人教版八年级下册数学勾股定理证明方法

人教版八年级下册数学勾股定理证明方法
人教版八年级下册数学勾股定理证明方法

勾股定理的证明

上信中学 陈道锋 【证法1】(课本的证明)

做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.

从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即

ab

c ab b a 21

4214222?+=?++, 整理得 222c b a =+.

【证法2】(邹元治证明)

以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab

21

. 把

这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.

∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的

正方形. 它的面积等于c2.

∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o,

∴ ∠DHA = 90o+ 90o= 180o.

∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2

b a +.

()2

22

14c ab b a +?=+. ∴ 2

22c b a =+.

【证法3】(赵爽证明)

以a 、b 为直角边(b>a ), 以c 为斜 边作四个全等的直角三角形,则每个直角

三角形的面积等于ab

21

. 把这四个直角三

角形拼成如图所示形状.

∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB .

∵ ∠HAD + ∠HAD = 90o, ∴ ∠EAB + ∠HAD = 90o,

∴ ABCD 是一个边长为c 的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90o.

∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2

a b -.

∴ ()2

2

214c a b ab =-+?.

∴ 2

22c b a =+.

【证法4】(1876年美国总统Garfield 证明)

以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab 21

. 把

这两个直角三角形拼成如图所示形状,使A 、

∴ ∠ADE = ∠BEC . ∵ ∠AED + ∠ADE = 90o, ∴ ∠AED + ∠BEC = 90o. ∴ ∠DEC = 180o―90o= 90o. ∴ ΔDEC 是一个等腰直角三角形,

它的面积等于221c

.

又∵ ∠DAE = 90o, ∠EBC = 90o, ∴ AD ∥BC .

∴ ABCD 是一个直角梯形,它的面积等于()2

21

b a +. ∴ ()2

2212122

1

c ab b a +?=+. ∴ 2

22c b a =+.

【证法5】(梅文鼎证明)

做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P .

∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD, ∴ ∠EGF = ∠BED , ∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180o―90o= 90o. 又∵ AB = BE = EG = GA = c , ∴ ABEG 是一个边长为c 的正方形. ∴ ∠BC + ∠CBE = 90o. ∵ Rt ΔABC ≌ Rt ΔEBD, ∴ ∠ABC = ∠EBD . ∴ ∠EBD+ ∠CBE = 90o. 即 ∠CBD= 90o.

又∵ ∠BDE = 90o,∠BCP = 90o,

BC = BD = a .

∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则

,

21

222ab S b a ?+=+ ab

S c 21

22?+=,

∴ 2

22c b a =+.

【证6】(项明达证明)

做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上.

过点Q 作QP ∥BC ,交AC 于点P .

过点B 作BM ⊥PQ ,垂足为M ;再过点

F 作FN ⊥PQ ,垂足为N . ∵ ∠BCA = 90o,QP ∥BC ,

∴ ∠MPC =90o, ∵ BM ⊥PQ , ∴ ∠BMP = 90o, ∴ BCPM 是一个矩形,即∠MBC = 90o. ∵ ∠QBM + ∠MBA = ∠QBA = 90o,

∠ABC + ∠MBA = ∠MBC = 90o, ∴ ∠QBM = ∠ABC ,

又∵ ∠BMP = 90o,∠BCA = 90o,BQ = BA = c , ∴ Rt ΔBMQ ≌ Rt ΔBCA . 同理可证Rt ΔQNF ≌ Rt ΔAEF .

从而将问题转化为【证法4】(梅文鼎证明). 【证法7】(欧几里得证明)

做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结

BF 、CD . 过C 作CL ⊥DE , 交AB 于点M ,交DE 于点 L .

∵ AF = AC ,AB = AD , ∠FAB = ∠GAD , ∴ ΔFAB ≌ ΔGAD ,

∵ ΔFAB 的面积等于221a ,

ΔGAD 的面积等于矩形ADLM 的面积的一半,

∴ 矩形ADLM 的面积 =2

a . 同理可证,矩形MLEB 的面积 =2

b .

∵ 正方形ADEB 的面积

= 矩形ADLM 的面积 + 矩形MLEB 的面积

∴ 222b a c += ,即 2

22c b a =+.

【证法8】(利用相似三角形性质证明)

如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .

在ΔADC 和ΔACB 中, ∵ ∠ADC = ∠ACB = 90o, ∠CAD = ∠BAC , ∴ ΔADC ∽ ΔACB .

AD ∶AC = AC ∶AB ,

AB AD AC ?=2

. 同理可证,ΔCDB ∽ ΔACB ,从而有 AB BD BC ?=2

.

∴ ()222AB AB DB AD BC AC =?+=+,即 222c b a =+.

【证法9】(杨作玫证明)

做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R . 过B 作BP ⊥AF ,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H .

