弱电设备如何防雷击

弱电设备如何防雷击
弱电设备如何防雷击

弱电设备如何防雷击

1.概况

仅1999年6月到2001年8月一年多的时间里,可查的由于雷击发生的弱电损坏就有四次之多。樊庄变电站线路落雷,造成主控地与设备之间的电位差而损坏大量的保护设备;南郊变电站的微波塔落雷,由于感应过电压而损坏大量的通讯、远动设备损坏;西万庄变电站的微波塔落雷,由于地电位差造成大量的通讯远动设备损坏;北郊变电站微波塔落雷,造成大量的保护、运动、通讯设备损坏。

近年来,随着微电子技术的不断发展,自动控制系统在生产生活各个方面的使用越来越广,人们在受益于微电子的极大方便的同时,也受到其一旦损坏就损失巨大的困扰。实际中,在增加自动控制系统的时候,往往对自动控制系统的防雷未加考虑或考虑不够的情况较多,一旦有雷电波侵入,设备损坏一般是巨大的,有的甚至使整个系统瘫痪,造成无可挽回的损失。

这些故障的主要原因是由于一次设备发生雷击后在弱电设备造成的浪涌超过了设备承受的能力而损坏设备的,浪涌的主要形式是电源浪涌、信号浪涌。而这种浪涌在新建或扩建设备时又往往不被重视,所以本文在介绍常用的弱电防雷的同时,重点探讨了浪涌对弱电设备的危害及预防措施。

2.弱电设备雷电危害的主要原因分析

雷电会导致多种不同形式的危害,没有任何一种办法可以全面防止雷电的危害,通过各种有效的办法可将雷害的程度降到最低,在多年的实际中人们对直击雷、感应雷、球形雷的认识比较高,防护也相对完善,但对雷电浪涌的防护意识和防护措施相对比较薄弱,以上所列的四次典型的雷击弱电设备的情况就是对弱电防雷考虑不够造成的。其主要的雷电形式及雷害情况有以下几种情况:

(1)雷电浪涌是近年来由于微电子的不断使用引起人们极大重视的一种雷电危害形式,同时其防护方式也不断完善。最常见的电子设备危害不是由于直接雷击引起的,而是由于雷击发生时在电源和通讯线路中感应的电流浪涌引起的。一方面由于电子设备内部结构高度集成化(VLSI芯片),从而造成设备耐压、耐过电流的水平下降,对雷电(包括

感应雷及操作过电压浪涌)的承受能力下降,另一方面由于信号来源路径增多,系统较以前更容易遭受雷电波侵入。浪涌电压可以从电源线或信号线等途径窜人电脑设备。美国GE公司测定一般家庭、饭店、公寓等低压配电线(110V)在10000h(约一年零两个月)内在线间发生的超出原工作电压一倍以上的浪涌电压次数达到800余次,其中超过1000 V的就有300余次。这样的浪涌电压完全有可能一次性将电子设备损坏。信号系统浪涌电压的主要来源是感应雷击、电磁干扰、无线电干扰和静电干扰。金属物体(如电话线)受到这些干扰信号的影响,会使传输中的数据产生误码,影响传输的准确性和传输速率。排除这些干扰将会改善网络的传输状况。

(2)直击雷是指雷电直接击在建筑物构架、动植物上,因电效应、热效应和机械效应等造成建筑物等损坏以及人员的伤亡。

(3)感应雷是雷电在雷云之间或雷云对地放电时,在附近的户外传输信号线路、埋地电力线、设备间连接线产生电磁感应并侵入设备,使串联在线路中间或终端的电子设备遭到损害。感应雷虽然没有直接雷猛烈,但其发生的几率比直击雷高得多。

3.弱电设备防雷措施

按照防护范围可将弱电设备的防雷措施分为两类,外部防护和内部防护。外部防护是指对安装弱电设备的建筑物本体的安全防护,可采用避雷针、分流、屏蔽网、均衡电位、接地等措施,这种防护措施人们比较重视、比较常见,相对来说比较完善。内部防护是指在建筑物内部弱电设备对过电压(雷电或电源系统内部过电压)的防护,其措施有:等电位联结、屏蔽、保护隔离、合理布线和设置过电压保护器等措施,这种措施相对来说是比较新的办法,也不够完善,下边对弱电设备防雷进行探讨,主要对雷电浪涌及地电位差的防护提出一些自己的看法。

3.1弱电设备的外部防护

弱电设备的外部防护首先是使用建筑物的避雷针将主要的雷电流引人大地;其次是在将雷电流引人大地的时候尽量将雷电流分流,避免造成过电压危害设备;第三是利用建筑物中的金属部件以及钢筋可以作为不规则的法拉第笼,起到一定的屏蔽作用,如果建筑物中的设备是低压电子逻辑系统、遥控、小功率信号电路的电器,则需要加装专门的屏蔽网,在整个屋面组成不大于5m-5m,6m-4m的网格,所有均压环采用避雷带等电位连接;第四是建筑物各点的电位均衡,避免由于电位差危害设备;第五是保障建筑物有良好的接地,降低雷击建筑物时接点电位损坏设备。

3.2弱电设备的内部保护

从EMC(电磁兼容)的观点来看,防雷保护由外到内应划分为多级保护区。最外层为0级,是直接雷击区域,危险性最高,主要是由外部(建筑)防雷系统保护,越往里则危险程度越低。保护区的界面划分主要通过防雷系统、钢筋混凝土及金属管道等构成的屏蔽层而形成,从0级保护区到最内层保护区,必须实行分层多级保护,从而将过电压降到设备能承受的水平。一般而言,雷电流经传统避雷装置后约有50%是直接泄人大地,还有50%将平均流人各电气通道(如电源线,信号线和金属管道等)。

随着电脑通信设备的大规模使用,雷电以及操作瞬间过电压造成的危害越来越严重。以往的防护体系已不能满足电脑通信网络安全的要求。应从单纯一维防护转为三维防护,包括:防直击雷,防感应雷电波侵入,防雷电电磁感应,防地电位反击以及操作瞬间过电压影响等多方面作系统综合考虑。

多级分级(类)保护原则:即根据电气、微电子设备的不同功能及不同受保护程度和所属保护层确定保护要点作分类保护;根据雷电和操作瞬间过电压危害的可能通道从电源线到数据通信线路都应做多级层保护。

3.2.1 电源部分防护

弱电设备的电源雷电侵害主要是通过线路侵入。高压部分有专用高压避雷装置,电力传输线把对地的电压限制到小于6000V(1EEEEC62.41),而线对线则无法控制。所以,对380V低压线路应进行过电压保护,按国家规范应有三部分:建议在高压变压器后端到二次低压设备的总配电盘间的电缆内芯线两端应对地加避雷器或保护器,作一级保护;在二次低压设备的总配电盘至二次低压设备的配电箱间电缆内芯线两端应对地加装避雷器保护器,作二级保护;在所有重要的、精密的设备以及UPS的前端应对地加装避雷器或保护器,作为三级保护。

目的是用分流(限幅)技术即采用高吸收能量的分流设备(避雷器)将雷电过电压(脉冲)能量分流泄人大地,达到保护目的,所以,分流(限幅)技术中采用防护器的品质、性能的好坏是直接关系网络保护的关键,因此,选择合格优良的避雷器或保护器至关重要。

3.2.2 信号部分保护

对于信息系统,应分为粗保护和精细保护。粗保护量级根据所属保护区的级别确定,精细保护要根据电子设备的敏感度来进行确定。

3.2.3 接地处理

一定要求有一个良好的接地系统,因所有防雷系统都需要通过接地系统把雷电流泄人大地,从而保护设备和人身安全。如果机房接地系统做得不好,不但会引起设备故障,烧坏元器件,严重的还将危害工作人员的生命安全。另外还有防干扰的屏蔽问题,防静电的问题都需要通过建立良好的接地系统来解决。

4.结论

弱电设备的防雷问题是一个综合性的工作,尤其是弱电设备的雷电浪涌防护还重视不够,也常常由其而引起设备的损坏,所以在完善弱电设备外部防护的同时,要加强弱电设备的内部防护,建议加强以下几方面的工作:

(1)首先要完善弱电外部雷电防护,将绝大部分雷电流直接接闪引入地下泄散。

(2)其次要阻塞沿电源线或数据、信号线引入的过电压波。

(3)第三限制钳位被保护设备上浪涌过压过流幅值在设备可承受的范围。

这三道防线,相互配合,各行其责,缺一不可。

对电子设备防雷击有关问题的看法

来源:中国论文下载中心 [ 06-03-03 11:57:00 ] 作者:程开嘉编辑:studa9ngns

摘要:本文阐述了雷击模拟电子设备的机理,SPD和类型和选择时应注意的问题。

关键词:雷击雷电波形SPD

近年来,电子信息设备和计算机系统已深入各行各业,由于这类设备的工作电压和耐冲击电压水平低,极易受到雷电电磁脉冲的危害,从而使雷电灾害由电力和建筑物这两个传统领域扩展到几乎所有行业,特别是通讯、信息技术数据中心,计算机中心以及微电子生产行业等由于雷电造成的危害尤为重要。另一方面,因为雷击是机率事件,这种影响尚未引起人们的注意,很多人认为只要按照国家的建筑物防雷设计规范做好避雷针(带)、引下线和接地装置等建筑物内外的防雷工作就“万事大吉”了。但实际上,当雷击现象发生时,建筑物的外部防雷装置确实有效地抵御了雷击对建筑物的破坏,同时均匀的避雷引下线与建筑物接地的均压环也起到法拉第网笼的作用,保证建筑物内的人员不致因跨步电压升高而导致触电事故。

但这时当雷电击中建筑物防雷装置或击中附近其他建筑物的避雷针(带)并由引下线导人大地时,瞬间内在引下线自上而下的产生一个很强的变化磁场。处在这个电磁场作用下的导体,便会感应产生电压,其数值也可达数十千伏,处在这个磁场作用范围的电气、信号、电源及它们的传输线路都因相对地切割了这个变化的磁场磁力线而产生出感应高压,从而将用电设备击坏。如图1所示,如果导体的形状是开口环形感应电压,便会把几厘米长的空气间隙a、b击穿发生火花放电。如果导体是一个闭合回路,感应电压会造成一个电流通过,假如回路上有接触不良的接点,这些地方就会局部发热。再有,由于雷电冲击波的能量集中在工频附近几十赫兹到几百赫兹的低端,雷电冲击波能量就容易与工频回路发生耦合、谐振,于是雷电冲击波从电源线路进入电子设备的机率要比从信号线中进入的机率要高很多,据统计,约有8%的雷击损坏电子设备的事故是由电源引入的,因此应特别加强系统中设备电源的防雷措施。

l雷击电子设备的途径及损坏机理

雷击过电压损坏设备可分为两种情况,一种是受雷电直击,另一种受感应雷影响所致。据统计电子设备受雷电直击而损坏的机率很小,而绝大多数损坏为感应雷造成,雷电行波通过传输信息的电路线传至电子设备使其某些电子元件受损。

