石墨烯项目可行性研究报告-2020年化学新材料重点项目

石墨烯项目可行性研究报告-2020年化学新材料重点项目
石墨烯项目可行性研究报告-2020年化学新材料重点项目

石墨烯项目可行性研究报告-2020年化学新材料重点项目

编制单位:北京智博睿投资咨询有限公司

石墨烯简介:性能出色的二维碳纳米材料

石墨烯是2004年用微机械剥离法从石墨中分离出的一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料,英文名为Graphene,为一层碳原子构成的二维晶体。石墨烯与其他有机高分子材料相比,有比较独特的原子结构和力学特性,它的σ键与其他碳原子链接成六角环的蜂窝式层状结构,且每个碳原子的垂直于层平面的pz轨道可以形成贯穿全层的多原子的大π键,因而具有优良的导电和光学性能。石墨烯的理论杨氏模量达1.0TPa,固有的拉伸强度为130Gpa,是已知强度最高的材料之一,同时还具有很好的韧性,且可以弯曲,被誉为“新材料之王”、“黑金”。

石墨烯按照层数可分为单层石墨烯、双层石墨烯、少层石墨烯和多层石墨烯。按照功能化形式可以分为氧化石墨烯、氢化石墨烯、氟化石墨烯等。按照外在形态、又可分为片、膜、量子点、纳米带或三维状等。

石墨烯特点:具有优异的力学和光电热性能

石墨烯具有超强导电性、良好的热传导性、良好的透光性、溶解性、渗透率、高柔性和高强度等出色的材料特性。正因为这些性能,使它可应用领域非常广泛,主要集中在基础学科、新能源电池、柔性显示屏、传感器及复合材料等领域。

石墨烯产业链结构完善,下游应用领域广泛但仍需探索

石墨烯材料本身表现出优异的性能,其下游应用领域非常广泛,可应用在电池电极材料、半导体器件、透明显示屏、传感器、电容器、

晶体管等方面,且在化学、材料、物理、生物、环境、能源等众多学科领域已取得了一系列重要进展。石墨烯上游为石墨、下游主要应用领域为新能源电池、涂料、柔性屏和传感器等领域。

石墨烯产业链

原材料石墨储量居世界前列,需求有所下降

石墨烯产业链上游的原料为石墨,中国是全球最大的石墨生产国,但可开采储量仅为全球第二,占世界总储量的25%,静态可开采年限仅为116年,在全球主要的石墨生产国中,仅高于挪威。

我国石墨资源储量与产量均占世界主要地位,在原料方面遥遥领先。2016年全球天然石墨产量为115万吨,近两年全球天然石墨产量有所下降,2018年全球天然石墨产量在93万吨左右。

我国天然石墨产量在2018年达63万吨,占世界总产量的68%,另外人造石墨产量约为13.8万吨,石墨行业全球范围内产量减少,原材料供应相应减少,这需要对石墨烯中游制备提出更高的要求。

石墨烯制备方法多样,大规模量产难度较大

石墨烯产业链中游主要为石墨烯的制备。石墨烯的制备分为两种:(1)“自上而下”:从石墨块原材料出发,将单层或几层原子厚度的石墨烯层从石墨块中剥离出,例如“液相剥离法”、“机械剥离法”等;(2)“自下而上”:从碳原子或碳化合物分子结构出发,如CH4?C2H2等,利用晶体生长重新排列出石墨烯,例如“化学气相沉积法”、“小分子化学合成法”、“外延生长法”等。

不同制备方法获得的石墨烯在品质和成本上差异较大,与之相关的产品的适用领域也有一些差异。石墨烯粉体主要由球磨剥离法、液相剥离法和氧化还原法等制备,其中氧化还原法制备的石墨烯粉体层数最少,是目前最常采用的方法。石墨烯薄膜主要由气相沉积法和外延生长法等制备,其中化学气相沉积法可以制备大尺寸的石墨烯薄膜,是目前被认为最有希望实现石墨烯薄膜大规模制备的方法。

下游需求:应用领域不断拓展,市场规模持续增长

全球石墨烯行业市场规模呈稳步增长态势。2019年全球石墨烯行业市场规模为77亿美元,复合增长率为45.89%,据预测,未来两年石墨烯将保持约为20%的增速。

2016-2021年全球石墨烯行业市场规模及预测(亿美元)

资料来源:中国经济信息社、国信证券经济研究所整理

中国石墨烯市场规模近年来快速增长,2019年达163亿元,预计2020年将超过200亿元,年复合增长率约为60%。近几年来看,中国石墨烯市场规模约占全球石墨烯总市场规模的30%,并有逐年提高的趋势。

2015-2020年我国石墨烯市场规模(亿元)

资料来源:中国经济信息社、国信证券经济研究所整理

石墨烯的研究与应用开发持续升温,石墨和石墨烯有关的材料广泛应用在电池电极材料、半导体器件、透明显示屏、传感器、电容器、晶体管等方面。鉴于石墨烯材料优异的性能及其潜在的应用价值,在化学、材料、物理、生物、环境、能源等众多学科领域已取得了一系列重要进展。

石墨烯应用领域及具体用途说明

石墨烯下游应用主要分为两个方面:第一是石墨烯粉体下游应用,第二是石墨烯薄膜下游应用。其中石墨烯粉体可应用在新能源电池、复合材料、锂电池等方面,石墨烯薄膜可应用在柔性显示屏和传感器等方面。

我国石墨烯目前应用最广泛的下游领域是新能源相关领域,是行业超高增长的主要驱动者。2017年石墨烯在新能源超级电容与锂电池导电剂领域市场规模在50亿元左右,占全国市场份额的71.4%,其中,石墨烯在防腐涂料、复合材料、生物传感器等领域的应用也占

额较多且备受关注,节能环保和电子信息柔性显示领域也有一定的涉及,例如中国宝安主要专注于锂电池材料方面,华高墨烯主要专注新能源超级电容方面,第六元素主要专注于复合材料等方面。

国内石墨烯应用领域市场规模占比结构

超级电容器:解决充电时间长续航短瓶颈

超级电容器是指介于传统电容器和充电电池之间的一种新型储能装置,它既具有电容器快速充放电的特性,同时又具有电池的储能特性,是一种拥有高能量密度的电化学电容器,比传统的电解电容容量高上数百倍至千倍不等。与蓄电池和传统物理电容器相比,超级电容器的特点主要体现在功率密度高、循环寿命长、工作温限宽、免维护、绿色环保等方面。但其缺点主要体现在能量密度低,仅为锂离子电池30%左右(Wh/L),安全问题严重等方面。石墨烯拥有良好的导电性、高密度和比表面积,是超级电容的理想材料。

石墨烯超级电容器因其优秀的材料特性,如导电性、高密度和大比表面积,与传统电池和传统电容器相比,在放电率、充电率和输出功率等方面均有显著提高,使其能新能源电池方面取得广泛应用。

全球石墨烯超级电容市场规模预计在2021年底达到0.84亿美元,到2030年全球石墨烯超级电容市场规模有望达到6.09亿美元,期间年复合增长率到23.9%。而石墨烯超级电容器由于其重量轻,经久耐用,能大容量储能,缩短充电时间等优势,被交通运输、工业、新能源电池和装备等其他方面所欢迎。

亚太成为最大的区域市场,预计2021年占全球石墨烯超级电容市场的46%,到2030年持续增长,约占全球超级电容市场的50%。欧洲和北美市场位列二、三,预测分别约占全球石墨烯超级电容市场的27%、18%。中国、日本和韩国是石墨烯超级电容需求增长的主要国家,远高于北美和欧洲。

2021-2030年全球石墨烯超级电容市场规模分析预测(百万美元)

由于国家政策支持,我国超级电容市场快速增长,从2010年的8.5亿增加到2019年的118亿元,同比增长30%,预测未来三年仍然保持将近30%的增长率,2020年预计可以达到150亿元水平,石墨烯渗透率也将达到5.5%左右。

2010-2020年中国超级电容器市场规模及预测(亿元)