∵ ∠BAD = 90o,∠PAC = 90o, ∴ ∠DAH = ∠BAC .

又∵ ∠DHA = 90o,∠BCA = 90o,

AD = AB = c , ∴ Rt ΔDHA ≌ Rt ΔBCA . ∴ DH = BC = a ,AH = AC = b . 由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌ Rt ΔBCA . 即PB = CA = b ,AP= a ,从而PH = b ―a .

∵ Rt ΔDGT ≌ Rt ΔBCA ,

Rt ΔDHA ≌ Rt ΔBCA . ∴ Rt ΔDGT ≌ Rt ΔDHA .

∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90o,∠DHF = 90o,

∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90o, ∴ DGFH 是一个边长为a 的正方形.

∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .

∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为

5

43212S S S S S c ++++= ①

()[]()[]a b a a b b S S S -+?-+=++21

438 =

ab

b 212-, 9

85S S S +=,

∴ 824321

S ab b S S --=+=

812S

S b -- . ② 把②代入①,得

9

8812212S S S S b S S c ++--++=

=

9

22S S b ++ = 2

2a b +.

∴ 2

22c b a =+.

【证法10】(李锐证明)

设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).

∵ ∠TBE = ∠ABH = 90o, ∴ ∠TBH = ∠ABE .

又∵ ∠BTH = ∠BEA = 90o,

BT = BE = b , ∴ Rt ΔHBT ≌ Rt ΔABE . ∴ HT = AE = a . ∴ GH = GT ―HT = b ―a . 又∵ ∠GHF + ∠BHT = 90o,

∠DBC + ∠BHT = ∠TBH + ∠BHT = 90o, ∴ ∠GHF = ∠DBC . ∵ DB = EB ―ED = b ―a ,

∠HGF = ∠BDC = 90o, ∴ Rt ΔHGF ≌ Rt ΔBDC . 即

2

7S S =.

过Q 作QM ⊥AG ,垂足是M . 由∠BAQ = ∠BEA = 90o,可知 ∠ABE = ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE . 所以Rt ΔHBT ≌ Rt ΔQAM . 即

5

8S S =.

由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE . ∵ ∠AQM + ∠FQM = 90o,∠BAE + ∠CAR = 90o,∠AQM = ∠BAE , ∴ ∠FQM = ∠CAR .

又∵ ∠QMF = ∠ARC = 90o,QM = AR = a , ∴ Rt ΔQMF ≌ Rt ΔARC . 即

6

4S S =

.

∵ 5

43212S S S S S c ++++=,

6

12S S a +=,

8

732S S S b ++=,

又∵ 2

7S S =,

5

8S S =,

6

4S S =, ∴

8

736122S S S S S b a ++++=+ =

5

2341S S S S S ++++

=2

c ,

即 2

22c b a =+.

【证法11】(利用切割线定理证明)

在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E ,则BD = BE = BC = a . 因为∠BCA = 90o,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得

AD AE AC ?=2

=()()BD AB BE AB -+ =()()a c a c -+

= 2

2a c -,

即222a c b -=, ∴ 222c b a =+.

【证法12】(利用多列米定理证明)

在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c (如图). 过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有

BD AC BC AD DC AB ?+?=?, ∵ AB = DC = c ,AD = BC = a , AC = BD = b ,

∴ 222AC BC AB +=,即 222b a c +=,

∴ 2

22c b a =+.

【证法13】(作直角三角形的内切圆证明)

在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 作Rt ΔABC 的内切圆⊙O ,切点分别为D 、E 、F (如图),设⊙O 的半径为r .

∵ AE = AF ,BF = BD ,CD = CE ,

∴ ()()()BF AF CD BD CE AE AB BC AC +-+++=-+

= CD CE += r + r = 2r,

即 r c b a 2=-+, ∴ c r b a +=+2.

∴ ()()2

22c r b a +=+,

即 ()

222242c rc r ab b a ++=++,

∵ ab S ABC

21

=?,

∴ ABC

S ab ?=42,

又∵

AOC

BOC

AOB ABC S S S S ????++= = br ar cr 212121++ = ()r c b a ++21

= ()r c c r ++221

= rc r +2

()

ABC

S rc r ?=+442,

()

ab rc r 242

=+, ∴ 22222c ab ab b a +=++, ∴ 2

22c b a =+.

【证法14】(利用反证法证明)

如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .

假设222c b a ≠+,即假设 2

22AB BC AC ≠+,则由

AB AB AB ?=2=()BD AD AB +=BD AB AD AB ?+?

可知 AD AB AC ?≠2,或者

BD AB BC ?≠2. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB .

