstract As we all know, physics is a comprehensive high discipline, in the learning process We will usually make the classroom theoretical knowledge and practical activity of organic unifies in together, however, in physics, we often encounter some problems, such as the difficulty of solving integral. So in physics learning, we should apply definite integral to it. The integral is an important part of higher mathematics, they are widely used in physics. The differential method is a practical method that physical problems are abstracted integral.In this paper, using the ideas of "micro element method" to solve inertia of several common uniform rigid body in physics.

N0.14《定积分的概念》导学案

N0.14《定积分的概念》导学案 目标展示: 1、掌握求曲边梯形面积的步骤。 2、了解定积分的定义和几何意义。 课程导读(阅读教材P38—P49后完成下列问题) 化很大 C .f (x )的值不变化 D .当n 很大时,f (x )的值变化很小 2.在求由x =a ,x =b (a 当n →+∞时,无限趋近于一个常数A ,则A 可用定积分表示为 ( ) A .dx x ?101 B .dx x p ?10 C .dx x p ?1 0)1( D .dx n x p ?10)( 4.当n 很大时,函数f (x )=x 2在区间????i -1n ,i n 上的值能够用下列哪个值近似代替( ). A .f ????1n B .f ????2n C .f ??? ?i n D .f (0) 5.求由抛物线y =2x 2与直线x =0,x =t (t >0),y =0所围成的曲边梯形的面积时,将区间[0,t ]等分成n 个小区间,则第i -1个区间为( ) A.????i -1n ,i n B.????i n ,i +1n C.????t (i -1)n ,ti n D.????t (i -2)n ,t (i -1)n 6.由直线x =1,y =0,x =0和曲线y =x 3所围成的曲边梯形,将区间4等分,则曲边梯形 面积的近似值(取每个区间的右端点)是( ) A.119 B.111256 C.110270 D.2564 7.在等分区间的情况下,f (x )= 11+x 2(x ∈[0,2])及x 轴所围成的曲边梯形面积和式的极限形式准确的是( ) A.lim n →∞∑i =1n [1 1+????i n 2·2n ] B.lim n →∞∑i =1n [11+????2i n 2·2n ] C.lim n →∞∑i =1n ????11+i 2·1n D.lim n →∞∑i =1n [11+????i n 2·n ] 8.已知??13f (x )d x =56,则( ) A.??12f (x )d x =28 B.??2 3f (x )d x =28 C.??122f (x )d x =56 D.??12f (x )d x +??2 3f (x )d x =56 9.下列等式成立的是( ) A a b xdx b a -=? B. 5.0=?xdx b a

定积分在物理中的应用

定积分在物理中的应用 目录: 一.摘要 二.变力沿直线所作的功 三.液体的侧压力 四.引力问题 五.转动惯量

摘要: 伟大的科学家牛顿,有很多伟大的成就,建立了经典物理理论,比如:牛顿三大定律,万有引力定律等;另外,在数学上也有伟大的成就,创立了微积分。 微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。 微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你很难研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。 微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。微积分堪称是人类智慧最伟大的成就之一。在高中物理中,微积分思想多次发挥了作用。

定义: 设函数f(x)在[a,b]上有界,在[a ,b]中任意插入若干个分点 a=X0

高中培优讲义定积分及其简单应用

第十三讲定积分及其简单应用 教学目标:1、了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. 2、了解微积分基本定理的含义. 一、知识回顾课前热身 知识点1、定积分 (1)定积分的相关概念在∫b a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式. (2)定积分的几何意义 ①当函数f(x)在区间[a,b]上恒为正时,定积分∫b a f(x)d x的几何意义是由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积(左图中阴影部分). ②一般情况下,定积分∫b a f(x)d x的几何意义是介于x轴、曲线f(x)以及直线x=a,x=b之间的曲边梯形面积的代数和(右上图中阴影所示),其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数. (3)定积分的基本性质 ①∫b a kf(x)d x=k∫b a f(x)d x. ②∫b a[f1(x)±f2(x)]d x=∫b a f1(x)d x±∫b a f2(x)d x. ③∫b a f(x)d x=∫c a f(x)d x+∫b c f(x)d x. (4).定积分∫b a[f(x)-g(x)]d x(f(x)>g(x))的几何意义是什么? 提示:由直线x=a,x=b和曲线y=f(x),y=g(x)所围成的曲边梯形的面积. 知识点2、微积分基本定理如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么∫b a f(x)d x=F(b)-F(a),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式.为了方便,常把F(b)-F(a)记成F(x)|b a,即∫b a f(x)d x=F(x)|b a=F(b)-F(a). 基础练习 1.∫421 x d x等于( ) A.2ln 2 B.-2ln 2 C.-ln 2 D.ln 2 解析:选D ∫421 x d x=ln x |42=ln 4-ln 2=ln 2. 2.一质点运动时速度和时间的关系为V(t)=t2-t+2,质点作直线运动,则此物体在时间[1,2]内的位移

