类石墨烯材料的发展

类石墨烯材料的发展
类石墨烯材料的发展

类石墨烯材料的发展

类石墨烯材料是一种全新的材料,它的出现为制备大面积和高质量的纳米器件带来了希望。这种独特的二维结构能够将微观下优异的电学、磁学和光学性能与宏观下的超薄性、透明性和柔韧性有机地结合在一起,从而能够实现器件的微型化和功能。虽然无机类石墨烯材料能够带来一系列革新的性能和广泛的应用,但是其大量合成、低维结构的表征和清晰的结构-性能关系的建立却遇到了困难,而且器件的制作工艺对性能的影响也很大。

本工作综述了本课题组近三年在无机类石墨烯材料领域的工作进展,包括类石墨烯结构及其与石墨烯插层复合结构的可控、宏量制备方法,及其精细结构和缺陷结构的表征;温和条件下的有序组装机理及技术,以及柔性超薄器件的性能表征与应用。我们还详细研究了这些材料超薄的厚度、表面晶格扭曲和特殊的缺陷结构所赋予的特殊电子结构及其在光电解水、热电转换和催化活性位点研究方面带来的新机遇。

·石墨烯·分子筛·碳纳米管·黑磷·类石墨烯·纳米材料

江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、

自2004年有科学家成功制备石墨烯(即单原子层碳)以来,该材料的物理内涵和优异性质引发外界对基础和应用研究的热潮。今年中国研制的全球量产石墨烯手机,不仅画面高清,电池寿命也更长;而军事强国近年来也纷纷用石墨烯代替凯夫拉、芳纶等材质,着手打造新型铠甲防护装具;中国科学家则在石墨烯电子皮肤研究上取得了进展。不久前,中国科学家突破石墨烯工业化生产难题,制备单层石墨烯仅需一小时。但因石墨烯的电子结构中不具备能隙,限制了其在光电器件方面的应用。

不过,新型的有直接带隙的类石墨烯材料“单原子层过渡金属硫化物”(如MoS2, WSe2等)以其独特的光电性质受到关注。只是此前国际上关于单原子层二维材料的研究集中于经典光学领域,尚未在实验上观察到光子反聚束等量子光学现象。

中国科学技术大学潘建伟、陆朝阳等与华盛顿大学许晓栋、香港大学姚望合作研究发现,二硒化钨(WSe2)二维单原子层中的原子缺陷能够束缚激子,成为非经典的单光子发射器,“和其他的单光子系统相比,这种基于单原子层的单光子器件不仅利于光子的读取和控制,还可方便地制备和实现与其他的光电器件平台结合”。

·石墨烯·分子筛·碳纳米管·黑磷·类石墨烯·纳米材料

江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、

这项研究意味着可以实现高效光量子信息处理线路。理论还表明,科学家通过控制电场,可实现对单电子自旋—谷耦合自由度的量子调控,“未来将应用于可容错量子计算的研究”。

事实上,具有潜在前景的基于单原子层的量子调控领域已成为国际竞争焦点。潘建伟团队的研究成果5日在线发表于《自然·纳米技术》,法国强磁场国家实验室等三个欧美独立研究团队也有类似研究成果,但晚于中国团队投稿。

值得一提的是,潘建伟团队在可扩展光量子信息处理技术的系统研究上已取得一批成果,包括在国际上实现单原子层半导体量子器件、实现量子人工智能算法实验等,在光量子信息领域保持着国际地位。

·石墨烯·分子筛·碳纳米管·黑磷·类石墨烯·纳米材料

江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、

对石墨烯产业化现状和未来趋势的认识

对石墨烯产业化现状和未来趋势的认识 ■ 文/姚 磊 北京碳世纪科技有限公司 近几年,石墨烯学术和产业界的许多专家学者已经针对石墨烯卓越的特性及广阔的应用前景,进行了细致、精彩的研究和解读。在此,笔者仅就北京碳世纪科技有限公司(以下简称“碳世纪”)在石墨烯产业化进程中遇到的机会和挑战进行分析。碳世纪主要采用化学法制备石墨烯,笔者本文所谈对石墨烯的认识和理解,也是基于化学法制备的石墨烯而言。另外,笔者在此声明,碳世纪有其特殊性,所遇到的问题不一定具备普遍性。 一、对石墨烯产业化的认识 1.现阶段石墨烯产业化需要的人才 自2004年石墨烯被发现到现在,科学界和产业界对这一新材料的研究已有近10年时间,但石墨烯产业真正的爆发是在近几年,特别是2010年石墨烯发明者获得诺贝尔奖以后。目前,在石墨烯领域还有大量相关工作需要突破,但同时也有大量应用研究成果随之而出,初步具备了产业化的可能性。 现阶段,在技术研发方面需要一 批具备“科学家的头脑、工程师的双 手”、既对石墨烯的性质有着深刻认 识,又对下游应用产品有着良好感觉 的人来完成开创期最关键、最艰难的 几步。 与此同时,产业还需要一些非技 术人员配合技术团队工作。目前,石墨 烯企业还没有发展到靠优厚的薪资来 吸引高素质管理人才加盟的程度。此 时,石墨烯行业的非技术团队更需要 一群乐观、对未来充满希望、不安于现 状、愿意为明天赌一把的人来支撑。 2.石墨烯的界定问题 石墨烯毕竟是微观世界中的纳 米材料。目前,业界还没有一个统一的 标准来界定什么是“石墨烯”。而且,估 计在很长一段时期内这样的标准也难 以出台。科研领域,讲究的是严谨和准 确;产业领域,讲究的是效率和结果。 如何抚平科学和技术之间的鸿 沟?现阶段,不必过多争论什么是石 墨烯。当下的重点工作是在保证能大 规模制备出高质量石墨烯的前提下, 将精力更多地向应用开发倾斜。石墨 烯具备能够很好促进其他材料提升性 能的纳米结构,可以在不破坏材料原 有基础性能的前提下,极大程度提升 该材料某些特殊性能。这一过程,主要 是通过对石墨烯和其他材料复合的方 式及对石墨烯片径的控制来实现。 “要做有用的石墨烯,而不是纯粹 的石墨烯。”化学法制备的石墨烯具备 上述特质。 3.石墨烯产业化过程中遇到的问题 目前,碳世纪已经有3款石墨烯 应用产品走出了实验室,开始进入示 范生产阶段。这3款产品分别是石墨 烯改性超级电容器用储能活性碳、石 墨烯改性高密度聚乙烯(H D P E),以 及一款目前还属保密阶段的产品。现 仅就石墨烯改性超级电容器用活性碳 为例,谈谈碳世纪对石墨烯应用的认 识和在产业化过程中遇到的问题。 活性炭是超级电容器电级材料的 主要组成部分。目前,应用在储能方面 新材料产业NO.11 201429

