中考压轴题动态几何之直角三角形存在性问题

中考压轴题动态几何之直角三角形存在性问题
中考压轴题动态几何之直角三角形存在性问题

中考压轴题动态几何之直角三角形存在性问题

数学因运动而充满活力,数学因变化而精彩纷呈.动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等.解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况.以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射.

动态几何形成的存在性问题是动态几何中的基本类型,包括等腰(边)三角形存在问题;直角三角形存在问题;平行四边形存在问题;矩形、菱形、正方形存在问题;梯形存在问题;全等三角形存在问题;相似三角形存在问题;其它存在问题等.本专题原创编写直角三角形存在性问题模拟题.

在中考压轴题中,直角三角形存在性问题的重点和难点在于应用分类思想和数形结合的思想准确地进行分类.

原创模拟预测题1.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△P AB为直角三角形时,AP的长为.

原创模拟预测题2.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发的同时点Q 从点C出发,以1cm/s的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.

(1)从运动开始,当t取何值时,PQ∥CD?

(2)从运动开始,当t取何值时,△PQC为直角三角形?

原创模拟预测题3.如图,抛物线212

y x bx c =-++与x 轴分别相交于点A (﹣2,0),B (4,0),与y 轴交于点C ,顶点为点P .

(1)求抛物线的解析式;

(2)动点M 、N 从点O 同时出发,都以每秒1个单位长度的速度分别在线段OB 、OC 上向点B 、C 方向运动,过点M 作x 轴的垂线交BC 于点F ,交抛物线于点H .

①当四边形OMHN 为矩形时,求点H 的坐标;

②是否存在这样的点F ,使△PFB 为直角三角形?若存在,求出点F 的坐标;若不存在,请说明理由.

原创模拟预测题4.如图,已知抛物线2

y ax bx c =++(0a ≠)的对称轴为直线1x =-,且抛物线经过A (1,0),C (0,3)两点,与x 轴交于点B .

(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;

(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;

(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使△BPC 为直角三角形的点P 的坐标.

原创模拟预测题5.如图,已知直线3y x =-+与x 轴、y 轴分别交于A ,B 两点,抛物线2y x bx c =-++经过A ,B 两点,点P 在线段OA 上,从点O 出发,向点A 以1个单位/秒的速度匀速运动;同时,点Q 在线段AB 上,从点A 出发,向点B 以2个单位/秒的速度匀速运动,连接PQ ,设运动时间为t 秒.

(1)求抛物线的解析式;

(2)问:当t 为何值时,△APQ 为直角三角形;

(3)过点P 作PE ∥y 轴,交AB 于点E ,过点Q 作QF ∥y 轴,交抛物线于点F ,连接EF ,当EF ∥PQ 时,求点F 的坐标;

(4)设抛物线顶点为M ,连接BP ,BM ,MQ ,问:是否存在t 的值,使以B ,Q ,M 为顶点的三角形与以O ,B ,P 为顶点的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.

原创模拟预测题6.如图,二次函数2+y x bx c 的图象交x 轴于A (﹣1,0)、B (3,0)两点,交y 轴于点C ,连接BC ,动点P 以每秒1个单位长度的速度从A 向B 运动,动点Q

以每秒2个单位长度的速度从B向C运动,P、Q同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t秒.

(1)求二次函数的解析式;

(2)如图1,当△BPQ为直角三角形时,求t的值;

t时,延长QP交y轴于点M,在抛物线上是否存在一点N,使得PQ (3)如图2,当2

的中点恰为MN的中点?若存在,求出点N的坐标与t的值;若不存在,请说明理由.

原创模拟预测题7.如图,在直角坐标系中,Rt△OAB的直角顶点A在x轴上,OA=4,AB=3.动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;同时点N从点O出发,以每秒1.25个单位长度的速度,沿OB向终点B移动.当两个动点运动了x秒(0<x <4)时,解答下列问题:

(1)求点N的坐标(用含x的代数式表示);

(2)设△OMN的面积是S,求S与x之间的函数表达式;当x为何值时,S有最大值?最大值是多少?

(3)在两个动点运动过程中,是否存在某一时刻,使△OMN是直角三角形?若存在,求出x的值;若不存在,请说明理由.

原创模拟预测题8.如图,已知二次函数232y ax x c =++的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),连接AB 、AC .

(1)请直接写出二次函数232

y ax x c =++的表达式; (2)判断△ABC 的形状,并说明理由;

(3)若点N 在x 轴上运动,当以点A 、N 、C 为顶点的三角形是等腰三角形时,请直接写出此时点N 的坐标;

(4)若点N 在线段BC 上运动(不与点B 、C 重合),过点N 作NM ∥AC ,交AB 于点M ,当△AMN 面积最大时,求此时点N 的坐标.

原创模拟预测题9.如图1,一条抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,且当x =﹣1和x =3时,y 的值相等,直线4

21815-=x y 与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M .

(1)求这条抛物线的表达式.