交通运输领域持续占据石墨烯超级电容器最大的市场份额。目前我国超级电容的应用主要集中于交通运输、工业、新能源电池和其他方面。超级电容的细分产品规模呈逐年上升趋势,考虑到石墨烯相比传统电容电池的高性能优势和未来良好的竞争性,可以认为石墨烯超级电容也会呈大量增长趋势,尤其是在交通运输和新能源方面。交通运输和装备等领域对安全、轻便、清洁电池的需求会导致高功率和高能量密度电池的需求,最终推动石墨烯超级电容器市场的增长,尤其在电动车市场。

2014-2022年超级电容器细分产品规模及预测(亿元)

石墨烯超级电容器将解决制约电动汽车发展的两大难题:充电时间长和续航里程短。预计超级电容器可以多储存100倍的电能,比传统电池节省150倍的成本,并将电池废料堆环境的影响降低了5倍,充电周期可高达100万次。石墨烯超级电容应用于动力锂电池行业是未来的发展趋势,共同组成新能源车的动力系统。

防腐涂料:热稳定和抗菌性能优势显著

防腐涂料是指防腐涂料是指由底漆、中漆和面漆组成的具有防腐蚀功能的涂料,依据涂料应用领域的不同,可以分为常规防腐涂料和重防腐涂料。我国防腐涂料市场巨大,并且规模还在逐年增长。

石墨烯防腐涂料相对于其他防腐涂料而言,在导电性、热稳定性、力学性能、抗菌性能等方面优势更为明显。石墨烯由于其良好的导电性能和片状搭接阻隔性能,可以对氧和腐蚀介质起到屏蔽作用,降低了防腐涂层的渗透性能,从而提高涂层的防腐蚀性能。中国防腐涂料发展较快,2019年,我国防腐涂料总产量535万吨,同比增长18.4%,

占涂料总产量的22.2%。在2010-2019年间,中国防腐涂料供给整体呈现增长较快增长趋势,仅2018年产量有所下滑。

重防腐涂料是石墨烯应用四大重点产业之一,应用前景非常广阔,需求逐年增加,带动石墨烯需求也不断增加。我国重防腐材料占防腐涂料的70%,产量增长呈逐年上升趋势,2019年产量为374万吨,同比增长3.9%。重防腐材料在2017年达到最高为389万吨,同比增长10.6%,居世界首位。进入2018年,重防腐涂料产量轻微下滑,约为352万吨。

锂电池导电剂:需求支撑&成本下降行业高增速

锂电池导电剂的首要作用是提高电子电导率。导电剂在具活性物质之间、活性物质与集流体之间起到收集微电流的作用以减小电极的接触电阻,提高锂电池中电子的迁移速率,降低电池极化。此外,导电剂也可以提高极片加工性,促进电解液对极片的浸润,从而提高锂电池的使用寿命。常用的锂电池导电剂可以分为两类:第一类为传统导电剂(如炭黑、导电石墨、碳纤维等),第二类为新型导电剂(如碳纳米管、石墨烯及其混合导电浆料等)。

石墨烯作为新型导电剂,可以最大化的发挥导电剂等作用。这是由于其独特的片状结构,它与活性物质的接触为点-面接触而不是常规的点点接触形式,这样可以减少导电剂的用量,提升锂电池容量,其改性效果远高于天然石墨。但是由于其成本较高,具有阻碍锂离子传输等弊端尚未完全被工业化应用。

我国锂电池产量预计在2020年底将达到160GWh,年复合增长率约为27%。2018年石墨烯在锂电池中的渗透率达到2.5%左右,预计2020年石墨烯渗透率将达到5%左右。

目前石墨烯导电剂的生产成本较高,2015年石墨烯导电剂的价格为230美元/千克,与碳纳米管导电剂价格大致相同,而石墨烯导电剂价格下降幅度远超过碳纳米管导电剂,预计2020年将下降至100美元/千克。随着石墨烯生产工艺的进一步成熟,相关资本的涌入以及国家政策的大力支持,石墨烯导电剂将突破成本瓶颈,石墨烯导电剂的价格优势逐渐突显。而碳纳米管导电剂和炭黑导电剂预期价格变化不大,成本下降空间较小,与之相比,石墨烯导电剂发展潜力与价格潜力巨大。

石墨烯价格下降以及锂电池产量和石墨烯渗透率快速增长将导致石墨烯导电剂市场规模快速增长。石墨烯在导电剂领域的市场规模预计在2020年达到139亿元,年复合增长率约为64%。

全球动力锂电池近年来保持高速增长状态,带动锂电池导电剂市场规模不断增长。据国际市场研究机构Adroit Market Research最新发布的报告预测,2018年至2025年,全球动力锂电池市场规模年复合增长率接近14.3%,其中大部分增长规模来自亚太地区。亚太地区是2019年最大的汽车电池市场。石墨烯导电剂作为未来电动汽车锂电池导电剂的研究不断深入,也导致预测期内动力锂电池行业市场的迅速增加。

柔性显示屏:可穿戴设备是市场主要驱动力

石墨烯薄膜具有因导电性良好,高柔性,透光性强等原因,未来可广泛应用于柔性显示领域。目前市场上使用最多的柔性显示屏为ITO膜(陶瓷材料氧化铟锡),该材料制作工艺趋于成熟,价格较低。但弯折后就不再具有导电性,无法满足未来移动设备、可穿戴设备柔性显示屏的需求,而石墨烯薄膜因其良好的导电性,柔性,透光性,认为均优于ITO膜,更适合柔性显示屏未来发展趋势,被认为是完美替代ITO膜的材料。近几年,银纳米线等也开始成为ITO的替代材料,但其稳定性较差,易断,石墨烯薄膜仍为最合适的替代品。

2016-2022年中国石墨烯薄膜市场规模及预测(亿元)

全球可穿戴设备市场规模快速增长,在201年末达到了333亿美元,年复合增长率为15%左右。预计在2019年将到达420亿美元,同比增长26%。据调查显示,全球可穿戴设备出货也大幅增加。

中国可穿戴设备产业市场规模2019年达到600亿元,年复合增长率约为44%,预计到2020年,将增加到780亿元左右。石墨烯薄膜在此影响下,也将引来大幅度增长。

可穿戴设备市场规模的快速增加,将推动石墨烯薄膜应用于柔性显示的市场规模大幅提高。可穿戴设备要求高水平的柔性显示屏,全球柔性显示市场收入规模呈逐年增加趋势,拥有透光性和高柔性的石墨烯薄膜在柔性显示中的应用市场规模有望迎来快速发展。随着我国可穿戴设备市场规模的不断扩张,石墨烯应用在柔性显示的市场规模也将引来巨大提升。

传感器:石墨烯化学敏感性强,在医学等领域前景广阔

石墨烯是良好的化学传感器制作材料。这个过程主要是通过石墨烯的表红外光束激发等离子体面吸附性能来完成的,石墨烯化学探测器的灵敏度非常高。石墨烯独特的二维结构使它对周围的环境非常敏感。石墨烯是电化学生物传感器的理想材料,石墨烯制成的传感器在医学上具有良好的灵敏性。

石墨烯传感器在国内的市场规模在2019年达到了2亿元,年复合增长率约为71%。预计到到2020年,石墨烯传感器在国内的市场规模约为4亿元,实现了十倍扩张。

石墨烯在传感器领域中的国内市场规模(亿元)

随着市场中医学,化学及可穿戴设备等方面对于石墨烯传感器越来越多的需求,以及石墨烯薄膜制作成本逐步下降,石墨烯传感器将越来越多地应用于市场中,发展潜力巨大。

全球产业化处于起步阶段,未来发展空间广阔

全球石墨烯行业仍处于产业化起步阶段。市场以石墨烯粉体和石墨烯薄膜为主导,尽管大规模生产仍存在一定困难,但未来发展空间广阔。从市场规模来看,2014年以来,全球石墨烯市场规模快速增长,2019年全球石墨烯市场规模约为1.1亿美元,预计在2025年达到21亿美元,2020至2025年石墨烯复合年增长率将达到40%,尤其是散热材料、新能源电池、柔性显示和复合材料市场。

石墨烯因其优秀的材料特性具有巨大的潜力。石墨烯行业正处于大规模产业化前夕,世界各国对于石墨烯都给予了高度重视,全球已有80多个国家投入石墨烯的研发、生产,尤其是一些发达国家聚焦石墨烯下游应用的研发,例如美、欧、日、韩等地区密集发布政策、

