北京四中高考数学总复习 三角函数的性质及其应用(基础)知识梳理教案

北京四中高考数学总复习 三角函数的性质及其应用(基础)知识梳理教案
北京四中高考数学总复习 三角函数的性质及其应用(基础)知识梳理教案

【考纲要求】

1、了解函数sin()y A x ω?=+的物理意义;能画出sin()y A x ω?=+的图象,了解参数A ,ω,?对函数图象变化的影响.

2、了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 【知识网络】

【考点梳理】

考点一、函数sin()y A x ω?=+(0A >,0ω>)的图象的作法

1.五点作图法:

作sin()y A x ω?=+的简图时,常常用五点法,五点的取法是设t x ω?=+,由t 取0、

2π、π、3

2

π、2π来求相应的x 值及对应的y 值,再描点作图。 2.图象变换法:

(1)振幅变换:把sin y x =的图象上各点的纵坐标伸长(A>1)或缩短(0

(2)相位变换:把sin y A x =的图象上所有点向左(?>0)或向右(?<0)平行移动|?|个单位,得到sin()y A x ?=+的图象;

(3)周期变换:把sin()y A x ?=+的图象上各点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的

ω

1

倍(纵坐标不变),可得到sin()y A x ω?=+的图象. (4)若要作sin()y A x b ?=++,可将sin()y A x ?=+的图象向上(0)b >或向下(0)b <平移b 个单位,可得到sin()y A x b ?=++的图象.记忆方法仍为“左加右减,上

正下负,纵伸(A>1)横缩(ω>1)”。

由sin y x =的图象利用图象变换作函数sin()y A x ω?=+的图象时要特别注意:当周期变换和相位变换的先后顺序不同时,原图象沿x 轴的伸缩量有区别.

考点二、sin()y A x ω?=+的解析式 1. sin()y A x ω?=+的解析式

sin()y A x ω?=+(0A >, 0ω>),[0,)x ∈+∞表示一个振动量时,A 叫做振幅,

2T π

ω

=叫做周期,12f T ω

π

=

=

叫做频率,x ω?+叫做相位,0x =时的相位?称为初相. 2. 根据图象求sin()y A x ω?=+的解析式

求法为待定系数法,突破口是找准五点法中的第一零点(,0)?

ω

-. 求解步骤是先由图象求出A 与T ,再由2T

π

ω=算出ω,然后将第一零点代入0x ω?+=求出?. 要点诠释:

若图象未标明第一零点,就只能找特殊点用待定系数法计算. 考点三、函数sin()y A x ω?=+(0A >,0ω>)的性质

1. 定义域: x R ∈,值域:y ∈[-A,A]. 2.周期性: 2T π

ω

=

3. 奇偶性:2

k π

?π=+

时为偶函数;k ?π=时为奇函数,k Z ∈.

4.单调性:单调增区间:[

ω

πω

π-+--

22,

22k k ] , k Z ∈ 单调减区间:[

ω

πω

π-+-+

232,

22k k ] , k Z ∈ 5. 对称性:对称中心(

ω?

π-k ,0), k Z ∈;对称轴x=

ω

?

π

π-+

2

k ,k Z ∈

6.最值: 当22

x k π

ω?π+=+

即22

k x π

π?

ω

+

-=

时,y 取最大值A

当22

x k π

ω?π+=-

即22

k x π

π?

ω

-

-=

时,y 取最小值-A .(k Z ∈).

①求周期、单调区间、最值时一般先将函数式化为sin()y A x ω?=+,要特别注意A 、

ω的正负,再把x ω?+看作一个整体,并结合基本三角函数的图象和性质解出即可;利用

单调性比较三角函数大小一般要化为同名函数,并且在同一单调区间;

②整体代换和数形结合是三角函数学习中重要的思想方法,在学习中,很多三角函数的问题都是通过整体代换并观察基本三角函数的图象而得到的。 【典型例题】

类型一、求函数sin()y A x ω?=+(0A ≠,0ω>)的单调区间

例1. 求函数2sin 4y x π??

=-

???

的单调区间. 【思路点拨】利用正弦函数的单调区间,求出简单复合函数的单调区间. 【解析】解法一:2sin 4y x π??=-

???化成2sin 4y x π?

?=-- ??

?.

∵sin ()y u u =∈R 的递增、递减区间分别为

2,222k k ππππ??-+????(k ∈Z ),32,222k k ππππ?

?++???

?(k ∈Z ), ∴函数2sin 4y x π?

?

=--

??

?

的递增、递减区间分别由下面的不等式确定, 322()242k x k k Z ππ

π

ππ+

≤-

≤+

∈,

即3722()44k x k k Z ππ

ππ+≤≤+∈,

22()2

4

2

k x k k Z π

π

π

ππ-

≤-

≤+

∈,

即322()4

4

k x k k Z π

π

ππ-

≤≤+

∈, ∴函数2sin 4y x π??