石墨烯技术产业发展现状与趋势

摘要:2013年1月,石墨烯入选欧盟两项“未来和新兴技术旗舰项目”之一(另一项为“人类大脑工程”),欧盟委员会计划在未来十年投入10亿欧元开展石墨烯应用技术研发与产业化,再一次激起了各界对这一革命性材料的关注。 关键字:石墨烯;态势;趋势;技术转移;石墨烯;态势;趋势;技术转移;石墨烯;技术转化;产业化 石墨烯(Graphene)又称单层墨,是一种新型的二维纳米材料,也是目前发现的硬度最高、韧性最强的纳米材料。因其特殊纳米结构和优异的物理化学性能,石墨烯在电子学、光学、磁学、生物医学、催化、储能和传感器等领域应用前景广阔,被公认为21世纪的“未来材料”和“革命性材料”。英国两位科学家因发现从石墨中有效分离石墨烯的方法而获得2010年诺贝尔奖,引起了科学界和产业界的高度关注,石墨烯相关专利开始呈现爆发式增长(2010年353件,2012年达1829件)。世界各国纷纷将石墨烯及其应用技术研发作为长期战略予以重点关注,美国、欧盟各国和日本等国家相继开展了大量石墨烯研发计划和项目。总体看来,石墨烯技术开始进入快速成长期,并迅速向技术成熟期跨越。全球石墨烯技术研发布局竞争日趋激烈,各国的技术优势正在逐步形成,但总体竞争格局还未完全形成。具体发展态势如下: 态势一:制备与改性的突破为产业化提供了技术支撑 一方面,石墨烯制备技术取得突破。石墨烯制备技术与设备是石墨烯生产的基础。一直以来,石墨烯大规模制备技术是阻碍其产业化的最重要因素。近来,石墨烯制备技术取得了若干突破,目前已形成自上而下(Top-Down)和自下而上(Bottom-Up)两种途径,开发出了从简易低成本制造到大面积量产工艺的多种方法,包括:机械剥离、氧化还原法、化学气象沉积(CVD)、外延生长、有机合成、液相剥离等。这些方法各有优缺点,需要根据不同的需求进行选择(表1)。其中,氧化还原法因成本低且易实现,有望成为最具发展前景的制备方法之一。同时,各种方法

石墨烯文献检索

《文献检索与科技论文写作》作业 学生姓名 年级专业 班级学号 指导教师职称

目录 第一部分文献查阅练习 (1) 第二部分文献总结练习 (7) 第三部分科技论文图表练习 (8) 第四部分心得体会 (11)

第一部分文献查阅练习 1、黄毅,陈永胜.石墨烯的功能化及其相关应用.中国科学B辑:化学2009年第39卷第9期:887-896 摘要:石墨烯是2004年才被发现的一种新型二维平面纳米材料,其特殊的单原子层结构决定了它具有丰富而新奇的物理性质.过去几年中,石墨烯已经成为了备受瞩目的国际前沿和热点.在石墨烯的研究和应用中,为了充分发挥其优良性质,并改善其成型加工性(如分散性和溶解性等),必须对石墨烯进行功能化,研究人员也在这方面开展了积极而有效的工作.但是,关于石墨烯的功能化方面的研究还处在探索阶段,对各种功能化的方法和效果还缺乏系统的认识.如何根据实际需求对石墨烯进行预期和可控的功能化是我们所面临的机遇和挑战.本文重点阐述了石墨烯的共价键和非共价键功能化领域的最新进展,并对功能化石墨烯的应用作了介绍,最后对相关领域的发展趋势作了展望. 关键词:功能化应用 2、胡耀娟,金娟.石墨烯的制备、功能化及在化学中的应用. 物理化学学报(Wuli Huaxue Xuebao)Acta Phys.-Chim.Sin.,2010,26(8):2073-2086 摘要:石墨烯是最近发现的一种具有二维平面结构的碳纳米材料,它的特殊单原子层结构使其具有许多独特的物理化学性质.有关石墨烯的基础和应用研究已成为当前的前沿和热点课题之一.本文仅就目前石墨烯的制备方法、功能化方法以及在化学领域中的应用作一综述,重点阐述石墨烯应用于化学修饰电极、化学电源、催化剂和药物载体以及气体传感器等方面的研究进展,并对石墨烯在相关领域的应用前景作了展望。 关键词:制备功能化应用. 3、杨永岗,陈成猛,温月芳.新型炭材料.第23卷第3期 2008年9月:193-200 摘要:石墨烯是单原子厚度的二维碳原子晶体,也是性能优异的新型纳米复合填料。近三年来,石墨烯从概念上的二维材料变成现实材料,在化学和物理学界均引起轰动。通过述评氧化石墨及氧化石墨烯的制备、结构、改性及其与聚合物的复合,展望了石墨烯及其复合