投入大量资金,扶持石墨烯相关产品研发和产业化应用,对推动石墨烯产业发展做出了战略部署。

欧美企业占据全球石墨烯产业链关键环节。欧美企业在石墨烯制备技术,复合材料、核心电子元件等应用产品保持领先优势,而亚洲石墨烯应用市场前景向好。不仅如此,IBM、英特尔、陶氏化学、三星等国际知名跨国企业纷纷将石墨烯及其应用技术作为长期战略发

展方向,而且还涌现出了大批专门从事石墨烯研发、生产和应用的机构和企业。

国内产业链初步成型,国内以新能源领域为主

我国石墨烯产业前景广阔,产业规模持续增长。同时我国政府高度重视石墨烯产业发展,已将石墨烯列入我国“十三五规划”的165项重大工程。

中国石墨烯行业正处于市场导入期,产品尚未成熟,行业利润率较低,但市场增长率较高。预计随着石墨烯制备技术的不断突破和下游应用的不断成熟,将进一步促进和推动石墨烯的应用发展及市场规模扩大。我国石墨烯产业链近年来已初步打通,上下游链条逐步完善,上游石墨矿开发技术不断创新,中游石墨制备方法不断改进,下游应用领域研发不断拓展。正是由于产业链不断发展,我国石墨烯市场规模有持续较快增长的趋势。石墨烯作为“新材料之王”,目前大规模制备方式仍存在缺陷,下游应用领域仍未被开发完全,所以仍保有较大的发展潜力。

目前我国已经形成京津冀鲁、长江三角洲和珠江三角洲的三大聚合区,多地分布式发展的石墨烯产业格局。从整体石墨烯产业链布局来看,中游领域:我国自2018年以来,石墨烯粉体和薄膜的生产规模进一步扩大,石墨烯产业化趋势日益强劲,多个石墨烯产业创新中心开始创立,例如常州第六元素、青岛昊鑫、宁波墨西等多家企业已拥有国内领先的石墨烯粉体生产线;长沙暖宇新材料科技公司年产量100万平方米的石墨烯膜生产线已开建,预计建成后将成为国内第二大石墨烯膜生产线。各地各种石墨烯制备技术不断突破创新,下游应用产业化也逐步拓展。

【主要用途】发改委立项,申请土地,银行贷款,申请国家补助资金等

【关键词】石墨烯项目投资,可行性,研究报告

【交付方式】特快专递、E-mail

【交付时间】5-7个工作日

【报告格式】Word格式;PDF格式

【报告价格】此报告为委托项目报告,具体价格根据具体的要求协商,欢迎来电咨询。

【编制单位】北京智博睿投资咨询有限公司

石墨烯项目可行性研究报告编制大纲

第一章总论

1.1石墨烯项目背景

1.2可行性研究结论

1.3主要技术经济指标表

第二章项目背景与投资的必要性2.1石墨烯项目提出的背景

2.2投资的必要性

第三章市场分析

3.1项目产品所属行业分析

3.2产品的竞争力分析

3.3营销策略

3.4市场分析结论

第四章建设条件与厂址选择

4.1建设场址地理位置

4.2场址建设条件

4.3主要原辅材料供应

第五章工程技术方案

5.1项目组成

5.2生产技术方案

5.3设备方案

5.4工程方案

第六章总图运输与公用辅助工程6.1总图运输

6.2场内外运输

6.3公用辅助工程

第七章节能

7.1用能标准和节能规范

7.2能耗状况和能耗指标分析7.3节能措施

7.4节水措施

7.5节约土地

第八章环境保护

8.1环境保护执行标准

8.2环境和生态现状

8.3主要污染源及污染物

8.4环境保护措施

8.5环境监测与环保机构

8.6公众参与

8.7环境影响评价

第九章劳动安全卫生及消防

9.1劳动安全卫生

9.2消防安全

第十章组织机构与人力资源配置10.1组织机构

10.2人力资源配置

10.3项目管理

第十一章项目管理及实施进度

11.1项目建设管理

11.2项目监理

11.3项目建设工期及进度安排第十二章投资估算与资金筹措12.1投资估算

12.2资金筹措

12.3投资使用计划

12.4投资估算表

第十三章工程招标方案

13.1总则

13.2项目采用的招标程序13.3招标内容

13.4招标基本情况表

第十四章财务评价

14.1财务评价依据及范围14.2基础数据及参数选取14.3财务效益与费用估算14.4财务分析

14.5不确定性分析

14.6财务评价结论

第十五章项目风险分析

15.1风险因素的识别

材料界一哥—— 石墨烯(五大应用领域)

材料界“网红一哥”——石墨烯 5大应用领域,产业浪潮开启看点:应用领域不断拓展,石墨烯大规模产业化即将开始。 石墨烯属于二维碳纳米材料,具有优秀的力学特性和超强导电性导热性等出色的材料特性,其下游应用主要涵盖基础学科、新能源电池、柔性显示屏、传感器及复合材料等领域。石墨烯的大规模商业应用方向主要分为粉体和薄膜,其中石墨烯粉体目前主要用于新能源、防腐涂料等领域,石墨烯薄膜主要应用于柔性显示和传感器等领域,其中来自新能源的需求超过 70%。 全球石墨烯行业市场规模呈稳步增长态势。预计到 2020 年末,全球和国内石墨烯行业市场规模分别为 95 亿美元和 200 亿元,中国石墨烯市场规模约占全球石墨烯总市场规模的 30%,并有逐年提高的趋势。 本期的智能内参,我们推荐国信证券的研究报告,揭秘石墨烯的性能特点、产业链概况、下游需求和国内外行业现状。 本期内参来源:国信证券

1性能强大的新材料之王 石墨烯是 2004 年用微机械剥离法从石墨中分离出的一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料,英文名为 Graphene,为一层碳原子构成的二维晶体。石墨烯与其他有机高分子材料相比,有比较独特的原子结构和力学特性。石墨烯的理论杨氏模量达 1.0TPa,固有的拉伸强度为 130Gpa,是已知强度最高的材料之一,同时还具有很好的韧性,且可以弯曲,被誉为“新材料之王”、“黑金”。 ▲典型的石墨烯结构图

▲ 单层石墨烯是其他碳材料的基本元素 石墨烯按照层数可分为单层石墨烯、双层石墨烯、少层石墨烯和多层石墨烯。按照功能化形式可以分为氧化石墨烯、氢化石墨烯、氟化石墨烯等。按照外在形态、又可分为片、膜、量子点、纳米带或三维状等。 ▲石墨烯分类 石墨烯具有超强导电性、良好的热传导性、良好的透光性、溶解性、渗透率、高柔性和高强度等出色的材料特性。它的的应用领域非常广泛,主要集中在基础学科、新能源电池、柔性显示屏、传感器及复合材料等领域。

石墨烯的制备方法与应用

石墨烯的制备方法与应用 摘要: 石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文介绍了近几年石墨烯的研究进展, 包括石墨烯的合成、去氧化、化学修饰及应用前景等方面的内容。石墨烯由于其特殊的电学、热学、力学等性质以及在纳米电子器件、储能材料、光电材料等方面的潜在应用,引起了科学界新一轮的热潮。关键字: 石墨烯, 制备, 应用,氧化石墨烯,传感器 石墨烯的定义 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,厚度只有0.335纳米,仅为头发的20万分之一,是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元,具有极好的结晶性、力学性能和电学质量。 石墨烯的结构 完美的石墨烯是二维的, 它只包括六角元胞(等角六边形)。 如果有五角元胞和七角元胞存在,那么他们构成石墨烯的缺陷。如果少量的五角元胞细胞会使石墨烯翘曲; 12个五角元胞的会形成富勒烯。碳纳米管也被认为是卷成圆桶的石墨烯; 可见,石墨烯是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元。