=-

???

的单调递减区间、单调递增区间分别为32,244k k ππππ??-+????(k ∈Z ),372,244k k ππππ?

?++????

(k ∈Z ). 解法二:2sin 4y x π??

=- ???

可看作是由2sin y u =与4u x π=-复合而成的.

又∵4

u x π

=

-为减函数,

∴由22()2

2

k u k k Z π

π

ππ-

≤≤+

∈,

322()4

4

k x k k Z π

π

ππ--

≤≤-+

∈, 即32,2()4

4k k k Z π

πππ??---+

∈???

?为2sin 4y x π??

=- ???

的递减区间. 由322()22k u k k Z π

π

ππ+

≤≤+

∈,

即322()242k x k k Z πππ

ππ+≤-≤+∈得

522()44

k x k k Z ππππ--≤≤--∈,

即52,2()44k k k Z ππππ??--

--∈???

?为2sin 4y x π??

=- ???

的递增区间。 综上可知:2sin 4y x π??=-

???的递增区间为52,2()44k k k Z ππππ?

?----∈???

?;

递减区间为32,2()4

4k k k Z π

πππ?

?

--

-+

∈???

?

. 【总结升华】熟练掌握函数sin()y A x ω?=+(0,0)A ω>>的单调区间的确定的两种方法.三角函数单调区间的确定,一般先将函数式化为基本三角函数的标准式,然后通过同解变形或利用数形结合的方法来求解.

举一反三:

【变式1】求下列函数的单调递增区间. (1)cos(2)3y x π

=-,

(2)|sin()|4y x π

=-+,(3))tan(33

y x π=-. 【解析】

(1)∵cos(2)3

y x π

=-

,∴递增区间为:27[

,]36

x k k ππ

ππ∈++(k Z ∈); (2)画出|sin()|4

y x π

=-+

的图象:

可知增区间为3[

,

]44

x k k π

π

ππ∈++(k Z ∈);

(3)函数在区间5[,]183183

k k x ππππ

∈-+

+(k Z ∈)上是增函数.

【变式2】利用单调性比较3cos 2,1sin 10

,7cos 4-的大小:

【解析】 ∵33cos

sin()222π=-,77cos 44sin()2π

--=,且74130221022

πππ->>>->

∴7

cos 413sin cos 102

>->

类型二、三角函数sin()y A x ω?=+的图象及其变换

例2.已知函数x x y 2cos 32sin +=

(1)用五点法作出它的图象;

(2)指出这个函数的振幅、周期、频率、初相和单调区间;

(3)说明该函数的图象可由sin y x =的图象经过怎样的变换而得到?

【思路点拨】化简2sin(2)3y x π=+,令320,,,,2322

x ππ

π

ππ+=,分别求出对应

的x 值,再描点作图,注意图象变换的时候每一个变换总是对字母x 而言的.

【解析】(1)

)3

2sin(2)3sin 2cos 3cos 2(sin 2)2cos 232sin 21(2π+=π?+π?=+=x x x x x y .

23x π

+

π 3

2π 2π

x 6π-

12

π

3π 712π 56π y 0 2

0 2-

(2)如图可知,此函数的振幅是2,周期为π,频率为

π1,初相为3

π. 单调增区间为]12,125[π

+ππ-πk k k ∈Z , 单调减区间为]12

7

,12[π+ππ+πk k k ∈Z.

(3)法一:sin y x

=π3???????????→

图象向左平移个单位

纵坐标不变

sin()3

y x π

=+

?????????????→横坐标缩短为原来的0.5倍纵坐标不变sin(2)3

y x π=+

????????????→纵坐标扩大到原来的2倍横坐标不变2sin(2)3

y x π=+

法二:sin y x =?????????????→横坐标缩短为原来的0.5倍纵坐标不变

sin 2y x =

π6???????????→

图象向左平移个单位

纵坐标不变

sin 2()sin(2)63

y x x ππ

=+=+

????????????→纵坐标扩大到原来的2倍横坐标不变2sin(2)3

y x π=+

【总结升华】

①五点法作sin()y A x ω?=+(0A >,0ω>)的简图时,五点取法是设t x ω?=+,由t 取0、

2

π

、π、32π、2π来求相应的x 值及对应的y 值,再描点作图;

②由sin y x =的图象变换出sin()y A x ω?=+的图象一般先平移后伸缩,但先伸缩后平移也经常出现,无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变

量”起多大变化,而不是“角变化”多少;

③此处的难点是函数图象的平移,可以选择画出图象后观察;也可以直接由函数式子利用特殊位置点(如:首点、波峰、波谷等)的坐标判定,但其前提是两个函数的名称以及x 的系数是相同的.