(2)动点P 从原点O 出发,在线段OB 上以每秒1个单位长度的速度向点B 运动,同时点Q 从点B 出发,在线段BC 上以每秒2个单位长度的速度向点C 运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为t 秒.

①若使△BPQ 为直角三角形,请求出所有符合条件的t 值;

②求t 为何值时,四边形ACQP 的面积有最小值,最小值是多少?

(3)如图2,当动点P 运动到OB 的中点时,过点P 作PD ⊥x 轴,交抛物线于点D ,连接OD ,OM ,MD 得△ODM ,将△OPD 沿x 轴向左平移m 个单位长度(0<m <2),将平移后的三角形与△ODM 重叠部分的面积记为S ,求S 与m 的函数关系式.

中考数学几何压轴题

1.(1)操作发现· 如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在矩形ABCD 内部.小明将BG 延长交DC 于点F ,认为GF =DF ,你同意吗?说明理由. (2)问题解决 保持(1)中的条件不变,若DC =2DF ,求AB AD 的值; (3)类比探究 保持(1)中的条件不变,若DC =n ·DF ,求 AB AD 的值. 2.如图1所示,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,∠DCB =75o,以CD 为一边的

等边△DCE 的另一顶点E 在腰AB 上. (1)求∠AED 的度数; (2)求证:AB =BC ; (3)如图2所示,若F 为线段CD 上一点,∠FBC =30o. 求 DF FC 的值. 3.如图①,在等腰梯形ABCD 中,AD ∥BC ,AE ⊥BC 于点E ,DF ⊥BC 于点F .AD =2cm ,BC =6cm ,AE =4cm .点P 、Q 分别在线段AE 、DF 上,顺次连接B 、P 、Q 、C ,线段BP 、PQ 、QC 、CB 所围成的封闭图形记为M .若点P 在线段AE 上运动时,点Q 也随之在线段DF 上运动,使图形M 的形状发生改变,但面积始终.. 为10cm 2.设EP =x cm ,FQ =y cm ,A B C D E 图1 A B C D E 图2 F

解答下列问题: (1)直接写出当x =3时y 的值; (2)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)当x 取何值时,图形M 成为等腰梯形?图形M 成为三角形? (4)直接写出线段PQ 在运动过程中所能扫过的区域的面积. 4.如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC ,△A 1B 1C 1. A B C D E F (备用图) A B C D E F Q P 图① 图 ① A C A 1 B 1 C 1

中考数学几何证明压轴题之令狐文艳创作

北京优学教育中考专题训练 令狐文艳 1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1) 求证:DC=BC; (2) E 是梯形内一点,F 是梯形外一点,且∠EDC=∠FBC , DE=BF ,试判断△ECF 的形状,并证明你的结论; (3) 在(2)的条件下,当 BE :CE=1: 2,∠BEC=135°时,求sin ∠BFE 的值. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. 3、如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转. (1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交 于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想; (2)若三角尺GEF 旋转到如图13-3FE 的延长线与AB 的延长线相交于点线与GF 的延长线相交于点N E B F C D A

4、如图,已知⊙O 的直径AB 垂直于弦CD 于E ,连结AD 、BD 、OC 、OD ,且OD =5。 (1)若sin ∠BAD =35 ,求CD 的长; (2)若∠ADO :∠EDO =4:1,求扇形OAC (阴影部分)的面积(结果保留π)。 5、如图,已知:C 是以AB 为直径的半圆O 上一点,CH ⊥AB 于点H ,直线AC 与过B 点的切线相交于点D ,E 为CH 中点,连接AE 并延长交BD 于点F ,直线CF 交直线AB 于点G. (1)求证:点F 是BD 中点; (2)求证:CG 是⊙O 的切线; (3)若FB=FE=2,求⊙O 的半径. 6、如图,已知O 为原点,点A 的坐标为(4,3), ⊙A 的半径为2.过A 作直线l 平行于x 轴,点P 在直线l 上运动. (1)当点P 在⊙O 上时,请你直接写出它的坐标; (2)设点P 的横坐标为12,试判断直线OP 与⊙A 的位置关系,并说明理由. 7、如图,延长⊙O 的半径OA 到B ,使OA=AB , DE 是圆的一条切线,E 是切点,过点B 作DE 的垂线, 垂足为点C . 求证:∠ACB=3 1∠OAC . 8、如图1,一架长4米的梯子AB 斜靠在 与 C A B D O E

中考压轴题系列动态几何之面动形成的函数关系问题完整版

中考压轴题系列动态几何之面动形成的函数关 系问题 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

《中考压轴题全揭秘》第二辑原创模拟预测题 专题26:动态几何之面动形成的函数关系问题数学因运动而充满活力,数学因变化而精彩纷呈。动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。 动态几何形成的函数关系和图象问题是动态几何中的基本问题,包括单动点形成的函数关系和图象问题,双(多)动点形成的函数关系和图象问题,线动形成的函数关系和图象问题,面动形成的函数关系和图象问题。本专题原创编写面动形成的函数关系问题模拟题。 面动问题就是在一些基本几何图形上,设计一个动面(包括平移和旋转),或由点动、线动形成面动,并对面在运动变化的过程中产生的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行研究 在中考压轴题中,面动形成的函数关系问题的重点和难点在于应用数形结合的思想准确地进行分类。 原创模拟预测题1.如图,点G、E、A、B在一条直线上,等腰直角△EFG从如图所示是位置出发,沿直线AB以1单位/秒向右匀速运动,当点G与B重合时停止运动。已知AD=1,AB=2,设△EFG与矩形ABCD重合部分的面积为S平方单位,运动时间为t秒,则S与t的函数关系 是。 【答案】 () () () 2 2 1 t t0t1 2 1 S1