单原子层石墨晶体薄膜。 每个原胞中两个碳原子,每个原子与最相邻三个碳原子形成三个σ键。 每个碳原子贡献一个多余p电子,垂直于graphene平面,形成未成键的π电子——良好的导电性。 石墨烯的性能 最薄——只有一个原子厚 强度最高——美国哥伦比亚大学的专家为了测试石墨烯的强度,先在一块硅晶体板上钻出一些直径一微米的孔,每个小孔上放置一个完好的石墨烯样本,然后用一个带有金刚石探头的工具对样本施加压力。结果显示,在石墨烯样品微粒开始断裂前,每100纳米距离上可承受的最大压力为2.9 微牛左右。按这个结果测算,要使1 米长的石墨烯断裂,需要施加相当于55 牛顿的压力,也就是说,用石墨烯制成的包装袋应该可以承受大约两吨的重量。 没有能隙——良好的半导体 良好的导热性 热稳定性——优于石墨 较大的比表面积 优秀导电性——电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度--电子的“光速”移动碳原子有四个价电子,这样每个碳原子都贡献一个未成键的π电子,这些π电子与平面成垂直的方向可形成轨道,π电子可在晶体中自由移动,赋予

石墨烯论文正稿

石墨烯研究进展 雷洪 (中国矿业大学化工学院江苏徐州 221116) 摘要:石墨烯是一种由碳原子构成的单层片状结构的新材料,由于碳原子组成的特殊结构使得石墨烯拥有一系类特殊性能,包括特殊的导热性质,电学性质,力学性质等等。特殊的性质使得石墨烯有在很多领域发展的潜力,因此引起了科学界的广泛关注,本文介绍了石墨烯的一些制备方法,性质和应用领域。 关键词:石墨烯制备方法特性应用领域 Advances in graphene research LEI hong (China University of Mining and technology,SCET Xuzhou Jiangsu 221116) Abstract:Graphene is a new material consisting of a single layer of carbon atoms sheet structure,Because of the special structure of carbon atoms makes graphene has a series of special class performance,Including special thermal properties,electrical properties and mechanical properties, etc. Special properties make graphene has the potential in many areas of development,so,it attracted wide attention in the scientific community. This article describes some of graphene preparation methods properties and applications. Keywords:graphene preparation methods properties application areas 0引言 自2004年Novoselov,K.S.等使用微机械剥离法从高定向热解石墨上剥离观测到石墨烯(Graphene)以来,碳元素同素异形体又增加了新的一员.随着2010年诺贝尔物理奖颁给英国曼彻斯特大学51岁的俄裔荷籍教授安德烈.海姆和曾是他的博士生36岁的俄裔英、俄双重国籍的教授康斯坦丁.诺沃肖洛夫之后,“石墨烯”这一专业名词突然进入人们的眼帘,其独特的性能和优良的性质引起了研究人员的极大关注,掀起了一波石墨烯的研究高潮。碳原子呈六角形网状键合的材料“石墨烯”具有很多出色的电特性、热特性以及机械特

多孔石墨烯材料的研究进展

多孔石墨烯材料的研究进展 摘要:多孔石墨烯材料同时结合了石墨烯和多孔材料的优点,具有独特的二维结构及优异的理化性质,是一种具备巨大应用潜力的新型纳米碳质材料。然而单一的石墨烯材料很难充分满足各个领域的应用需求,且石墨烯片层容易堆叠和团聚,制约了其实际应用的发展。通过掺杂、改性、组装和复合等手段制备石墨烯衍生物及石墨烯纳米复合物等石墨烯基材料可以丰富并优化石墨烯的性质,拓展并提升石墨烯的性能,对于促进石墨烯的实际应用具有重大意义。作为一种新型石墨烯衍生物,多孔石墨烯以其二维片状结构、超高比表面积、开放的能带间隙、丰富的活性位点等特性吸引了研究者的很大关注。 关键词:石墨烯;杂化;石墨烯衍生物 引言 如果以化学家的视角将人类和世界写成一本书,碳元素必将会跻身关键词之列:从碳基生命到无机碳素,从史前壁画到太空天梯,从钻木取火到蒸汽革命,再从笔墨纸砚书酒花到柴米油糖酱醋茶,碳的身影无处不在,不可替代。作为世界上最为普遍和奇妙的元素,碳变化多端的魅力归因于其电子轨道杂化方式的多样性及其特殊的成键能力和成键方式。碳原子含有四个价电子,往往以sp,sp2和sp3等杂化形式构成具有不同性质的单质或化合物。以碳单质为例,碳元素存在多种结构、性质迥异的同素异形体。其中sp杂化形式的卡宾碳异常活泼,不易单独稳定存在;sp3杂化的金刚石稳定、超硬、价高,化学修饰较困难;sp2杂化的石墨、石墨烯化学修饰较易且具有独特的电子共轭体系,此外还存在杂化形式介于sp2杂化和sp3杂化之间的富勒烯及包含多种杂化形式碳原子的无定形碳等等。碳家族的众多成员极大丰富了碳质材料的性质,为其在各领域的广泛应用奠定了基础[1]。 1石墨烯及石墨烯基材料 石墨烯即单层或少层石墨薄片,是sp2杂化碳原子按照蜂窝状六元环结构排列而成的二维平面网络结构。2004年,曼彻斯特大学的Novoselov和Geim教授研究组利用机械剥离法成功得到独立存在的单原子层石墨烯,两位物理学家因这一开创性的发现在2010年共同获得诺贝尔物理学奖。然而当我们认真地追根溯源时,会发现石墨烯并非一颗横空出世的新星,围绕石墨烯的讨论已经在科学界

生而不凡——新材料之王石墨烯阅读附答案

生而不凡——新材料之王石墨烯阅读附答案 生而不凡——新材料之王石墨烯 手机充电只需几秒钟?史上最薄电灯泡?光驱动飞行器?关于石墨烯不凡利用的新闻不断呈现在人们的视线之中,仿佛石墨烯已成为了无所不能的超级材料。石墨烯是甚么?到底有甚么特性让它备受推重? 石墨烯是从石墨材料中剥离出来的,它由碳原子组成,并且只有一层原子厚度,是一种二维晶体。2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,胜利从石墨中分离出石墨烯,证实它可以单独存在,两人也因而共同取得2010年诺贝尔物理学奖。 实际上石墨烯原本就存在于自然界,只是难以剥离出单层结构。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包括300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层乃至仅仅一层石墨烯。 石墨烯对物理学基础钻研有着特殊意义,它使一些此前只能空言无补的量子效应可以通过试验来验证,例如电子疏忽障碍、实现幽灵一般的穿越。但更使人感兴致的,是它那许多“极端”性质的物理性质。 作为目前发现的最薄、最坚固、导电导热机能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”,科学家乃至预言石墨烯将“完全扭转21世纪。” 石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最佳的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能到达自身尺

寸的20%。如果用一块面积1平方米的石墨烯做成吊床,自身重量不足1毫克可以经受一只猫的重量。 难以想象的是,石墨自身几近是最软的矿物质(莫氏硬度只有1-2级),“切”成一个碳原子厚度的薄片时,“性情”会产生如斯之大的变化,石墨烯的硬度比莫氏硬度10级的金刚石还要高,但却又有很好的韧性,可以曲折。 由于只有一层原子,电子的运动被限制在一个平面上,石墨烯也有着全新的电学属性。石墨烯是世界上导电性最佳的材料,电子在其中的运动速度到达了光速的1/300,远远超过了电子在一般导体中的运动速度。 石墨烯目前最有潜力的利用是成为硅的替代品,制造超微型晶体管,用来出产未来的超级计算机。据相干专家分析,用石墨烯取代硅,计算机处理器的运行速度将会快数百倍。 此外,石墨烯几近是完整透明的,只吸收 2.3%的光。另一方面,它无比致密,即便是最 小的气体原子(氦原子)也没法穿透。这些特点使得它无比合适作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。 石墨烯拥有很强的化学敏感性,可以制成高效探测器等。涂有石墨烯的传感器可以检测到含有用于火药、氨等化学物质的低浓度的蒸汽。 石墨烯的这些特性注定要给诸多产业带来天翻地覆的变化。尽管现在仍有制备上的难题和成本限制等问题,但已有一些优良钻研成果问世,展示了极佳的研发前景。 (来源:凤凰网,2015-06-29 ,有删改) 12.第一段连用好几个问句,有何作用?(3分) 13.以下加点词语能否删去?为甚么?(4分)