石墨烯的发展概况

2015年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:复合材料专题报告学生所在院(系):航天学院 学生所在学科:工程力学 学生姓名:刘猛雄 学号:15S018001 学生类别:学术型 考核结果阅卷人

1 石墨烯的制备 (3) 1.1 试剂 (3) 1.2 仪器设备 (3) 1.3 样品制备 (4) 2 石墨烯表征 (4) 2.1 石墨烯表征手段 (4) 2.2 石墨烯热学性能及表征 (6) 2.2.1 石墨烯导热机制 (6) 2.2.2石墨烯热导率的理论预测与数值模拟 (6) 2.2.3 石墨烯导热性能的实验测定 (7) 3 石墨烯力学性能研究 (9) 3.1石墨烯的不平整性和稳定性 (10) 3.2 石墨烯的杨氏模量、强度等基本力学性能参数的预测 (11) 3.3石墨烯力学性能的温度相关性和应变率相关性 (12) 3.4 原子尺度缺陷和掺杂等对石墨烯力学性能的影响 (13)

石墨烯的材料与力学性能分析石墨烯以其优异的性能和独特的二维结构成为材料领域研究热点,石墨烯是一种由单层碳原子紧密堆积成二维蜂窝状晶格结构的碳质新材料。2004年Geim等用微机械剥离的方法成功地将石墨层片剥离, 观察到单层石墨层片, 这种单独存在的二维有序碳被科学家们称为石墨烯。2004 年英国科学家首次制备出了由碳原子以sp2杂化连接的单原子层构成的新型二维原子晶体—石墨烯,其厚度只有0.3354 nm,是目前世界上发现最薄的材料。石墨烯具有特殊的单原子层结构和新奇的物理性质:强度达130GPa、热导率约5000 J/(m2K2s)、禁带宽度乎为零、载流子迁移率达到23105 cm2/(V2s)、高透明度(约97.7%)、比表面积理论计算值为2630 m2/g,石墨烯的杨氏模量(1100GPa)和断裂强度(125GPa)与碳纳米管相当,它还具有分数量子霍尔效应、量子霍尔铁磁性和零载流子浓度极限下的最小量子电导率等一系列性质。在过去几年中,石墨烯已经成为了材料科学领域的一个研究热点。为了更好地利用石墨烯的这些特性,研究者采用了多种方法制备石墨烯。随着低成本可化学修饰石墨烯的出现,人们可以更好地利用其特性制备出不同功能的石墨烯复合材料。 1 石墨烯的制备 石墨烯的制备从最早的机械剥离法开始逐渐发展出多种制备方法,如:晶体外延生长法、化学气相沉积法、液相直接剥离法以及高温脱氧和化学还原法等。我国科研工作者较早开展了石墨烯制备的研究工作。化学气相沉积法是一种制备大面积石墨烯的常用方法。目前大多使用烃类气体(如CH4、C2H2、C2H4等)作为前驱体提供碳源,也可以利用固体碳聚体提供碳源,如Sun等利用化学气相沉积法将聚合物薄膜沉积在金属催化剂基体上,制备出高质量层数可控的石墨烯。与化学气相沉积法相比,等离子体增强化学气相沉积法可在更低的沉积温度和更短的反应时间内制备出单层石墨烯。此外晶体外延生长法通过加热单晶6H-SiC 脱除Si,从而得到在SiC表面外延生长的石墨烯。但是SiC晶体表面在高温过程中会发生重构而使得表面结构较为复杂,因此很难获得大面积、厚度均一的石墨烯。而溶剂热法因高温高压封闭体系下可制备高质量石墨烯的特点也越来越受研究人员的关注。相比于其他方法,通过有机合成法可以制备无缺陷且具有确定结构的石墨烯纳米带。 1.1 试剂 细鳞片石墨(青岛申墅石墨制品厂,含碳量90%-99.9%,过200 目筛),高锰酸钾(KMnO4,纯度≥99.5%),浓硫酸(H2SO4, 纯度95.0%-98.0%),过氧化氢(H2O2, 纯度≥30%), 浓盐酸(HCl, 纯度36.0%-38.0%)均购自成都市科龙化工试剂厂;氢氧化钠(NaOH, 纯度≥96%)购自天津市致远化学试剂有限公司;水合肼(N2H42H2O, 纯度≥80%)购自成都联合化工试剂研究所. 实验用水为超纯水(>10 MΩ2cm). 1.2 仪器设备 恒温水浴锅(DF-101型,河南予华仪器有限公司), 电子天平(JT2003型,余姚市金诺天平仪器有限公司),真空泵(SHZ-D(Ⅲ)型,巩义市瑞德仪器设备有限公司),超声波清洗器(KQ5200DE型, 昆山市超声仪器有限公司),离心机(CF16RX型, 日本日立公司),数字式pH计(PHS-2C型,上海日岛科学仪器有限公司),超纯水系统(UPT-II-10T型,成都超纯科技有限公司)。

石墨烯的制备方法概述

石墨烯的制备方法概述 1物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得,操作相对简单,合成的石墨烯的纯度高、缺陷较少。 1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt等于2004年用一种极为简单的微机械剥离法成功地从高定向热 解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在1mm厚的高 定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20μm —2mm、5μm的微槽后,用光刻胶将其粘到玻璃衬底上, 再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用范德华力或毛细管力将单层石墨烯“捞出”。 但是这种方法存在一些缺点,如所获得的产物尺寸不易控制,无法可靠地制备出长度足够的石墨烯,因此不能满足工业化需求。

