几何最值—折叠求最值(含答案)

几何最值—折叠求最值(含答案)
几何最值—折叠求最值(含答案)

学生做题前请先回答以下问题

问题1:几何最值问题的处理思路:

①分析________、_________,寻找__________;

②若属于常见模型、结构,调用模型、结构解决问题;

若不属于常见模型,要结合所求目标,根据___________转化为基本定理或表达为函数解决问题.

转化原则:

尽量减少变量,向________、__________、__________靠拢,或使用同一变量表达所求目标.

问题2:几何最值问题转化为基本定理处理;

基本定理:

①______________________________;

②______________________________;

③______________________________;

④过圆内一点,最长的弦为直径,最短的弦为垂直于直径的弦.

几何最值—折叠求最值

一、单选题(共6道,每道16分)

1.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直

线折叠得到△,连接,则的最小值是( )

A. B.

C. D.4

答案:A

解题思路:

试题难度:三颗星知识点:几何最值问题

2.在Rt△ABC中,∠ACB=90°,AC=9,BC=12,P,Q两点分别是边AC,BC上的动点.将△PCQ沿PQ翻折,点C的对应点为,连接,则的最小值是( )

A.1

B.2

C.3

D.4

答案:C

解题思路:

试题难度:三颗星知识点:几何最值问题

3.如图,在△ABC中,∠BAC=120°,AB=AC=4,M,N分别为边AB,AC上的动点,将△AMN沿MN翻折,点A的对应点为,连接,则长度的最小值为( )

A. B.4

C. D.

答案:D

解题思路:

试题难度:三颗星知识点:翻折变换(折叠问题)

4.如图,在直角梯形ABCD中,AD⊥AB,AB=6,AD=CD=3,点E,F分别在线段AB,AD上,将△AEF沿EF 翻折,点A的落点记为P.当P落在直角梯形ABCD内部时,DP长度的最小值为( )

A.3

B.

C. D.1

答案:C

解题思路:

试题难度:三颗星知识点:翻折变换(折叠问题)

5.动手操作:在矩形纸片ABCD中,AB=5,AD=13.如图所示,折叠纸片,使点A落在BC边上的处,折痕为PQ,当点在BC边上移动时,折痕的端点P,Q也随之移动.若限定点P,Q分别在

AB,AD边上移动(包括端点),设=x,则x的取值范围是( )

A. B.

C. D.

答案:C

解题思路:

试题难度:三颗星知识点:几何最值问题

6.如图,在三角形纸片ABC中,已知∠ABC=90°,BC=5,AB=4,过点A作直线平行于

BC,折叠三角形纸片ABC,使直角顶点B落在直线上的点P处,折痕为MN,当点P在直线上移动时,折痕的端点M,N也随之移动.若限定端点M,N分别在AB,BC边上(包括端点)移动,则线段AP长度的最大值与最小值之差为( )

A. B.4

C.2

D.3

答案:C

解题思路:

试题难度:三颗星知识点:折叠问题(翻折变换)

2018几何图形的折叠与动点问题

几何图形的折叠与动点问题 1.在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为------ 1题图2题图3题图 2.如图,在正方形ABCD中,AB=√2,点P为边AB上一动点(不与A、B重合),过A、P在正方形内部作正方形APEF,交边AD于F点,连接DE、EC,当△CDE 为等腰三角形时,AP=--------- 3.在矩形ABCD中,AD=8,AB=6,点E为射线DC上一个动点,把△ADE沿AE 折叠,使点D落在点F处,若△CEF为直角三角形时,DE的长为------- 4.在矩形ABCD中,AB=4,BC=3,点P在AB上。若将△DAP沿DP折叠,使点A落在矩形对角线上的处,则AP的长为__________. 5.如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=8,E、F分别为AB、AC上的点,沿直线EF将∠B折叠,使点B恰好落在BC上的D处,当△ADE恰好为直角三角形时,BE的长为. 5题图6题图7题图 6.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm,且tan∠EFC=,那么矩形ABCD的周长为 7.如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP= 8.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是。 8题图9题图

初中数学几何最值问题典型例题精修订

初中数学几何最值问题 典型例题 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

初中数学《最值问题》典型例题一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 几何最值问题中的基本模型举例

二、典型题型

1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若 ∠AOB=45°,OP=PMN的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解. 【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD ∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD. ∴△COD是等腰直角三角形. 则CD OC=6. 【题后思考】本题考查了对称的性质,正确作出图形,理解△PMN周长最小的条件是解题的关键. 2.如图,当四边形PABN的周长最小时,a= .