中考数学几何选择填空压轴题精选

中考数学几何选择填空压轴题精选 一.选择题(共13小题) 1.(2013?蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE 的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE?HB. A.1个B.2个C.3个D.4个 2.(2013?连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A.B.C.D. 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A.1个B.2个C.3个D.4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论: ①EC=2DG;②∠GDH=∠GHD;③S△CDG=S?DHGE;④图中有8个等腰三角形.其中正确的是() A.①③B.②④C.①④D.②③ 5.(2008?荆州)如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为() A.5:3B.3:5C.4:3D.3:4 6.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为() A.B.C.D. 7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是() A.B.6C.D.3 8.(2013?牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是() A.1个B.2个C.3个D.4个 9.(2012?黑河)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论: ①(BE+CF)=BC; ②S△AEF≤S△ABC; ③S四边形AEDF=AD?EF; ④AD≥EF; ⑤AD与EF可能互相平分, 其中正确结论的个数是() A.1个B.2个C.3个D.4个

七年级几何证明压轴题

一、选择 1.如图,已知:在△ABC 中,AB=AC ,D 是BC 边上任意一点,DF ⊥AC 于点F ,E 在AB 边上,ED ⊥BC 于D ,∠AED=155°,则∠EDF 等于( ) A .50°B.65°C.70°D.75° 2.下列判断错误的是( ) A.一条线段有无数条垂线; B.过线段AB 中点有且只有一条直线与线段AB 垂直; C.两直线相交所成的四个角中,若有一个角为90°,则这两条直线互相垂直; D.若两条直线相交,则它们互相垂直. 3.下列判断正确的是( ) A.从直线外一点到已知直线的垂线段叫做这点到已知直线的距离; B.过直线外一点画已知直线的垂线,垂线的长度就是这点到已知直线的距离; C.画出已知直线外一点到已知直线的距离; D.连接直线外一点与直线上各点的所有线段中垂线段最短. 二、压轴题 1.(11分)如图12-1,点O 是线段AD 上的一点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC . (1)求∠AEB 的大小; (2)如图12-2,△OAB 固定不动,保持△OCD 的形状和大小不变,将△OCD 绕着点O 旋转(△OAB 和△OCD 不能重叠),求∠AEB 的大小. 2.(本题9分)如图,在△ABC 中,AD 平分∠BAC ,P 为线段AD 上的一个动点, PE ⊥AD 交直线BC 于点E. ⑴若∠B=35°,∠ACB=85°,求∠E 的度数; ⑵当P 点在线段AD 上运动时,猜想∠E 与∠B 、∠ACB 的数量关系.写出结论无需证明. 3如图1,△ABC 的边BC 直线l 上,AC ⊥BC ,且AC=BC ;△EFP 的边FP 也在直线l 上,边EF 与边AC 重合,且 EF=FP . O 图 12-1 A 图12-2 P E D C B A

中考数学压轴题动态几何题型精选解析

2013中考数学压轴题动态几何题型精选解析(三) 例题如图1,在直角坐标系中,已知点A(0,2)、点B(﹣2,0),过点B和线段OA的中点C作直线BC,以线段BC为边向上作正方形BCDE. (1)填空:点D的坐标为,点E的坐标为. (2)若抛物线y=ax2+bx+c(a≠0)经过A、D、E三点,求该抛物线的解析式. (3)若正方形和抛物线均以每秒个单位长度的速度沿射线BC同时向上平移,直至正方形的顶点E落在y 轴上时,正方形和抛物线均停止运动. ①在运动过程中,设正方形落在y轴右侧部分的面积为s,求s关于平移时间t(秒)的函数关系式,并写出相应自变量t的取值范围. ②运动停止时,求抛物线的顶点坐标. 思路分析: (1)构造全等三角形,由全等三角形对应线段之间的相等关系,求出点D、点E的坐标; (2)利用待定系数法求出抛物线的解析式; (3)本问非常复杂,须小心思考与计算: ①为求s的表达式,需要识别正方形(与抛物线)的运动过程.正方形的平移,从开始到结束,总共历时秒,期间可以划分成三个阶段:当0<t≤时,对应图(3)a;当<t≤1时,对应图(3)b;当1<t≤时,对应图(3)c.每个阶段的表达式不同,请对照图形认真思考; ②当运动停止时,点E到达y轴,点E(﹣3,2)运动到点E′(0,),可知整条抛物线向右平移了3个单位,向上平移了个单位.由此得到平移之后的抛物线解析式,进而求出其顶点坐标. 解:(1)由题意可知:OB=2,OC=1. 如图(1)所示,过D点作DH⊥y轴于H,过E点作EG⊥x轴于G. 易证△CDH≌△BCO,∴DH=OC=1,CH=OB=2,∴D(﹣1,3); 同理△EBG≌△BCO,∴BG=OC=1,EG=OB=2,∴E(﹣3,2). ∴D(﹣1,3)、E(﹣3,2). (2)抛物线经过(0,2)、(﹣1,3)、(﹣3,2), 则 解得