1.2取向附生法—晶膜生长 PeterW.Sutter等使用稀有金属钌作为生长基质,利用基质的原子结构“种”出了石墨烯。首先在1150°C下让C原子渗入钌中,然后冷却至850°C,之前吸收的大量碳原子就会浮到钌表面,在整个基质表面形成镜片形状的单层碳原子“孤岛”,“孤岛”逐渐长大,最终长成一层完整的石墨烯。第一层覆盖率达80%后,第二层开始生长,底层的石墨烯与基质间存在强烈的交互作用,第二层形成后就前一层与基质几乎完全分离,只剩下弱电耦合,这样制得了单层石墨烯薄片。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响制得的石墨烯薄片的特性。 1.3液相和气相直接剥离法 液相和气相直接剥离法指的是直接把石墨或膨胀石墨(EG)(一般通过快速升温至1000°C以上把表面含氧基团除去来获取)加在某种有机溶剂或水中,借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液。Coleman等参照液相剥离碳纳米管的方式将墨分散在N-甲基-吡咯烷酮(NMP)中,超声1h后单层石墨烯的产率为1%,而长时间的 超声(462h)可使石墨烯浓度高达1.2mg/mL。研究表明,当溶剂与石墨烯的表面能相匹配时,溶剂与石墨烯之间的相互作用可以平衡剥离石墨烯所需的能量,能够较好地剥离石墨烯

石墨烯作为锂电池负极材料前景渺茫

石墨烯用作锂电负极产业化前景渺茫 2015-06-26 作者: 自从英国曼彻斯特大学物理学家安德烈·海姆(Andre Geim)和康斯坦丁·诺沃肖洛夫(Konstantin Novoselov)二人因为“二维石墨烯材料的开创性实验”共同获得2010年诺贝尔物理学奖之后,任何与石墨烯有关的新闻或者研究成果都受到了人们极大的关注。最近两年,石墨烯相关“产业”在国内也是如火如荼,与石墨烯有关的数十支概念股一再被爆炒。 国际上当然也没闲着,比如一则轰动性的新闻报道宣称:西班牙Graphenano公司(一家工业规模生产石墨烯的公司)同西班牙科尔瓦多大学合作研究出全球首个石墨烯聚合材料电池,储电量是目前市场最好产品的3倍,用此电池提供电力的电动车最多能行驶1000公里,而充电时间不到8分钟。 Graphenano公司相关负责人称,虽然此电池具有各种优良的性能,但成本并不高,该电池的成本将比一般锂离子电池低77%,完全在消费者承受范围之内。 这则消息在国内被很多媒体转载报道,在新能源汽车界和锂电界引起了很大反响。最近有不少朋友询问笔者:“会做石墨烯电池吗?石墨烯电池前景如何?什么时候量产?”笔者相信,很多锂电界同仁也有类似的问题。并不是所有人都有电化学或者材料学背景,关注石墨烯电池也可能是出于不同目的,所以他们都不会问一个最基本的问题:什么是石墨烯电池? 在本文中,笔者希望能够揭开笼罩在石墨烯电池上面的神秘面纱,让大家真正了解石墨烯在电化学储能方面的应用价值,而不是被一些非专业的记者或者炒作者蒙蔽,即便真相也许并不是那么鼓舞人心。 什么是石墨烯?先来看看维基百科的定义:“石墨烯(Graphene)是一种由碳原子以sp2杂化轨道?成六角型呈蜂巢晶格的平面薄膜,只有一??碳原子厚度的二?材料。石墨烯目前是世上最薄却也是最坚硬的纳米材料,它?缀跏峭耆?该鞯模?晃??.3%的光;导热系?蹈哌_5300W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000cm2/V·s,又比纳米碳管或硅晶体高,而电阻率只约10-8俜m,比铜或银更低,为世上电阻率最小的材料。”

2018年石墨烯产业发展现状分析报告

2018年石墨烯产业发展现状分析报告

目录 一 产业概况 (一)产业规模 (二)产业链分析 1. 产业链上游 2. 产业链中游 3. 产业链下游 (三)石墨烯产业区域分布 1. 石墨烯产业全球分布 2. 我国石墨烯产业区域分布 (四)国内外重点企业动态 二 产业技术进展 (一)国外技术进展 (二)国内技术进展 三 产业发展问题及对策建议 (一)石墨烯产业发展存在的问题 (二)政策建议 图表目录 表1 石墨烯制备方法 表2 石墨烯应用产品及相关企业 表3 我国石墨烯主要产区企业分布 表4 国内主要石墨烯企业动态 表5 各国石墨烯技术动态 表6 我国石墨烯技术动态 图1 2011-2017年我国石墨烯企业增长情况 图2 石墨烯技术专利申请数量的年度分析 图3 我国受理的石墨烯专利公开数量年度变化趋势图4 全球石墨烯专利受理地区及机构分析 图5 我国新注册石墨烯企业地区分布

摘 要:一石墨烯作为最受关注的新材料,2017年产业化进程不断加快,但受制于制备技术工艺不成熟二应用市场缺少实质性产 品,石墨烯突破产业化瓶颈尚需时日三与此同时,我国石墨 烯产业在发展过程中逐渐显现出同质化发展的苗头三未来, 需要进一步优化石墨烯产业市场环境,加强政策支撑二服务 支撑二产业支撑,提高石墨烯市场集中度和产业竞争力,以 推动石墨烯产业持续健康发展三 一 产业概况 总体来看,2017年石墨烯产业延续了近几年火热的势头,依然是社会关注度最高的新材料,产业规模不断扩大呈爆发式增长势头,技术专利数量快速增长,正在接近实现产业化三但是,从产业生命周期的角度看,石墨烯产业仍处在导入期:大量企业进入二中小企业为主二中上游产业发展速度相对较快二产业下游缺乏具有实质性应用产品,石墨烯产业化道路任重而道远三