还有一种情况值得重视的是电子设备附近的大地或其他设备的接地体,因受直击雷引起的电位升高,会使电子设备造成反击,使之对地绝缘击穿。根据传统经验电子设备的地线与电源设备的地线分开设置是减少这种雷电侵入途径的有效措施之一。所以凡联结有输人或输出线路的电子设备应考虑以上三条侵入途径。不论那种途径侵入的雷击过电压加在电子设备上冲击引起两种过电压,一种是:使平衡电路某点出现超过允许的对地过电压,称为纵向过电压,地电位上升引起的反击也属于从地系统侵入的纵向过电压;另一种是平衡电路线间或不平衡电路线对地出现的过电压称为横向过电压。使用对称传输线的设备,横向过电压是因线路两线间存在不同的纵向过电压;或因纵向防护元件放电性能的分散性(如动作时间有快慢的差别)是造成横向过电压的原因,如果在平衡线路上的两个纵向防护元件,其中一路故障或失效这就造成了横向过电压的极限情况。对不平衡电路如对连接同轴电缆的电子设备其纵向过电压即横向过电压。雷电冲击过电压可导致绝缘击穿,也可产生过电流。进行纵向雷击试验的目的,在于检验设备在纵向过电压下元器件对地的绝缘。横向雷击试验则是检验两线间出现冲击过电压时设备耐受冲击的能力。

在电子设备中,易受雷击过电压损坏的元部件,大多数是靠近设备的入口端,如纵向过电压会击穿线路和设备间起匹配作用的变压器匝间、层间、或线对地绝缘等。横向过电压可随信息同时传至设备内部,损坏设备内的阻容元件及固体元件。设备中元器件受损的程度,取决于元器件绝缘水平,即耐受冲击的强度,对具有白复能力的绝缘,击穿只是暂时的,一旦过压消失,即可恢复。有些非自复性的绝缘介质,冲击时只有小电流流过,一次冲击不会立即中断设备,但经过多次冲击,随着多次冲击的累积可能会使元件逐渐受损最终导致毁坏,这就是为什么在试验时要试验冲击次数,极性和间隔的原因所在。

电子元件受雷击损坏的情况,概括起来不外下列三种:(1)受过电压损坏的,如电容器、变压器及电子元件的反向耐压。(2)受过电压冲击能量损坏的,如二极管PN结正向损坏,冲击危险程度在于流过元器件的过电流大小和持续时间,即能量大小。(3)易受冲击功率损坏的,对元件的危害决定于冲击电压峰值和由此而产生的过电流。

2雷电波形

有关雷电冲击波的描述是用波形参数说明,它有峰值波前时间和下降半峰值时间。如图2所示。观测的数据和波形均具有统计特.硅,服从某种分布规律,从而统计出雷电流幅值,波头、波尾、陡度、能量等概率分布。多年来,国内外在对线路结构上或进人电子设备的雷电冲击波形进行了很多观测工作,获得了大量的观测资料。

一些国家通过现场观测发表了很多测试结果。因观测的地理环境和条件的不同。即使在同样条件下,观测得到的数据也不尽相同。早先,有些国家观测得到的几百个波形中,对主放电波形的叙述,当不区另别第一次放电或随后各次闪电时,一般认为雷电流在1—4微秒上升到幅值,然后在40一50微秒内下降到幅值的一半。这就是所谓传统的雷电流波形。正极性闪电的电流波形一般较负极性闪电的波形平坦一些,持续时间较长,上升到幅值的时间约数十微秒,下降到半值时间约为数百微秒。

图2雷击参数定义

在对雷电的研究中,需要在千千万万的实波形中找出典型波形并转化为用数学式表示曲线。比较流行的代表曲线有两种:

1.波头部分用两个指数曲线之差表示,其公式为:

用这公式表示的波形如图3a,当i=0时,电流上升速度di/dt最大;而当电流逐渐增大时,di/dt逐渐减小;到了i=Im时,di/dt变为零。

2.波头部分用余弦曲线表示其公式为:

用这公式表示的波形如图3b,当i=0时,di/dt=0;随着电流上升,di/dt也上升;当I=Im/2时,di/dt到达最大值;然后di/dt减小;当i=Im时,di/dt降为零。

一般习惯于用两个指数曲线之差的形式来表示雷电流波形,并且认为这种表示方式和大多数实际测得的波形比较相似。但是经过近年的观测得到大多数的第一次主放电电流波形在其上升到幅值之前时比较缓慢,然后再转入陡的部分,其波头接近于用余弦来表示的波形。用余弦曲线表示时,因为雷电流最大陡度出现在Im/2处,以此进行雷击的电位计算时可以得到较高的结果而偏于可靠。但是,余弦曲线计算较为繁琐,因而往往简化为直线,也就是用斜角波来表示,通过最大陡度和平均陡度的转化,可以使采用斜角波的计算结果和采用余弦波的计算结果基本一致。

对于雷电流波形的各个量的标志方法各国也不是统一的。典型的雷电流波形是以IEC规定的如图4所示,在幅值Im 以前叫波头部分,幅值Im以后叫波尾部分。早先规定由O点到幅值的时间叫波头长度,由0点到波尾半幅值的时间叫全部波长。但是在实际测量中发现,0点及幅值这两点的时间很难精确测定的。为了避免测量中出现的含混,IEC建议测量脉冲电流的实测值按下列方法定义:实效波头时间T1:脉冲电流的实效波头时间,是指脉冲电流在10%幅值及90~/6幅值两个瞬间之间的间隔时间再乘以1.25倍(两个瞬间点A 和B见图4(a)。实效半幅值时间T2:脉冲电流的实效半幅值时间T2,是指实效原点O-与波形下降到半幅值的瞬间之间的间隔时间。

测量脉冲电压的方法与脉冲电流相似,所不同的只是选择参考点A的方法不一样。脉冲电压的实效波头时间T1是指从脉冲电压在30~/6幅值及90~/6幅值两瞬间之间的间隔时间乘以1.67倍。实效原点O。是指A点之前0.3T1的一点,如图4b。一般以分式符号表示波头时间及半值时间(又称波尾),例如1.5/40便是指波头时间为1.5微秒,半值时间为40微秒的波形。通常将雷电流由零增长到幅值这一部分称为波头,只有几个微秒;电流值下降的部分称为波尾,长达数十微秒到几百微秒。

在1995年的EIC61312—1中的典型10/350us和8720us雷电流波形。10/35us波是直接雷的电流波形,其能量远大于8/20us波,用这种波型来确定接闪器的大小尺寸。8/20us波是感应雷和传导雷电的电流波形,用这种波形来检验防雷器件耐雷击能力的一种通用标准。它代表雷电电流经过分流、衰减的电流波,又是线路静电感应电压波和防雷导体通过雷电流时对其附近电气导线的电磁感应过电压波。例如防雷的引下线,建筑物LPZI区及其内部计算雷电流的波。

由于雷电参数值随地理环境不同,传输线的结构不同,关于国际标准所规定的波形只是推荐,容许各国根据本国实际情况加以引用或制订。由于我国尚无这方面的资料,故直接引用了IEC和ITU的推荐波形。对于架空明线的波形采用了我国邮电部门的观测资料制订。

建筑物防雷设计规范(GB50057-94)规定了防雷保护区的概念,便于设计者利用系统的层次分析各防雷保护区界面处的金属导体等电位联接和装设过电压保护器去分流和限压的措施,使侵入波干扰信号不断减少。这同我们过去的多道防雷的保护是一致的,在不同防雷保护区的界面上有不同层次的结合,就是要求注意各个介面处内外系统的相互关系与相互作用,即要根据流过电压保护器的电流波形,残压特性和大小,过电压保护器的伏秒特性以及雷电流通过后产生的工频续流大小等选择过电压保护器才是合理的。

3防雷元件性能

防雷元件的冲击特性与试验方法的关系甚为密切,它是规定防雷元件技术参数标准的基础之一。但试验方法又与雷电波形有联系。因为电子设备大都在一定的频率范围内工作,不同频率范围的通路,对冲击波有着不同的响应。因此,对雷电冲击波形进行频谱分析,无论对电子设备的防雷设计和试验都是有意义的。

防雷元件种类繁多,概括起来可分间隙式的(如放电间隙、阀型避雷器、放电管等)和非间隙式的(如压繁电阻、齐纳二极管),再推广一下像扼流线圈、电阻、电容……也可归人这一类,从动作时间来说有快慢的区别。

使用在电涌保护器(sPD)中几类元件的有关参数,虽然有厂家产品说明,但在选用时有的参数还须注意了解。例如放电管的伏秒特性:表征放电管点火电压与时间的关系。它反映了各种不同上升速度的电压波作用在放电管上其点火电压和延迟时间的关系。由伏秒特性曲线可以判断放电管的防护能力。放电管属间隙式,有空气间隙、气体放电管等。再如氧化锌压敏电阻,是一种对电压敏感的元件,是一种陶瓷非线性电阻器,有氧化锌、氧化硅。这种元件,其电压非线性系数高、容量大、残压低、漏电流小、无续流、伏安特性对称、电压范围宽、响应速度快、电压温度系数小等特点。并且有结构简单,成本低等优点,是目前广泛应用的过电压保护器件。适用于交流电压浪涌吸收和各种线圈,接点间过电压的吸收和灭弧,在电子器件过电压保护中广为应用。在选用时关注的是通流容量;按规定的电流波

形,在一定的试验条件下施加的冲击电流值,压敏电阻所能承受冲击电流的能力。我国对压敏电阻的考核一般以8/20us波形,在室温条件下,间隔5分钟单方向冲击两次后,5分钟内测试压敏电阻的起始动作电压Vlma值的变化率在百分之十以内时,冲击电流的最大幅值定为通流容量。压敏电阻的残压(LJres):压敏电阻通过电流时,在其两端的电压降谓之残压。通常均以规定的波形,通过不同的电流幅值进行残压测试。目前采用8/20us电流波形,以100A、1000A、3000A、5000A及该元件的满通容量进行残压试验。另外还有半导体浪涌抑制器件:如瞬间二极管,它是一种过箝压器件,简单TKS,利用大面积硅园锥P-N结的雪崩效应实现过箝位,TRS响应速度快、漏电流小,是极佳的过电压吸收器件。齐纳二极管较为常用,其无极性,正反向具有相同的保护特性,但器件的工作电压至少要为联端的工作电压三倍。其适用于交直流回路,常应用于自动化控制装置的输出回路,即继电器线圈或电磁间线圈两端并联应用。