中考数学几何专题知识点总结78点中考数学几何压轴题

中考数学几何专题知识点总结78点中考数学 几何压轴题 1 同角或等角的余角相等 2 过一点有且只有一条直线和已知直线垂直 3 过两点有且只有一条直线 4 两点之间线段最短 5 同角或等角的补角相等 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边

16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理有两角和它们的夹边对应相等的两个三角形全等 24 推论有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理有三边对应相等的两个三角形全等 26 斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

中考数学超好几何证明压轴题大全

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1)求证:DC=BC; (2)E 是梯形内一点,F 是梯形外一点,且∠EDC=∠FBC ,DE=BF ,试判断△ECF 的形状, 并证明你的结论; (3)在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于 G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什 么特殊四边形?并证明你的结论. 3、如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中 点O (点O 也是BD 中点)按顺时针方向旋转. (1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM , FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想; (2)若三角尺GEF 旋转到如图13-3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由. 4、如图,已知⊙O 的直径AB 垂直于弦CD 于E ,连结AD 、BD 、OC 、OD ,且OD =5。 (1)若,求CD 的长; (2)若 ∠ADO :∠EDO =4:1,求扇形OAC (阴影部分)的面积(结果保留)。 5、如图,已知:C 是以AB 为直径的半圆O 上一点,CH ⊥AB 于点H ,直线AC 与过B 点的切线相交于点D ,E 为CH 中点,连接AE 并延长交BD 于点F ,直线CF 交直线AB 于点G. (1)求证:点F 是BD 中点; (2)求证:CG 是⊙O 的切线; (3)若FB=FE=2,求⊙O 的半径. 6、如图,已知O 为原点,点A 的坐标为(4,3), ⊙A 的半径为2.过A 作直线l 平行于x 轴,点P 在直线l 上运动. (1)当点P 在⊙O 上时,请你直接写出它的坐标; (2)设点P 的横坐标为12,试判断直线OP 与⊙A 的位置关系,并说明理由. 7、如图,延长⊙O 的半径OA 到B ,使OA=AB , DE 是圆的一条切线,E 是切点,过点B 作DE 的垂线, 垂足为点C . 求证:∠ACB=31∠OAC . 8、如图1,一架长4米的梯子AB 斜靠在与地 面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为 60. E B F C D A 图13-2 E A B D G F O M N C 图13-3 A B D G E F O M N C 图13-1 A ( E ) C O D F C A B D O E

专题二:动态几何型压轴题(中考压轴解析)

C 专题二:动态几何型压轴题 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、以动态几何为主线的压轴题 (一)点动问题. 1.(09年徐汇区)如图,ABC ?中,10==AC AB ,12=BC ,点D 在边BC 上,且 4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长; (2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时, 求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长. [题型背景和区分度测量点] 本题改编自新教材九上《相似形》24.5(4)例六,典型的一线三角(三等角)问题,试题在原题的基础上改编出第一小题,当E 点在AB 边上运动时,渗透入圆与圆的位置关系(相切问题)的存在性的研究形成了第二小题,加入直线与圆的位置关系(相切问题)的存在性的研究形成了第三小题.区分度测量点在直线与圆的位置关系和圆与圆的位置关系,从而利用方程思想来求解. [区分度性小题处理手法] 1.直线与圆的相切的存在性的处理方法:利用d=r 建立方程. 2.圆与圆的位置关系的存在性(相切问题)的处理方法:利用d=R ±r(r R >)建立方程. 3.解题的关键是用含x 的代数式表示出相关的线段. 解:(1) 证明CDF ?∽EBD ?∴BE CD BD CF = ,代入数据得8=CF ,∴AF=2 (2) 设BE=x ,则,10==AC d ,10x AE -=利用(1)的方法 x CF 32 = , 相切时分外切和内切两种情况考虑: 外切, x x 32 1010+ -=,24=x ; 内切, x x 32 1010- -=,17210±=x .100<