石墨烯的制备及评价综述

石墨烯的制备及评价综述 摘要:近年来, 石墨烯以其独特的结构和优异的电学性能和热学性能, 在化学、物理和材料学界引起了广泛的研究兴趣。人们已经在石墨烯的制备方面取得了积极的进展, 为石墨烯的基础研究和应用开发提供了原料保障。通过大量引用参考文献, 简要了解石墨烯的应用方面,并综述石墨烯的几种制备方法: 物理方法(微机械剥离法、液相或气相直接剥离法)与化学法(化学气相沉积法、晶体外延生长法、氧化?还原法)[1]。通过分析比较各种制备方法的优缺点, 对几种方法进行评价,并指出了自己的看法。 关键词:石墨烯制备方法综述 中图分类号:O613 文献标识码:A Preparation and Application of Graphene Abstract: Graphene has attracted much interest in recent years due to its unique and outstanding properties. Different routes to prepare graphene have been developed and achieved. Brief introduction of application of graphene is given in this article. Preparation methods of graphene used in recent years are intensively introduced, including micromechanical cleavage, chemical vapor deposition, liquid/gasphase-based exfoliation of graphite, epitaxial growth on an insulator, chemical reduction of exfoliated graphene oxide, etc. And their advantages and shortcomings are further discussed in detail. I have also given my own opinion by the end of this article. Key words: graphene; preparation; overview 正文 2010年10月5日,英国曼彻斯特大学科学家安德烈·盖姆与康斯坦丁·诺沃肖洛夫因在二维空间材料石墨烯的突破性实验获得2010年诺贝尔物理学奖。一时间,石墨烯成为科学家们关注的焦点。石墨烯以其独特的结构,以及其优越的电学性能和导热性能,在物理、化学以及材料学界引起了广泛的研究兴趣。 石墨烯或称纳米石墨片,是指一种从石墨材料中剥离出的单层碳原子薄膜,它是由单层六角元胞碳原子组成的蜂窝状二维晶体。简单地说,它是单原子层的石墨晶体薄膜,其晶格是由碳原子构成的二维六角蜂窝结构。其厚度为0.34nm,是二维纳米结构。它是其他石墨材料的基本组成。当包裹起来的时候,就组成富勒烯。同时,他也是另一种重要材料――碳纳米管的组成,碳纳米管就是由这种结构卷曲构成的。三维的石墨则是有许多的石墨烯层叠而成。[2]

石墨烯真正应用前景在哪

石墨烯真正应用前景在哪? Graphenano公司相关负责人称,虽然此电池具有各种优良的性能,但成本并不高,该电池的成本将比一般锂离子电池低77%,完全在消费者承受范围之内。 这则消息在国内被很多媒体转载报道,在新能源汽车界和锂电界引起了很大反响。最近有不少朋友询问笔者:“会做石墨烯电池吗?石墨烯电池前景如何?什么时候量产?”笔者相信,很多锂电界同仁也有类似的问题。并不是所有人都有电化学或者材料学背景,关注石墨烯电池也可能是出于不同目的,所以他们都不会问一个最基本的问题:什么是石墨烯电池? 在本文中,笔者希望能够揭开笼罩在石墨烯电池上面的神秘面纱,让大家真正了解石墨烯在电化学储能方面的应用价值,而不是被一些非专业的记者或者炒作者蒙蔽,即便真相也许并不是那么鼓舞人心。

什么是石墨烯?先来看看维基百科的定义:“石墨烯(Graphene)是一种由碳原子以sp2杂化轨道組成六角型呈蜂巢晶格的平面薄膜,只有一個碳原子厚度的二維材料。石墨烯目前是世上最薄却也是最坚硬的纳米材料,它幾乎是完全透明的,只吸收2.3%的光;导热系數高達5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/V·s,又比纳米碳管或硅晶体高,而电阻率只约10-8 俜m,比铜或银更低,为世上电阻率最小的材料。” 最薄、最坚硬、最导热、最导电,这所有的光环都在告诉人们,石墨烯是一种多么神奇的材料啊!但是笔者要提醒的是,国际上对Graphene的定义是1-2层的nanosheet才能称之为是Graphene,并且只有没有任何缺陷的石墨烯才具备这些完美特性,而实际生产的石墨烯多为多层且存在缺陷。 石墨烯主要有如下几种生产方法: ·机械剥离法。当年Geim研究组就是利用3M的胶带手工制备出了石墨烯的,但是这种方法产率极低而且得到的石墨