中考几何最值问题(含答案)

几何最值问题 一.选择题(共6小题) 1.(2015?孝感一模)如图,已知等边△ABC的边长为6,点D为AC的中点,点E为BC的中点,点P为BD上一点,则PE+PC的最小值为() 3 AE==3, . 2.(2014?鄂城区校级模拟)如图,在直角坐标系中有线段AB,AB=50cm,A、B到x轴的距离分别为10cm和40cm,B点到y轴的距离为30cm,现在在x轴、y轴上分别有动点P、Q,当四边形PABQ的周长最短时,则这个值为() 5050+50

LN=AS==40 MN==50 MN=MQ+QP+PN=BQ+QP+AP=50 =50 3.(2014秋?贵港期末)如图,AB⊥BC,AD⊥DC,∠BAD=110°,在BC、CD上分别找一点M、N,当△AMN周长最小时,∠MAN的度数为()

4.(2014?无锡模拟)如图,∠MON=90°,矩形ABCD的顶点A,B分别在OM、ON上,当B 在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=.运动过程中,当点D到点O的距离最大时,OA长度为() C OE=AE=AB=× AD=BC= DE= ADE==, =

DF=, OA=AD= 5.(2015?鞍山一模)如图,正方形ABCD的边长为4,点E在边BC上且CE=1,长为的线段MN在AC上运动,当四边形BMNE的周长最小时,则tan∠MBC的值是() C D ,连结,此时四 ,连结MN= =, =, ,

PC= PDC==. 6.(2015?江干区一模)如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE 为半径⊙C.G是⊙C上一动点,P是AG中点,则DP的最大值为() C BG AD=BD=AB=3 CE=

初中数学几何最值问题综合测试卷(含答案)

初中数学几何最值问题综合测试卷 一、单选题(共6道,每道16分) 1.如图,已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,求∠APB的度数为( ) A.100° B.110° C.140° D.80° 答案:A 解题思路:作定点P关于直线OM,ON的对称点,然后利用两点之间线段最短解题. 试题难度:三颗星知识点:最值问题 2.如图,当四边形PABN的周长最小时,a的值为( ) A. B.1 C.2 D. 答案:A 解题思路:先平移AP或BN使P,N重合,然后作其中一个定点关于定直线l的对称点,然后利用两点之间线段最短解题. 试题难度:三颗星知识点:最值问题 3.如图,已知两点A,B在直线l的异侧,A到直线l的距离AC=6,B到直线l的距离BD=2,CD=3,点

P在直线l上运动,则的最大值为( ) A. B.3 C.1 D.5 答案:D 解题思路:作其中一个定点关于定直线l的对称点,然后利用三角形三边关系解题. 试题难度:三颗星知识点:最值问题 4.如图,直角梯形纸片ABCD中,AD⊥AB,AB=4,AD=2,CD=3,点E,F分别在线段AB,AD上,将△AEF 沿EF翻折,点A的落点记为P.当点P落在直角梯形ABCD内部时,PD的最小值为( ) A.2 B.1 C. D.3 答案:C 解题思路:找运动过程中的不变特征进行转化,转化成求DP+PE+EB的最大值,减少变量,然后利用两点之间线段最短来解题. 试题难度:三颗星知识点:最值问题 5.如图,∠MON=90°,等腰Rt△ABC的顶点A,B分别在OM,ON上,当点B在ON上运动时,点A

第1讲:生活中的立体图形及其展开与折叠-学案

知识讲解: 1、常见的几何体及其特点 长方体:有8个顶点,12条棱,6个面,且各面都是长方形(正方形是特殊的长方形)正方体是特殊的长方体。 2、棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱。 3、圆柱:有上下两个底面和一个侧面,两个底面是半径相等的圆。 4、圆锥:有一个底面和一个顶点,且侧面展开图是扇形。 5、球:由一个面围成的几何体 2、展开与折叠 (1)棱柱:如图1所示的棱柱,上底面是五边形A'B'C'D'E',下底面是五边形ABCDE,这两个五边形的大小形状都相同,这个棱柱有5个侧面,当它为直棱柱时,5个侧面都是长方 形,当它为斜棱柱时,5个侧面都是平行四边形,在棱柱中任何相邻的两个面的交线都叫做棱 桂的棱,其中相邻的两个侧面的交线都叫做棱柱的侧棱,图1中的棱柱有15条侧棱,其中有 5条侧棱,这5条侧棱的长相等,将这个棱柱展开定一个长方形(图2是图1中棱柱的侧面展 开图)反过来可以将一个长方形折叠成一个棱桂的侧面。