2020年中考数学压轴题精讲:几何证明及几何计算

2020年中考数学压轴题精讲:几何证明及几何计算例题1:如图1,在△ABC中,BC>AC,∠ACB=90°,点D在AB边上,DE⊥AC于点E. (1)若 1 3 AD DB =,AE=2,求EC的长; (2)设点F在线段EC上,点G在射线CB上,以F、C、G为顶点的三角形与△EDC 有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高还是中线?或两者都有可能?请说明理由. 图1 满分解答 (1)由∠ACB=90°,DE⊥AC,得DE//BC. 所以 1 3 AE AD EC DB ==.所以 21 3 EC =.解得EC=6. (2)△CFG与△EDC都是直角三角形,有一个锐角相等,分两种情况: ①如图2,当∠1=∠2时,由于∠2与∠3互余,所以∠2与∠3也互余. 因此∠CPF=90°.所以CP是△CFG的高. ②如图3,当∠1=∠3时,PF=PC. 又因为∠1与∠4互余,∠3与∠2互余,所以∠4=∠2.所以PC=PG. 所以PF=PC=PG.所以CP是△CFG的中线. 综合①、②,当CD是∠ACB的平分线时,CP既是△CFG的高,也是中线(如图4). 图2 图3 图4 例题2:如图1,正六边形ABCDEF的边长为a,P是BC边上的一动点,过P作PM//AB 交AF于M,作PN//CD交DE于N. (1)①∠MPN=_______°; ②求证:PM+PN=3a; (2)如图2,点O是AD的中点,联结OM、ON.求证:OM=ON. (3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊的四边形,并说明理由.

图1 图2 图3 满分解答 (1)①∠MPN=60°. ②如图4,延长F A、ED交直线B C与M′、N′,那么△ABM′、△MPM′、△DCN′、 △EPN′都是等边三角形. 所以PM+PN=M′N′=M′B+BC+CN′=3a. 图4 图5 图6 (2)如图5,联结OP. 由(1)知,AM=BP,DN=CP. 由AM=BP,∠OAM=∠OBP=60°,OA=OB, 得△AOM≌△BOP.所以OM=OP. 同理△COP≌△DON,得ON=OP. 所以OM=ON. (3)四边形OMGN是菱形.说理如下: 由(2)知,∠AOM=∠BOP,∠DON=∠COP(如图5). 所以∠AOM+∠DON=∠BOP+∠COP=60°.所以∠MON=120°. 如图6,当OG平分∠MON时,∠MOG=∠NOG=60°. 又因为∠AOF=∠FOE=∠EOD=60°,于是可得∠AOM=∠FOG=∠EON. 于是可得△AOM≌△FOG≌△EON. 所以OM=OG=ON. 所以△MOG与△NOG是两个全等的等边三角形. 所以四边形OMGN的四条边都相等,四边形OMGN是菱形. 例题3:已知二次函数y=-x2+bx+c的图像经过点P(0, 1)与Q(2, -3). (1)求此二次函数的解析式; (2)若点A是第一象限内该二次函数图像上一点,过点A作x轴的平行线交二次函数图像于点B,分别过点B、A作x轴的垂线,垂足分别为C、D,且所得四边形ABCD恰为正方形. ①求正方形的ABCD的面积;

中考压轴题动态几何之其他问题

中考压轴题动态几何之其他问题 数学因运动而充满活力,数学因变化而精彩纷呈.动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等.解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况.以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射. 动态几何之其他问题(平面几何)是除前述动态几何问题以外的平面几何问题,本专题原创编写动态几何之其他问题(平面几何)模拟题. 在中考压轴题中,其他问题(平面几何)的难点在于准确应用适当的定理和方法进行探究. 原创模拟预测题1.如图,矩形ABCD中,AB=3,BC=4,点P从A点出发.按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是() A.B.C.D. 【答案】D. 考点:动点问题的函数图象;压轴题;动点型;分段函数. 原创模拟预测题2.如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,当蚂蚁运动的时间为t时,蚂蚁与O点的距离为s,则s关于t的函数图象大致是()

A.B.C.D. 【答案】B. 考点:动点问题的函数图象;分段函数. 原创模拟预测题3.如图是自行车骑行训练场地的一部分,半圆O的直径AB=100,在半圆弧上有一运动员C从B点沿半圆周匀速运动到M(最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同的速度运动到A点停止.设运动时间为t,点B到直线OC的距离为d,则下列图象能大致刻画d与t之间的关系是()学科网 A.B.C.D. 【答案】C. 考点:动点问题的函数图象. 原创模拟预测题4.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为()

2020各地中考几何综合压轴题汇总

2020各地中考几何综合压轴题汇总 一.解答题(共50小题) 1.(2020?天水)性质探究 如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为. 理解运用 (1)若顶角为120°的等腰三角形的周长为4+2 ,则它的面积为; (2)如图(2),在四边形EFGH中,EF=EG=EH,在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长. 类比拓展 顶角为2α的等腰三角形的底边与一腰的长度之比为.(用含α的式子表示) 2.(2020?青海)在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G. 特例感知: (1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF=CG.请给予证明. 猜想论证: (2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC 于点D,过点D作DE⊥BA垂足为E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想. 联系拓展: (3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)