石墨烯产业发展现状分析及未来发展建议

石墨烯产业发展现状分析及未来发展建议 一、石墨烯的发展现状 石墨烯是一种具有优异的力学、热学和电学性能的新型碳材料。石墨烯材料的研发涉及国家高新技术材料的产业基础,产业关联涉及新材料、能源、环境、航空航天、国防等领域,对国家的发展起着重要作用,因此,各国政府积极支持石墨烯研发:欧洲联盟2013年启动10亿欧元石墨烯旗舰计划;韩国和英国分别投入3.5亿美元、5000万英镑进行商业化计划;中国已将石墨烯写进《新材料产业“十三五”发展规化》中。 济宁利特纳米技术有限责任公司生产的石墨烯采用改良的HUMMERS法制备,产品测试结果如下: 厚度:0.7-4nm,粒径0.2-50μm,单层率≥99%,纯度≥99%,电导率≥200S/m,比表面积为200-1000m2/g 石墨烯原材料的规模化制备是构筑石墨烯产业链的基础,对开发下游产品有着根本性的作用,对石墨烯的产业化发展起着承上启下的作用。石墨烯行业近两年呈井喷式发展态势,企业和产品已经雨后春笋般大量出现。其中涉足石墨烯下游应用的企业逐渐增多,包括电子领域的高性能芯片、LED、柔性显示屏;能源领域的静电喷漆系统、高性能电池、超级电容器、太阳能电池;航空航天、海洋领域的防护涂料、复合材料、电磁屏蔽材料、隐型材料;环境领域的污水处理、海水淡化、大气污染治理;高强度橡胶、塑料,医药领域的药物输送、临床检测等。 截至2012年石墨烯获得诺贝尔物理学奖后已有2年时间,石墨烯规模化制备的技术瓶颈已逐渐突破,限制石墨烯行业发展的不再是石墨烯的规模性制备,而是如何让制备的石墨烯满足不同应用领域的需求,如何使石墨烯的高性能如高导电性、高导热性、高透光性在应用领域充分发挥。这是目前从事石墨烯材料的研究机构和企业共同面临一个关键性技术问题,同时也是石墨烯行业未来2-3年内需要突破的关键性瓶颈。 目前,国内各石墨烯相关企业纷纷在自身技术优势的基础上,开展石墨烯的下游应用,涉及的领域主要集中在锂离子电池、超级电容器、柔性显示屏、防护涂料、污水处理等几个方面。在这些应用领域中,水污染处理、功能性涂料、锂离子电池三方面的研究最多,也是目前石墨烯应用中较为成熟的。 (一)水污染处理 中国600多个城市都不同程度面临着水源地突发污染事件的威胁,存在水源地安全隐患。近期不断发生的重金属污染突发事件,如2005年珠江支流北江镉污染事故、2006年湖南岳阳砷污染事件、2010年福建紫金矿业重大污染事件、2011年匈牙利铝厂毒泥浆对多瑙

石墨烯的应用领域

第二章石墨烯应用领域 石墨烯因其独特的电学性能、力学性能、热性能、光学性能和高比表面积,近年来受到化学、物理、材料、能源、环境等领域的极大重视,应用前景广阔,被公认为21世纪的“未来材料”和“革命性材料”。具体在五个应用领域:一是储能领域。石墨烯可用于制造超级电容器、超级锂电池等。二是光电器件领域。石墨烯可用于制造太阳能电池、晶体管、电脑芯片、触摸屏、电子纸等。三是材料领域。石墨烯可作为新的添加剂,用于制造新型涂料以及制作防静电材料。四是生物医药领域。石墨烯良好的阻隔性能和生物相容性,可用于药物载体、生物诊断、荧光成像、生物监测等。五是散热领域。石墨烯散热薄膜可广泛应用于超薄大功耗电子产品,比如当前全球热销的智能手机、IPAD 电脑、半导体照明和液晶电视等。 中国科学院预计,到2024年前后,石墨烯器件有望替代互补金属氧化物半导体(CMOS)器件,在纳米电子器件、光电化学电池、超轻型飞机材料等研究领域得到应用。目前,全球范围内仅电子行业每年需消耗大约2500吨半导体晶硅,纯石墨烯的市场价格约为人民币1000元/g ,其若能替代晶硅市场份额的10%,就可以获得5000亿元以上的经济利益;全球每年对负极材料的需求量在2.5万吨以上,并保持了20%以上的增长,石墨烯若能作为负极材料获得锂离子电池市场份额的10%,就可以获得2500吨的市场规模。可见,石墨烯具有广阔的应用空间和巨大的经济效益。

正是在这一背景下,目前国内外对石墨烯技术的应用研究如火如荼,具体应用如下: 2.1 石墨烯锂离子电池 锂离子电池具有容量大、循环寿命长、无记忆性等优点,目前已成为全球消费类电子产品的首选电池以及新能源汽车的主流电池。高能量密度、快速充电是锂电池产品发展的必然趋势,在正极材料中添加导电剂是一种有效改善锂电性能的途径,可大大增加正负极的导电性能、提高电池体积能量密度、降低电阻,增加锂离子脱嵌及嵌入速度,显著提升电池的倍率充放电等性能,提高电动车的快充性能。 所谓石墨烯电池并非整个电池都用石墨烯材料制作,而是在电池的电

综述石墨烯的制备与应用

半导体物理课程作业 石墨烯的制备与应用(材料)

目录 一、石墨烯概述 (2) 二、石磨烯的制备 (3) 1、机械剥离法 (3) 2、外延生长法 (5) 3、化学气相沉积法 (6) 4、氧化石墨-还原法 (6) 5、电弧法 (9) 6、电化学还原法 (9) 7、有机合成法 (10) 三、石墨烯的应用 (11) 1、石墨烯在电子器件领域的应用 (11) 1.1 石墨烯场效应晶体管 (11) 1.2 石墨烯基计算机芯片 (12) 1.3 石墨烯信息存储器件 (13) 2、石墨烯在能源领域的应用 (14) 2.1 石墨烯超级电容器 (14) 2.2 锂离子电池 (15) 2.3 太阳能电池 (16) 2.4 储氢/甲烷器件 (17) 3、石墨烯在材料领域的应用 (18) 3.1 特氟龙材料替代物 (18) 3.2 石墨烯聚合物复合材料 (18) 3.3 光电功能材料 (19) 4、石墨烯在生物医药领域的应用 (20) 4.1 基于氧化石墨烯的纳米载药体系 (20) 4.2 氧化石墨烯对DNA/基因/蛋白的选择性检测 (21) 4.3用于生物成像技术 (23) 4.4 石墨烯在肿瘤治疗方面的应用 (23) 四、总结及展望 (24) 参考文献 (25)