当一个棱柱的底面是三角形时,称为三棱柱,当一个棱柱的底面是四边形时,称为四棱柱,(长方体正方体都是四棱柱)当一个棱柱的底面是五边形时,称为五棱柱(图1就是五棱柱)………当一个棱柱的底面是n边形时,称为n棱柱,它有2n个顶点,3n条棱,n十2个面(其中2个底面,n个侧面。)圆柱和圆锥的侧面展开图:圆柱的侧面展开图是一个长方形,圆柱的底面周长和高分别是这个长方形的长与宽,圆锥的侧面展开图是一个扇形,这个扇形的半径就是圆锥的母线(即圆锥的顶点与圆锥底面上任意一点的连线长,而扇形的弧长就是圆锥底面圆的周长,反过来,可以将一个扇形围成一个圆锥的侧面。 考点一:几何体类型的划分 【例题】 1、下面这些基本图形和你很熟悉,试一试在括号里写出它们的名称. ( ) ( ) ( ) ( ) ( ) (2)将这些几何体分类,并写出分类的理由. 2、下列几何体中,属于圆锥的是( ). 3、例题如图所示,上海世博会中国国家馆“东方之冠”是世界建筑史上的经典,请写出图中含有的立体图形: 【练习】

初中数学《几何最值问题》典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD

2018中考数学专题复习 几何最值问题综合课(pdf,无答案)

知识板块 考点一:几何图形中的最小值问题 方法: 1.找对称点求线段的最小值; 步骤:①找已知点的对称点,动点在哪条线上动,就是对称轴; ②连接对称点与另一个已知点; ③与对称轴的交点即是要找的点;通常用勾股定理求线段长; 2.利用三角形三边关系:两边之差小于第三边; 3.转化成其他线段,间接求线段的最小值;例如:用点到直线的距离最短,通过作垂线求最值; 4.用二次函数中开口向上的函数有最小值; 考点二:几何图形中的最大值问题 方法: 1.当两点位于直线的同侧时,与动点所在的直线的交点,这三点在同一直线时,线段差有最大值; 2.当两点位于直线的异侧时,先找对称点,同样三点位于同一直线时,线段差有最大值; 3.利用三角形三边关系:两边之和大于第三边; 4.用二次函数中开口向下的函数有最大值; 例题板块 考点一:几何图形中的最小值问题 例1.如图1,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是 _________ . 图1 图2 图3 例2.如图2,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 . 例3.如图3,点P 是Rt △ABC 斜边AB 上的一点,PE ⊥AC 于E ,PF ⊥BC 于F ,BC=6,AC=8,则线段EF 长的最小值为 ; 第一节 几何最值问题专项

例4.如图,在Rt △ABC 中,AB=BC=6,点E ,F 分别在边AB ,BC 上,AE=3,CF=1,P 是斜边AC 上的一个动点,则△PEF 周长的最小值为 . 图4 图5 例5.如图,在平面直角坐标系中,Rt △OAB 的顶点A 的坐标为(9,0),点C 的坐标为(2,0),tan ∠BOA= A .67 B .231 C. 6 D .193+ 例6.如图6,等腰Rt △ABC 中,∠ACB=90°,AC=BC=4,⊙C 的半径为1,点P 在斜边AB 上,PQ 切⊙O 于点Q ,则切线长PQ 长度的最小值为( ) 图6 图7 图8 例7.如图7,矩形ABCD 中,AB=4,BC=8,E 为CD 的中点,点P 、Q 为BC 上两个动点,且PQ=3,当CQ= _________ 时,四边形APQE 的周长最小. 考点二:几何图形中的最大值问题 例1.已知点A (1,2)、B (4,-4),P 为x 轴上一动点. (1)若|PA |+|PB |有最小值时,求点P 的坐标; (2)若|PB |-|PA |有最大值时,求点P 的坐标. 例2.如图8所示,已知A 11 (,y )2,B 2(2,y )为反比例函数1y x =图像上的两点,动点P (x,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是 .