以上各类间隙式,非间隙式和抑制式器件都是通过浪涌电压产生非线性元件瞬时短路的方式实现防雷保护。

4对电子系统及电子设备的防雷看法

由于电子信息设备是集电脑技术与集成微电子技术的产品,它的信号电压只有5~10伏,这种产品的电磁兼容能力较差,很容易感受脉冲过电压的袭击,它受雷击的概率又比较高,受雷电损坏的可能性就大。但是,电子信息系统是由信号采集、传输、存储、检索等多环节组成。鉴于系统环节多、接口多、线路长等原因,给雷电的耦合提供了条件。系统的电源进线接口,信号输入输出接口,接口的线路较长等是感应脉冲过电压容易侵人的原因,也是过电压波侵入的主要通道。

基于以上原因。电子系统及电子设备的防雷保护重点是感应雷。防雷的方法和措施,是按照现行的防雷规范规定的各个防雷分区的交界处安装SPD设备。将整个系统的雷电防护看成是一个系统工程,综合考虑,全方位保护,力求将雷击灾害降低到最低。为此,规范里阐述了三级网络防雷概念。在线路上三级网络防护是逐步减少瞬态浪涌电流幅值的。最后一级将浪涌过电压限制在设备能安全承受的范围内。一般元件可承受两倍其额定电压以上之瞬间电压,约700V左右的峰值过电压。700V的耐压值在欧洲防雷方面被广泛引用。当然,浪涌电压被限制得越低,则设备越安全。因此,我们在工程设计时分别将第一级SPD尽量靠近建筑物的电源进线处,第二、三级SPD尽量靠近被保护设备。第一级过电压限制在1.5-1.8kV,第二级将残压限制在0.9~1.2kV,第三级将残压限制在0.4~0.TkV。通过这三级限压和对浪涌电流的泄放,最后加载到设备上的过电压通常都不会对设备和系统产生影响。现在防雷防电磁脉冲的保护器件还比较贵,技术性能都有差别,有些防雷产品通过保险只是为了促销,设计者不能盲目地认为是可靠的产品,而应按防雷规范的要求进行设计。

参考文献:

1《电子设备雷击试验导则》编制说明1982年5月。

2通信线路和通信设备的防雷手册(CCITT资料)邮电设计院译。

对电子设备防雷击有关问题的看法

摘要:本文阐述了雷击模拟电子设备的机理,SPD和类型和选择时应注意的问题。

关键词:雷击雷电波形SPD

近年来,电子信息设备和计算机系统已深入各行各业,由于这类设备的工作电压和耐冲击电压水平低,极易受到雷电电磁脉冲的危害,从而使雷电灾害由电力和建筑物这两个传统领域扩展到几乎所有行业,特别是通讯、信息技术数据中心,计算机中心以及微电子生产行业等由于雷电造成的危害尤为重要。另一方面,因为雷击是机率事件,这种影响尚未引起人们的注意,很多人认为只要按照国家的建筑物防雷设计规范做好避雷针(带)、引下线和接地装置等建筑物内外的防雷工作就“万事大吉”了。但实际上,当雷击现象发生时,建筑物的外部防雷装置确实有效地抵御了雷击对建筑物的破坏,同时均匀的避雷引下线与建筑物接地的均压环也起到法拉第网笼的作用,保证建筑物内的人员不致因跨步电压升高而导致触电事故。

但这时当雷电击中建筑物防雷装置或击中附近其他建筑物的避雷针(带)并由引下线导人大地时,瞬间内在引下线自上而下的产生一个很强的变化磁场。处在这个电磁场作用下的导体,便会感应产生电压,其数值也可达数十千伏,处在这个磁场作用范围的电气、信号、电源及它们的传输线路都因相对地切割了这个变化的磁场磁力线而产生出感应高压,从而将用电设备击坏。如图1所示,如果导体的形状是开口环形感应电压,便会把几厘米长的空气间隙a、b 击穿发生火花放电。如果导体是一个闭合回路,感应电压会造成一个电流通过,假如回路上有接触不良的接点,这些地方就会局部发热。再有,由于雷电冲击波的能量集中在工频附近几十赫兹到几百赫兹的低端,雷电冲击波能量就容易与工频回路发生耦合、谐振,于是雷电冲击波从电源线路进入电子设备的机率要比从信号线中进入的机率要高很多,据统计,约有8%的雷击损坏电子设备的事故是由电源引入的,因此应特别加强系统中设备电源的防雷措施。

l雷击电子设备的途径及损坏机理

雷击过电压损坏设备可分为两种情况,一种是受雷电直击,另一种受感应雷影响所致。据统计电子设备受雷电直击而损坏的机率很小,而绝大多数损坏为感应雷造成,雷电行波通过传输信息的电路线传至电子设备使其某些电子元件受损。

还有一种情况值得重视的是电子设备附近的大地或其他设备的接地体,因受直击雷引起的电位升高,会使电子设备造成反击,使之对地绝缘击穿。根据传统经验电子设备的地线与电源设备的地线分开设置是减少这种雷电侵入途径的有效措施之一。所以凡联结有输人或输出线路的电子设备应考虑以上三条侵入途径。不论那种途径侵入的雷击过电压加在电子设备上冲击引起两种过电压,一种是:使平衡电路某点出现超过允许的对地过电压,称为纵向过电压,地

电位上升引起的反击也属于从地系统侵入的纵向过电压;另一种是平衡电路线间或不平衡电路线对地出现的过电压称为横向过电压。使用对称传输线的设备,横向过电压是因线路两线间存在不同的纵向过电压;或因纵向防护元件放电性能的分散性(如动作时间有快慢的差别)是造成横向过电压的原因,如果在平衡线路上的两个纵向防护元件,其中一路故障或失效这就造成了横向过电压的极限情况。对不平衡电路如对连接同轴电缆的电子设备其纵向过电压即横向过电压。雷电冲击过电压可导致绝缘击穿,也可产生过电流。进行纵向雷击试验的目的,在于检验设备在纵向过电压下元器件对地的绝缘。横向雷击试验则是检验两线间出现冲击过电压时设备耐受冲击的能力。

在电子设备中,易受雷击过电压损坏的元部件,大多数是靠近设备的入口端,如纵向过电压会击穿线路和设备间起匹配作用的变压器匝间、层间、或线对地绝缘等。横向过电压可随信息同时传至设备内部,损坏设备内的阻容元件及固体元件。设备中元器件受损的程度,取决于元器件绝缘水平,即耐受冲击的强度,对具有白复能力的绝缘,击穿只是暂时的,一旦过压消失,即可恢复。有些非自复性的绝缘介质,冲击时只有小电流流过,一次冲击不会立即中断设备,但经过多次冲击,随着多次冲击的累积可能会使元件逐渐受损最终导致毁坏,这就是为什么在试验时要试验冲击次数,极性和间隔的原因所在。

电子元件受雷击损坏的情况,概括起来不外下列三种:(1)受过电压损坏的,如电容器、变压器及电子元件的反向耐压。(2)受过电压冲击能量损坏的,如二极管PN结正向损坏,冲击危险程度在于流过元器件的过电流大小和持续时间,即能量大小。(3)易受冲击功率损坏的,对元件的危害决定于冲击电压峰值和由此而产生的过电流。

2雷电波形

有关雷电冲击波的描述是用波形参数说明,它有峰值波前时间和下降半峰值时间。如图2所示。观测的数据和波形均具有统计特.硅,服从某种分布规律,从而统计出雷电流幅值,波头、波尾、陡度、能量等概率分布。多年来,国内外在对线路结构上或进人电子设备的雷电冲击波形进行了很多观测工作,获得了大量的观测资料。

一些国家通过现场观测发表了很多测试结果。因观测的地理环境和条件的不同。即使在同样条件下,观测得到的数据也不尽相同。早先,有些国家观测得到的几百个波形中,对主放电波形的叙述,当不区另别第一次放电或随后各次闪电时,一般认为雷电流在1—4微秒上升到幅值,然后在40一50微秒内下降到幅值的一半。这就是所谓传统的雷电流波形。正极性闪电的电流波形一般较负极性闪电的波形平坦一些,持续时间较长,上升到幅值的时间约数十微秒,下降到半值时间约为数百微秒。

图2雷击参数定义

在对雷电的研究中,需要在千千万万的实波形中找出典型波形并转化为用数学式表示曲线。比较流行的代表曲线有两种:

1.波头部分用两个指数曲线之差表示,其公式为:

用这公式表示的波形如图3a,当i=0时,电流上升速度di/dt最大;而当电流逐渐增大时,di/dt逐渐减小;到了i =Im时,di/dt变为零。

2.波头部分用余弦曲线表示其公式为:

用这公式表示的波形如图3b,当i=0时,di/dt=0;随着电流上升,di/dt也上升;当I=Im/2时,di/dt到达最大值;然后di/dt减小;当i=Im时,di/dt降为零。

一般习惯于用两个指数曲线之差的形式来表示雷电流波形,并且认为这种表示方式和大多数实际测得的波形比较相似。但是经过近年的观测得到大多数的第一次主放电电流波形在其上升到幅值之前时比较缓慢,然后再转入陡的部分,其波头接近于用余弦来表示的波形。用余弦曲线表示时,因为雷电流最大陡度出现在Im/2处,以此进行雷击的电位计算时可以得到较高的结果而偏于可靠。但是,余弦曲线计算较为繁琐,因而往往简化为直线,也就是用斜角波来表示,通过最大陡度和平均陡度的转化,可以使采用斜角波的计算结果和采用余弦波的计算结果基本一致。

对于雷电流波形的各个量的标志方法各国也不是统一的。典型的雷电流波形是以IEC规定的如图4所示,在幅值Im 以前叫波头部分,幅值Im以后叫波尾部分。早先规定由O点到幅值的时间叫波头长度,由0点到波尾半幅值的时间叫全部波长。但是在实际测量中发现,0点及幅值这两点的时间很难精确测定的。为了避免测量中出现的含混,I EC建议测量脉冲电流的实测值按下列方法定义:实效波头时间T1:脉冲电流的实效波头时间,是指脉冲电流在10%幅值及90~/6幅值两个瞬间之间的间隔时间再乘以1.25倍(两个瞬间点A和B见图4(a)。实效半幅值时间T2:脉冲电流的实效半幅值时间T2,是指实效原点O-与波形下降到半幅值的瞬间之间的间隔时间。

测量脉冲电压的方法与脉冲电流相似,所不同的只是选择参考点A的方法不一样。脉冲电压的实效波头时间T1是指从脉冲电压在30~/6幅值及90~/6幅值两瞬间之间的间隔时间乘以1.67倍。实效原点O。是指A点之前0.3 T1的一点,如图4b。一般以分式符号表示波头时间及半值时间(又称波尾),例如1.5/40便是指波头时间为1.5微秒,半值时间为40微秒的波形。通常将雷电流由零增长到幅值这一部分称为波头,只有几个微秒;电流值下降的部分称为波尾,长达数十微秒到几百微秒。