3.(2020?河北)如图1和图2,在△ABC中,AB=AC,BC=8,tan C .点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B. (1)当点P在BC上时,求点P与点A的最短距离; (2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长; (3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(用含x的式子表示); (4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK ,请直接写出点K被扫描到的总时长. 4.(2020?襄阳)在△ABC中,∠BAC═90°,AB=AC,点D在边BC上,DE⊥DA且DE=DA,AE交边BC于点F,连接CE. (1)特例发现:如图1,当AD=AF时, ①求证:BD=CF; ②推断:∠ACE=°; (2)探究证明:如图2,当AD≠AF时,请探究∠ACE的度数是否为定值,并说明理由;(3)拓展运用:如图3,在(2)的条件下,当 时,过点D作AE的垂线,交AE于点P,交AC 于点K,若CK ,求DF的长. 5.(2020?牡丹江)在等腰△ABC中,AB=BC,点D,E在射线BA上,BD=DE,过点E作EF∥BC,交射线CA于点F.请解答下列问题:

几何证明压轴题选.doc

儿何体精选 1、如图,在梯形ABCD 中,AB〃CD, ZBCD=90°,且AB=1, BC=2, tanZADC=2. (1)求证:DC=BC; (2)E是梯形内一点,F是梯形外一点,旦NEDC=NFBC, DE=BF,试判断Z\ECF的形 状,并证明你的结论; (3)在(2)的条件下,当BE: CE=1: 2, ZBEC=135° 时,求sinZBFE 的值. [解析](1)过A作DC的垂线AM交DC于M, 则AM=BC=2. 2 又tanZADC=2,所以DM =- = 1.即DC=BC. 2 (2)等腰三角形. 证明:因为DE = DF,』EDC = ZFBC, DC = BC . 所以,ADEC竺ZXBFC 所以,CE = CF,ZECD = ZBCF. 所以,ZECF =』BCF + ZBCE = ZECD + ZBCE = ZBCD = 90°即AECF是等腰直角三角形. (3)设BE = k,则CE = CF = 2k,所以EF = 2&. 因为为BEC = 135。, XZCEF= 45°,所以ZBEF = 90°. 所以BF =+(2gkV = 3k k 1 所以sinZBFE = —=-. 3k 3 2、已知:如图,在OABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG〃DB 交CB的延长线于G. (1)求证:AADE^ACBF; (2)若四边形BEDF是菱形,则四边形AGBD是什 么特殊四边形?并证明你的结论. [解析](1)..?四边形ABCD是平行四边形, .\Z1 = ZC, AD=CB, AB=CD . ?.?点E、F分别是AB、CD的中点, 1 1 ?.?AE=-AB , CF=-CD . 2 2 ???AE=CF

中考数学压轴题专题十动态几何问题

中考数学压轴题专题十动态几何问题 试题特点 用运动的观点来探究几何图形变化规律的问题称为动态几何问题,此类问题的显著特点是图形中的某个元素(如点、线段、三角形等)或整个图形按照某种规律运动,图形的各个元素在运动变化过程中互相依存、和谐统一,体现了数学中“变”与“不变” 、“一般” 与“特殊”的辩证思想.其主要类型有:1.点的运动(单点运动、多点运动);2.线段 (直线)的运动;3.图形的运动(三角形运动、四边形运动、圆运动等). 方式趋势 动态几何题已成为中考试题的一大热点题型.在近几年各地的中考试卷中,以动点问题、平面图形的平移、翻折、旋转、剪拼问题等为代表的动态几何题频频出现在填空、选择、解答等各种题型中,总体呈现源于教材、高于教材,入口宽、难易适度、梯度分明,考查同学们对图形的直觉能力以及从变化中看到不变实质的数学洞察力. 热点解析 一、点的运动 4 【题1】(2011 盐城)如图1,已知一次函数y=-x+7 与正比例函数y=x 的图象3 交于点A ,且与x 轴交于点B. (1)求点A 和点B 的坐标; (2)过点A 作AC⊥y轴于点C,过点B 作直线l∥y 轴,动点P 从点O 出发,以每秒1 个单位长的速度,沿O-C-A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R,交线 段BA 或线段AO 于点Q.当点P 到达点A 时,点P 和直线l 都停止运动.在运 动过程中,设动点P 运动的时间为t 秒. ①当t 为何值时,以A、P、R 为顶点的三角形的面积为8? ②是否存在以A 、P、Q 为顶点的三角形是等腰三角形?若存在,请说明 理由. 求t 的值;若不存在, 4 【思路】(1)联立方程y=-x+7 和y=3x 即可求出点A 的坐标,令-x+7=0 即 3 可得点B 的坐标. (2)①只要把三角形的面积用t 表示,求出即可.应注意分P 在OC 上运动和P 在CA

中考数学几何证明压轴题大全

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1) 求证:DC=BC; (2) E 是梯形内一点,F 是梯形外一点,且∠E DC=∠F BC ,DE=BF ,试判断△E CF 的形 状,并证明你的结论; (3) 在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值. [解析] (1)过A 作DC 的垂线AM 交DC 于M, 则AM=BC=2. 又tan ∠ADC=2,所以2 12 DM ==.即DC=BC. (2)等腰三角形. 证明:因为,,DE DF EDC FBC DC BC =∠=∠=. 所以,△DEC ≌△BFC 所以,,CE CF ECD BCF =∠=∠. 所以,90ECF BCF BCE ECD BCE BCD ∠=∠+∠=∠+∠=∠=? 即△ECF 是等腰直角三角形. (3)设BE k =,则2CE CF k ==,所以EF =. 因为135BEC ∠=?,又45CEF ∠=?,所以90BEF ∠=?. E B F C D A