一、石墨烯概述 碳广泛存在于自然界中,是构成生命有机体的基本元素之一。碳基材料是材料界中一类非常具有魅力的物质,从无定形的碳黑到晶体结构的天然层状石墨;从零维纳米结构富勒烯到一维碳纳米管无不给人们带来炫丽多彩的科学新思路。而二维碳基材料石墨烯的发现,不仅极大地丰富了碳材料的家族,而且其所具有的特殊纳米结构和性能,使得石墨烯无论是在理论还是实验研究方面都已展示出了重大的科学意义和应用价值,从而为碳基材料的研究提供新的目标和方向。 碳的晶体结构—石墨和金刚石(三维)是自然界中最早为人们熟知的两种碳同素异构体,因化学成键方式不同而具有截然相反的特性。1985年,一种被称为“巴基 (零维)被首次发现,三位发现者于11年后, 即1996年获诺贝尔球”的足球形分子C 60 化学奖。1991年,由石墨层片卷曲而成的一维管状结构: 碳纳米管被发现,发现者饭岛澄男(Sumio Iijima)于2008年获卡弗里纳米科学奖。石墨烯(Graphene)是只有一个原子层厚的单层石墨片,是石墨的极限形式。作为碳的二维晶体结构, 石墨烯的出现最终为人类勾勒出一幅点、线、面、体(从零维到三维)相结合的完美画面(图1)。 图1 碳的晶体结构 石墨烯作为一种独特的二维晶体,有着非常优异的性能:具有超大的比表面积,理论值为2630m2/g;机械性能优异,杨氏模量达1.0TPa;热导率为5300W·m-1·K-1,是铜热导率的10多倍;几乎完全透明,对光只有2.3%的吸收;在电和磁性能方面具有很多奇特的性质,如室温量子霍尔效应、双极性电场效应、铁磁性、超导性及高

石墨烯研究现状及应用前景

石墨烯材料研究现状及应用前景 崔志强 (重庆文理学院材料与化工学院,重庆永川402160) 摘要:近几年来, 石墨烯材料以其独特的结构和优异的性能, 在化学、物理和材料学界引起了轰动。本文引用大量最新的参考文献,阐述了石墨烯的制备方法如机械剥离法、取向附生法、加热 SiC 法、爆炸法、石墨插层法、热膨胀剥离法、电化学法、化学气相沉积法、氧化石墨还原法、球磨法等,分析了各种制备方法的优缺点。论述了石墨烯材料在透明电极、传感器、超级电容器、能源储存、复合材料等方面的应用,同时简要分析了石墨烯材料研究的现实意义,展望了其未来的发展前景。 关键词:石墨烯材料;制备方法;现实意义;发展现状;应用前景 中图分类号: TQ323 文献标识码:A 文章编号: Research status and application prospect of graphene materials Cui Zhiqiang (Faculty of materials and chemical engineering, Chongqing Academy of Arts and Sciences, Yongchuan, Chongqing 402160) Abstract: In recent years, graphene has caused a sensation in chemical, physical and material science due to its unique structure and excellent properties. Cited in this paper a large number of the latest references, expounds the graphene preparation methods such as layer method, thermal mechanical stripping method, orientation epiphytic method, heating SiC method, explosion, graphite intercalation expansion stripping method, electrochemical method, chemical vapor phase deposition method, graphite oxide reduction method, ball milling method, and analyze the advantages and disadvantages of various preparation methods. This paper discusses the application of graphene materials in transparent electrodes, sensors, super capacitors, energy storage and composite materials, and briefly analyzes the practical significance of the study of graphene materials, and gives a prospect of its future development. Keywords: graphene materials; preparation methods; practical significance; development status; application prospect 0 引言 1985 年英美科学家发现富勒烯[1]和1991 年日本物理学家Iijima 发现碳纳米管[2],加之英国曼彻斯特大学科学家于2004 年成功制备石墨烯[3]之后,金刚石(三维)、石墨(三维)、石墨烯(二维)、碳纳米管(一维)和富勒烯(零维)组成了一个完整的碳系材料“家族”。从理论上说,石墨烯是除金刚石外所有碳晶体的基本结构单元,如果从石墨烯上“剪”出不同形状的薄片,进一步就可以包覆成零维的富勒烯,卷曲成一维的碳纳米管,堆叠成三维的石墨,如图1 所示[4]。由于石墨烯优异的电学、热学、力学性能,近年来各国科研人员对其的研究日益增长,已经是材料科学领域的研究热点之一。2010 年诺贝尔物理学奖揭晓[5-6]之后,人们对石墨烯的研究和关注越来越多,新的发现不断涌现。在不断深入研究石墨烯的制备方法和性质的过程中,其应用领域也在不断扩大。由于石墨烯缺乏带隙以及在室温下的超高电子迁移率、低于银铜的电阻率、高热导率[7]等,在光电晶体管、生化传感器、电池电极材料和复合材料方面有着很高