举一反三:

【变式1】由sin()3

y x π

=+的图象得到cos y x =的图象需要向 平移 个

单位.

【答案】左,

6

π; 【解析】∵cos sin()2

y x x π

==+

∴由sin()3y x π

=+

的图象得到cos sin()2

y x x π

==+的图象需要向左平移6

π

个单位. 【变式2】试述如何由1sin(2)33

y x π

=+的图象得到sin y x =的图象. 【解析】方法一:1sin(2)33y x π=

+ 2????????????→横坐标扩大为原来的倍纵坐标不变 1sin()33

y x π=+

π3???????????→

图象向右平移个单位

纵坐标不变

1sin 3

y x =3???????????

?→纵坐标扩大到原来的倍横坐标不变sin y x =.

方法二:1sin(2)33y x π=+π6???????????→图象向右平移个单位纵坐标不变

1sin 23y x =

2????????????→

横坐标扩大为原来的倍纵坐标不变

1sin 3

y x

=3????????????→

纵坐标扩大到原来的倍横坐标不变

sin y x =.

【变式3】若函数sin y x =的图象上的每个点的纵坐标不变,将横坐标缩小为原来的1

3

,再将图象沿x 轴向右平移

3

π

个单位,则新图象对应的函数式是( ) A .sin 3y x =- B .1

πsin 3

3y x ??=+

???

C .πsin 33y x ??=- ??

? D .πsin 39y x ?

?=- ?

?

? 【答案】A

【变式4】画出函数3sin(2)4

y x π=-

在区间[0]π,上的图象.

【解析】由3sin(2)4

y x π=-

知道:

x 0 8

π

38

π 58

π 78

π π y

22

-

-1 0 1 0

22

- 故函数在区间[0]π,上的图象:

例3. 如图,它是函数sin()y A x ω?=+(0,0,||)A ω?π>><的图象,由图中条件,写

出该函数的解析式。

【思路点拨】结合图形易求得A ,T 及ω.如何求?呢?可以选择点的坐标代入函数解析式尝试一下,结合?的范围求得.

【解析】 由图知A=5,

53222

T ππ

π=-=

,得3T π= ∴223T πω==。此时25sin()3

y x ?=+。

下面介绍怎样求初相?。

解法一:(单调性法)

∵点(π,0)在递减的那段曲线上, ∴

232,2()322k k k Z ππ?πππ?

?+∈++∈???

?。 由2sin 03π???

+=

???

得223k π?ππ+=+,

∴2()3

k k Z π

?π=+

∈。

∵||?π<,∴3

π

?=

解法二:(最值点法) 将最高点坐标,54π?? ???代入25sin 3y x ???=+ ???,得5sin 56π???

+= ???

, ∴

26

2

k π

π

?π+=+

,∴2()3

k k Z π

?π=+∈。

又||?π<,∴3

π

?=

解法三:(起始点法)

函数sin()y A x ω?=+的图象一般由“五点法”作出,而起始点的横坐标x 正是由

0x ω?+=解得的。故只要找出起始点横坐标x 0,就可以迅速求得角?。由图象易得02

x π=-

∴02323

x ππ

?ω??=-=-

?-= ???。

解法四:(平移法) 由图象知,将25sin 3y x =的图象沿x 轴向左平移2

π

个单位就得到本题图象,故所求函数解析式为

225sin 5sin 3233x y x ππ??????

=+=+ ? ????

?????

【总结升华】给出sin()y A x ω?=+型的图象,求它的解析式,常从寻找“五点法”中的第一个零点(,0)?

ω

-

作为突破口,要从图象的升降找准第一个零点的位置,

例3中的解法三是我们常选用的方法这一.

举一反三:

【变式】下图是函数2sin()y x ω?=+(0ω>,2

||π

?<)的图象.则ω、?的值是

( )

A .1011

ω=

,6

π

?=

B .1011

ω=

,6

π

?=-

C .2ω=,6

π

?= D .2ω=,6

π

?=-

【答案】C

【解析】由图象可得:2sin 1112sin 01221112φωπφππ

ω

?

??

???

?

????

??

?=+=> ∵2

||π

?<

,由2sin 1?=得6

π

?=

由 11112sin sin 012612

ωππωππ??

??

?

????

?

++==,得

()11212

k k ωππ

π+=∈Z

∴122

11

k ω-=

(k ∈Z )

由21112ππ

ω>

,得2411

ω<.满足24011ω<<时,1k =或2k =.

由此得到11011

ω=

,22ω=.注意到11212T BC π=<,即1112ππω<

因此1211

ω>,这样就排除了10

11ω=.