在1995年的EIC61312—1中的典型10/350us和8720us雷电流波形。10/35us波是直接雷的电流波形,其能量远大于8/20us波,用这种波型来确定接闪器的大小尺寸。8/20us波是感应雷和传导雷电的电流波形,用这种波形来检验防雷器件耐雷击能力的一种通用标准。它代表雷电电流经过分流、衰减的电流波,又是线路静电感应电压波和防雷导体通过雷电流时对其附近电气导线的电磁感应过电压波。例如防雷的引下线,建筑物LPZI区及其内部计算雷电流的波。

由于雷电参数值随地理环境不同,传输线的结构不同,关于国际标准所规定的波形只是推荐,容许各国根据本国实际情况加以引用或制订。由于我国尚无这方面的资料,故直接引用了IEC和ITU的推荐波形。对于架空明线的波形采用了我国邮电部门的观测资料制订。

建筑物防雷设计规范(GB50057-94)规定了防雷保护区的概念,便于设计者利用系统的层次分析各防雷保护区界面处的金属导体等电位联接和装设过电压保护器去分流和限压的措施,使侵入波干扰信号不断减少。这同我们过去的多道防雷的保护是一致的,在不同防雷保护区的界面上有不同层次的结合,就是要求注意各个介面处内外系统的相互关系与相互作用,即要根据流过电压保护器的电流波形,残压特性和大小,过电压保护器的伏秒特性以及雷电流通过后产生的工频续流大小等选择过电压保护器才是合理的。

[NextPage]

3防雷元件性能

防雷元件的冲击特性与试验方法的关系甚为密切,它是规定防雷元件技术参数标准的基础之一。但试验方法又与雷电波形有联系。因为电子设备大都在一定的频率范围内工作,不同频率范围的通路,对冲击波有着不同的响应。因此,对雷电冲击波形进行频谱分析,无论对电子设备的防雷设计和试验都是有意义的。

防雷元件种类繁多,概括起来可分间隙式的(如放电间隙、阀型避雷器、放电管等)和非间隙式的(如压繁电阻、齐纳二极管),再推广一下像扼流线圈、电阻、电容……也可归人这一类,从动作时间来说有快慢的区别。

使用在电涌保护器(sPD)中几类元件的有关参数,虽然有厂家产品说明,但在选用时有的参数还须注意了解。例如放电管的伏秒特性:表征放电管点火电压与时间的关系。它反映了各种不同上升速度的电压波作用在放电管上其点火电压和延迟时间的关系。由伏秒特性曲线可以判断放电管的防护能力。放电管属间隙式,有空气间隙、气体放电管等。再如氧化锌压敏电阻,是一种对电压敏感的元件,是一种陶瓷非线性电阻器,有氧化锌、氧化硅。这种元件,其电压非线性系数高、容量大、残压低、漏电流小、无续流、伏安特性对称、电压范围宽、响应速度快、电压温度系数小等特点。并且有结构简单,成本低等优点,是目前广泛应用的过电压保护器件。适用于交流电压浪涌吸收和各种线圈,接点间过电压的吸收和灭弧,在电子器件过电压保护中广为应用。在选用时关注的是通流容量;按规定的电流波形,在一定的试验条件下施加的冲击电流值,压敏电阻所能承受冲击电流的能力。我国对压敏电阻的考核一般以8/2 0us波形,在室温条件下,间隔5分钟单方向冲击两次后,5分钟内测试压敏电阻的起始动作电压Vlma值的变化率在百分之十以内时,冲击电流的最大幅值定为通流容量。压敏电阻的残压(LJres):压敏电阻通过电流时,在其两端的电压降谓之残压。通常均以规定的波形,通过不同的电流幅值进行残压测试。目前采用8/20us电流波形,以100A、1 000A、3000A、5000A及该元件的满通容量进行残压试验。另外还有半导体浪涌抑制器件:如瞬间二极管,它是一种过箝压器件,简单TKS,利用大面积硅园锥P-N结的雪崩效应实现过箝位,TRS响应速度快、漏电流小,是极佳的过电压吸收器件。齐纳二极管较为常用,其无极性,正反向具有相同的保护特性,但器件的工作电压至少要为联端的工作电压三倍。其适用于交直流回路,常应用于自动化控制装置的输出回路,即继电器线圈或电磁间线圈两端并联应用。

以上各类间隙式,非间隙式和抑制式器件都是通过浪涌电压产生非线性元件瞬时短路的方式实现防雷保护。

4对电子系统及电子设备的防雷看法

由于电子信息设备是集电脑技术与集成微电子技术的产品,它的信号电压只有5~10伏,这种产品的电磁兼容能力较差,很容易感受脉冲过电压的袭击,它受雷击的概率又比较高,受雷电损坏的可能性就大。但是,电子信息系统是由信号采集、传输、存储、检索等多环节组成。鉴于系统环节多、接口多、线路长等原因,给雷电的耦合提供了条件。系统的电源进线接口,信号输入输出接口,接口的线路较长等是感应脉冲过电压容易侵人的原因,也是过电压波侵入的主要通道。

基于以上原因。电子系统及电子设备的防雷保护重点是感应雷。防雷的方法和措施,是按照现行的防雷规范规定的各个防雷分区的交界处安装SPD设备。将整个系统的雷电防护看成是一个系统工程,综合考虑,全方位保护,力求将雷击灾害降低到最低。为此,规范里阐述了三级网络防雷概念。在线路上三级网络防护是逐步减少瞬态浪涌电流幅值的。最后一级将浪涌过电压限制在设备能安全承受的范围内。一般元件可承受两倍其额定电压以上之瞬间电压,约700V左右的峰值过电压。700V的耐压值在欧洲防雷方面被广泛引用。当然,浪涌电压被限制得越低,则设备越安全。因此,我们在工程设计时分别将第一级SPD尽量靠近建筑物的电源进线处,第二、三级SPD尽量靠近被保护设备。第一级过电压限制在1.5-1.8kV,第二级将残压限制在0.9~1.2kV,第三级将残压限制在0.4~0.TkV。通过这三级限压和对浪涌电流的泄放,最后加载到设备上的过电压通常都不会对设备和系统产生影响。现在防雷防电磁脉冲的保护器件还比较贵,技术性能都有差别,有些防雷产品通过保险只是为了促销,设计者不能盲目地认为是可靠的产品,而应按防雷规范的要求进行设计。

参考文献:

1《电子设备雷击试验导则》编制说明1982年5月。

2通信线路和通信设备的防雷手册(CCITT资料)邮电设计院译。

铁路信号设备防雷要点分析

铁路信号设备防雷要点分析 经济的快速发展使得我国各地之间的人员与物资的联系更为紧密,交通的便利也使得我国的经济发展更富有活力。随着我国铁路网络的不断完善铁路已经成为了我国最重要的陆上交通方式。随着铁路运量的增加做好铁路列车的调度是确保列车安全运行的重要保证,在铁路列车的调度中铁路信号设备是列车调度控制的重要设备,在铁路信号设备的使用过程中会受到周边恶劣自然环境的影响,尤其是雷电这一自然现象的侵入会导致铁路信号设备出现故障或是瘫痪,从而对铁路列车的运行造成了极大的安全隐患。做好铁路信号设备的防雷措施的研究分析是现今乃至今后一段时间铁路信号设备安全防护的重点也是难点,文章将在分析雷击对铁路信号设备所造成的影响的基础上,对如何做好铁路信号设备的防雷进行分析阐述。 标签:铁路信号设备;雷击;防雷 前言 随着电子信息技术及通信技术的发展,铁路信号设备中各类电子设备的应用越来越多也越来越广泛,电子设备在铁路信号设备的应用在提高了铁路信号设备高效性的同时也带来了一定的安全隐患,雷电这一自然现象会对铁路信号设备的安全运行带了极大的影响,为确保铁路信号设备的安全、稳定的运行应当加强对于铁路信号设备的防雷保护。 1 雷电对铁路信号设备的危害分析 (1)电磁脉冲影响。在铁路信号设备的运行过程中如铁路信号设备周边的建筑遭到雷击,雷电所含有的超高压在击中周边建筑时会向周边产生较强的电磁脉冲,这些电磁脉冲冲击铁路信号设备会在铁路信号设备中产生过电压或是过电流从而导致铁路信号设备故障或是损坏,影响铁路信号设备的正常运行。 (2)电磁感应。在雷雨天时,雷电在雷云中或是放电之时,户外的电力线、信号线等会处在一个强磁场内从而在电力线、信号线中产生电磁感应电流,这些感应电流通过线缆进入到铁路信号设备的终端从而会对铁路信号设备的正常使用造成严重的影响。 (3)冲击波。在铁路信号设备的运行过程中如防雷装置未能产生效果将会导致雷电侵入到铁路信号设备中,雷电所具有的高波幅值会导致变压器的初、次级绕组过载击穿从而导致雷电侵入到交流低压电源中,雷电所形成的冲击波会对低压侧的铁路信号设备造成损坏。当雷电所形成的冲击波电压幅度较低时其侵入到线路时会被变压器的初、次级回路所阻隔从而使得雷电冲击波通过变压器的绕组间的分布电容耦合的形式侵入到低压系统中并在铁路信号设备电源系统中形成过电流和过电压损害。

弱电机房防雷技术设计说明

弱电机房防雷技术设计说明 1、弱电机房系统综合防雷方案: 一、工程概述 弱电系统由各类弱电设备以及传输线路组成,系统采用了大量的集成元件,在雷击发生时,传输线路感应到雷电磁场产生过电压,可高达几千伏,对集成元件有较大的危害。监控系统中的传输线路许多处于LPZ0A非防雷区域。系统走线在布线阶段没有考虑与防雷引下线保持足够的距离,这些都为系统的安全运行留下了隐患。 一般认为,雷电的防护措施有隔离、等电位、钳位、均压、滤波、屏蔽、过压过流保护、接地等方法将雷电过电压、过电流及雷击电磁脉冲消除在设备外围,从而有效地保护各类设备。目前主要采用气体放电管、放电间隙、高频二极管、压敏电阻、瞬态二极管、晶闸管、高低通滤波器等元件根据不同频率、功率、传输速率、阻抗、驻波、插损、带宽、电压、电流等要求,组合成电源线、天馈线、信号线系列电涌保护器(SPD)安装在微电子设备的外连线路中,地线按共用接地原则接入系统的地线,才不至于造成电位反击。只有设计合理、安装合格,电涌保护器才能有效的防御雷电。