题型四_几何图形的折叠与动点问题

题型四几何图形的折叠与动点问题 试题演练 1. 如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=x,现将纸片折 叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原,则x的取值围是__________. 2. 如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是边BC的中点,点E是边AB 上的任意一点(点E不与点B重合),沿DE翻折△DBE使点B落在点F处,连接AF,则线段AF长的最小值是________. 3. (’15模拟)如图,在边长为4的正方形ABCD中,M为BC的中点,E、F分别为AB、CD 边上的动点.在点E、F运动的过程中始终保持△EMF为直角三角形,其中∠EMF=90°. 则直角三角形的斜边EF的取值围是________. 4. 如图,在边长为2的菱形ABCD中,∠A=60°,点P为射线AB上一个动点,过点P作 PE⊥AB交射线AD于点E,将△AEP沿直线PE折叠,点A的对应点为F,连接FD、FC,若△FDC为直角三角形时,AP的长为________.

5. 如图,正方形ABCD的边长为2,∠DAC的平分线AE交DC于点E,若点P、Q分别是AD 和AE上的动点,则DQ+PQ的最小值为________. 6. 如图,在矩形ABCD中,AD=3,AB=4,点E为DC上一个动点,把△ADE沿AE折叠,当 点D的对应点D′落在矩形的对角线上时,DE的长为________. 7. 如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上,对应点为点E, 若BG=10,则折痕FG的长为________. 8. 如图,在Rt△ABC中,∠ABC=90°,AC=10,BC=8,AD是∠BAC的平分线,点E是斜 边AC上的一点,且AE=AB,沿△DEC的一个角平分线折叠,使点C落在DE所在直线上,则折痕的长度为________. 9. (’15模拟)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点E是AB边上一动点, 过点E作DE⊥AB交AC边于点D,将∠A沿直线DE翻折,点A落在线段AB上的点F处,当△BCF为等腰三角形时,AE的长为________.

初中数学最值问题集锦 几何地定值与最值

几何的定值与最值 几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或 几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本 方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法, 先探求出定值,再给出证明. 几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量 (如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基 本方法有: 1.特殊位置与极端位置法; 2.几何定理(公理)法; 3.数形结合法等. 注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这 是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数 形结合、特殊与一般相结合、 逻辑推理与合情想象相结合等思想方法. 【例题就解】 【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以 AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 . 思路点拨 如图,作CC ′⊥AB 于C ,DD ′⊥AB 于D ′, DQ ⊥CC ′,CD 2=DQ 2+CQ 2,DQ=2 1AB 一常数,当CQ 越小,CD 越小, 本例也可设AP=x ,则PB=x 10,从代数角度探求CD 的最小值. 注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特 殊位置与极端位置是指: (1)中点处、垂直位置关系等; (2)端点处、临界位置等. 【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度 数( ) ⌒

初中数学最值问题解题技巧,初中几何最值问题方法归纳总结

几何最值问题大一统 追本溯源化繁为简 目有千万而纲为一,枝叶繁多而本为一。纲举则目张,执本而末从。如果只在细枝末节上下功夫,费了力气却讨不了好。学习就是不断地归一,最终以一心一理贯通万事万物,则达自由无碍之化境矣(呵呵,这境界有点高,慢慢来)。 关于几何最值问题研究的老师很多,本人以前也有文章论述,本文在此基础上再次进行归纳总结,把各种知识、方法、思想、策略进行融合提炼、追本溯源、认祖归宗,以使解决此类问题时更加简单明晰。 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。 证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 AD一定,所以D是定点,C是直线 的最短路径,求得当CD⊥AC时最短为 是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