所以22(22)3BF k k k = += 所以1sin 33 k BFE k ∠= =. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. [解析] (1)∵四边形ABCD 是平行四边形, ∴∠1=∠C ,AD =CB ,AB =CD . ∵点E 、F 分别是AB 、CD 的中点, ∴AE = 21AB ,CF =2 1 CD . ∴AE =CF ∴△ADE ≌△CBF . (2)当四边形BEDF 是菱形时, 四边形 AGBD 是矩形. ∵四边形ABCD 是平行四边形, ∴AD ∥BC . ∵AG ∥BD , ∴四边形 AGBD 是平行四边形.

中考数学几何证明压轴题

(i (2)若四边形BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. 3、如图13- 1, 一等腰直角三角尺 GEF 的两条直角边与正方形 ABCD 勺两条边分别 重合在一起?现正方形 ABCD 保持不动,将三角尺 GEF 绕斜边EF 的中点0(点O 也是 BD 中点)按顺时针方向旋转. (1) 如图13- 2,当EF 与AB 相交于点M GF 与 BD 相交于点N 时,通过观察 或 测量BM FN 的长度,猜想BM FN 满足的数量关系,并证明你的猜想; (2) 若三角尺GEF 旋转到如图13-3所示的位置时x 线段.FE 的延长线与AB 的延长线相交于点 M 线段BD 的延长线与F 时,(1)中的猜想还成立吗?若成立, F O (1)若 s i n / A G ) B( E ) 5 勺延长线相交于点N,此 弭■若不成 辺CD 于E ,连结ADg BD 3 OC OD 且0吐5 E (2)若图/3ADO / EDO= 4: 1,求13形OAC(阴影部分)的面积(结果保留 5、如图,已知:C 是以AB 为直径的半圆 O 上一点,CHLAB 于点H,直线 AC 与过B 点的切线相交于点 D, E 为CH 中点,连接 A ¥ 延长交BD 于点F ,直线 F CF 中考专题训练 1、如图,在梯形 ABCD 中,AB// CD , / BCD=90 ,且 AB=1, BC=2 tan / ADC=2. (1) 求证:DC=BC; ⑵E 是梯形内一点, F 是梯形外一点,且/ EDC 2 FBC DE=BF 试判断△ ECF 的形状,并证明你的结论; (3)在(2)的条件下,当BE: CE=1: 2,Z BEC=135 时,求 sin / BFE 的值. 2、已知:如图,在 □ ABCD 中,E 、F 分别为边 AB CD 的中点,BD 是对角线,AG// DB 交CB 的 (1) 求证:△ ADE^A CBF ; D ( F ) 4、如图, =r D -,求CD 的长 C D M B 勺直径AB 垂 请证 立,请说明理由. A G

中考第二轮复习:中考数学压轴题全面突破之一动态几何

中考数学压轴题全面突破之一?动态几何 题型特点 动态几何问题,是在几何知识和具体的几何图形背景下,通过点、线、形的运动,图形的平移、旋转、对称等来探究图形有关性质和图形之间的数量关系、位置关系的问题.常结合图形面积、存在性问题等考查. 处理原则 ①研究基本图形,分析运动状态,确定分段; ②画图,表达线段长; ③借助几何特征建等式. 难点拆解 解决动态几何问题需要注意分段和线段长表达. ①分段关键是找状态转折点. 动点问题状态转折点通常是折线转折处或动点相遇处; 图形运动问题状态转折点通常是边与顶点的交点. ②线段长表达的方法有:s vt,线段和差、边角关系、勾股定理及相 似. 对于复杂的动态几何问题,如:起始时刻不同、往返运动、运动过程中速度变化等类型,需注意:表达线段长时找准对应的速度和时间. 1.(2011山西太原改编)如图,在平面直角坐标系中,四边形OABC是平行四边 形,直线l经过O,C两点,点A的坐标为(8,0),点B的坐标为(11,4).动

点P 在线段OA 上从点O 出发以每秒1个单位长度的速度向点A 运动,同时动点Q 从点A 出发以每秒2个单位长度的速度沿A →B →C 的方向向点C 运动.过点P 作PM 垂直于x 轴,与折线OC ﹣CB 相交于点M ,当P ,Q 两点中有一点到达终点时,另一点也随之停止运动.设点P ,Q 运动的时间为t 秒(t >0),△MPQ 的面积为S . (1)点C 的坐标为________,直线l 的解析式为__________. (2)试求点Q 与点M 相遇前S 与t 的函数关系式,并写出相应的t 的取值范围. (3)随着P ,Q 两点的运动,当点M 在线段CB 上运动时,设PM 的延长线与直线l 相交于点N .试探究:当t 为何值时,△QMN 为等腰三角形? 2. (2012重庆)如图,在直角梯形ABCD 中,AD ∥BC ,∠B =90°,AD =2,BC =6,AB =3.E 为BC 边上一点,以BE 为边作正方形BEFG ,使正方形BEFG 和梯形ABCD 在BC 的同侧. l y x C B A Q M P O l y O A B C l y O A B C l y O A B C