在ΔADC 和ΔACB 中, ∵ ∠A = ∠A ,

∴ 若 AD :AC ≠AC :AB ,则 ∠ADC ≠∠ACB . 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B ,

∴ 若BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB . 又∵ ∠ACB = 90o,

∴ ∠ADC ≠90o,∠CDB ≠90o.

这与作法CD ⊥AB 矛盾. 所以,2

22AB BC AC ≠+的假设不能成立. ∴ 2

22c b a =+.

【证法15】(辛卜松证明)

设直角三角形两直角边的长分别为a 、b ,斜边的长为c . 作边长是a+b 的正方形ABCD . 把正方形

ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为

()ab b a b a 2222

++=+;把正方形ABCD

划分成上方右图所示的几个部分,则正方形ABCD 的面积为

()2

22

14c ab b a +?=+ =2

2c ab +.

∴ 2

2222c ab ab b a +=++, ∴ 2

22c b a =+.

D

【证法16】(陈杰证明)

设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图).

在EH = b 上截取ED = a ,连结DA 、DC , 则 AD = c .

∵ EM = EH + HM = b + a , ED = a , ∴ DM = EM ―ED = ()a b +―a = b . 又∵ ∠CMD = 90o,CM = a ,

∠AED = 90o, AE = b , ∴ Rt ΔAED ≌ Rt ΔDMC .

∴ ∠EAD = ∠MDC ,DC = AD = c . ∵ ∠ADE + ∠ADC+ ∠MDC =180o,

∠ADE + ∠MDC = ∠ADE + ∠EAD = 90o, ∴ ∠ADC = 90o.

∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形. ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90o, ∴ ∠BAF=∠DAE .

连结FB ,在ΔABF 和ΔADE 中,

∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE , ∴ ΔABF ≌ ΔADE .

∴ ∠AFB = ∠AED = 90o,BF = DE = a . ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中, ∵ AB = BC = c ,BF = CG = a , ∴ Rt ΔABF ≌ Rt ΔBCG . ∵ 5

4322S S S S c +++=, 6

212S S S b ++=,

7

32S S a +=,

7

6451S S S S S +===,

6

217322S S S S S b a ++++=+

=()76132S S S S S ++++

=

5

432S S S S +++

=2

c

∴ 2

22c b a =+.

【素材积累】

1、不求与人相比,但求超越自己,要哭旧哭出激动的泪水,要笑旧笑出成长的性格。倘若你想达成目标,便得摘心中描绘出目标达成后的景象;那么,梦想必会成真。求人不如求己;贫穷志不移;吃得苦中苦;方为人上人;失意不灰心;得意莫忘形。桂冠上的飘带,不是用天才纤维捻制而成的,而是用痛苦,磨难的丝缕纺织出来的。你的脸是为了呈现上帝赐给人类最贵重的礼物——微笑,一定要成为你工作醉大的资产。

2、不求与人相比,但求超越自己,要哭旧哭出激动的泪水,要笑旧笑出成长的性格。倘若你想达成目标,便得摘心中描绘出目标达成后的景象;那么,梦想必会成真。求人不如求己;贫穷志不移;吃得苦中苦;方为人上人;失意不灰心;得意莫忘形。桂冠上的飘带,不是用天才纤维捻制而成的,而是用痛苦,磨难的丝缕纺织出来的。你的脸是为了呈现上帝赐给人类最贵重的礼物——微笑,一定要成为你工作醉大的资产。

【人教版】八年级下数学《勾股定理》单元训练(含答案)

勾股定理专项训练 专训1.巧用勾股定理求最短路径的长 名师点金: 求最短距离的问题,第一种是通过计算比较解最短问题;第二种是平面图形,将分散的条件通过几何变换(平移或轴对称)进行集中,然后借助勾股定理解决;第三种是立体图形,将立体图形展开为平面图形,在平面图形中将路程转化为两点间的距离,然后借助直角三角形利用勾股定理求出最短路程(距离).用计算法求平面中最短问题 1.如图,学校有一块长方形花圃,有极少数人从A走到B,为了避免拐角C走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步路(假设2步为1 m),却踩伤了花草. (第1题) 2.小明听说“武黄城际列车”已经开通,便设计了如下问题:如图,以往从黄石A坐客车到武昌客运站B,现在可以在黄石A坐“武黄城际列车”到武汉青山站C,再从青山站C坐市内公共汽车到武昌客运站B.设AB=80 km,BC=20 km,∠ABC=120°.请你帮助小明解决以下问题: (1)求A,C之间的距离.(参考数据21≈4.6) (2)若客车的平均速度是60 km/h,市内的公共汽车的平均速度为40km/h,“武黄城际列车”的平均速度为180 km/h,为了在最短时间内到达武昌客运站,小明应选择哪种乘车方案?请说明理由.(不计候车时间) (第2题) 用平移法求平面中最短问题 3.如图是一个三级台阶,它的每一级的长、宽和高分别是50 cm,30c m,10 cm,A和B是这个台阶的两个相对的端点,A点上有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面爬到B点,至少需爬( ) A.13 cm B.40 cmC.130 cm D.169 cm