系统综合防雷在设计时主要采用以下标准,供设计时参考。 (1)IEC61024《建筑物防雷》 (2)IEC61312《雷电电磁脉冲的防护》 (3)ITU K25《光缆的防雷》 (4)GB50343《建筑物电子信息系统防雷技术规范》 (5)GB50057-94《建筑物防雷设计规范》 (6)GB50174-93《电子计算机机房设计规范》 (7)GB50200-94《有线电视系统工程技术规范》 (8)GB50198-94《民用闭路监视电视系统工程技术规范》 (9)GB/T50311-2000《建筑与建筑群综合布线系统工程设计规范》 二、雷击防护措施 (一)直击雷防护 直击雷防护包括弱电机房建筑物直击雷防护和系统前端设备直击雷防护,本方案在假定弱电机房控制室已完善直击雷防护措施的前提下进行,否则必须完善雷防护措施。 (二)机房弱电系统感应雷防护

供电设施工程建设和运行维护协议(模版)

供电设施工程建设和运行维护协议 甲方: 乙方:云南电网公司怒江供电局 为统一规范新建住宅项目供电设施工程建设,明确供电设施安全和维护责任,减少用电安全隐患和事故,提高供配电质量和供电可靠性。根据怒江州怒发改价格〔2013〕35号文要求,甲乙双方就供电设施建设工程费的统一收取,供电设施建设的统一规划、统一设计、统一建设、统一管理维护达成如下协议: 一、供电设施工程建设和运行维护内容 甲方依据怒发改价格〔2013〕35号文,依据泸水县城乡规划管理局颁发的《建设工程规划许可证》核定的建筑面积向乙方交纳供电设施建设工程费。在甲方向乙方统一交纳供电设施建设工程费后,乙方配合甲方住宅工程进度,在约定的时间内完成供电设施安装和保质保时供电,并承担今后的用电安全、维修、改造及日常运行管理工作。 1.工程建设范围 从上级电源出线至住宅楼居民电能装置(含表箱和电表)“一户一表”,以及低压供电公建设施的产权分界处止的所有供配电设施的设计、材料和设备的购置、安装和调试。包括:工程设计、高压T接箱、高压出线、变配电站(不含征地、拆迁费用)土建、电气工程、低压线路、低压T接箱、线路基础、土建工程。根据住宅建设项目的要求必须配备的应急供电系统的建设、临时施工电源的建设及小区原有电力设施的拆迁不在本次项目的建设范围内。 2.工程建设内容 小区名称: 小区地点: 《建设工程规划许可证》编号 报建建筑总面积:m2(最终建筑总面积为实际建设并经有关部门核准的面

积) 其中:住宅面积:m2 住宅类型:多层建筑栋m2、二类高层建筑栋m2、一类高层建筑栋m2 经营性、办公用房面积:m2 公益性用房、公建设施面积:m2 地下面积:m2 3.配置标准 (1)商品住宅配置标准(建筑面积):不低于6kW/户(90㎡及以下)、不低于8kW/户(91-150㎡,不含150㎡)、不低于10kW/户(150㎡及以上) (2)保障性住房配置标准(建筑面积):4kW/户(90㎡以下) (3)住宅区公共设施用房配置标准:不低于40W/㎡ (4)配套建设的办公用房配置标准:不低于80-100W/㎡ (5)经营性用房配置标准:不低于100-120W/㎡ 有特殊配置要求的甲方将面积及提高要求以书面方式明确,同时甲乙双方签订《补充协议》。 4.收费标准 (1)商品住宅及住宅区内公共设施用房、配套办公用房、经营性用房收费标准为:110元/m2; (2)保障性住房及住宅区内公共设施用房、配套办公用房、经营性用房收费标准为:75元/m2。 收费说明: (1)在基本供电容量配置标准之外每提高1kW供电容量的收费标准提高10%。(2)高层住宅10层至18层按多层住宅1.1系数标准计收。19层至32层按1.3系数标准计收。33层及以上由双方协商确定系数标准 (3)开发小区容积率低于1或总面积低于2万平方米或因场地狭小要求采用地下站供电并使用小型化设备、配套成本较高的项目,收费标准以1.1系数计算。 5.工程费的收取

浅析黄河通信设施的雷电防护及对应措施(新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 浅析黄河通信设施的雷电防护及 对应措施(新版)

浅析黄河通信设施的雷电防护及对应措施 (新版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 随着通信技术的迅猛发展,大规模集成电路在通信设备中的应用越来越广泛,对过电压保护的要求也就越来越高。由于雷电在电源线、信号线、天馈线等上感应的瞬间过电压造成的危害时常发生,所以要保证汛期通信的畅通,就必须采取适当的保护措施以避免因过电压、过电流对通信设施和人员造成的危害。 由于黄河汛情主要发生在伏秋季节,也是雷电的多发期。而现有黄河通信的传输通道大都是以微波为主的,当有雷电产生时,通信铁塔上及地面的通信设施极易受到雷电的损害。如我局的通信设施几乎每年汛期都要受到雷击的损害而导致微波室内外单元、48V电源和交换机板件的损坏。为保证汛期通信的畅通,就必须采取适当的保护措施来减少雷电对通信设施的危害。 一、雷电对通信设备的危害分析 众所周知雷电是一种自然现象,曾给人类社会带来了不少危害,

智能建筑弱电工程的防雷接地简易版

In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities. 编订:XXXXXXXX 20XX年XX月XX日 智能建筑弱电工程的防雷 接地简易版

智能建筑弱电工程的防雷接地简易 版 温馨提示:本安全管理文件应用在平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。文档下载完成后可以直接编辑,请根据自己的需求进行套用。 一、概述 雷电是一种自然放电现象。由于雷电放电 电压高、放电时间短,它的产生人类目前无法 控制。雷云的生成、移动、放电的整个过程伴 随多种物理效应,如:静电感应、高温高热、 电磁辐射、光辐射等;这些物理效应的共同作 用已严重危害室内弱电设备的安全运行,甚至 危及工作人员的安全。雷电灾害严重性还表现 在波及面广,主要有两个方面的因素,首先积 聚大量电荷的雷云有较大的活动范围及其放电 过程的辐射范围可覆盖达几十公里的范围,其

次地面各种网络(电力、通信等网络)的相互渗透、错综复杂,使雷电灾害的范围进一步扩大。 在雷击中心数公里范围内都可能产生危险过电压,损害线路上的设备。 随着现代电子技术的蓬勃发展,大量的微电子设备(系统)得以在工业控制中应用和联网。由于其元器件的集成度愈来愈高,信息存储量愈来愈大,速度和精度不断提高,但工作电压仅有几伏,信息电流仅有微安级,因而对外界干扰极其敏感,对雷电等电磁脉冲和过电压的承受能力相对脆弱,同时网络广域化又增大了系统(设备)受干扰的可能性。当雷电等引起的过电压和伴随的电磁场强度达到某一阀值时,轻则引起系统失灵(误动、信息丢失、

铁路信号防雷

浅谈铁路信号防雷施工的一些问题 高春根 摘要:本文通过本人对甬台温和沪宁城际铁路信号综合防雷的技术负责,浅谈铁路信号的综合防雷需要注意的一些问题,避免不必要的整改,节约成本。 关键词:铁路信号综合防雷整改 引言:随着铁路信号设备信息化的发展,对雷电及电磁脉冲的防护要求越来越高,先进的设备能否在雷雨季节安全稳定的运行,直接关系到行车,信号设备不能稳定运行造成的间接损失无法估量,所以铁路信号防雷是摆在我们面前的一个新课题,现就本人在甬台温和沪宁城际工程实施中发现的一些问题和大家共同探讨。 1铁路信号设备雷电防护分析 铁路信号设备遭受过电压和过电流的途径主要可分为以下几种:直击雷,感应雷,传导雷,辐射雷以及操作过电压。结合信号设备的分布特点及雷电攻击的途径分析,铁路信号设备雷电防护存在以下特点。 1.1信号设备占地面积较大,且很多设备分布在山区、旷野等易遭受直接雷电攻击的地区。 1.2 铁路的钢轨是雷电流的良好导体,与钢轨连接的相关铁路信号设备,如信号机、轨道电路、电动转辙机等较容易受到雷电流的威胁。 1.3 自动闭塞、半自动闭塞等信号条件线、控制线,在非电化区段大部分使用架空线,它们均架设于信号与通信混合线路或自动闭塞高压信号线路上,由于它们暴露在旷野郊外,在雷雨季节容易遭受到雷电的袭击,线路中的大电流会串入信号机房内部,从而引起对内部设备的损坏。 1.4雷云对地放电实质上是雷雨云中的电荷向大地的突然释放过程,一次闪电平均包含有上万个脉冲放电过程,电流脉冲平均幅值为几万安培,持续时间几十到上百微秒,从而对信号设备造成误动作甚至永久性破坏。 1.5 雷电防护的原则是“等电位”,由于机房存在多类接地系统,其冲击接地电阻不均衡,在雷击发生时,雷电流引起地电位差,也容易造成“地电位反击”,使人员或设备遭受损害。 从以上情况很容易看出:为了提高铁路信号设备安全性及机房设备、计算机的运行可靠度,整个车站信号雷电防护要在分流(D)屏蔽(S)搭接(B)接地(G)等方面做完整的,多层次的综合防护。 2外部防雷施工的一些问题 2.1.接地装置的施工 根据设备的要求,共用接地体接地电阻必须不大于1Ω,利用自然接地体在保证最小接地电阻时不太可靠,所以在自然接地体可用而又能满足条件的情况下,也敷设人工接地体,并使人工接地体与自然接地体相连。 在信号楼外四周距离墙体1m以外敷设一条由水平接地体和垂直接地体组成的环形接地网,受条件限制是可设成“U”型或者“L”型。 水平接地体埋深不小于0.7m,本人以为是从下面几个方面考虑的:一是防止跨步电压,二是防止氧化腐蚀水平接地体和避免机械损伤,三是为了减少外界温度和湿度变化对流散电阻的影响。扁钢水平接地体应立面竖放,这样有利于减少流散电阻。垂直接地体一般选用石墨接地极,在建筑物四周对称敷设4到6根,防雷引下线下必须设置垂直接地体,为的是加快把雷电流泄入大地。 对于新建站房为了美观利用主筋作为引下线,所以人工接地体与基础接地体每隔5m用扁钢连接一次,在房屋接闪带遭受雷击时,形成一个等电位环岛,避免电压反击。同时,贯通地线在信号机房建筑物一侧每隔2-3m用50mm2裸铜线与环形接地装置连接,两端各连接两次,因为贯通地线的地阻小于1Ω,这样也就确保了环形接地体的接地电阻小于1Ω。 2.2.引下线的施工