中考数学几何压轴题及答案及答案

中考数学几何压轴题及答案 一、解答题(共30小题) 1.观察猜想 (1)如图①,在Rt△ABC中,∠BAC=90°,AB=AC=3,点D与点A重合,点E在边BC上,连接DE,将线段DE绕点D顺时针旋转90°得到线段DF,连接BF,BE与BF的位置关系是,BE+BF=; 探究证明 (2)在(1)中,如果将点D沿AB方向移动,使AD=1,其余条件不变,如图②,判断BE与BF的位置关系,并求BE+BF的值,请写出你的理由或计算过程; 拓展延伸 (3)如图③,在△ABC中,AB=AC,∠BAC=α,点D在边BA的延长线上,BD=n,连接DE,将线段DE绕着点D顺时针旋转,旋转角∠EDF=α,连接BF,则BE+BF的值是多少?请用含有n,α的式子直接写出结论 2.在△ABC的边BC上取B′、C′两点,使∠AB′B=∠AC′C=∠BAC (1)如图1中∠BAC为直角,∠BAC=∠AB′B=∠AC′C=90°(点B′与点C′重合),则△ABC∽△B'BA∽△C'AC,,,进而可得AB2+AC2=; (2)如图2中当∠BAC为锐角,图3中∠BAC为钝角时(1)中的结论还成立吗?若不成立,则AB2+AC2等于什么(用含用BC和B′C′的式子表示)?并说明理由 (3)若在△ABC中,AB=5,AC=6,BC=9,请你先判断出△ABC的类型,再求出B′C′的长

3.(1)问题发现 如图1,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,点D是线段AB上一动点,连接BE 填空: ①的值为;②∠DBE的度数为. (2)类比探究 如图2,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,点D是线段AB上一动点,连接BE.请判断的值及∠DBE的度数,并说明理由; (3)拓展延伸 如图3,在(2)的条件下,将点D改为直线AB上一动点,其余条件不变,取线段DE 的中点M,连接BM、CM,若AC=2,则当△CBM是直角三角形时,线段BE的长是多少?请直接写出答案. 4.(1)问题发现:如图①,在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,以 点D为顶点作正方形DFGE,使点A、C分别在DE和DF上,连接BE、AF.则线段BE 和AF数量关系. (2)类比探究:如图②,保持△ABC固定不动,将正方形DFGE绕点D旋转α(0°<α≤360°),则(1)中的结论是否成立?如果成立,请证明;如果不成立,请说明理由.(3)解决问题:若BC=DF=2,在(2)的旋转过程中,连接AE,请直接写出AE的最大值.

九年级数学复习专题动态几何问题

中考数学专题 动态几何问题 第一部分 真题精讲 【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒). C M B (1)当MN AB ∥时,求t 的值; (2)试探究:t 为何值时,MNC △为等腰三角形. 【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M ,N 是在动,意味着BM,MC 以及DN,NC 都是变化的。但是我们发现,和这些动态的条件密切相关的条件DC,BC 长度都是给定的,而且动态条件之间也是有关系的。所以当题中设定MN//AB 时,就变成了一个静止问题。由此,从这些条件出发,列出方程,自然得出结果。 【解析】 解:(1)由题意知,当M 、N 运动到t 秒时,如图①,过D 作DE AB ∥交BC 于E 点,则四边形ABED 是平行四边形. A B M C N E D ∵AB DE ∥,AB MN ∥. ∴DE MN ∥. (根据第一讲我们说梯形辅助线的常用做法,成功将MN 放在三角形,将动态问题转化成平行时候的静态问题) ∴MC NC EC CD =. (这个比例关系就是将静态与动态联系起来的关键)

∴ 1021035 t t -=-.解得50 17t =. 【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC 即可,于是就漏掉了MN=MC,MC=CN 这两种情况。在中考中如果在动态问题当中碰见等腰三角形,一定不要忘记分类讨论的思想,两腰一底一个都不能少。具体分类以后,就成为了较为简单的解三角形问题,于是可以轻松求解 【解析】 (2)分三种情况讨论: ① 当MN NC =时,如图②作NF BC ⊥交BC 于F ,则有2MC FC =即.(利用等腰三角形底边高也是底边中线的性质) ∵4 sin 5DF C CD ∠==, ∴3 cos 5C ∠=, ∴310225t t -=?, 解得25 8 t =. A B M C N F D ② 当MN MC =时,如图③,过M 作MH CD ⊥于H . 则2CN CH =, ∴()3 21025 t t =-?. ∴6017 t =. A B M C N H D ③ 当MC CN =时, 则102t t -=. 10 3t =. 综上所述,当258t = 、6017或103 时,MNC △为等腰三角形.

相关文档
最新文档