八年级数学《勾股定理》讲义全

【课题名称】八上数学《勾股定理》 【考纲解读】 1.掌握勾股定理的含义; 2.理解勾股数,并且会熟练地运用勾股数; 3.能够根据勾股定理,解决实际问题。 【考点梳理】 考点1:勾股定理 (1)勾股定理:直角三角形两直角边的平方和等于斜边的平方。 (2)勾股定理的表示:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += (3)勾股定理的证明:勾股定理的证明方法很多,常见的是拼图法。图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变。根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。 考点2:勾股定理的适用围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。 考点3:勾股数 (1)能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数。 (2)记住常见的勾股数可以提高解题速度,比如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等。 考点4:勾股定理的应用 (1)已知直角三角形的任意两边长,求第三边。在A B C ?中,90C ∠=?,则c , b ,a ; (2)已知直角三角形一边,可得另外两边之间的数量关系; (3)可以运用勾股定理解决一些实际问题,比如圆柱和长方体的最短距离问题。 【例题讲解】 c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

新北师大版八年级上数学勾股定理知识点+对应练习

第一章 勾股定理 1、勾股定理定义:直角三角形的两直角边长的平方和等于斜边的平方。如果用a ,b 和c 分别表示直角三角形的两直角边和斜边,那么a 2+b 2=c 2. A B C a b c 弦股 勾 勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边 2.勾股定理定义的应用: (1)已知直角三角形的两边求第三边(在ABC ?中,90C ∠=?,则22c a b =+,22b c a =-,22a c b =-) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 例. 在Rt △ABC 中,∠C=90° (1)若a=5,b=12,则c=________; (2)b=8,c=17,则S △ABC =________。 3.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等 式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简 可证 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 4.勾股定理的逆定理 如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2 ,那么这个三角形是直角三角形。 5.勾股数:满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么 c b a H G F E D C B A b a c b a c c a b c a b

勾股定理的证明方法探究

a2+c2=b2,c=b2-a2!=42-32!=!7(cm).二、忽视定理成立的条件例2在边长都是整数的△ABC 中,AB>AC,如果AC=4cm,BC=3cm,求AB的长.误解:由“勾3股4弦5”知 AC=4cm,BC=3cm,AB>AC,∴AB=5cm.剖析:这种解法受“勾3股4弦5”思维定势的影响,见题中有BC=3,AC=4,就认为AB=5,而忘记了“勾3股4弦5”是在直角三角形的条件下才成立,而本题中没有指明是直角三角形,因此,只能用三角形三条边之间的关系来解。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 总之,在勾股定理探索的道路上,我们走向了数学殿堂。

我们都喜欢把日子过成一首诗,温婉,雅致;也喜欢把生活雕琢成一朵花,灿烂,美丽。可是,前行的道路有时会曲折迂回,让心迷茫无措。生活的上空有时会飘来一场风雨,淋湿了原本热情洋溢的心。 不是每一个人都能做自己想做的事情,也不是每一个人都能到达想去的远方。可是,既然选择了远方,便只有风雨兼程。也许生活会辜负你,但你不可以辜负生活。 匆匆忙忙地奔赴中,不仅要能在阳光下灿烂,也要能在风雨中奔跑!真正的幸福不是拥有多少财富,而是在前行中成就一个优秀的自己! 生命没有输赢,只有值不值得。坚持做对的事情,就是值得。不辜负岁月,不辜负梦想,就是生活最美的样子。 北大才女陈更曾说过:“即使能力有限,也要全力以赴,即使输了,也要比从前更强,我一直都在与自己比,我要把最美好的自己,留在这终于相逢的决赛赛场。” 她用坚韧和执着给自己的人生添上了浓墨重彩的一笔。 我们都无法预测未来的日子是阳光明媚,还是风雨如晦,但前行路上点点滴滴的收获和惊喜,都是此生的感动和珍藏。 有些风景,如果不站在高处,你永远欣赏不到它的美丽;脚下有路,如果不启程,你永远无法揭晓远方的神秘。 我们踮起脚尖,是想离太阳更近一点儿;我们努力奔跑,是想到达远方欣赏最美的风景。 我们都在努力奔跑,我们都是追梦人!没有伞的时候,学会为自己撑伞;没有靠山的时候,学会自己屹立成一座伟岸的山! 远方有多远?多久能达到?勇敢往前冲的人,全世界都会向他微笑。相信,只要启程,哪怕会走许多弯路,也会有到达的那一天。