常见几何图形的折叠问题

常见几何图形的折叠问题 图形的折叠是图形变换的一种,折叠型问题的立意新颖,变化巧妙,是近几年中考中的热点问题,主要考察学生的探究能力,空间想象能力,抽象思维能力及逻辑推理能力。体现的是教材中的轴对称问题,在解决这类问题中,运用的知识点比较多,综合性强,如轴对称性、全等思想、相似思想、勾股定理、代换思想等,是培养学生识图用图能力,灵活运用数学知识解决问题能力的一条非常有效的途径。 折叠操作就是将图形的一部分沿着一条直线翻折1800,使它与另一部分图形在这条直线的同旁与其重叠或不重叠,其中“折”是过程,“叠”是结果. 折叠问题的实质是图形的轴对称变换,折叠更突出了轴对称问题的应用. 所以在解决有关的折叠问题时可以充分运用轴对称的思想和轴对称的性质。 折纸中所蕴含着的丰富数学知识备受中考命题者的青睐,设计了许多别具创意的折叠问题,现采撷其中较有代表性的试题,予以例析. 一、三角形中的折叠 例1 如图1,直角三角形纸片ABC ,∠C=90o,AC=6,BC=8,折叠△ABC 的一角,使点B 与A 点重合,展开得折痕DE ,求BD 的长. 功能分析:此题主要运用勾股定理解决折叠问题,往往融方程与几何图形于一体,具有较强的综合性。 解法研究: 由折叠可知,△ADE ≌△BDE .所以 AD=BD .于是,在Rt △ACD 中,由勾股定理建立方程,求出AD 的长即可. 设BD=x ,则AD=x ,CD=8-x .在Rt △ACD 中,由勾股定理,得AC 2+CD 2= AD 2,所以62+(8-x)2= x 2,解得x= 425.所以BD 的长为4 25. 二、特殊四边形中的折叠 1. 矩形中的折叠 例2 如图2,将矩形ABCD 沿着直线BD 折叠,使点C 落在1C 处,B 1C 交AD 于E ,AD =8,AB =4,求△BED 的面积. 功能分析:由折叠后的图形与原图形全等,从而可知△BCD ≌△B 1C D , 则易得BE =DE ..在Rt △ABE 中,用勾股定理先算出BE 的长,再在Rt △BEF 中, 用勾股定理求出EF 的长,即可求出△BDE 的面积. 折叠问题常结合全等三角形和等腰三角形来解决. 矩形的折叠常与直角三角形有关,选择一个直角三角形,运用勾股定理来解是常用的方法. 解法研究:在矩形ABCD 中,AD ∥BC , ∴∠2=∠3. 当矩形ABCD 沿着直线BD 折叠后,△B 1C D 与△BCD 关于直线BD 对称, ∴∠1=∠2, ∴∠3=∠1, ∴BE =ED . 图2

几何图形折叠问题

几何图形折叠问题 【疑难点拨】 1.折叠(翻折)问题常常出现在三角形、四边形、圆等平面几何问题中,其实质是轴对称性质的应用.解题的关键利用轴对称的性质找到折叠前后不变量与变量,运用三角形的全等、相似及方程等知识建立有关线段、角之间的联系. 2.折叠(翻折)意味着轴对称,会生成相等的线段和角,这样便于将条件集中.如果题目中有直角,则通常将条件集中于较小的直角三角形,利用勾股定理求解. 3.矩形中的一次折叠通常利用折叠性质和平行线性质求角的度数,或者利用折叠性质以及勾股定理求线段长度.矩形中的两次或多次折叠通常出现“一线三直角”的模型(如图),从而构造相似三角形,利用相似三角形求边或者角的度数. 4.凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.1.常见的轴对称图形:等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等. 【基础篇】 一、选择题: 1..(2018?四川凉州?3分)如图将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下到结论不一定成立的是() AD=BC′B.∠EBD=∠EDB C.△ABE∽△CBD D.sin∠ABE= A.

2. (2017山东烟台)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB.已知OA=6,取OA的中点C,过点C作CD⊥OA交于点D,点F是上一点.若将扇形BOD沿OD翻折,点B恰好与点F重合,用剪刀沿着线段BD,DF,FA依次剪下,则剪下的纸片(形状同阴影图形)面积之和为(). A.36π-108 B.108-32π C.2πD.π 3. (2017浙江衢州)如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD 于点F,则DF的长等于() A. B. C. D. 4.(2018·山东青岛·3分)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕现交于点F.已知EF=,则BC的长是() A. B.C.3 D.3 5.(2017乌鲁木齐)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4且∠AFG=60°,GE=2BG,则折痕EF的长为() A.1 B. C.2 D. 二、填空题: 6.(2018·辽宁省盘锦市)如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为. 7.(2018·山东威海·8分)如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C 与AD边上的点K重合,FH为折痕.已知∠1=°,∠2=75°,EF=+1,则BC的长.