供电设备设施的养护管理

供电设备设施的养护管理 一、供电设备设施的养护治理供电设备的养护目的是,消除事故隐患,防止供电设备设施出现较大故障,以减少不必要的经济损失。供电设备设施的养护由值班电工负责实施。按照《机电设备治理工作条例》中的规定,按时对设备设施进行养护。1.低压配电柜的养护低压配电柜的养护,每半年一次。养护的按序是:先做好养护前的预备,然后分段进行配电柜的保养。 (1)养护前的预备低压配电柜养护前一天,应通知用户拟停电的起止时间。将养护所需使用工具和安全工具预备好,办理好工作票手续。由电工组的组长负责指挥,要求全体人员思想同意,分工合作,高效率完成养护工作。(2)配电柜的分段养护当配电柜较多时,一般采纳双列方式摆列。两列之间由柜顶的母线隔离开关相连。为缩减停电范围,对配电柜进行分段养护。先停掉一段母线上的全部负荷,打开母线隔离开关。检查确认无电后,挂上接地线和标示牌即可开始养护。①检查母线接头有无变形,有无放电的痕迹,紧固连接螺栓确保连接紧密。母线接头处有脏物时应清除,螺母有锈蚀现象应更换。②检查配电柜中各种开关,取下灭弧罩,看触头是否有损坏。紧固进出线的螺栓,清洁柜内尘土,试验操动机构的分合闸情况。③检查电流互感器和各种仪表的接线,并逐个接好。④检查熔断器的容体和插座是否接触良好,有无烧损。在检查中发现的问题,视其情况进行处理。该段母线上的配电柜检查完毕后,用同样的办法检查另一段。全部养护工作完成后恢复供电,并填写《配电柜保养记录2.变压器的养护变压器的养护每半年一次,一般安排在每年的4月份和10月份,由值班电工进行外部清洁保养。在停电状态下,清扫变压器的外壳,检查变压器的油封垫圈是否完好。拧紧变压器的外引线接头,若有破损应修复后再接好。检查变压器绝缘子是否完好,接地线是否完好,若损伤则予以更换。测定变压器的绝缘电阻,当发现绝缘电阻低于上次的30%~50%时,应安排修理。 二、供电设备设施的维修的治理供电设备和设施的修理是指对供电设备中出现的故障进行的修复。较大的维修项目如变压器的内部故障和试验、高压断路器的调整和试验等,一般采纳外委维修的方式。供电设备治理员,按照维修保养计划(如表4-4-5所示),托付供电企业对辖区内的变压器和高压断路器进行检修和试验。此项工作的程序是:供电设备治理员填写《外委维修申请表》(表4-4-6所示),经物业治理企业同意后与供电企业签署维修合同。维修时由配电室值班电工负责监督,并将结果记录在《变压器维修记录》和《配电设施维修记录》内。大修后的试验结果由供电企业填写试验报告,交供电设备治理员并进行财务结算。若在供电设备运行中,由于雷击或其他原因出现严峻的故障时,首先由值班电工填写《事故报告》经过主管部门审批后再按上述程序处理。较小的维修项目如路灯照明线路、楼宇内的配电箱及电力计量箱等公共设施故障时,用户直接找配电室的值班电工修理解决即可。若照明灯、电度表是户内个人的物品,用户找配电室的值班电工修理并办理交费手续。值班电工修理后填写维修登记表,并由用户签字。值班电工应及时向财务部门结账、报账。供电设备设施的维修有两方面的含义,一方面是搞好供电设备的维护,使设备设施在最佳运行状态下工作;另一方面是当供电设备设施出现故障时,及时修复尽快恢复供电,减少停电给生活和工作带来的不便。供电设备设施维修治理,由工程部供电设备治理员结合辖区内的供电设备设施情况,制定出物业企业的《机电设备治理工作条例》、设备设施维修计划,组织人员施工和施工后的验收等,通过一系列治理活动,争取以最少的消耗获得最大的维修效果,最大限度的满足用户要求。

2021浅析黄河通信设施的雷电防护及对应措施

2021浅析黄河通信设施的雷电防护及对应措施 Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0776

2021浅析黄河通信设施的雷电防护及对应 措施 随着通信技术的迅猛发展,大规模集成电路在通信设备中的应用越来越广泛,对过电压保护的要求也就越来越高。由于雷电在电源线、信号线、天馈线等上感应的瞬间过电压造成的危害时常发生,所以要保证汛期通信的畅通,就必须采取适当的保护措施以避免因过电压、过电流对通信设施和人员造成的危害。 由于黄河汛情主要发生在伏秋季节,也是雷电的多发期。而现有黄河通信的传输通道大都是以微波为主的,当有雷电产生时,通信铁塔上及地面的通信设施极易受到雷电的损害。如我局的通信设施几乎每年汛期都要受到雷击的损害而导致微波室内外单元、48V电源和交换机板件的损坏。为保证汛期通信的畅通,就必须采取适当的保护措施来减少雷电对通信设施的危害。

一、雷电对通信设备的危害分析 众所周知雷电是一种自然现象,曾给人类社会带来了不少危害,国际电工委员会已将雷电灾害称为“电子时代的一大公害”,雷击、感应雷击、电源尖波等瞬间过电压已成为破坏通信电子设备主要问题。经查大量的通信设备雷击事例中分析,由雷电感应和雷电波侵入造成的雷电电磁脉冲(LEMP)是通信设备损坏的主要原因。因此只有了解了它的形成过程,寻求有效地防护措施才能减少雷电带来的损失。据资料显示,我们地球上每秒钟要出现大约100次左右的闪电雷击。按照通信专用房屋设计规范,通信大楼和通信塔一般都安装有避雷针、避雷网或避雷带,并且均采取了联合接地的方式。从形式上看,它已具备了良好的防雷和抗外界电磁干扰的性能,然而我们的防汛通信设备为什么还经常会遭受雷击而损坏?甚至威胁操作维护人员的人身安全呢?这是由于当发生雷电时,带电的云层会在通信设施的天线上产生感应电荷或雷电感应通过通信和电力线路侵入,如果天线和通信线缆与大地之间直流通路不畅,就会由于感应在天线和线缆与大地之间产生高电位而引起过电压,致使通信

地铁车站弱电系统的防雷与接地问题

地铁车站弱电系统的防雷与接地问题 港铁轨道交通(深圳)有限公司梁红 摘要:地铁车站弱电系统多与强电系统共用一个综合接地装置,经各自引上线至强、弱电总接地端子排,再引致众多机电设备房内的弱电接地端子排上,在设备房内系统设备除以弱电接地端子排为基准做等电位联接,还需在各级电源端加装浪涌保护器SPD. 关键词:综合接地装置、综合接地装置、总弱电接地端子排、引上线、浪涌保护器SPD、弱电系统 一.接地系统的类型、综合接地网及强、弱电接地系统的设置: 接地系统的类型有保护性接地、功能性接地以及功能性和保护性合一的接地。 保护性接地分为:保护接地、过电压保护接地(包含防雷接地)、防静电接地和防电蚀接地; 功能性接地分为:工作接地、逻辑接地和信号接地。不同的接地有不同的要求,应按设计决定不同的接地方式。 功能性和保护性合一的接地,如:屏蔽接地; 与普通建筑不同的是,地铁因其牵引供电系统产生杂散电流,决定了地铁车站的接地装置必须与车站内的金属物绝缘,接地装置多选用人工接地网(接地电阻小于0.5Ω),由水平接地体、垂直接地体、接地引上线等组成,其材料以耐腐蚀的铜质材料为主,水平接地体采用50mmX50mm镀锡铜带、垂直接地体采用¢50X7.5mm铜管、接地引上线各采用3根绝缘铜芯电缆ZR-YJY-(1X240mm2),分别独立引出提供给强电系统、弱电系统和接触网接地使用,强、弱电系统各设一个总接地端子排;至此强、弱电接地系统独立分开,不允许再有交集; 二.为满足弱电系统对电源稳定性的要求,地铁车站分别设置强、弱电两套接地系统: 地铁车站内弱电系统分为主控系统、PSCADA、通信、广播、PIDS、自动售检票系统、屏蔽门和安全门系统、火灾自动报警系统、安保监控系统等。 各种接地各有优缺点。分散的独立接地可有效地防止信号之间的相互干扰,但在遭受雷击时,易造成不同的接地点地电位不一样,从而引起地电位反击,使设备工作不正常或损坏;综合接地虽然有效地防止了地电位反击,但又会引起不同信号之间的相互干扰,为有效解决防干扰和防雷击安全接地的问题,车站的接地系统采用以下设置: 在各设备房内依据需要分别设置末端强、弱电接地端子排; 从总强电接地端子排至各设备房内的强电接地端子排,强电接地系统采用环式等电位连接方式的接地系统,以消除各接地点的电位差; 为了避免电磁干扰、地环路干扰,弱电接地系统与综合接地装置之间采用采用一点接地,从总弱电接地端子采用辐射式接地系统,即采用阻燃铜芯电缆ZR-YJY-(1X70mm2)放射式敷设至各设备房内的弱电接地端子排上; 在实际应用系统中,由于系统电源零线(中线)、地线(保护接地、系统接地)不分、控制系统屏蔽地(控制信号屏蔽地和主电路导线屏蔽地)的混乱连接,大大降低了系统的稳定性和可靠性。 设备房内的强电接地端子排可为设备提供等电位接地、保护接地、设备外壳屏蔽接地; 设备房内的弱电接地端子排可为设备提供工作接地、逻辑接地和信号接地,由于采用放射式布线方式,可以使弱电系统有效地抑制外来干扰(包含来自其他弱电系统的干扰),又能降低设备本身对外界的干扰。 正确的接地是抑制电磁干扰、提高电子设备EMC性的重要手段之一。 三.弱电系统的防雷技术措施: 一般分为“三道防线” (1)将绝大部分雷电流直接引入地下泄散(外部保护) (2)阻塞沿电源线或数据信号线引入的侵入波危害设备(内部保护及过电压保护)

铁道铁路职业考试铁路信号设备防雷分析与研究论文

铁路信号设备防雷分析与研究 第一章铁路信号设备防雷的分析 1、雷害 (1)、直接雷:直接侵入设备或与设备相关联的传输线上的雷电。但袭击信号设备的概率很小。 (2)、感应雷:由于电磁感应作用,在电气设备上感应出的雷电压,在设备中流过感应电流。其又分为纵向和横向感应雷两种。 感应雷发生机率高,袭击信号的次数相当频繁。 2、雷电侵入信号设备的主要途径 (1)由交流电源侵入雷电冲击波侵入高压电线路传至高压变压器,若未装设避雷器或其失效,容易侵入低压设备。 (2)、轨道电路轨道电路用钢轨作为传输线,它一般高出地面,容易遭雷击。 (3)、由电缆侵入铁路信号的室内、室外设备通过电缆连接起来,雷电从电缆侵入,并传输至室内设备。 3、纵向电压和横向电压 纵向电压指导线或设备对地电压,每条导线上的折射电压或反射电压。横向电压指两导线间的电位差。这两种电压对人身安全和信号设备的正常运行都会带来极大的危害。纵向过电压将使设备绝缘闪络、击穿,甚至起火。横向过电压回击穿、烧毁信号设备尤其是电子器件。 4、信号设备的防雷 (1)信号设备的防雷要求在有雷电活动的地区,交流电源外线、电子设备、轨道检查装置、遥信遥控设备等与外线连接的信号设备必须装设防雷装置。不同雷电活动地区,应采取相应的防雷措施。 (2)信号设备雷电防护的原则防雷装置和被防护设备之间绝缘应匹配,将雷电感应电压限制到被保护的冲击耐压水平以下。正