∴2ω=,6

π

?=

注意:因为函数sin()y A x ω?=+是周期函数,所以仅靠图像上的三个点,不能完全

确定A 、ω、?的值.本题虽然给出了0ω>,2

||π

?<

的条件,但是仅靠(0,1 )、11012π??

???

,两点,不能完全确定ω、?的值.在确定ω的过程中,比较隐蔽的条件11212T T π

<<(2T πω

=)起了重要作用.

类型三:奇偶性与对称性

例4.已知函数()sin(3)3

f x x π

=+

(1)判断函数的奇偶性;(2)判断函数的对称性。

【思路点拨】正弦函数的定义域是x R ∈,在考查()f x -与()f x 的关系;考查三角函数的对称性的时候,从对称轴和对称中心两个方面考虑.

【解析】(1)()f x 的定义域x R ∈关于原点对称,

()sin(3)sin(3)33

f x x x ππ

-=-+=--

∵sin(3)sin(3)33x x π

π+

≠--且sin(3)sin(3)33

x x ππ

+≠-,

∴函数()sin(3)3

f x x π

=+不是奇函数也不是偶函数.

(2)∵令33

x u π

+=,则sin y u =的图象的对称轴是2

u k π

π=+

,对称中心(,0)

k π(k Z ∈),

∴函数()sin(3)3

f x x π

=+

的图象的对称轴是33

2

x k π

π

π+

=+

即318

k x ππ

=

+(k Z ∈)

由33

x k π

π+

=得39

k x ππ

=

-(k Z ∈)

, ∴函数()sin(3)3

f x x π

=+

的图象的对称中心是(

,0)39

k ππ

-(k Z ∈). 【总结升华】①先求定义域并判断在数轴上关于原点对称,再经过等值变形尽量转化为一个角的一个三角函数式sin()y A x k ω?=++(0ω>),再判断其奇偶性.函数的奇偶性与函数的对称性既有联系又有区别,用定义法,换元法。

②对于sin()y A x ω?=+(0ω>)来说,对称中心与零点(平衡位置)相联系,对称轴与最值点(极值点)联系.

举一反三:

【变式1】判断下列函数的奇偶性

(1)sin())33y x x π

π=+

+; (2)1cos sin 1cos sin x x

y x x

-+=++. 【解析】

(1)定义域x R ∈关于原点对称,

又12[sin())]2sin[()]2sin 2

3

333

y x x x x π

πππ

=+

-

+=+-= ∴ 函数为奇函数。

(2)∵从分母可以得出2x k ππ≠+(k Z ∈),∴定义域在数轴上关于原点不对称。

∴ 函数为非奇非偶函数

【变式2】设函数5sin(2)2

y x π

=+

的图象的一条对称轴方程是( ) A.2x π=- B.4x π=- C. 8x π= D.54

x π

=

【答案】A

高中数学三角函数基础知识点及答案

高中数学三角函数基础知识点及答案 1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。射线的起始位置称为始边,终止位置称为终边。 2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 3. 终边相同的角的表示: (1)α终边与θ终边相同(α的终边在θ终边所在射线上)?2()k k αθπ=+∈Z , 注意:相等的角的终边一定相同,终边相同的角不一定相等.如与角 1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。 弧度:一周的弧度数为2πr/r=2π,360°角=2π弧度,因此,1弧度约为57.3°,即57°17'44.806'', 1°为π/180弧度,近似值为0.01745弧度,周角为2π弧度,平角(即180°角)为π弧度, 直角为π/2弧度。(答:25-;5 36 π- ) (2)α终边与θ终边共线(α的终边在θ终边所在直线上) ?()k k αθπ=+∈Z . (3)α终边与θ终边关于x 轴对称?2()k k αθπ=-+∈Z . (4)α终边与θ终边关于y 轴对称?2()k k απθπ=-+∈Z . (5)α终边与θ终边关于原点对称?2()k k απθπ=++∈Z . (6)α终边在x 轴上的角可表示为:,k k Z απ=∈; α终边在y 轴上的角可表示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2 k k Z π α=∈. 如α的终边与 6 π 的终边关于直线x y =对称,则α=____________。 (答:Z k k ∈+ ,3 2π π) 4、α与2α的终边关系:由“两等分各象限、一二三四”确定.如若α是第 二象限角,则2 α 是第_____象限角 (答:一、三) 5.弧长公式:||l R α=,扇形面积公式:211||22 S lR R α==,1弧度 (1rad)57.3≈. 如已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。 (答:22cm ) 6、任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是220r x y =+>,那么 s i n ,c o s y x r r αα==,()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec r x α=()0x ≠, ()csc 0r y y α=≠。三角函数值只与角的大小有关,而与终边上点P 的位置无关。