人教A版选修2-2 1.5.3 定积分的概念 学案 (1)

1.5.3 定积分的概念 预习课本P45~47,思考并完成下列问题 (1)定积分的概念是什么?几何意义又是什么? (2)定积分的计算有哪些性质? [新知初探] 1.定积分的概念与几何意义 (1)定积分的概念:一般地,设函数f (x )在区间[a ,b ]上连续,用分点a =x 0

中的阴影部分的面积). [点睛] 利用定积分的几何意义求定积分的关注点. (1)当f (x )≥0时,??a b f (x )d x 等于由直线x =a ,x =b ,y =0与曲线y =f (x )围成曲边梯形的面积,这是定积分的几何意义. (2)计算??a b f (x )d x 时,先明确积分区间[a ,b ],从而确定曲边梯形的三条直边x =a ,x =b ,y =0,再明确被积函数f (x ),从而确定曲边梯形的曲边,这样就可以通过求曲边梯形的面积S 而得到定积分的值: 当f (x )≥0时,??a b f (x )d x =S ;当f (x )<0时, ??a b f (x )d x =-S . 2.定积分的性质 (1)??a b kf (x )d x =k ??a b f (x )d x (k 为常数). (2)??a b [f 1(x )±f 2(x )]d x =??a b f 1(x )d x ±??a b f 2(x )d x . (3)??a b f (x )d x =??a c f (x )d x +??c b f (x )d x (其中a

定积分的概念导学案

sx-14-(2-2)-025 1.5.3《定积分的概念》导学案 编写:刘威 审核:陈纯洪 编写时间:2014.5.13 班级_____组名_______姓名_______等级_______ 【学习目标】 1.了解定积分的概念和性质,能用定积分定义求简单的定积分; 2.理解定积分的几何意义. 【学习重难点】 重点:定积分的概念、用定义求简单的定积分. 难点:定积分的概念、定积分的几何意义. 【知识链接】: 1. 回忆求曲边梯形面积、变速运动的路程的 “四步曲”为: 2. 求曲边梯形面积的公式 求变速直线运动路程的公式 【学习过程】:知识点一:定积分的概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点 0121i i n a x x x x x x b -=<<<<<<<= 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(x ?=_________),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=,作和式: 11()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的_________。记为:S = ____________ ,其中()f x 称为_________,x 叫作_________,[,]a b 为积分区间,b 叫作_________,a 叫作积分下限。

说明:(1)定积分()b a f x dx ?是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和:1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? (3)曲边图形面积:()b a S f x dx =?;变速运动路程2 1()t t S v t dt =?;变力做功 ()b a W F r dr =? 考考你:(1)() b a f x dx ? ()b a f t dt ?(大于,小于,等于),这说明定积分与积分变量的记法 (有关,无关) (2)特例:()a a f x dx ?= 知识点二:定积分的几何意义 问题1:你能说出定积分的几何意义吗? 问题2:根据定积分的几何意义,你能用定积分表示右图中阴影部分的面积S 吗? 问题3:定积分的性质: (1) ()b a kf x dx =? (k 为常

知识讲解_定积分的简单应用(基础)

定积分的简单应用 【学习目标】 1.会用定积分求平面图形的面积。 2.会用定积分求变速直线运动的路程 3.会用定积分求变力作功问题。 【要点梳理】 要点一、应用定积分求曲边梯形的面积 1. 如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线()y f x =(()0f x ≥)围成的曲边梯形的面积: ()[()()]b b a a S f x dx f x g x dx ==-?? 2.如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线 ()y f x =(0)(≤x f )围成的曲边梯形的面积: ()()[()()]b b b a a a S f x dx f x dx g x f x dx = =-=-? ?? 3.由三条直线,(),x a x b a c b x ==<<轴及一条曲线()y f x =(不妨设在区间[,]a c 上 ()0f x ≤,在区间[,]c b 上()0f x ≥)围成的图形的面积: ()c a S f x dx = + ? ()b c f x dx ? =()c a f x dx -?+()b c f x dx ?. 4. 如图,由曲线11()y f x =22()y f x =12()()f x f x ≥及直线x a =,x b =()a b <围