最新人教版八年级下学期数学勾股定理》知识点归纳

勾股定理知识点归纳和题型归类 一.知识归纳 1.勾股定理:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是: ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一: 4EFGH S S S ?+=正方形正方形ABCD ,2214()2 ab b a c ?+-=, 化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++,所以 222a b c += 方法三: 1 ()()2S a b a b =+?+梯形, 211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简 得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=?, 则c b ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b , c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是 否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a , b , c 为三边的三角形是直角三角形;若 222a b c +<,时,以a ,b ,c 为三边的三角形 是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

八年级数学下册知识点总结-勾股定理

第十八章勾股定理 知识点一:勾股定理 直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边 (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 知识点二:勾股定理的逆定理 如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。 要点诠释: 用勾股定理的逆定理判定一个三角形是否是直角三角形应注意: (1)首先确定最大边,不妨设最长边长为:c; (2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形 (若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2

新人教版八年级下册数学勾股定理教案

第十七章 勾股定理 勾股定理(一) 教学内容: 新课标对本节课的要求: 教学目标 知识与技能:了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。 过程与方法:培养在实际生活中发现问题总结规律的意识和能力。 情感态度价值观:介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。 教学重点、难点 重点:勾股定理的内容及证明。 难点:勾股定理的证明。 教学过程 1.引入 目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。 让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。 以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。 再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。 你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。 对于任意的直角三角形也有这个性质吗? 命题1:如果直角三角形的两直角边分别为a 、b ,斜边为c , 那么 。 2、合作探究: 方法1:已知:在△ABC 中,∠C=90°,∠A 、∠B 、 ∠C 的对边为a 、b 、c 。 A B

八年级数学勾股定理练习题

勾股定理练习 一.填空题: 1. 已知直角三角形两直角边的长分别为3cm,4cm,第三边上的高为_______. 2.在Rt △ABC 中, ∠C=90°,AB=15,BC:AC=3:4,则BC=___________. 3.已知:如图,在Rt △ABC 中,∠B=90°,D 、E 分别是边AB 、AC 的中点,DE=4, AC=10,则AB=_____________. 4.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边, 花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m 。 5.已知两条线段的长为9cm 和12cm,当第三条线段的长为 cm 时,这三条 6.如图,在△ABC 中,则DE 的长为_______. 7的正方形的边和长为7cm 。 (第3题) 8.在一棵树的10的A 处。另一只爬到树顶9.有两棵树,一棵高6的树梢飞到另一棵树的树梢,至少飞了 米 ,AD=8,DC=6,CB=24,AB=26.则四边形ABCD 的面积 20dm 、3dm 、2dm ,A 和 A 点有一只蚂蚁,想到 B 点去吃可口的食物,则 _____________. (第9题) (第10题) (第11题) 二.选择题: 1.已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) A 、25 B 、14 C 、7 D 、7或25 2.下列各组数中,以a ,b ,c 为边的三角形不是Rt △的是( ) A 、a=1.5,b=2,c=3 B 、a=7,b=24,c=25 C 、a=6,b=8,c=10 D 、a=3,b=4,c=5 C A B C D 20 32A B

新人教版八年级数学下册勾股定理典型例题分析

新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理 222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,.已 知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC2+92=152,所以AC 2 =144,所以AC=12. 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B C的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC. 解析:同例题1一样,先将实物模型转化为数学模型,如图 2. 由题意可知△AC D中,∠ACD=90°,在Rt △ACD 中,只知道CD =1.5,这是典型的利用勾股定理“知二求一”的类型。 标准解题步骤如下(仅供参考): 解:如图2,根据勾股定理,AC 2+CD 2=A D2 设水深AC= x 米,那么AD =A B=AC+CB =x +0.5 x2+1.52=( x +0.5)2 解之得x =2. 故水深为2米. 题型三:勾股定理和逆定理并用—— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1= 那么△DEF 是直角三角形吗?为什么? C B D A