三角函数图像与性质知识点总结

三角函数图像与性质知识 点总结 The Standardization Office was revised on the afternoon of December 13, 2020

函数图像与性质知识点总结 一、三角函数图象的性质 1.“五点法”描图 (1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (0,0) ? ?? ?? ?π2,1 (π,0) ? ?? ??? 32π,-1 (2π,0) (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),? ?????π2,0,(π,-1),? ???? ? 3π2,0,(2π,1) 2.三角函数的图象和性质 函数 性质 y =sin x y =cos x y =tan x 定义域 R R {x |x ≠k π+π 2 ,k ∈Z} 图象 值域 [-1,1] [-1,1] R 对称性 对称轴: x =k π+ π2(k ∈Z); 对称轴: x =k π(k ∈Z) 对称中心: 对称中心:? ?? ?? ?k π2,0 (k ∈Z)

3.一般地对于函数(),如果存在一个非零的常数,使得当取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期) 4.求三角函数值域(最值)的方法: (1)利用sin x、cos x的有界性; 关于正、余弦函数的有界性 由于正余弦函数的值域都是[-1,1],因此对于?x∈R,恒有-1≤sin x≤1,-1≤cos x≤1,所以1叫做y=sin x,y=cos x的上确界,-1叫做y=sin x,y=cos x的下确界.

高中数学三角函数知识点归纳总结

《三角函数》 【知识网络】 一、任意角的概念与弧度制 1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角 2、同终边的角可表示为 {}()360k k Z ααβ? =+∈g x 轴上角:{}()180k k Z αα=∈o g y 轴上角:{}()90180k k Z αα=+∈o o g 3、第一象限角:{}()036090360k k k Z αα? ?+<<+∈o g g 第二象限角:{}()90 360180360k k k Z αα??+<<+∈o o g g 第三象限角:{}()180360270360k k k Z αα? ?+<<+∈o o g g 第四象限角: {}()270 360360360k k k Z αα??+<<+∈o o g g 4、区分第一象限角、锐角以及小于90o 的角 第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈o g g 锐角: {}090αα<

,2 4 , 0π απ ≤ ≤=k ,2 345, 1παπ≤≤=k 所以 2 α 在第一、三象限 6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad . 7、角度与弧度的转化:01745.0180 1≈=?π 815730.571801'?=?≈? = π 9、弧长与面积计算公式 弧长:l R α=?;面积:211 22 S l R R α=?=?,注意:这里的α均为弧度制. 二、任意角的三角函数 1、正弦:sin y r α=;余弦cos x r α=;正切tan y x α= 其中(),x y 为角α终边上任意点坐标,r = 2、三角函数值对应表: 3、三角函数在各象限中的符号

【全】初中数学 三角函数知识点总结

锐角三角函数 锐角三角函数 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的锐角三角函数。 正弦(sin)等于对边比斜边, 余弦(cos)等于邻边比斜边 正切(tan)等于对边比邻边; 余切(cot)等于邻边比对边 正割(sec)等于斜边比邻边 余割(csc)等于斜边比对边 正切与余切互为倒数 互余角的三角函数间的关系。 sin(90°-α)=cosα, cos(90°-α)=sinα, tan(90°-α)=cotα, cot(90°-α)=tanα. 同角三角函数间的关系 平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ?积的关系: sinα=tanα?cosα cosα=cotα?sinα tanα=sinα?secα cotα=cosα?cscα secα=tanα?cscα cscα=secα?cotα ?倒数关系: tanα?cotα=1 sinα?cscα=1 cosα?secα=1

直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, 余切等于邻边比对边 三角函数值 (1)特殊角三角函数值 (2)0°~90°的任意角的三角函数值,查三角函数表。 (3)锐角三角函数值的变化情况 (i)锐角三角函数值都是正值 (ii)当角度在0°~90°间变化时, 正弦值随着角度的增大(或减小)而增大(或减小) 余弦值随着角度的增大(或减小)而减小(或增大) 正切值随着角度的增大(或减小)而增大(或减小) 余切值随着角度的增大(或减小)而减小(或增大) (iii)当角度在0°≤α≤90°间变化时, 0≤sinα≤1, 1≥cosα≥0, 当角度在0°<α<90°间变化时, tanα>0, cotα>0. 特殊的三角函数值 0° 30° 45° 60° 90° 0 1/2 √2/2 √3/2 1 ←sinα 1 √3/ 2 √2/2 1/2 0 ←cosα 0 √3/3 1 √3 None ←tanα None √3 1 √3/3 0 ←cotα 解直角三角形 勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”) a^2+b^2=c^2, 其中a和b分别为直角三角形两直角边,c为斜边。

高中数学三角函数知识点总结(珍藏版)