成图形的面积: 1212[()()]()()b b b a a a S f x f x dx f x dx f x dx =-=-??? 要点诠释: 研究定积分在平面几何中的应用,其实质就是全面理解定积分的几何意义: ① 当平面图形的曲边在x 轴上方时,容易转化为定积分求其面积; ② 当平面图形的一部分在x 轴下方时,其在x 轴下的部分对应的定积分为负值,应取其相反数(或绝对值); 要点二、求由两条曲线围成的平面图形的面积的解题步骤 (1)画出图形; (2)确定图形范围,通过解方程组求出交点的横坐标,定出积分上、下限; (3)确定被积函数,特别要注意分清被积函数的上、下位置; (4)写出平面图形面积的定积分表达式; (5)运用微积分基本定理计算定积分,求出平面图形的面积。 要点三、定积分在物理中的应用 ① 速直线运动的路程 作变速直线运动的物体所经过的路程S ,等于其速度函数()(()0)v v t v t =≥在时间区间 [,]a b 上的定积分,即()b a S v t dt =?. ②变力作功 物体在变力()F x 的作用下做直线运动,并且物体沿着与()F x 相同的方向从x a =移动到x b =()a b <,那么变力()F x 所作的功W = ()b a F x dx ? . 要点诠释: 1. 利用定积分解决运动路程问题,分清运动过程中的变化情 况是解决问题的关键。应注意的是加速度的定积分是速度,速度的定积分是路程。 2. 求变力作功问题,要注意找准积分变量与积分区间。 【典型例题】 类型一、求平面图形的面积 【高清课堂:定积分的简单应用 385155 例1】 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【思路点拨】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。

高考数学第一轮复习精品学案第38讲:导数与定积分

2013年普通高考数学科一轮复习精品学案 第38讲导数、定积分 一.课标要求 1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数y=c,y=x,y=x2,y=x3,y=1/x,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在

定积分在物理上的应用(学习资料)

授课题目定积分在物理上的应用 课时数1课时 教学目标用定积分解决物理学上的变力做功以及液体压力问题。 重点与难点教学重点:定积分方法分析变力做功和液体压力。教学难点:定积分的元素法以及物理量的计算公式。 学情分析我所教授的学生从知识结构上来说属于好坏差别很大,有的接受新知识很快,有的很慢,有的根本听不懂,基 于这些特点,结合教学内容,我以板书教学为主,多媒 体教学为辅,把概念较强的课本知识直观化、形象化, 引导学生探索性学习。 教材分析本次课是学生学习完定积分的概念和计算方法以及定积分在几何上的应用后的学习,定积分的元素法在几何和 物理上的应用为学生尝试解决各种实际问题做了很好的 铺垫。将来把元素法的思想推广到多元函数后,其应用 范围将会更宽更广。所以无论从内容还是数学思想方面, 本次课在教材中都处于重要的地位。 教学方法根据对学生的学情分析,本次课主要采用案例教学法,问题驱动教学法,讲与练互相结合,以教师的引导和讲 解为主,同时充分调动学生学习的主动性和思考问题的 积极性。 教学手段传统教学与多媒体资源相结合。

课程资源 同济大学《高等数学》(第七版)上册 教学内容与过程 一、 变力沿直线所作的功 dx x F dW )(= ?=b a dx x F W )( ,求电场力所做的功。 处处移动到从距离点电荷直线下,一个单位正电荷沿电荷所产生的电场作用、在一个带例)(1b a b a q <+为时,由库仑定律电场力原点解:当单位正电荷距离r 2r q k F = dr r kq dW 2=则功的元素为: 所求功为 )11(]1[2b a kq r kq dr r kq W b a b a -=-==? 例2、在底面积为S 的圆柱形容器中盛有一定量的气体,由于气体的膨胀,把容器中的一个面积为S 的活塞a 移动到b 处(如图),求移动过程中气体压力所做的功。 解:建立坐标系如图. 由波义耳---马略特定律知压强p 与体积V 成反比,即xS k V k p == ,故作用在活塞上的力为 x k S p F =?= x a b x x x d +q +o r a b r r d r +1+S o x a b x x d x +

高中数学选修2-2优质学案:§1.5 定积分的概念

[学习目标] 1.了解定积分的概念.2.理解定积分的几何意义.3.通过求曲边梯形面积的过程和解决有关汽车行驶路程问题的过程,了解“以直代曲”“以不变代变”的思想.4.能用定积分的定义求简单的定积分. 知识点一曲边梯形的面积和汽车行驶的路程 1.曲边梯形的面积 (1)曲边梯形:由直线x=a,x=b(a≠b),y=0和曲线________所围成的图形称为曲边梯形(如图①所示). (2)求曲边梯形面积的方法 把区间[a,b]分成许多小区间,进而把曲边梯形拆分为一些________,对每个__________“以直代曲”,即用__________的面积近似代替__________的面积,得到每个小曲边梯形面积的________,对这些近似值______,就得到曲边梯形面积的________(如图②所示). (3)求曲边梯形面积的步骤:①________,②________,③________,④________. 2.求变速直线运动的(位移)路程 如果物体做变速直线运动,速度函数v=v(t),那么也可以采用________,________,________,________的方法,求出它在a≤t≤b内所作的位移s. 思考(1)如何计算下列两图形的面积?