八年级数学上册勾股定理教案

课题:17.1 勾股定理教学设计(第1课时)(九年制义务教育课程标准实验教科书人教版八年级第十七章第一节) 一、内容和内容解析 1、教材地位作用 这节课内容为九年制义务教育课程标准实验教科书,人教版八年级第十七章第一节勾股定理第一课时。勾股定理是学生在学习了直角三角形有关性质的基础上进行本课学习,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,在实际生活中用途很大。 通过课题的学习,学生可以经历从实际问题观察、发现、抽象出数学问题,猜想并验证直角三角形三条边之间满足的数量关系,到综合应用已学知识联想、证明的全过程,从而加深对相关知识的理解,提高思维能力。 本节课学习过程中渗透了数形结合、从特殊到一般和方程思想等重要数学思想,同时为勾股定理逆定理和后续解直角三角形的学习奠定了基础,也为高中学习的一般三角形中余弦定理和平面解析几何的部分公式做铺垫。 2、教学重点 勾股定理的学习是建立在掌握一般三角形的性质、直角三角形以及三角形全等的基础上, 是直角三角形性质的拓展。本节课主要是对勾股定理的探索和勾股定理的证明。勾股定理的证明方法很多,本节课介绍的是等积法。通过本节课的教学,引领学生从不同的角度发现问题、用多样化策略解决问题,从而提高学生分析、解决问题的能力。 基于以上考虑,本节课的教学重点为:探索、验证、证明勾股定理过程 八年级学生已初步具备几何的观察能力和说理能力,也有了一定的空间想象和动手操作能力,但是他们的推理能力较弱、抽象思维能力不足。而本节课先采用的是等积法证明。对于其他的证明方法,由于需要合理的发散思维和联想,没有教师的启发引领,学生不容易独立想到。 二、目标和目标解析 八年级学生对新事物充满好奇,他们喜欢动手,勤于思考,乐于探究,已经具备了一定的探索新知的能力。因此,结合学生的实际水平,我制定如下教学目标: 本节活动课应当恰当发展学生的几何直观、推理能力和模型思想的数学核心观念与数学能力,还要注重发展学生的创新意识。 A.知识技能目标:①经历勾股定理的探索过程,理解并掌握勾股定理;

勾股定理逆定理八种证明方法

勾股定理逆定理八种证 明方法 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

证法1 作四个的直角三角形,把它们拼成如图那样的一个多边形,使D、E、F在一条上(设它们的两条直角边长分别为a、b ,斜边长为c.)。过点C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上,且RtΔGEF ≌ RtΔEBD, ∴ ∠EGF = ∠BED, ∵ ∠EGF + ∠GEF =90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180°―90°= 90° 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形。 ∴ ∠ABC + ∠CBE = 90° ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90° 即∠CBD= 90° 又∵ ∠BDE = 90°,∠BCP = 90°,BC = BD = a. ∴ BDPC是一个边长为a的正方形。 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 证法2 作两个的直角三角形,设它们的两条直角边长分别为a、b(b>a),做一个边长为c的正方形。斜边长为c. 再把它们拼成如图所示的多边形,使E、A、C 三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90°,QP∥BC, ∴ ∠MPC = 90°, ∵ BM⊥PQ, ∴ ∠BMP = 90°, ∴ BCPM是一个矩形,即∠MBC =90°。 ∵ ∠QBM + ∠MBA = ∠QBA = 90°,∠ABC + ∠MBA = ∠MBC = 90°, ∴ ∠, 又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF.即 证法3 作两个全等的直角三角形,同证法2,再作一个边长为c的正方形。把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG, ∵EF=DF-DE=b-a,EI=b, ∴FI=a, ∴G,I,J在同一直线上, ∵CJ=CF=a,CB=CD=c,∠CJB = ∠CFD = 90°,

人教版数学八年级下册《勾股定理》基础练习题

勾股定理 一、选择题(每小题4分,共12分) 1.(2013·黔西南州中考)一直角三角形的两边长分别为3和4.则第三边的长为 ( ) A.5 B. C. D.5或 2.如图,有一块直角三角形纸板ABC,两直角边 AC=6cm,BC=8cm.现将直角边AC沿直线AD折叠,使它落在斜 边AB上,且点C落到点E处,则CD等于( ) A.2cm B.3cm C.4cm D.5cm 3.(2013·资阳中考)如图,点E在正方形ABCD内,满足 ∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( ) A.48 B.60 C.76 D.80 二、填空题(每小题4分,共12分) 4.(2013·莆田中考)如图是一株美丽的勾股树,其中所有 的四边形都是正方形,所有的三角形都是直角三角形,若 正方形A,B,C,D的面积分别为2,5,1,2.则最大的正方形 E的面积是. 5.如图,等腰△ABC中,AB=AC,AD是底边上的高,若AB=5cm,BC=6cm,则AD= cm.

6.(2013·桂林中考)如图,在△ABC中,CA=CB,AD⊥BC,BE⊥AC,AB=5,AD=4,则AE= . 三、解答题(共26分)[ 7.(8分)已知,如图,在△ABC中,∠C=90°,∠1=∠2,CD=15,BD=25,求AC的长. 8.(8分)在△ABC中,AB=15,AC=20,BC边上的高AD=12,试求BC边的长. 【拓展延伸】 9.(10分)有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.(图2,图3备用)