石墨烯在催化方面的应用

石墨烯在催化方面的应用 1、石墨烯纳米光催化复合材料的研究 纳米材料被认为是“二十一世纪最有前途的材料”。石墨烯是一种由单层碳原子紧密排列成的二维蜂窝状晶格结构的纳米材料,由于它具有特殊的纳米结构以及优异的性能,石墨烯的复合材料已在电子学、光学、磁学、生物医学、催化等诸多领域显示出了巨大的应用潜能。光催化技术具有工艺简单,能耗低,操作条件容易控制和降解彻底的特点,被认为是具有良好发展前景的环保新技术。以光催化剂/石墨烯纳米复合材料为研究对象,通过不同的复合工艺,制备了三种石墨烯纳米复合材料。 1)以天然鳞片石墨为原料,采用Hummers法制备氧化石墨,并用热剥离成石墨烯,或者利用超声波分散剥离为氧化石墨烯,再化学还原成石墨烯。 2)二氧化钛/石墨烯纳米复合材料,二氧化钛和石墨烯复合效果较好。 3)以氧化石墨烯为基体,醋酸锌为锌源,采用溶胶法制备了氧化锌/石墨烯纳米复合材料。 研究发现了石墨烯的光催化性能,结果表明石墨烯/氧化锌有较高的催化效率,可以测定复合材料的荧光效应。 2、石墨烯负载Pt催化剂的催化氧化发光性能 Pt纳米颗粒可以很好地分散在石墨烯表面,因此合成了石墨

烯负载Pt纳米颗粒的Pt/石墨烯催化剂.并有较快的催化反应速率,Pt颗粒越小催化发光强度越大。当不同Pt负载量(0.4%-1.6%(w,质量分数)的催化剂作用于40%(φ,体积分数)以下浓度的CO/空气体系时,产生的催化发光强度均与CO浓度成正比。该催化剂在一定条件下,不但对CO氧化有较好的催化发光性能,还对乙醚、无水甲醇和甲苯有不同程度的催化氧化发光活性;但二氧化碳、甲醛、戊二醛、丙酮、乙酸乙酯、三氯甲烷、水蒸气均无响应信号。 3、与传统的Pd/Vulcan XC-72相比,Pd/石墨烯催化剂对碱性介质中乙醇电氧化的催化活性有了极大的提高,石墨烯-SnO2复合物(SnO2-GNS)可以负载高分散的Pd作为纳米颗粒催化剂,电化学测试表明,与Pd/石墨烯(Pd/GNS)相比,Pd/SnO2-GNS 催化剂对乙醇电氧化的催化活性有了很大的提高。当加入的前驱盐SnCl2·2H2O与氧化石墨的质量比为1:2时,Pd/SnO2-GNS催化剂获得最好的催化活性。 4、用石墨烯(G)代替Vulcan XC-72炭(XC)作Ir的载体制备石墨烯载Ir(Ir/G)催化剂.电化学的测量结果表明,Ir/G催化剂对氨氧化的电催化性能优于XC炭载Ir(Ir/XC)催化剂。 5、利用溶胶-凝胶法原位制备了二氧化钛/石墨烯(TiO2-GE)复合光催化剂,研究了纯TiO2以及不同方法制备的TiO2-GE复合光催化剂对亚甲基蓝及罗丹明B光催化降解性能.结果表明:石墨烯的引入提高了TiO2的光催活性,这主要是得益于石墨烯优

石墨烯(论文)

石墨烯的制备,特征,性能及应用的研究 内蒙古工业大学化学工程与工艺徐涛 010051 摘要: 石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文介绍了近几年石墨烯的研究进展, 包括石墨烯的合成、去氧化、化学修饰及应用前景等方面的内容。石墨烯由于其特殊的电学、热学、力学等性质以及在纳米电子器件、储能材料、光电材料等方面的潜在应用,引起了科学界新一轮的碳! 热潮。分析了近1 年来发表在Science、Nature 等期刊上的关于石墨烯的论文, 对石墨烯制备、表征及应用方面的最新进展进行了综述, 并对各种制备技术及表征手段进行了分析评价。 关键字: 石墨烯, 制备, 表征, 应用, 石墨烯氧化石墨烯(GO) 功能化石墨烯传感器 碳是最重要的元素之一,它有着独特的性质,是所有地球生命的基础。纯碳能以截然不同的形式存在,可以是坚硬的钻石,也可以是柔软的石墨。碳材料是一种地球上较普遍而特殊的材料, 它可以形成硬度较大的金刚石, 也可以形成较软的石墨. 近20 年来, 碳纳米材料一直是科技创新的前沿领域, 1985 年发现的富勒烯[1]和1991 年

发现的碳纳米管(CNTs)[2]均引起了巨大的反响, 兴起了研究热潮. 2004 年, Manchester 大学的Geim 小组[3]首次用机械剥离法获得 了单层或薄层的新型二维原子晶体——石墨烯. 石墨烯的发现, 充 实了碳材料家族,形成了从零维的富勒烯、一维的CNTs、二维的石墨 烯到三维的金刚石和石墨的完整体系. 石墨烯是由碳原子以sp2 杂 化连接的单原子层构成的, 其基本结构单元为有机材料中最稳定的 苯六元环, 其理论厚度仅为0.35 nm, 是目前所发现的最薄的二维材料[3]. 石墨烯是构成其它石墨材料的基本单元, 可以翘曲变成零维 的富勒烯, 卷曲形成一维的CNTs[4-5]或者堆垛成三维的石墨(图1). 这种特殊结构蕴含了丰富而奇特的物理现象, 使石墨烯表现出许多 优异的物理化学性质, 如石墨烯的强度是已测试材料中最高的, 达130 GPa[6], 是钢的100 多倍; 其载流子迁移率达1.5×104 cm2〃V-1〃s-1 [7], 是目前已知的具有最高迁移率的锑化铟材料的2 倍, 超过商用硅片迁移率的10 倍, 在特定条件下(如低温骤冷等), 其迁移率甚至可高达2.5×105 石墨烯的热导率可达5×103W〃m-1〃K-1, 是金刚石的3 倍[. 另外, 石墨烯还具有室温量子霍尔效应(Hall effect)[10]及室温铁磁性[11]等特殊性质. 石墨烯的这些优异性引 起科技界新一轮的“碳”研究热潮, 已有一些综述性文章从不同方面对石墨烯的性质进行了报道.,本文仅根据现有的文献报道对石墨烯 的制备方法、功能化以及在化学领域中的应用作一综述

石墨烯材料的研究进展论文

石墨烯材料的研究进展 摘要:石墨烯是近年被发现和合成的一种新型二维碳质纳米材料。由于其独特的结构 和新奇的物化性能,在改善复合材料的热性能、力学性能和电性能等方面具有很大的潜力,已成为纳米复合材料研究的热点。综述了石墨烯纳米复合材料的制备与应用研究进展,并对石墨烯纳米复合材料的发展前景进行了展望。 关键词:石墨烯;纳米复合材料;制备;应用 1,材料的基本情况 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的碳质材料,是构成其它碳同素异形体的基本单元。石墨烯的理论研究已有60多年的历史,一直被认为是假设性的结构,无法单独稳定存在。2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫用胶带反复剥离高定向热解石墨的方法,得到了稳定存在的石墨烯。石墨烯的出现颠覆了传统理论,使碳的晶体结构形成了从零维的富勒烯、一维的碳纳米管、二维的石墨烯到三维的金刚石和石墨的完整体系。 石墨烯的结构非常稳定。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。石墨烯是构成石墨,木炭,碳纳米管和富勒烯碳同素异形体的基本单元。完美的石墨烯是二维的,它只包括六边形(等角六边形); 如果有五边形和七边形存在,则会构成石墨烯的缺陷。12个五角形石墨烯会共同形成富勒烯。石墨烯卷成圆桶形可以用为碳纳米管 石墨烯的出现在科学界激起了巨大的波澜,人们发现,石墨烯具有非同寻常的导电性能、超出钢铁数十倍的强度和极好的透光性,它的出现有望在现代电子科技领域引发一轮革命。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高于碳纳米管和金刚石,石墨烯是迄今为止世界上强度最大的材料,据测算如果用石墨烯制成厚度相当于普通食品塑料包装袋厚度的薄膜(厚度约100 纳米),那么它将能承受大约两吨重物品的压力,而不至于断裂,石墨烯是世界上导电性最好的材料。 常温下其电子迁移率比纳米碳管或硅晶体高,而电阻率比铜或银更低,为目前世上电阻率最小的材料。因为它的电阻率极低,电子迁移的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。 2,最热的应用合成 石墨烯的应用范围广阔。根据石墨烯超薄,强度超大的特性,石墨烯可被广泛应用于各领域. 根据其优异的导电性,使它在微电子领域也具有巨大的应用潜力。石墨烯有可能会成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机,碳元素更高的电子迁移率可以使未来的计算机获得更高的速度。最小最快石墨烯晶体管。2011年4月7日IBM向媒体展示了其最快的石墨烯晶体管,该产品每秒能执行1550亿个循环操作,比之前的试验用晶体管快50%。 石墨烯材料还是一种优良的改性剂,在新能源领域如超级电容器、锂离子电池方面,由