高中数学三角函数知识点总结 1.特殊角的三角函数值: 2.角度制与弧度制的互化: ,23600π= ,1800 π= 1rad =π 180°≈57.30°=57°18ˊ 1°= 180 π≈0.01745(rad ) 3.弧长及扇形面积公式 (1)弧长公式:r l .α= α----是圆心角且为弧度制 (2)扇形面积公式:S=r l .2 1 r-----是扇形半径 4.任意角的三角函数 设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α= r y 余弦cos α=r x 正切tan α=x y (2)各象限的符号: 记忆口诀:一全正,二正弦,三两切,四余弦

sin α cos α tan α 5.同角三角函数的基本关系: (1)平方关系:s in 2α+ cos 2α=1 (2)商数关系:ααcos sin =tan α(z k k ∈+≠,2 ππ α) 6.诱导公式: 记忆口诀:把2 k π α±的三角函数化为α的三角函数,概括为:奇变偶不变,符号看象限。 ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. 口诀:函数名称不变,符号看象限. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ??? . ()6sin cos 2π αα??+= ???,cos sin 2παα?? +=- ??? . 口诀:正弦与余弦互换,符号看象限. x y O — + + — + y O — + + —

高一三角函数知识点整理

§04. 三角函数 知识要点 1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合): {} Z k k ∈+?=,360 |αββ ②终边在x 轴上的角的集合: {} Z k k ∈?=,180| ββ ③终边在y 轴上的角的集合:{ } Z k k ∈+?=,90180| ββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+?=,45180| ββ ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-?=,45180| ββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系: ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360± +=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad = π180°≈57.30°=57°18ˊ. 1°=180 π≈0.01745 (rad ) 3、弧长公式:r l ?=||α. 扇形面积公式:211||22 s lr r α==?扇形 4、三角函数:设α是一个任意角,在 α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则 =αsin r x =αcos ; x y = αtan ; y x =αcot ; x r =αsec ;. αcsc 5、三角函数在各象限的符号:正切、余切 余弦、正割 正弦、余割 6、三角函数线 正弦线:MP; 余弦线:OM; 正切线: AT. 7. 三角函数的定义域: SIN \COS 1、 2、3、4表示第一、二、三、 四象限一半所在区域16. 几个重要结论:

高考数学三角函数知识点总结及练习

三角函数总结及统练 一. 教学内容: 三角函数总结及统练 (一)基础知识 1. 与角α终边相同的角的集合},2{Z k k S ∈+==απβ 2. 三角函数的定义(六种)——三角函数是x 、y 、r 三个量的比值 3. 三角函数的符号——口诀:一正二弦,三切四余弦。 4. 三角函数线 正弦线MP=αsin 余弦线OM=αcos 正切线AT=αtan 5. 同角三角函数的关系 平方关系:商数关系: 倒数关系:1cot tan =?αα 1c s c s i n =?αα 1s e c c o s =?αα 口诀:凑一拆一;切割化弦;化异为同。 6. 诱导公式——口诀:奇变偶不变,符号看象限。 α απ+k 2 α- απ- απ+ απ-2 α π -2 α π +2

正弦 αsin αsin - αsin αsin - αsin - αcos αcos 余弦 αcos αcos αcos - αcos - αcos αsin αsin - 正切 αtan αtan - αtan - αtan αtan - αcot αcot - 余切 αcot αcot - αcot - αcot αcot - αtan αtan - 7. 两角和与差的三角函数 ?????? ? ?+-=-?-+=+?????????+?=-?-?=+?-?=-?+?=+βαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαt a n t a n 1t a n t a n )t a n (t a n t a n 1t a n t a n )t a n (s i n s i n c o s c o s )c o s (s i n s i n c o s c o s )c o s (s i n c o s c o s s i n )s i n (s i n c o s c o s s i n )s i n ( 8. 二倍角公式——代换:令αβ= ??????? -= -=-=-=?=ααααααααααα22222tan 1tan 22tan sin cos sin 211cos 22cos cos sin 22sin 降幂公式?????? ?+=-=22cos 1cos 22cos 1sin 22αααα 半角公式: 2cos 12 sin αα -± =;2cos 12cos αα+±=; αα αcos 1cos 12tan +-± = αα ααα cos 1sin sin cos 12 tan += -= 9. 三角函数的图象和性质 函数 x y sin = x y cos = x y tan =

三角函数基础知识点整理

三角函数基础知识点 1、两角和公式 sin(A ±B) = sinAcosB ±cosAsinB B A B A B A tan tan 1tan tan )tan(?±=±μ cos(A ±B) = cosAcosB μsinAsinB 2、二倍角公式(含万能公式) tan2A = A tan 12tanA 2- sin2A=2s inA?cosA=A tan 12tanA 2 + cos2A = cos 2A-sin 2A=2cos 2A-1=1-2sin 2A=A tan 1A tan -12 2 + 22cos 1tan 1tan sin 222 A A A A -=+= 2 2cos 1cos 2 A A += 3、特殊角的三角函数值