最全初中数学几何动点问题专题分类归纳汇总训练

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

最新初中几何中线段和与差最值问题

初中几何中线段和(差)的最值问题 一、两条线段和的最小值。 基本图形解析: 一)、已知两个定点: 1、在一条直线m 上,求一点P ,使PA+PB 最小; (1)点A 、B 在直线m 两侧: (2)点A 、B 在直线同侧: 2、在直线m 、n 上分别找两点P 、Q ,使PA+PQ+QB 最小。 (1)两个点都在直线外侧: (2)一个点在内侧,一个点在外侧: (3)两个点都在内侧: m m B m A B m n m n n m n n n m

( 4)、台球两次碰壁模型 变式一:已知点A、B位于直线m,n 的内侧,在直线n、m分别上求点D、E点,使得围成的四边形ADEB周长最短. 变式二:已知点A位于直线 m,n 的内侧, 在直线m、n分别上求点P、Q点PA+PQ+QA 周长最短. 二)、一个动点,一个定点: (一)动点在直线上运动: 点B在直线n上运动,在直线m上找一点P,使PA+PB最小(在图中画出点P和点B)1、两点在直线两侧: 2、两点在直线同侧: (二)动点在圆上运动 点B在⊙O上运动,在直线m上找一点P,使PA+PB最小(在图中画出点P和点B) 1、点与圆在直线两侧: m n m n m n m m

2、点与圆在直线同侧: 三)、已知A 、B 是两个定点,P 、Q 是直线m 上的两个动点,P 在Q 的左侧,且PQ 间长度恒定,在直线m 上要求P 、Q 两点,使得PA+PQ+QB 的值最小。(原理用平移知识解) (1)点A 、B 在直线m 两侧: 作法:过A 点作AC ∥m,且AC 长等于PQ 长,连接BC,交直线m 于Q,Q 向左平移PQ 长,即为P 点,此时P 、Q 即为所求的点。 (2)点A 、B 在直线m 同侧: 练习题 1.如图1,∠AOB =45°,P 是∠AOB 内一点,PO =10,Q 、R 分别是OA 、OB 上的动点,求△PQR 周长的最小值为 . 2、如图2,在锐角三角形ABC 中,AB=4 ,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M,N 分别是AD 和AB 上的动点,则BM+MN 的最小值为 . 3、如图3,在锐角三角形ABC 中 , AB=BAC=45,BAC 的平分线交BC 于D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 。 m m Q Q

精彩初中几何最值问题全总结

一、基本图形 余不赘述,下面仅举一例证明: [定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO, AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。 上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。 类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定。 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB 边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

立体图形的折叠与展开

立体图形的折叠与展开 一.选择题(共3小题) 1.下列展开图中,不能围成一个封闭的几何体的是() A.B. C.D. 2.如图所示的图形,是下面哪个正方体的展开图() A.B.C.D. 3.将如图所示的正方体展开,可能正确的是() A.B.C.D. 二.填空题(共3小题) 4.一个长方体形状的粉笔盒展开如图所示,相对的两个面上的数字之和等于6,则a+b+c=.

5.如图,是一个正方体的展开图,原正方体中有“新”字一面的相对面上的字是. 6.小石准备制作一个封闭的正方体盒子,他先用5个边长相等的正方形硬纸制作成如图所示的拼接图形(实线部分),经折叠后发现还少一个面.请你在图中的拼接图形上再接上一个正方形,使得新拼接的图形经过折叠后能够成为一个封闭的正方体盒子(只需添加一个符合要求的正方形,并将添加的正方形用阴影表示). 三.解答题(共3小题) 7.(1)请写出对应几何体的名称:①;②;③. (2)图③中,侧面展开图的宽(较短边)为8cm,圆的半径为2cm,求图③所对应几何体的表面积.(结果保留π) 8.图①是正方体的平面展开图,六个面的点数分别为1点、2点、3点、4点、5点、6点,将点数朝外折叠成一枚正方体骰子,并放置于水平桌面上,如图②所示. (1)在图②所示的正方体骰子中,1点对面是点;2点的对面是点(直接填空); (2)若骰子初始位置为图②所示的状态,将骰子向右翻滚90°,则完成1次翻转,此时骰子朝下一面的点数是2,那么按上述规则连线完成2次翻转后,骰子朝下一面的点数是点;连续完成2016次翻转后,骰子朝下一面的点数是点(直接填空).

9.我们知道,将一个正方体或长方体的表面沿某些棱剪开,可以展成一个平面图形.(1)下列图形中,是正方体的表面展开图的是 (2)如图所示的长方体,长、宽、高分别为4、3、6,若将它的表面沿某些棱剪开,展成一个平面图形.则下列图形中,可能是该长方体表面展开图的有(填序号) (3)下列A、B分别是题(2)中长方体的一种表面展开图,已知求得图A的外围周长为52,请你帮助求出图B的外围周长; (4)第(2)题中长方体的表面展开图还有不少,聪明的你能画出一个使外围周长最大的表面展开图吗?请画出这个表面展开图,并求出它的外围周长.