苏科版八年级数学上册勾股定理教案

勾股定理 (2) 教案1 一、教学目的 1.使学生掌握勾股定理及其证明。 2.通过讲解我国古代学者发现及应用勾股定理的成就,对学生进行受国主义教育、学习目的教育。 二、教学重点、难点 重点;勾股定理的证明和应用。 难点:勾股定理的证明。 三、教学过程 引言:直角三角形三边之间有一种特别重要的关系,早在我国古代就引起人们的兴趣。我国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。介绍商高答周公的勾三股四弦必五的故事。 人们还发现,在直角三角形中勾为6,股为8,弦必为10;勾为5,股为12,弦必为13,……。而32+42=52 ,62+82=102,52+122=132,……即勾2+股2=弦2。是否所有直角三角形都有这种性质呢? 事实上,可以证明,对于所有的直角三角形的三边都有这种关系,此关系我国把它称为“勾股定理”,现在我们就来学习这个定理。 新课 勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。即a 2+b 2=c 2。 对于这个定理的证明可按教科书中所给的方法。根据教科书中的方法事先用硬纸片拼好图形1-104。 a b b a a a c a a b a c c b b c b b b c c a a b a b 图 1-104 (1)先让学生观察,拼成的两个正方形边长都是a+b ,则面积相等。再看这两个正方形又由哪些三角形和正方形拼成的。 (2)分别写出左、右两个正方形的面积: 在边正方形是四个全等直角三角形与两个正方形组成,其面积为222 14b a ab ++? 。 右边的正方形是四个全等直角三角形与一个正方形组成,其面积为2214c ab +?。 (3)左、右两个正方形面积相等,即 ab c ab b a 2 14214222?+=? ++, ∴ 222c b a =+。 (4)勾股定理的变形。今后在运用勾股定理时,根据需要可将其变形为: 222b c a -=或222a c b -=,从而可知,在Rt △中已知两边可求出第三边。 向学生说明,这种证法是采用割补拼接(称拼图)的方法。在拼补过程中只要没有重叠、没有空隙,

勾股定理五种证明方法

勾股定理五种证明方法 【证法1】 做 8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 214214222?+=?++, 整理得 222c b a =+. 【 证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角 形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点 在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +. ∴ ()2 2214c ab b a +?=+. ∴ 222c b a =+. 【证法3】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为

最新部编人教版初中八年级下册数学勾股定理知识点

勾股定理知识点 一、勾股定理: 1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么 a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方 A B C a b c 弦 股 勾 勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边 勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。 2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是 勾股数组。) *附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,13 3. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。(经典直角三角 形:勾三、股四、弦五) 其他方法:(1)有一个角为90°的三角形是直角三角形。 (2)有两个角互余的三角形是直角三角形。 用它判断三角形是否为直角三角形的一般步骤是: (1)确定最大边(不妨设为c); (2)若c2=a2+b2,则△ABC是以∠C为直角的三角形; 若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边); 若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边) 4.注意:(1)直角三角形斜边上的中线等于斜边的一半 (2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。 (3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。 5. 勾股定理的作用: (1)已知直角三角形的两边求第三边。 (2)已知直角三角形的一边,求另两边的关系。 (3)用于证明线段平方关系的问题。

(完整版)初二(八年级)下册数学勾股定理典型习题

初二(八年级)下册数学勾股定理典型习题 一、基础知识点: 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方。 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面 积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为 222()2S a b a ab b =+=++ 所以222a b c +=方法三:1 ()()2 S a b a b =+?+梯形, 211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠= ?,则c = ,b ,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些 实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数 c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

八年级下册勾股定理知识点归纳

八年级下册勾股定理知识点和典型例习题 一、基础知识点: 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形通过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD , ,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形 的面积与小正方形面积的和为221 422 S ab c ab c =?+=+ 大正方形面积为 2 22() 2S a b a a b b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠ =?,则c =,b ,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实 际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;否则,就不是直角三角形。 ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25,8,15,17等 ③用含字母的代数式表示n 组勾股数: c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

(完整版)新人教版八年级下册数学勾股定理教案

新人教版八年级下册数学第十七章 勾股定理教案 勾股定理(一) 一、教学目标 1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。 2.培养在实际生活中发现问题总结规律的意识和能力。 3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。 二、教学重点、难点 1.重点:勾股定理的内容及证明。 2.难点:勾股定理的证明。 三、课堂引入 目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。 让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。 以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。 再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。 你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。 对于任意的直角三角形也有这个性质吗? 命题1:如果直角三角形的两直角边分别为a 、b ,斜边为c , 那么 。 四、合作探究: 方法1:已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。 求证:a 2+b 2=c 2。 分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。 ⑵拼成如图所示,其等量关系为:4S △+S 小正=S 大正 A B

八年级数学上册知识点:勾股定理

八年级数学上册知识点:勾股定理 八年级数学上册知识点:勾股定理 一、勾股定理: 1.勾股定理内容:如果直角三角形的两直角边长分别为a,斜边长为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。 2.勾股定理的证明: 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是: (1)图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变; (2)根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。 4.勾股定理的适用范围: 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。 二、勾股定理的逆定理 1.逆定理的内容:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。 说明:(1)勾股定理的逆定理是判定一个三角形是