4、诱导公式 公式一: απαsin )2sin(=+k ;απαcos )2cos(=+k ;απαtan )2tan(=+k .(其中Z ∈k ). 公式二: ααπ-sin sin(=+);ααπ-cos cos(=+);ααπtan tan(=+). 公式三: sin()-sin αα-=;cos()cos αα-= ;tan()tan αα-=-. 公式四: ααπsin sin(=-);ααπ-cos cos(=-);ααπtan tan(-=-) 公式五: sin(2sin παα-=-);cos(2cos παα-=);tan(2tan παα-=-) 公式六: sin( 2π) = cos ; cos(2π ) = sin . 公式七: sin(2π+) = cos ;cos(2π +) = sin . 公式八: sin(32π)=- cos ; cos(32π ) = -sin . 公式九: sin(32π+) = -cos ;cos(32 π +) = sin . 以上九组公式可以推广归结为:要求角2 k π α?±的三角函数值, 只需要直接求角α的三角函数值的问题.这个转化的过程及结果就是十字口诀“奇变偶不变,符号看象限”。即诱导公式的左边为k ·900+α(k ∈Z )的正弦(切)或余弦(切)函数,当k 为奇数时,右边的函数名称正余互变;当k 为偶数时,右边的函数名称不改变,这就是“奇变偶不变”的含义,再就是将α“看成”锐角(可能并不是锐角,也可能是大于锐角也可能小于锐角还有可能是任意角),然后分析k ·900+α(k ∈Z )为第几象限角,再判断公式左边这个三角函数在此象限是正还是负,也就是公式右边的符号。

知识讲解 三角函数的性质及其应用 提高

三角函数的性质及其编稿:李霞审稿:孙永钊 【考纲要求】 1、了解函数sin()yAx????的物理意义;能画出sin()yAx????的图象,了解参数 A,?,?对函数图象变化的影响. 2、了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 【知识络】 【考点梳理】 考点一、函数sin()yAx????(0A?,0??)的图象的作法 1.五点作图法: 作sin()yAx????的简图时,常常用五点法,五点的取法是设tx????,由t取0、 2?、?、32?、2?来求相应的x值及对应的y值,再描点作图。 2.图象变换法: (1)振幅变换:把sinyx?的图象上各点的纵坐标伸长(A>1)或缩短(00)或向右(?<0)平行移动|?|个单位,得到sin()yAx???的图象; (3)周期变换:把sin()yAx???的图象上各点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的?1倍(纵坐标不变),可得到sin()yAx????的图象. (4)若要作sin()yAxb????,可将sin()yAx???的图象向上(0)b?或向下(0)b? 平移b个单位,可得到sin()yAxb????的图象.记忆方法仍为“左加右减,上正下负,纵伸(A>1)横缩(ω>1)”。 要点诠释: 由sinyx?的图象利用图象变换作函数sin()yAx????的图象时要特别注意:当周期

变换和相位 sin()yAx???? sin 图象的作法三角函的质其 图象的性 变换的先后顺序不同时,原图象沿x轴的伸缩量有区别. 考点二、sin()yAx????的解析式 1.sin()yAx????的解析式 sin()yAx????(0A?, 0??),[0,)x???表示一个振动量时,A叫做振幅,2T??? 叫做周期,12fT????叫做频率,x???叫做相位,0x?时的相位?称为初相. 2.根据图象求sin()yAx????的解析式 求法为待定系数法,突破口是找准五点法中的第一零点(,0)???. 求解步骤是先由图象求出A与T,再由2T???算出?,然后将第一零点代入0x????求出?. 要点诠释:若图象未标明第一零点,就只能找特殊点用待定系数法计算. 考点三、函数 sin()yAx????(0A?,0??)的性质 1. 定义域: xR?,值域:y∈[-A,A]. 2.周期性: 2T??? 3. 奇偶性:2k?????时为偶函数;k???时为奇函数,kZ?. 4.单调性:单调增区间 :[????????????22,22kk] , kZ? 单调减区间:[????????????232,22kk] , kZ? 5. 对称性:对称中心(????k,0),kZ?;对称轴

初中三角函数知识点总结(中考复习)

初中三角函数知识点总结(中考复习)

锐角三角函数知识点总结 1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。 2、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、任意锐角的正切值等于它的余角的余切值;任意锐角的余 A 90 B 90 ∠ - ? = ∠ ? = ∠ + ∠ 得 由B A C