浅谈石墨烯的发展与应用

浅谈石墨烯的发展与应用 碳元素广泛存在于自然界,其独特的物性和多样的形态随着人类文明的进步而逐渐被发现。自1985年富勒烯和1991年碳纳米管被科学家发现以后,三维的金刚石、一维的碳纳米管、零维的富勒球组成了碳系家族。碳的零维、一维、三维结构材料已经被实验证实可以稳定存在的,那二维的理想石墨烯(Graphene)片层能自由存在吗?关于准二维晶体的存在性,科学界一直存在争论。早先科学家认为,准二维晶体材料由于其本身的热力学不稳定性,在室温环境下会迅速分解或拆解,长程有序结构在无限的二维体系中无法维持。但单层Graphene作为研究碳纳米管的理论模型得到了广泛的关注。直到2004年,英国曼彻斯特大学的物理学教授Geim等用一种极为简单的方法剥离并观测到了自由且稳定存在的单层Graphene,掀起了一场关于Graphene理论与实验的研究新热潮。Graphene 是材料科学和凝聚态物理学领域的一颗迅速上升的新星。尽管一般的材料要等到商业产品的出现,其应用价值才能被肯定,但是Graphene在基础科学中的重要性却无需更多的证明。虽然Graphene走过的历史很短,但是这种严格的二维材料具有特殊的晶体学和电学性质,并且在应用方面有可预见的价值。 一、Graphene的结构 Graphene是由碳原子六角结构(蜂窝状)紧密排列的二维单层石墨层。每个碳原子通过σ键与其它三个碳原子连接,由于每个碳原子有四个价电子,所以每个碳原子又会贡献出一个未成键的π电子。这些π电子在晶体中自由移动赋予了Graphene良好的导电性。同时,Graphene还可以包成0维富勒烯,卷成1维碳纳米管,叠成3维石墨,它是众多碳质材料的基元,如果对Graphene有更深入的了解,就有可能依照人们的意愿定向制备某种需要的碳质材料。在此有一点需要说明,Graphene层并不是完全平整的,它具有物质微观状态下固有的粗糙性,表面会出现起伏如波浪一般。这种褶皱会自发的产生并且最大厚度可达到0.8nm,也有一种观点认为褶皱是由于衬底与Graphene相互作用导致的,具体原因还在进一步研究中。 在回顾关于Graphene早先的工作之前,定义什么是2维晶体是很有用的。很显然,单原子薄层是2维晶体,100个单原子层的叠加可以认为是一个薄的3维材料。但是具体多少层才算是3维材料?对于Graphene,这个问题变得比较明朗。众所周知,电子结构随着层数的变化而迅速演变,10层的厚度就可以达到3维石墨的限制要求。在很好的近似下,单层和双层Graphene都有简单的电子光谱:它们都是具有一种电子和一种空穴的零带隙的半导体(亦即零交叠半金属)。对于三及三以上数目的薄层,光谱将变得复杂:许多电荷载体出现,导带和价带也明显的交叠。这一条件就将Graphene区分成三类:单、双、多(3到<10)层Graphene,更厚的结构可以被认为是薄层的石墨。 二、Graphene的性质 虽然有很多新的2维材料,但是目前几乎所有的试验和理论的成果都集中在Graphene上,而忽略了其它2维晶体的存在。对Graphene的这种偏爱是否公

2021石墨烯行业现状及前景趋势

2021年石墨烯行业现状 及前景趋势

目录 1.石墨烯行业现状 (5) 1.1石墨烯行业定义及产业链分析 (5) 1.2石墨烯市场规模分析 (7) 1.3石墨烯市场运营情况分析 (7) 2.石墨烯行业存在的问题 (10) 2.1技术问题趋势 (10) 2.2市场问题趋势 (10) 2.3成本问题趋势 (11) 2.4应用市场有待拓展 (11) 2.5标准体系有待完善 (11) 2.6行业服务无序化 (12) 2.7供应链整合度低 (12) 2.8产业结构调整进展缓慢 (13) 2.9供给不足,产业化程度较低 (13) 3.石墨烯行业前景趋势 (14) 3.1石墨烯复合材料种类多样 (14) 3.2性能优良且应用前景广阔 (14) 3.3石墨烯的应用领域十分广泛 (15) 3.4产业资源加速整合 (15) 3.5政策利好 (15)

3.6延伸产业链 (15) 3.7行业协同整合成为趋势 (16) 3.8生态化建设进一步开放 (16) 3.9服务模式多元化 (17) 3.10呈现集群化分布 (17) 3.11需求开拓 (18) 3.12行业发展需突破创新瓶颈 (18) 4.石墨烯行业政策环境分析 (20) 4.1石墨烯行业政策环境分析 (20) 4.2石墨烯行业经济环境分析 (20) 4.3石墨烯行业社会环境分析 (20) 4.4石墨烯行业技术环境分析 (21) 5.石墨烯行业竞争分析 (22) 5.1石墨烯行业竞争分析 (22) 5.1.1对上游议价能力分析 (22) 5.1.2对下游议价能力分析 (22) 5.1.3潜在进入者分析 (23) 5.1.4替代品或替代服务分析 (23) 5.2中国石墨烯行业品牌竞争格局分析 (24) 5.3中国石墨烯行业竞争强度分析 (24) 6.石墨烯产业投资分析 (25)

石墨烯发展概况

2015 年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:复合材料专题报告 学生所在院(系):航天学院 学生所在学科:工程力学 学生姓名:刘猛雄 学号:15S018001 学生类别:学术型 考核结果阅卷人 1 石墨烯的制备 ........................................................................................ 错误!未定义书签。 1.1 试剂................................................................................................. 错误!未定义书签。 1.2 仪器设备......................................................................................... 错误!未定义书签。 1.3 样品制备......................................................................................... 错误!未定义书签。 2 石墨烯表征 ............................................................................................ 错误!未定义书签。 2.1 石墨烯表征手段 ............................................................................. 错误!未定义书签。 2.2 石墨烯热学性能及表征 ................................................................. 错误!未定义书签。 2.2.1 石墨烯导热机制 ...................................................................... 错误!未定义书签。 ............................................................................................................ 错误!未定义书签。 2.2.3 石墨烯导热性能的实验测定 .................................................. 错误!未定义书签。 3 石墨烯力学性能研究 ............................................................................ 错误!未定义书签。 3.1石墨烯的不平整性和稳定性 .......................................................... 错误!未定义书签。 3.2 石墨烯的杨氏模量、强度等基本力学性能参数的预测 ............. 错误!未定义书签。 3.3石墨烯力学性能的温度相关性和应变率相关性 .......................... 错误!未定义书签。 3.4 原子尺度缺陷和掺杂等对石墨烯力学性能的影响 ..................... 错误!未定义书签。 石墨烯的材料与力学性能分析石墨烯以其优异的性能和独特的二维结构成为材料领域研究热点,石墨烯是一种由单层

相关文档
最新文档