(2)求曲边梯形面积时,对曲边梯形进行“以直代曲”,怎样才能尽量减小求得的曲边梯形面积的误差? 知识点二 定积分的概念 如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0

高二定积分及其简单应用

定积分及其简单应用 定积分∫b a [f (x )-g (x )]d x (f (x )>g (x ))的几何意义是什么? 提示:由直线x =a ,x =b 和曲线y =f (x ),y =g (x )所围成的曲边梯形的面积. ②一般情况下,定积分∫b a f (x )d x 的几何意义是介于x 轴、曲线f (x )以及直线x =a ,x =b 之间的曲边梯形面积的代数和(右上图中阴影所示),其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数. 3.直线x =0,x =2,y =0与曲线y =x 2 所围成的曲边梯形的面积为________. 解析:∫20x 2 d x =13x 3 |20=83. 答案:83 4.∫101-x 2 d x =________. 解析:由定积分的几何意义可知,∫101-x 2d x 表示单位圆x 2+y 2 =1在第一象限内部 分的面积,所以 ∫101-x 2 d x =14π. 答案:14π 例1、利用微积分基本定理求下列定积分: (1)∫21(x 2+2x +1)d x ; (2)∫π0(sin x -cos x )d x ; (3)∫2 0x (x +1)d x ; (4)∫2 1 ? ????e 2x +1x d x ; (5)20 π ? sin 2x 2d x . [解答] (1)∫2 1 (x 2 +2x +1)d x =∫21 x 2d x +∫21 2x d x +∫21 1d x =x 3 3 |21+x 2 |21+x |2 1=193 . (2)∫π0(sin x -cos x )d x =∫π0sin x d x -∫π0cos x d x =(-cos x ) |π0-sin x |π 0=2. (3)∫20x (x +1)d x =∫20(x 2+x )d x =∫20x 2d x +∫2 0x d x =13x 3 |20+12x 2 |20=? ?? ??13×23-0+ ? ?? ??12×22-0=143. (4)∫21? ????e 2x +1x d x =∫21e 2x d x +∫211x d x =12e 2x |21+ln x |2 1=12e 4-12e 2+ln 2-ln 1=12e 4-12e 2+ ln 2.

高考数学总复习 定积分学案

高考数学总复习定积分学案 定积分学案 一、复习目标: 1、了解定积分的实际背景,基本思想,了解微积分基本定理 的含义,会计算简单的微积分; 2、能利用定积分求曲边梯形的面积; 二、定向导学互动展示自研自探环节合作探究环节展示提升 环节质疑提升环节自学指导(内容学法时间)互动策略展示方案(内容方式时间) 【考点1】 曲边梯形的面积的求法学法指导:认真自研选修2-2第38至47页,分析课本中如何求曲边梯形的面积,解决以下问题: 1、用化归法计算矩形面积和逼近的思想方法求出曲边梯形的 面积的具体步骤为有哪些。(建议自已推导下) 2、通过解决问题1,定积分的定义(作图给予合理的说明) 如果函数f(x)在区间[a,b]上连续,用分点将区间[a,b] 等分成n个小区间,在每个小区间上任取一点 ξi(i=1,2,…,n),作和式、当n→∞时,上述和式无限接近于某个常数,这个常数叫做函数f(x)在区间[a,b]上的定积分,记作 , 即 = ,其中f(x)称为 ,x称为 ,f(x)dx称为,[a,b]为,a 为,b为,“”称为积分号、3、回顾定积分有哪些性质。自

我巩固:利用定积分定义,计算的值(步骤准确)(2)(1)①两人对子间相互批改自学指导内容,并用红笔予以等级评定,针对批改中存在的疑惑对子间相互交流,进行初步解决:②六人共同体先解决对子间存在的疑惑,并结合议题中的具体问题探讨疑难,重点交流议题一:“交流如何求曲边梯形的面积”;议题二:“重点交流如何运用微积分基本定理解决问题”;议题三:“探讨交流在应用定积分解决问题应注意什么”③针对本组抽到的展示任务在组长的主持下进行展示任务分工,做好展示前的准备。 【议题1】 (方案提示:①分析下列问题,回顾运用知识点,②先展示本组在解决题目是时遇到的困惑,在展示你们是如何解决困惑的;③归纳解决此类问题的方法及其注意点) 1、利用定积分的含义,求下列的值 2、试用定积分的几何意义说明的大小 3、计算下列定积分,并从几何上解释这些值分别表示什么。(1)(2)(3) 【考点2】 微积分基本定理学法指导:认真自研选修2-2第51至55页,从书本中提取信息,如何理解微积分就基本定理,从而解决以下问题:

相关文档
最新文档