否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两 小边的平方和与较长边的平方作比较,若它们相等时, 以a,b,c为三边的三角形是直角三角形; (2)定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足 a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b. 2.利用勾股定理的逆定理判断一个三角形是否为直 角三角形的一般步骤: (1)确定最大边; (2)算出最大边的平方与另两边的平方和; (3)比较最大边的平方与别两边的平方和是否相等,若相等,则说明是直角三角形。 三、勾股数 能够构成直角三角形的三边长的三个正整数称为勾 股数. 四、一个重要结论: 由直角三角形三边为边长所构成的三个正方形满足“两个较小面积和等于较大面积”。 五、勾股定理及其逆定理的应用 解决圆柱侧面两点间的距离问题、航海问题,折叠

勾股定理16种证明方法

v1.0 可编辑可修改 【证法1】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 21 4214222?+=?++, 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积 等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、 C 三点在一条直线上,C 、G 、 D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.

v1.0 可编辑可修改 ∴∠HGD = ∠EHA. ∵∠HGD + ∠GHD = 90o, ∴∠EHA + ∠GHD = 90o. 又∵∠GHE = 90o, ∴∠DHA = 90o+ 90o= 180o. ∴ ABCD是一个边长为a + b的正方形,它的面积等于()2b a+. ∴()2 2 2 1 4c ab b a+ ? = + . ∴2 2 2c b a= +. 【证法3】(赵爽证明) 以a、b 为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角 三角形的面积等于 ab 2 1 . 把这四个直角三 角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE, ∴∠HDA = ∠EAB. ∵∠HAD + ∠HAD = 90o, ∴∠EAB + ∠HAD = 90o, ∴ ABCD是一个边长为c的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b―a , ∠HEF = 90o. ∴ EFGH是一个边长为b―a的正方形,它的面积等于()2a b-. ∴ ()2 2 2 1 4c a b ab= - + ? .

八年级数学下勾股定理-单元测试题(带答案)

(第6题) A B D C (第12题) 30 7米5米 八年级下勾股定理测试题 姓名: 分数: 一、耐心填一填(每小题3分,共36分) 1、在Rt △ABC 中,∠C=90°,AC=3,BC=4,则AB=___________; 2、如图,小明的爸爸在院子的门板上钉了一个加固板,从数学的角度看, 这样做的道理是 . 3、小明同学要做一个直角三角形小铁架,他现有4根长度分别为4cm 、6cm 、8cm 、10cm 的铁棒,可用于制作成直角三角形铁架的三条铁棒分别是________________________; 4、若三角形三条边的长分别为7,24,25,则这个三角形的最大内角是 度. 5、在△ABC 中,∠C =90°,若c =10,a ∶b =3∶4,则ab = . 6、如图,在等腰△ABC 中,AB=AC=10,BC=12,则高AD=________; 7、等腰△ABC 的面积为12cm 2 ,底上的高AD =3cm , 则它的周长为________. 8、在Rt △ABC 中,斜边AB =2,则AB 2+BC 2+CA 2=________. 9、有一个三角形的两边长是4和5,要使这个三角形成为直角三角形,则第三边长为 ; 10、有两棵树,一棵高6米,另一棵高3米,两树相距4米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了________米. 11、一个三角形的三边的比为5∶12∶13,它的周长为60cm ,则它的面积是________. 12、如图,今年第8号台风“桑美”是50多年以来登陆我国大陆地区 最大的一次台风,一棵大树受“桑美”袭击于离地面5米 处折断倒下,倒下部分的树梢到树的距离为7米, 则这棵大树折断前有__________米(保留到0.1米)。 二、精心选一选(每小题4分,共24分) 13、下列各组数据为边的三角形中,是直角三角形的是( ) A 、 2、3、7 B 、5、4、8 C 、5、2、1 D 、2、3、 5 14、正方形ABCD 中,AC=4,则正方形ABCD 面积为( ) A 、 4 B 、8 C 、 16 D 、32 15、已知Rt △ABC 中,∠A ,∠B ,∠C 的对边分别为a,b,c ,若∠B=90○ ,则( ) A 、b 2= a 2+ c 2 ; B 、c 2= a 2+ b 2; C 、a 2+b 2=c 2; D 、a +b =c 16、三角形的三边长a,b,c满足2ab=(a+b)2 -c2,则此三角形是 ( ). A 、钝角三角形 B 、锐角三角形 C 、直角三角形 D 、等边三角形 17、将Rt △ABC 的三边都扩大为原来的2倍,得△A ’B ’C ’,则△A ’B ’C ’为( )

相关文档
最新文档