初中数学几何最值问题

关于线段最短问题在几何中的运用之课前预习指导探索 三界中学 杨良举 在初中平面几何的动态问题中,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为几何最值问题.近年来,成都中考题常通过几何最值问题考查学生的实践操作能力、空间想象能力、分析问题和解决问题的能力.本文针对不同类型的几何最值问题作一总结与分析.最值问题也学生在解决时比较困难,失分比较严重的题型,因此结合我们校实际,把《几何最值问题》作为我校的微课题研究,下面就最值问题的解决方法研究如下: 案例分析 一、应用几何性质 1.三角形的三边关系 例1 如图1,90MON ∠=?,矩形ABCD 的顶点A 、B 分别在边,OM ON 上.当分在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中2,1AB BC ==,运动过程中,点D 到点O 的最大距离为( ) (A) 1 (B) (c) 5 (D)52 分析 如图1,取AB 的中点E ,连结,,OE DE OD . OD OE DE ≤+Q , ∴当,,O D E 三点共线时,点D 到点O 的距离最大,此时,2,1AB BC ==, 1 12 OE AE AB ∴===.DE == OD ∴1. 故选A. 2.两点间线段最短 例2 如图2,圆柱底面半径为2cm,高为9πcm ,点,A B 分别是回柱两底面圆周

上的点,且,A B 在同一母线上,用一棉线从A 顺着圆柱侧面绕3圈到B ,求棉线长度最短为 . 分析 如图3,将圆柱展开后可见,棉线最短是三条斜线的长度,第一条斜线与 底面圆周长、圆柱的三分之一高组成直角三角形. 由周长公式知底面圆一周长为4πcm ,圆柱的三分之一高为3πcm ,根据勾股定理,得一条斜线长为5πcm ,根据平行四边形的性质,棉线长度最短为15πcm. 3.垂线段最短 例3 如图4,点A 的坐标为(1,0)-,点B 在直线y x =运动,当线段AB 最短时,点B 的坐标为( ) (A)(0,0) (B)11(,)22-- (C) (D)( 分析 如图4,过点A 作'AB OB ⊥,垂足为点'B ,过'B 作'B C x ⊥轴,垂足为C .由垂线段最短可知,当'B 与点B 重合时,AB 最短. ∵点B 在直线y x =上运动, ∴'AOB V 是等腰直角三角形 ∴'B CO V 为等腰直角三角形 ∵点A 的坐标为(1,0)-,

立体图形的展开与折叠学案

立体图形的展开与折叠 【知识要点】 1.简单的几何体的分类:柱、锥、台、球. ?? ??? 棱柱:有两个面互相平行而其余每相领两个面的交线都互相平行的柱体多面体.圆柱:矩形绕其一边所在直线旋转形成的曲面围成的几何体. ?? ??? 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形的锥体多面体.圆锥:直角三角形绕直角边所在直线旋转形成的曲面围成的几何体. ???? ??? 棱台:用一个平行于棱锥底面的平面去截棱锥底面和截面之间的部分.台体圆台:直角梯形绕垂直于底边的腰所在直线旋转形成的曲面围成的几何体. 球体:半圆绕它的直径所在的直线旋转所得的几何体。 2.柱分直棱柱和斜棱柱,侧棱与底面垂直的棱柱称为直棱柱,侧棱与底面不垂直的棱柱则称为斜棱柱. 3.棱柱的有关特性: \ (1)棱柱上、下底面是相同的多边形,侧面是长方形 (2)棱柱的所有侧棱长都相等. (3)侧面数与底面多边形的边数相等. 【经典例题】 例1.如图,左边的图展开经过折叠能成为右边的棱柱吗 (1)这个棱柱的上、下底面一样吗它们各有几条边 (2)这个棱柱有几个侧面侧面是什么图形 (3)侧面的个数与底面图形的边数有什么关系 — (4)这个棱柱有几条侧棱它们的长度之间有什么关系 例2.哪种几何体的表面展开为如图所示的平面图形

例3.如图,将一张正方形纸片经过两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是( ) < 例4.将两个完全相同的长方体拼在一起,如果能组成一个正方体,请你求出表面积减少的百分比. 例5.一只小蚂蚁想从小立方体的顶点A 处爬到顶点B 处,你能帮它找到最短的路线吗请画图说明. ` ( 例6.一个n 棱柱,共有 个顶点, 条棱, 条侧棱, 个侧面,且 棱长相等,侧面都是 形, 面形状大小一定相同. 例7.下列图形中,不是正方体展开图的是( ) " B A A B C A B . D