常情况下,防雷装置不应影响被防护设备的工作,受雷电干扰时,应保证信号设备不得错误动作。采用多级防护时,各级防护元件应配置合理。 (3)信号设备防雷元件的安装和设备的要求外部防护用防雷元件宜安装在线路终端。安装应牢固可靠,便于检测,集中安装。 现代防雷保护包括外部防雷保护(建筑物或设施的直击雷防护)和内部防雷保护(雷电电磁脉冲的防护)两部份,外部防雷系统主要是为了保护建筑物免受直接雷击引起火灾事故及人身安全事故,而内部防雷系统则是防止雷电波侵入、雷击感应过电压以及系统操作过电压侵入设备造成的毁坏,这是外部防雷系统无法保证的。 防雷是一个很复杂的问题,不可能依靠一、二种先进的防雷设备和防雷措施就能完全消除雷击过电压和感应过电压的影响,必须针对雷害入侵途径,对各类可能产生雷击的因素进行排除,采用综合防治——接闪、均压、屏蔽、接地、分流(保护),才能将雷害减少到最低限度。 1、接闪 接闪装置就是我们常说的避雷针、避雷带、避雷线或避雷网,接闪就是让在一定程度范围内出现的闪电放电不能任意地选择放电通道,而只能按照人们事先设计的防雷系统的规定通道,将雷电能量泄放到大地中去。 2、均压 接闪装置在接闪雷电时,引下线立即产生高电位,会对防雷系统周围的尚处于地电位的导体产生旁侧闪络,并使其电位升高,进而对人员和设备构成危害。为了减少这种闪络危险,最简单的办法是采用均压环,将处于地电位的导体等电位连接起来,一直到接地装置。室内的金属设施、电气装置和电子设备,如果其与防雷系统的导体,特别是接闪装置的距离达不到规定的安全要求时,则应该用较粗的导线把它们与防雷系统进行等电位连接。这样在闪电电流通过时,室内的所有设施立即形成一个“等电位岛”,保证导电部

某小区智能化系统设计-防雷接地系统方案

防雷接地系统 16.1 防雷系统 各个弱电系统配备了大量的精密电子设备,如网络主干交换机房、计算机服务器、视频矩阵、广播主机、UPS等等,建设防雷接地系统可以以较小投资在极大程度上保证设备的安全性和稳定性,有效的保护业主的设备投资。 本工程防雷系统有以下特点和需求: 所有智能化系统的接地与鄞和置业〃银河湾小区联合接地系统连接,接地电阻小于1欧姆,所有不带电的弱电金属管、线槽、分线箱均与电气接地系统等电位连接。 此次考虑二级、三级电源防雷,保护机房重要设备的电源防护。 室外进线(除光纤外)需安装信号保护器。 16.1.1 设计原则 a、室外引入的各种线缆(除光纤外),在其接入设备前安装浪涌保护器:如有线电视系统、广播系统等。 b、室内重要设备或高价值设备:如服务器、交换机、监控主机等安装保护器。 16.1.2 电源防雷 选用较小通流量的插座电源防雷器杭州鸿雁FRCZ-0,并联插接在重要设备如服务器、交换矩阵、路由器等插座处,使整个机房的重要用电设备得到电源三级保护,主要应用在各个机房重要设备的用电插座上。 在计算机网络系统中的各个楼栋交换机(IDF)的用电插座处安装插座型电源避雷器LT A6-420NS。 16.1.3 信号防雷 安防系统:安装视频信号避雷器(FRX-AS-BNC+DC12)和控制线保护器(FRX-AS-BNC+DCK);红外对射避雷器FRX-485 公共广播系统:广播进出线路安装FRX-485保护器。

16.2 接地系统 ①机房接地 机房接地主要是指放置重要设备的场所内机房设备的等电位连接,此次宁波鄞和置业〃银河湾小区主要对物管机房实现局部等电位连接。具体施工方案如下:沿墙体四周分别均布安装环形接地母排,其截面为60mm×6mm的铜排母环,该接地母排距地面高约150-350mm,距墙800 mm,并每隔300mm在铜排上钻一个孔Φ10,且每隔1200mm用绝缘胶木板与地面实现绝缘可靠连接,并采用BVR16mm2将环形母排至少两处连接到机房局部等电位汇集点上;机房内的防雷地、工作交流地(N线)、静电地、屏敝地、直流地、绝缘地、安全保护地等接地直接连接到环形接地母排上。 ②弱电井设备接地 弱电井设备接地主要是指弱电井内IDF、汇集层交换机及其它中继设备的接地,主要措施是设备部分通过其供电插座内的PE线直接接地,机柜部分引出接地线到弱电接地干线上。 ③重要终端设备接地 重要终端设备主要指计算机终端设备、弱电主机等设备,其接地主要通过供电插座的PE线接地。 ④弱电接地干线 弱电接地干线是指安装在弱电井内的弱电接地引下线,如预埋的扁钢、BVR50线缆、40*4铜排等。本系统建议采用40*4镀锌扁钢。 ⑤弱电系统接地体 大多数建筑物采用联合接地系统,采用共地不共线原则,其弱电系统接地体就是大楼的基础接地体。 机房环形接地母排安装示意图:

高压供电系统与设备的维护和管理

高压供电系统及设备的维护与管理 摘要:动力配电系统是一切生产动力的来源,配电室安全工作千万不要掉以轻心, 为进一步加强配电室设施的安全运行管理,全面掌握设备运行健康状况,及时发现设备存在的问题和消除缺陷;而电机是将电能转换为机械能的动力设备,能带动生产工作,在企业中广泛使用,并且是设备运行的关键.电机的不正当运行将对电动造成不同程度的损坏,但如不及时发现就会造成大的维修费用甚至报废电机;本文简述了炼胶中心配电室的日常检查和注意事项以及大型电机的日常检查、维护保养和故障处理方法,以减少配电系统故障和电动机的大修,确保生产正常进行。 关键词:配电室负荷补偿电容互感器日常检查维护保养电机诊断预知维修节省费用安全生产 1、前言:炼胶中心根据公司设备处要求,结合中心供配电系统及电气设备的实际需求, 专门设立专职巡检人员,主要对中心配电室和大电机进行管理并定期巡视和检查,全面掌握设备运行状况,及时发现设备缺陷和危险点(薄弱点),采取防范措施,保证 中心配电室设备安全稳定运行。 2、设备现状: 在现代企业中,各种类型的生产机械都是按人们所给定的规律运 动通过电机把电能转换成机械能来实现拖动的。电机在生产过程中发 挥着极其重要的作用,但由于大多数电机使用年限较长(有些已属于 高耗能淘汰产品),而且长年累月运行在恶劣的环境中,电机故障和 烧毁现象常有发生,严重影响着生产的安全、可靠、长周期运行。所 以坚持对大型电机的日常检查和维护保养,减少电机故障或及时发现 电机存在的小故障,这样就能预知电机的维修,能很好的安排维修人

员进行处理;如此以来,既避免造成电机大的故障,使维修时间和费用都大大减少,又能合理的安排维修人员检修。 炼胶中心总共有配电、驱动室11间,在每个配电室内均安装有两套监控、烟雾感应报警装置系统,由炼胶中心微机室和设备动力值班室监控;但为了防患于未然,炼胶中心专职巡检人员每天都要对各个配电室进行认真的安全巡视检查。 在炼胶中心(1#、2#、3#车间)大小电机总共约有近1000台电机,其中大型电机有19台(包括240KW的5台、560KW的4台、1000KW的5台、1250KW的1台、1500KW的1台、2300KW 的3台). 下面分别对配电室和大电机的管理要求详细介绍,并通过实践体现其成效和作用: 3、配电室管理要求: 3、1 配电室的每日巡检要求 3、1、1 在满负荷生产用电高峰期,应增加巡视检查次数。 3、1、2 遇大风、雨、雪、雾、冰雹、洪水等恶劣天气,必须进行特殊巡视。对危及安全的线路和设备应采取暂停供电的应急措施。 3、1、3 在障碍异常或事故停电、配电室漏保器动作后,各级人员按照分工必须立即进行巡视检查,查找故障点,排除故障后方可恢复送电。 3、1、4 巡视人员要做到巡视认真,检查到位,应如实填写巡视记录,对于巡视中发现的缺陷、危险点等应及时登记和上报,并提出处理意见。 3、1、5 对危及电力设施运行安全的要及时发送书面隐患通知书,对限期整改的责任者或单位应及时向公司设备处汇报。 3、1、6 对于未按要求进行巡视检查或巡视工作不到位的人员按照安全生生产相关规定和考核办法或经济责任制考核办法严格考核。

电力通信系统的雷电防护问题分析

电力通信系统的雷电防护问题分析 发表时间:2018-11-16T14:04:56.827Z 来源:《河南电力》2018年10期作者:邓莹 [导读] 自然雷电对通信系统的危害使其正常工作受到影响,所以本文就电力通信系统的雷电防护问题做出了简要的分析,并提出了几点方案,希望对电力通信系统的雷电防护有所帮助。 邓莹 (广东电网有限责任公司肇庆供电局) 摘要:电力通信系统对如今社会的发展至关重要,而自然雷电对通信系统的危害使其正常工作受到影响,所以本文就电力通信系统的雷电防护问题做出了简要的分析,并提出了几点方案,希望对电力通信系统的雷电防护有所帮助。 关键词:电力通信;雷电灾害;感应雷 1引言 在全世界范围内,每年由于雷电导致电力通信系统继的通信设备故障瘫痪等事故屡屡出现,极大的威胁着民众的财产安全和生命安全。除此之外,电力设备不仅会受到雷电影响,还会受到雷电所产生的相当大的冲击电流和电压影响,极易损毁设施的线路。因此,有关方面需要有针对性的对以上影响因素做好预防举措,特别是通讯系统,更是需要完善好防雷措施,预防雷电破坏电力通信系统。增强电力通信系统的雷电防护能力,能够合理有效地减少雷击对电力通信系统的损害,保证电力通信系统运行的安全和稳定。 2雷电对通信系统造成危害的原因以及方式 2.1造成雷电灾害的原因 在当代,电子通信技术的迅捷进步使得微电子设备变得大范围的使用,但大多数微电子设施普遍较低的绝缘强度,使其电压耐受能力弱,所以极易被雷电损害。 建筑物被雷电沿室外的金属线缆侵入机房或直击雷电袭击时,电流都需疏导至地网之中。极大的雷电流疏导到大地时会令地电位增大,接地平台的地电位突然增大,导致平台电位的不平衡,一些通信设施就会因此遭到损坏。此外,若设备的接地没有按安全生产的要求来,当发生雷击的时候,两个接地点间将极易出现相对大的电位差值,产生电磁干扰,干扰电力通信设备正常运行。 2.2雷电的危害方式分析 雷击对电力通信系统造成的危害有以下两种; 一是直击雷产生的危害,直接式雷击就是自然中的雷电会直接击中在物体上,物体会产生热效应或者电力效应;直击雷打中建筑、通信光缆、通信自动化设备和工作人员,极易导致建筑的损毁、电气短路烧毁、火灾和设备毁坏,甚至工作人员人身安全发生意外。正因如此,直击雷发生的可能性极低,其危害程度却很大,万万不可马虎大意。图一所示是雷电侵入危害电力系统的通道。