石墨烯基本特性

2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用高度定向的热解石墨首次获得了独立存在的高质量石墨烯,打破了传统的物理学观点:二维晶体在常温下不能稳定存在。两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯是一种碳原子分布在二维蜂巢晶体点阵上的单原子层晶体。被认为是构建所有其他维数石墨材料的基本单元,它可以包裹成零维的富勒烯,卷曲成一维的碳纳米管或者堆垛成三维的石墨,如图所示。石墨烯晶体C-C键长为0.142nm,每个碳原子4 个价电子中的3 个通过σ键与临近的3个碳原子相连,S、Px 和Py3个杂化轨道形成强的共价键合,组成sp2杂化结构。这些σ键赋予了石墨烯极其优异的力学性质和结构刚性。拉伸强度高达130Gpa,破坏强度为42N/m,杨氏模量为1.0TPa,断裂强度为125Gpa 与碳纳米管相当。石墨烯的厚度仅为0.35nm左右,是世界上最薄的二维材料。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。(百度百科)石墨烯的硬度比最好的钢铁强100倍,甚至还要超过钻石,是已知的世上最薄、最坚硬的纳米材料。

石墨烯结构示意图(10) 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。传统的半导体和导体,例如硅和铜,由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,2013年一般的电脑芯片以这种方式浪费了72%-81%的电能。而在石墨烯中,每个碳原子都有一个垂直于碳原子平面的σz轨道的未成键的p电子,在晶格平面两侧如苯环一样形成高度巡游的大π键,可以在晶体中自由高效的迁移,且运动速度高达光速的1/300,电子能量不会被损耗,赋予了石墨烯良好的导电性。晶格平面两侧高度巡游的大π键电子又使其具有零带隙半导体和狄拉克载流子特性宽频的光吸收和非线性光学性质, 以及室温下的量子霍尔效应等。常温

石墨烯的应用领域

第二章石墨烯应用领域 石墨烯因其独特的电学性能、力学性能、热性能、光学性能和高比表面积,近年来受到化学、物理、材料、能源、环境等领域的极大重视,应用前景广阔,被公认为21世纪的“未来材料”和“革命性材料”。具体在五个应用领域:一是储能领域。石墨烯可用于制造超级电容器、超级锂电池等。二是光电器件领域。石墨烯可用于制造太阳能电池、晶体管、电脑芯片、触摸屏、电子纸等。三是材料领域。石墨烯可作为新的添加剂,用于制造新型涂料以及制作防静电材料。四是生物医药领域。石墨烯良好的阻隔性能和生物相容性,可用于药物载体、生物诊断、荧光成像、生物监测等。五是散热领域。石墨烯散热薄膜可广泛应用于超薄大功耗电子产品,比如当前全球热销的智能手机、IPAD 电脑、半导体照明和液晶电视等。 中国科学院预计,到2024年前后,石墨烯器件有望替代互补金属氧化物半导体(CMOS)器件,在纳米电子器件、光电化学电池、超轻型飞机材料等研究领域得到应用。目前,全球范围内仅电子行业每年需消耗大约2500吨半导体晶硅,纯石墨烯的市场价格约为人民币1000元/g ,其若能替代晶硅市场份额的10%,就可以获得5000亿元以上的经济利益;全球每年对负极材料的需求量在2.5万吨以上,并保持了20%以上的增长,石墨烯若能作为负极材料获得锂离子电池市场份额的10%,就可以获得2500吨的市场规模。可见,石墨烯具有广阔的应用空间和巨大的经济效益。

正是在这一背景下,目前国内外对石墨烯技术的应用研究如火如荼,具体应用如下: 2.1 石墨烯锂离子电池 锂离子电池具有容量大、循环寿命长、无记忆性等优点,目前已成为全球消费类电子产品的首选电池以及新能源汽车的主流电池。高能量密度、快速充电是锂电池产品发展的必然趋势,在正极材料中添加导电剂是一种有效改善锂电性能的途径,可大大增加正负极的导电性能、提高电池体积能量密度、降低电阻,增加锂离子脱嵌及嵌入速度,显著提升电池的倍率充放电等性能,提高电动车的快充性能。 所谓石墨烯电池并非整个电池都用石墨烯材料制作,而是在电池的电

辽宁鑫瑞嘉石墨新材料有限公司_招标190923

招标投标企业报告辽宁鑫瑞嘉石墨新材料有限公司

本报告于 2019年9月23日 生成 您所看到的报告内容为截至该时间点该公司的数据快照 目录 1. 基本信息:工商信息 2. 招投标情况:招标数量、招标情况、招标行业分布、投标企业排名、中标企业 排名 3. 股东及出资信息 4. 风险信息:经营异常、股权出资、动产抵押、税务信息、行政处罚 5. 企业信息:工程人员、企业资质 * 敬启者:本报告内容是中国比地招标网接收您的委托,查询公开信息所得结果。中国比地招标网不对该查询结果的全面、准确、真实性负责。本报告应仅为您的决策提供参考。

一、基本信息 1. 工商信息 企业名称:辽宁鑫瑞嘉石墨新材料有限公司统一社会信用代码:91211000MA0XTYYL63工商注册号:211000004119448组织机构代码:MA0XTYYL6 法定代表人:李岩松成立日期:2018-06-05 企业类型:有限责任公司(自然人独资)经营状态:存续 注册资本:10000万人民币 注册地址:辽宁省辽阳市太子河区繁荣路中段 营业期限:2018-06-05 至 2048-06-04 营业范围:石墨及碳素制品、陶瓷制品和耐火材料制造;金属及金属矿批发及零售;环境保护专用设备制造;其他仓储业。(依法须经批准的项目,经相关部门批准后方可开展经营活动。) 联系电话:*********** 二、招投标分析 2.1 招标数量 企业招标数: 个 (数据统计时间:2017年至报告生成时间)1

2.2 企业招标情况(近一年) 2018年10月1 企业近十二个月中,招标最多的月份为,该月份共有个招标项目。 序号地区日期标题 1辽阳2018-10-112018AS012小庄街南(辽阳经济开发区KFQ-3-2)地块2.3 企业招标行业分布(近一年) 1 【矿山工程】 () 序号地区日期标题 1辽阳2018-10-112018AS012小庄街南(辽阳经济开发区KFQ-3-2)地块

生而不凡新材料之王石墨烯阅读理解附答_教学工作总结.doc

生而不凡新材料之王石墨烯阅读理解附答_ 教学工作总结 新材料是指新近发展的或正在研发的、性能超群的一些材料,具有比传统材料更为优异的性能。新材料技术则是按照人的意志,通过物理研究、材料设计、材料加工、试验评价等一系列研究过程,创造出能满足各种需要的新型材料的技术。那么关于生而不凡新材料之王石墨烯阅读附答案是怎样呢?下面是我整理的生而不凡新材料之王石墨烯阅读理解附答案,欢迎阅读。 《生而不凡新材料之王》阅读材料 生而不凡——新材料之王石墨烯 手机充电只需几秒钟?史上最薄电灯泡?光驱动飞行器?关于石墨烯非凡应用的新闻不断出现在人们的视野当中,似乎石墨烯已经成为了无所不能的超级材料。石墨烯是什么?到底有什么特性让它备受推崇?石墨烯是从石墨材料中剥离出来的,它由碳原子组成,并且只有一层原子厚度,是一种二维晶体。2004年,英国曼彻斯特大学物理学家安德烈盖姆和康斯坦丁诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。实际上石墨烯本来就存在于自然界,只是难以剥离出单层结构。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。