中考数学几何图形折叠试题典题及解答

中考数学几何图形折叠试题典题及解答 一、选择题 1.(德州市)如图,四边形ABCD为矩形纸片. 把纸片ABCD折叠,使点B恰好落在CD边的 中点E处,折痕为AF.若CD=6,则AF等于 () A.4B. 3 C. 4D.8 2.(江西省)如图,将矩形ABCD纸片沿对角线BD折叠,使点C落在C′处,BC′交AD于E,若∠DBC=22.5°,则在不添加任何辅助线的情况下,图中45°的角(虚线也视为角的边)有() A.6个 B.5个C.4个 D.3个 3.(乐山市)如图,把矩形纸条ABCD沿EF,GH同时折叠,B,C两点恰好落在A D边的P 点处,若∠FPH=90°,PF=8,P H=6,则矩形ABCD的边BC长为() A.20B.22 C.24D. 30 4.(绵阳市)当身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图,已知矩形ABCD,我们按如下步骤操作可以得到一个特定的角:(1)以点A所在直线为折痕,折叠纸片,使点B落在AD 上,折痕与BC交于E;(2)将纸片展平后,再一次折叠纸片,以E所在直线为折痕,使点A 落在BC上,折痕EF交AD于F.则∠AFE =() A.60°B.67.5°C.72°D.75° 5. (绍兴市)学习了平行线后,小敏想出了过己知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图(1)~(4) ) . 从图中可知,小敏画平行线的依据有() ①两直线平行,同位角相等;②两直线平行,内错角相等;

③同位角相等,两直线平行; ④内错角相等,两直线平行. A .①② B .②③ C .③④ D .①④ 6.(贵阳市)如图6-1所示,将长为20cm ,宽为2cm 的长方形白纸条,折成图6-2所示的图形并在其一面着色,则着色部分的面积为( ) A .34cm2 B .36cm2 C .38cm2 D .40cm2 二、填空题 7.(成都市)如图,把一张矩形纸片ABCD 沿E F 折叠后,点C ,D 分别落在C′,D′的位置上,EC′交AD 于点G .已知∠EFG =58°,那么∠B EG °. 8. (苏州市)如图,将纸片△ABC 沿D E 折叠,点A 落在点A′处,已知∠1+∠2=100°,则∠A 的大小等于____________度. 三、解答题 9.(荆门市)如图1,在平面直角坐标系中,有一张矩形纸片OABC ,已知O(0,0),A(4,0),C(0,3),点P 是OA 边上的动点(与点O 、A 不重合).现将△PAB 沿PB 翻折,得到△PDB ;再在OC 边上选取适当的点E ,将△POE 沿PE 翻折,得到△PFE ,并使直线PD 、PF 重合. 设P(x ,0),E(0,y),求y 关于x 的函数关系式,并求y 的最大值; 如图2,若翻折后点D 落在BC 边上,求过点P 、B 、E 的抛物线的函数关系式;

初中数学最值问题专题分类讲解全书

初中数学最值问题专题分类讲解全书 ●平面几何中的最值问题 ●几何的定值与最值 ●最短路线问题 ●对称问题 ●巧作―对称点‖妙解最值题 ●数学最值题的常用解法 ●求最值问题 ●有理数的一题多解

●平面几何中的最值问题 在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例. 在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。 最值问题的解决方法通常有两种: (1)应用几何性质: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连结直线外一点和直线上各点的所有线段中,垂线段最短; ④定圆中的所有弦中,直径最长。 ⑵运用代数证法: ①运用配方法求二次三项式的最值; ②运用一元二次方程根的判别式。 例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。 分析:在直线L上任取一点P’,连结A P’,BP’, 在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB与直线L无交点,所以这种思路错误。 取点A关于直线L的对称点A’,则AP’=AP,

在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P点时A’P’+B’P’=A’B,所以这时PA+PB最小。 1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)? 分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可. 解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry, 所以 所以求u的最大值,只须求-x2+2Rx+2R2最大值即可. -x2+2Rx+2R2=3R2-(x-R)2≤3R2, 上式只有当x=R时取等号,这时有 所以2y=R=x. 所以把半圆三等分,便可得到梯形两个顶点C,D, 这时,梯形的底角恰为60°和120°. 2 .如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出 最大面积,使得窗户透光最好?

相关文档
最新文档