弱电系统防雷接地的技术措施(通用版)

弱电系统防雷接地的技术措施 (通用版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0262

弱电系统防雷接地的技术措施(通用版) 1、建筑物金属屋顶、立面金属表面、钢柱、钢梁、混凝土内钢筋和金属门窗框架等大尺寸金属件,应作等电位联结并与防雷装置相连; 2、弱电系统的防雷接地宜与建筑物其他的接地共用接地系统。共用接地电阻≤1Ω。当互相邻近的建筑物之间有电力和通信电缆连通时,宜将其接地网互相连接,否则,宜作有效隔离。 3、需要保护的电子信息系统必须采取等电位连接与接地保护措施。电气和电子设备的金属外壳、机柜、机架、金属管、槽、屏蔽线缆外层、建筑外墙上的所有金属门窗框架、信息设备防静电接地、安全保护接地、浪涌保护器(SPD)接地端等均应以最短的距离与等电位连接网络的接地端子连接;对不能直接进行等电位连接的带电体,可通过浪涌保护器(SPD)进行等电位连接。

4、对功能性接地有特殊要求需单独设置接地线的电子信息设备,接地线应与其他接地线绝缘;供电线路与接地线宜同路径敷设。 5、除高频外的低频信号弱电系统采用一点接地。共用接地装置应与总等电位接地端子板连接,通过接地干线引至楼层等电位接地端子板,由此引至设备机房的局部等电位接地端子板。 6、建筑物每一层内的等电位联结网络宜呈封闭环形,其安装位置应便于接线。 7、室外引进的电源线、信号线应采用能承载可预见的雷电流的屏蔽电缆,并宜埋地敷设,如果采用非屏蔽电缆时,应敷设在金属管道内并埋地引入,金属管应电气导通,并且电缆屏蔽层、金属管、光缆金属加强芯等金属物应在雷电防护区交界处做等电位连接并接地。其埋地长度应符合表达式:L≧2ρ1/2(ρ--埋地电缆处土壤电阻率)要求,但不应小于15m; 8、在分开的建筑物之间布置的屏蔽电缆的屏蔽层应与各个建筑物的等电位连接带作等电位连接,在需要保护的空间内,屏蔽电缆的屏蔽层应至少在两端作等电位连接。

铁路信号设备测试管理办法

铁路信号设备测试管理办法 第一节通则 第243条测试是信号设备维护工作的重要内容之一,通过测试,掌握和分析设备运用状态,指导维护工作,预防设备故障,保证设备正常运用。 第244条铁道部、铁路局(公司)、电务段的电务试验室,承担相应的测试、试验和管理任务。 第245条信号设备测试项目和周期由铁路局(公司)参照本规则附件7制定。 第246条测试分为I级测试、Ⅱ级测试和动态检测。I、Ⅱ级测试及动态检测项目及周期按铁路局(公司)制定的“信号设备测试项目及周期表”执行。 第247条 I级测试由信号工区负责;Ⅱ级测试由电务试验车间负责;动态检测由铁路局(公司)电务试验室负责。 第248条由微机监测设备完成的测试项目,不再进行人工测试。未纳入微机监测的或微机监测设备故障时,进行人工测

试。 第249条基建、更改、大修、中修验交时及设备检修时应按规定项目进行人工测试,有关测试记录纳入验收资料。 第250条铁道部、铁路局(公司)应配备电务检测车,检测车构造速度应适应动态测试要求。电务检测车自动检测系统应符合部颁技术条件。 第251条电务试验室(车间)应配备满足测试工作需要的仪器仪表及交通工具。仪器仪表应符合规定精度,按规定定期送检,保证量值准确。 第252条电务试验车间应根据“信号设备测试项目及周期期表”(附件7)的规定以及重点工作,编制年(月)度工作计划,经批准后执行。 第253条测试工作必须严肃认真,测试数据应真实准确,数据分析要认真细致。测试资料保存期不少于2年。 第二节工作职责 第254条铁道部电务试验室职责:

1.负责全路电务设备测试管理工作,指导和检查铁路局(公司)电务试验室工作; 2.提出年度全路电务设备测试重点工作项目和要求,并监督检查落实情况; 3.负责全路电务设备动态检测管理工作,运用电务检测车定期检查主要干线电务设备运用质量;

智能化系统防雷接地设计

智能化系统防雷接地设计 摘要针对建筑中弱电系统越来越庞大的现状,以智能化系统防雷接地为例,介绍了防雷接地系统、建筑物的防雷分区及分级保护。重点介绍了等电位接地技术。提出了不同供电接地系统的防雷方案,以供电气设计人员参考借鉴。 关键词智能化;防雷;接地设计 智能化系统的防雷接地十分重要,不论是智能化中心机房,还是通讯网络设备及终端设备都离不开系统的防雷接地。智能化系统是由千点万线组成的音频、视频通讯网络,如果接地不合格,系统就会出现杂音、串音,视频图像出现晃影,严重时可造成通讯网络阻断,更不能保护智能化系统线缆设备的安全。 1防雷分区 为了更好地运用各种防雷措施,合理地分配各自承担的雷电能量,将需要保护的空间按雷电电磁脉冲严酷程度分为不同层次的防雷区,进而对于在各防雷区的入口处进行等电位连接和电涌保护器配置提出防雷分区的划分。 防雷区LPZOA:此区中各对象会承受直击雷,从而流过全部雷电流,雷电磁场并未衰减。此区实际是建筑物顶部和上部侧面未受避雷针(网)保护的部分。 防雷区LPZOB:此区中各对象不会承受直击雷,但雷电电磁场并未衰减。此区实际是建筑物顶部和上部侧面避雷针(网)保护范围之内的部分。楼内没有屏蔽的窗口附近的空间也属此区,此区以避雷针(网)及接地装置进行防雷。 防雷区LPZ1:此区中各对象不会承受直击雷,但雷电流有所分流。如有屏蔽,电磁场会有所衰减。此区实际是在建筑物内部,雷电流分散到各引下线。现代建筑的钢筋结构就是一种屏蔽。此区的主要防雷措施是等电位连接和电涌保护器。 防雷分区LPZ2:如果需要进一步减少雷电流和电磁场,就要进一步引入防雷分区。此区所需防雷措施根据保护对象的需要而定。此区实际是在楼内的某个防雷和防电浪涌要求特别高的计算机房、通讯机房或监控室。进一步减少雷电电磁脉冲要求采用机房屏蔽和次级电涌保护器。 防雷分区LPZ3:如果需要再进一步减少雷电流和电磁场,就要再引入防雷分区。此区实际是在信息设备的机箱内或专用屏蔽室内。 2中心机房防雷接地设计 2.1防雷

电力设备安全维护管理制度

广西凉亭食品有限公司 电力设备冷库机房安全维护管理制度 第一章电工设备班职责 1、严格遵守员工守则和各项规章制度; 2、负责公司供电线路、供电设备、配电房、冷库机房的使用与维修保养,保证设备良好状态; 3、及时巡查排除事故隐患,及时检查办公场所、车间、宿舍,发现问题及时解决; 4、每月进行应急发电机启动实验一次,确保其处于良好技术状态; 5、配合锅炉工、污水处理工搞好锅炉、污水处理站的设备更换与维修; 6、坚持夜间值班,坚守岗位,及时处理情况,值班时接到修理单或报修电话后,需立即赶赴事故现场,排除故障; 7、制定所管设备的年、季度检修计划,按时、按质、按量地完成,并填好记录,交行政人事部存档。 8、完成领导交办的其他任务。 第二章配电房安全管理制度 为了加强配电房的安全管理,促进公司供电系统的正常运行,促使配电房的管理人员操作的规范化,特制定本制度。 1、坚持“谁主管,谁负责”原则,严格落实配电房管理制度。电工班人员为配电房安全责任人。 2、电工班人员须持证上岗,按时参加技术培训和安全教育活动。 3、电工班人员要严格遵守操作规程,严守岗位职责,要做好值班记录和巡查记录,认真执行交班制度。 4、严格操作规程和安全生产规程,杜绝违章操作和不安全行为。 5、对设备和安全设施要勤查,发现隐患及时报告。精心维护和

保养设备,确保正常安全供电。 6、要执行定期对安全用具的安全试验制度,实行用具专柜存放,使用前仔细检查是否在合格期内,确保正常安全使用。 7、做好配电房的防水、防潮工作,注意随手关闭好门窗,经常查看防护网,密封条防护情况,慎防小动物窜入配电室而发生意外。 8、严格执行禁火制度。严禁将易燃易爆物品带进配电间,配电间内严禁吸烟。工作人员须能熟练使用消防器材。 9、严禁无关人员进出。未经培训,不得随便开关操作室内设施、设备。 10、值班员应经常检查设施、设备运行情况,发现隐患,及时处理。 11、遇到紧急事故,应快速准确的断电、防止事故扩大。 12、做好对电器设备的日常维护工作,注意电压表、电流表、功率因数表的指示情况;禁止让电器设备超负荷使用和带病运转。 13、经常保持配电房地面及设备外表清洁无尘;配电设备的倒阀操作时油值班员单独进行,其他在场人员只作监护,不得插手;严禁两人同时倒阀操作,以免发生错误。 第三章冷库机房管理制度 冷库机房要贯彻“安全第一、预防为主”的方针,严格执行三个“规程”(《安全技术规程》、《压力容器监察规程》、《在用压力容器检验规程》),要以高度责任感进行认真的操作、维护、保养、检验、确保设备安全运转。 第一条维护人员在岗期间要做到“四要”“四勤”“四及时”。 1、四要:要确保安全运行;要保证冷库温度;要充分发挥制冷设备的制冷效率;要努力降低水、电、油、制冷剂的消耗。 2、四勤:勤看仪表;勤检查机器温度;勤听机器运转有无杂音;勤了解冷库各种情况。 3、四及时:及时放油;及时除霜;及时放空气;及时清除冷凝器水垢。 第二条维护人员严格执行交班制度,做到“五交一接”。

相关文档
最新文档