石墨烯对物理学基础研究有着特殊意义,它使一些此前只能纸上谈兵的量子效应可以通过实验来验证,例如电子无视障碍、实现幽灵一般的穿越。但更令人感兴趣的,是它那许多"极端"性质的物理性质。作为目前发现的最薄、最坚硬、导电导热性能最强的一种新型纳米材料,石墨烯被称为"黑金",是"新材料之王",科学家甚至预言石墨烯将"彻底改变21世纪。" 石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克可以承受一只猫的重量。 难以想象的是,石墨本身几乎是最软的矿物质(莫氏硬度只有1-2级),"切"成一个碳原子厚度的薄片时,"性格"会发生如此之大的变化,石墨烯的硬度比莫氏硬度10级的金刚石还要高,但却又有很好的韧性,可以弯曲。 因为只有一层原子,电子的运动被限制在一个平面上,石墨烯也有着全新的电学属性。石墨烯是世界上导电性最好的材料,电子在其中的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。据相关专家分析,用石墨烯取代硅,计算机处理器的运行速度将会快数百倍。 另外,石墨烯几乎是完全透明的,只吸收2.3%的光。另一方面,

石墨烯及其材料综述

关于石墨烯和石墨烯复合材料的综述 石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。自从2004年发现以来,研究者对这种材料在未来技术革命方面提出了大量的建设性创意,石墨烯被认为是未来能够取代硅的一种新型电子材料。石墨烯是只有一个原子厚的结晶体,具有超薄、超坚固和超强导电性等特性,其优异的电学、热学和力学性能,在纳米电子器件、储能材料、光电材料等方面的潜在应用价值引起了科学界新一轮的“碳”热潮。 它不仅是已知材料中最薄的一种,还非常牢固坚硬,仅仅是一个原子的厚度,并形成了高质量的晶体格栅,石墨烯的结构,是由碳原子六角结构紧密排列构成的二维单层石墨,是构造其他维度碳质材料的基本单元。它可以包裹形成0维富勒烯,也可以卷起来形成一维的碳纳米管,同样,它也可以层层堆叠构成三维的石墨。 石墨烯结构非常稳定,迄今为止,研究者仍未发现石墨烯中有碳原子缺失的情况。石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。 这种稳定的晶格结构使碳原子具有优秀的导电性。石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯中电子受到的干扰也非常小。 大量制备尺寸、厚度可控的石墨烯材料对石墨烯基材料的应用具有重要的意义。制备石墨烯可以归结为两个基本的思路:一是以石墨为原料,通过削弱以及破坏石墨层间的范德华力来剥开石墨层从而得到石墨烯:二是基于活性碳原子的定向组装,“限制”碳原子沿平面方向生长。基于上述思想,化学剥离法、SiC 表面石墨化法和金属表面外延法等一些新的方法相继被报道。本人通过大量的归纳总结,共总结出以下七种方法。 机械剥离法就是利用机械力,将石墨烯片从具有高度定向热解石墨(Highly

防静电聚乙烯-石墨复合物新材料的制备及表征

- -第31卷第4期 非金属矿 V ol.31 No.4 2008年7月 Non-Metallic Mines July, 2008 近年来聚乙烯复合物越来越引起人的关注,并已制备出一些以聚乙烯为原料的复合材料。如:高密度聚乙烯/碳纳米管复合物[1],新的聚乙烯纳米复合物[2],硅石/聚丙烯酰胺/聚乙烯纳米复合物[3],聚乙烯/巴西粘土纳米复合物和聚乙烯/阻燃剂复合物[4],聚乙烯/石脑油纳米复合物[5],低密度聚乙烯/石蜡混合物[6],铜/低密度聚乙烯纳米复合物[7],低密度聚乙烯/粘土纳米复合物[8]等。另外,单壁碳纳米管/高密度聚乙烯复合物[9] 已被证明具有低的导电性能。这结果也预示着在聚乙烯内添加一些具有导电性能的材料,可增强聚乙烯的导电性能。 笔者以可膨胀石墨、膨胀石墨和聚乙烯为原料,在二甲苯溶剂中成功地制备出了聚乙烯/可膨胀石墨和聚乙烯/膨胀石墨两种复合材料,并对两种材料的导电性能进行了测定。实验结果显示,采用这种方法制备出的两种聚乙烯/石墨复合材料尽管电阻率不同,但均在105~108Ω·m 之间;值得注意的是,在这电阻率范围内的材料具有防静电的性能,预示已制备出了具有防静电性能的聚乙烯/石墨复合材料。1?实验部分 1.1 材料与仪器?保定艾克森碳化有限公司提供 的粒度为50目的鳞片石墨,按照参考文献[10]制备可膨胀石墨和膨胀石墨;高密度聚乙烯, 二甲苯(分析纯,天津市化学试剂一厂);氮气(石家庄)。8900 FT-IR 分光光度仪(日本),扫描电子显微镜(日本),UT60A-CN 数字万用电表(中国)。 1.2 聚乙烯/可膨胀石墨和聚乙烯/膨胀石墨复合物 的制备 首先将高密度聚乙烯和二甲苯溶剂按1.0∶2.5的质量比进行混合,制备成浓度为40%的悬浮分散溶液,然后将此悬浮分散液与可膨胀石墨或膨胀石墨(聚乙烯与可膨胀石墨或膨胀石墨的质量比分别为10∶1、10∶2、10∶3、10∶4、10∶5)一起倒入一个干燥三颈烧瓶中。三颈烧瓶的中央孔安装一个搅拌器,一个侧孔安装一个氮气进入装置,另一个侧孔安装一个温度计。待一切安装完毕,开启氮气进气阀。将反应温度升高到100℃并维持此温度继续搅拌30min 。待反应结束之后,停止加热和搅拌,关闭氮气进气阀。然后将已制备的混合物在氮气保护下,在反应温度100℃下进行蒸馏。待二甲苯溶剂被分离出来后,将混合物从烧瓶内取出,放入通入氮气的红外干燥箱内,在60℃下干燥30min ,即得聚乙烯/可膨胀石墨或聚乙烯/膨胀石墨复合物。 1.3 聚乙烯/可膨胀石墨和聚乙烯/膨胀石墨复合 防静电聚乙烯/石墨复合物新材料的制备及表征 李冀辉?徐?洋?米彩丽?李?晶?黎?梅?刘淑芬 (河北师范大学化学与材料科学学院,石家庄 050016) 摘?要?以可膨胀石墨、 膨胀石墨和高密度聚乙烯为原材料,在二甲苯溶剂中制备了聚乙烯/可膨胀石墨和聚乙烯/膨胀石墨复合材料。扫描电镜显示,聚乙烯已包覆在可膨胀石墨和膨胀石墨上,傅立叶红外光谱分析确认了包覆在可膨胀石墨和膨胀石墨上的高分子为聚乙烯分子。该法利用可膨胀石墨和膨胀石墨的导电性能改善不导电的聚乙烯,并且成功地制备出具有防静电性能的聚乙烯/石墨复合新材料。 关键词?可膨胀石墨?膨胀石墨?防静电?复合材料?聚乙烯 中图分类号: TQ325.1;TB332 文献标识码:A 文章编号:1000-8098(2008)04-0029-03Preparation and Characterization of Antistatic Polyethylene/Graphite Composites Li Jihui Xu Yang Mi Caili Li Jing Li Mei Liu Shufen (College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050016) Abstract The polyethylene/graphite composites were prepared by high density polyethylene and expandable graphite or expanded graphite in dimethylbenzene solvent. Scan electron microscope (SEM) exhibited that polyethylene had covered on expandable graphite and expanded graphite. It had been affirmed that polymer molecules on expandable graphite and expanded graphite were polyethylene molecule by Fourier transform infrared (FTIR) spectrum. The method had a great application worth in which the electric property of expandable graphite and expanded graphite was applied to improve non-electric polyethylene, and a new polyethylene/graphite composites which possessed the antistatic property had been prepared successfully. Key words expandable graphite expanded graphite antistatic composites material polyethylene 收稿日期:2008-04-03 万方数据

石墨烯材料研究进展

石墨烯材料研究进展 化学工程与工艺 0909403068 王月 摘要:石墨烯具有非凡的物理及电学性质,如高比表面积、高导电性、高机械强度、易于修饰及大规模生产等。2004年石墨烯的成功剥离,使石墨烯成为形成纳米尺寸晶体管和电路的“后硅时代”的新潜力材料,其产品研发和应用目前正在全球范围内急剧增加。本文通过对石墨烯的特性、制备和应用现状几方面进行了综述。 关键词:石墨烯制备应用进展 石墨烯是碳 原子紧密堆 积成单层二 维蜂窝状晶 格结构的一 种碳质新材 料,是构筑 零维富勒 烯、一维碳 纳米管、三 维体相石墨等sp2杂化碳(即碳以双键相连或连接其他原子)的基本结构单元,如图1所示。石墨烯的理论研究已有60多年的历史,但直至2004年,英国曼彻斯特大学物理学家安德烈〃海姆和康斯坦丁〃诺沃肖洛夫,

利用胶带剥离高定向石墨的方法获得真正能够独立存在的二维石墨 烯晶体,并发现了石墨烯载流子的相对论粒子特性,才引发石墨烯研 究热。这以后,制备石墨烯的新方法层出不穷,人们发现,将石墨烯 引入工业化生产的领域已为时不远了[1]。 1石墨烯的特性 石墨烯是零带隙半导体,有着独特的载流子特性,为相对论力学 现象的研 究提供了一条重要 途径;电子在石墨 烯中传输的阻力很 小,在亚微米距离 移动时没有散射,具 有很好的电子传输 性质;石墨烯韧性 好,它们每100nm 距离上承受的最大 压力可达2.9N [2],是迄今为止发现的力学性能最好的材料之一。石墨烯特有的 能带结构使空穴和电子相互分离,导致了新电子传导现象的产生,如 量子干涉效应、不规则量子霍尔效应。Novoselov 等观察到石墨烯具 有室温量子霍耳效应,使原有的温度范围扩大了10倍。石墨烯在很 多方面具备超越现有材料的特性,具体如图 2 [3]所示,日本企业的 一名技术人员形容单层石墨碳材料“石墨烯”是“神仙创造的材料”。 图2 石墨烯的特点

石墨烯:引领未来的新材料

石墨烯:引领未来的新材料-建筑论文 石墨烯:引领未来的新材料 文/ 梦莎 欧盟委员会曾宣布将石墨烯加入“未来新兴旗舰技术项目”,将在未来10 年投入10 亿欧元。石墨烯已在国内外资本市场抛起轩然大波。有专家预测石墨烯作为革命性的新材料,未来将撬动至少千亿级的产业链。 石墨烯是一种由碳原子构成的单层片状结构的新材料,是目前世上最纤薄、电阻率最小却也是最坚硬的纳米材料,是一种优秀的化学稳定剂,拥有高能量密度、高能效、阻燃效应。其厚度不超过单个碳原子,从任何方面讲都可以视为是二维结构。 纯石墨烯是透明的,这一特性可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于其二维特性,石墨烯拥有称为“分离电荷”的特性。这一特性对开发下一代电脑至为重要。它使量子电路和阴离子电路方面的发展成为可能。 随着石墨烯价值不断攀升,众多有前瞻性的企业加入到研发石墨烯的大潮中。济南墨希新材料科技有限公司就是其中的佼佼者。 济南墨希新材料科技有限公司是中国与西班牙的合资企业,注册资金1500 万元,公司致力于石墨烯产品的研发、实际应用与工业化生产,推动石墨烯产业的发展。济南墨希公司入股Graphenano S.L. 公司研发中心,共享其超强的科研实力与高水平的生产技术,在石墨烯应用的众多领域深入的研发,使科技成果转化产品。济南墨希公司已经在涂料、电缆、树脂和体育运动产品四大领域取得重大突破。

目前济南墨希与西班牙研发中心共同研发出全球首例石墨烯矿物涂料——Graphenstone 格芬石墨烯矿物涂料,它是在千年传统制作工艺的基础上,将西班牙独有天然矿物材料与最新纳米材料石墨烯结合,生产出的最新一代高端纳米涂料。与传统涂料相比,除具有传统涂料的优越特性外,更具备无机物特性,涂膜与基质相同,具有安全环保,防水透气、耐碱、耐污防火、耐候性佳,不褪色,抗菌防霉,不会造成二次污染等特性。 格芬石墨烯矿物涂料中添加的石墨烯纳米纤维会在涂料中形成纳米网状结构,赋予其天然成分所不具备的坚实性和牢固的骨架,涂料的附着力更加牢固,更具有超耐久性,使得涂料耐擦洗,抗裂纹;同时对损坏砂浆的大气侵蚀因素形成一道不可逾越的屏障,在极端条件下,依然可以发挥其优良的性能,不会产生龟裂;由于石墨烯为优良热导体,散射99% 红外线和85% 的紫外线,可以达到节能降耗、保温隔热的功能;因其独特的配方和纳米技术,还能减少声传播,起到降低噪音的效果,是古建筑修复、医院、酒店、学校、高档建筑、别墅等场所的最佳选择。 格芬石墨烯矿物涂料(内、外墙涂料,导电涂料)已经引进中国市场,石墨烯防腐涂料也进入了最后检测阶段,预计7 月份量产。 济南墨希公司常务副总高飞透露,在复合材料开发领域,石墨烯纳米纤维具备优异的机械性能和电导、热导特性。拥有石墨烯纳米纤维在塑料、橡胶等聚合物基体中均匀分散技术的济南墨希,使得石墨烯在复合材料方面的应用研究取得重大突破。比如该公司批量生产的添加石墨烯纳米纤维的橡胶防暴子弹,与传统防暴子弹相比,大大降低了热膨胀系数,同时有效提高其速度与精准度。 济南墨希还与西班牙CATLIKE 公司合作,生产新型石墨烯头盔。添加石

石墨烯的研究进展概述

龙源期刊网 https://www.360docs.net/doc/9c11985459.html, 石墨烯的研究进展概述 作者:兰耀海 来源:《建材发展导向》2014年第03期 摘要:由于石墨烯具有独特的结构和优越的性能,现己逐渐应用于电子材料、薄膜材 料、储能材料、液晶材料、催化材料等先进的功能材料领域。石墨烯复合材料是石墨烯应用研究中的重要领域,近年来已成为材料研究的热门领域。文章主要对石墨烯的物理化学性质、制备方法、石墨烯复合材料以及应用领域进行简单总结,并对未来石墨烯复合材料的发展做一展望。 关键词:石墨烯;复合材料;研究进展 1 石墨烯的物理化学性质 石墨烯是一种由碳原子构成的单层片状结构的新材料,是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,是只有一个碳原子厚度的二维材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直到2004年,英国科学家成功地在实验中从石墨中分离出石墨烯,从而证实它可以单独存在。石墨烯具有特殊的单原子层结构和奇特的物理性质:强度达130GPa、热导率约5000J/(m·K·S),禁带宽度几乎为零、载流子迁移率达到2×105cm2/(V·s),具有极高的透明度(约为97.7%)、表面积的理论计算值为2630m2/g,石墨烯的杨氏模量(1100GPa)和断裂强度(125GPa)与碳纳米管相当,它还具有分数量子霍尔效应、量子霍尔铁磁性和零载流子浓度极限下的最小量子电导率等一系列优良性质。 石墨烯是一种由碳原子构成的单层片状结构的新材料。是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收大约2.3%的光。石墨烯的物理性能优越可以翘曲成零维的富勒烯,卷成一维的碳纳米管或者堆垛成三维的石墨。石墨烯的基本结构单元为有机材料中最稳定的苯六元环,理想的石墨烯结构是平面六边形点阵,可以看作是一层被剥离的石墨分子,每个碳原子均为sp2杂化,并贡献剩余一个p轨道上的电子形成大π键,π电子可以自由移动,这赋予石墨烯良好的导电性。 2 石墨烯的制备方法 自从2004年曼彻斯特大学的研究小组发现了单层及薄层石墨烯以来,石墨烯的制备引起学术界的广泛关注。由于二维晶体结构在有限温度下是极不稳定,而考察石墨烯的基本性质并充分发挥其优异性能需要高质量的单层或薄层石墨烯,这就要求寻找一种石墨烯的制备方法来满足日益增长的研究及应用需求。 目前石墨烯的制备方法主要划分为三类:第一类为化学剥离法,这种方法通过制备氧化石墨作为前躯体,使用化学还原,溶剂热还原,热膨胀还原等手段得到对应的石墨烯。第二类为

相关文档
最新文档