切值等于它的余角的正切值。 5、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 6、正弦、余弦的增减性: 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 7、正切、余切的增减性: 当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。 1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 依据:①边的关系:2 2 2 c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法) 2、应用举例:

(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 仰角铅垂线 水平线 视线 视线俯角 (2)坡面的铅直高度h 和水平宽度l 的比叫做坡度 (坡比)。用字 母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α==。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。 反比例函数知识点整理 一、 反比例函数的概念 :i h l =h l α

高一三角函数知识点梳理总结

高一三角函数知识 §1.1任意角和弧度制 ?? ? ??零角负角:顺时针防线旋转正角:逆时针方向旋转 任意角..1 2.象限角:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 3.. ①与α(0°≤α<360°)终边相同的角的集合:{} Z k k ∈+?=,360|αββ ②终边在x 轴上的角的集合: {} Z k k ∈?=,180| ββ ③终边在y 轴上的角的集合:{} Z k k ∈+?=,90180| ββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90| ββ ⑤终边在y =x 轴上的角的集合:{ } Z k k ∈+?=,45180| ββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180| ββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:Z k k ∈-=,βα 360 ⑧若角α与角β的终边关于y 轴对称,则α与角β的关系:Z k k ∈-+=,βα 180360 ⑨若角α与角β的终边在一条直线上,则α与角β的关系:Z k k ∈+=,βα 180 ⑩角α与角β的终边互相垂直,则α与角β的关系:Z k k ∈++=, 90180βα 4. 弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2π弧度。若圆心角所对 的弧长为l ,则其弧度数的绝对值|r l = α,其中r 是圆的半径。 5. 弧度与角度互换公式: 1rad =(π 180)°≈57.30° 1°=180 π 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 6.. 第一象限的角:? ?? ? ??∈+<

三角函数专题知识点及练习

三角函数知识总结一、知识框架 二、知识点、概念总结 1.Rt△ABC中 (1)∠A的对边与斜边的比值是∠A的正弦,记作sinA=∠A的对边 斜边 (2)∠A的邻边与斜边的比值是∠A的余弦,记作cosA=∠A的邻边 斜边 (3)∠A的对边与邻边的比值是∠A的正切,记作tanA=∠A的对边∠A的邻边 (4)∠A的邻边与对边的比值是∠A的余切,记作cota=∠A的邻边∠A的对边 2.特殊值的三角函数: a sina cosa tana cota 30°1 2 3 2 3 3 3 45° 2 2 2 2 1 1 60° 3 2 1 2 3 3 3 3.互余角的三角函数间的关系 sin(90°-α)=cosα, cos(90°-α)=sinα, tan(90°-α)=cotα, cot(90°-α)=tanα. 4. 同角三角函数间的关系 平方关系: sin2(α)+cos2(α)=1 tan2(α)+1=sec2(α) cot2(α)+1=csc2(α) 积的关系: sinα=tanα·cosα cosα=cotα·sinα tanα=sinα·secα cotα=cosα·cscα secα=tanα·cscα cscα=secα·cotα 倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 5.三角函数值 (1)特殊角三角函数值 (2)0°~90°的任意角的三角函数值,查三角函数表。

(3)锐角三角函数值的变化情况 (i)锐角三角函数值都是正值 (ii)当角度在0°~90°间变化时, 正弦值随着角度的增大(或减小)而增大(或减小) 余弦值随着角度的增大(或减小)而减小(或增大) 正切值随着角度的增大(或减小)而增大(或减小) 余切值随着角度的增大(或减小)而减小(或增大) (iii)当角度在0°≤∠A≤90°间变化时, 0≤sinα≤1, 1≥cosA≥0, 当角度在0°<∠A<90°间变化时, tanA>0, cotA>0. 6.解直角三角形的基本类型 解直角三角形的基本类型及其解法如下表: 7.仰角、俯角 当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角. 要点一:锐角三角函数的基本概念

基本三角函数知识点总结

基本三角函数 一、重要知识点 1、已知角α为第一象限,求α/2,α/3,α/4为第几象限 2、弧度与角度的转变 特别是一弧度大约等于57度要知道,便于三角函数比较大小和判断正负,举个例子sin (cos30°)与cos (cos30°)大小 3、弧长公式以及弧长公式的公式的推导 ||l R α=,扇形面积公式:211||22 S lR R α== 4、基本三角函数的定义 此章节的基础,比如能理解为什么sinX 在一二象限为正?为什么正弦和余弦平方和等于一?为什么正切余切在一三象限为正,为何正切等于正弦除余弦 重点掌握正弦、余弦和正切余切,正割余割不用掌握 5、诱导公式,奇变偶不变(对k 而言,指k 取奇数或偶数),符号看象限(看原函数,同时可把α看成是锐角).诱导公式的应用是求任意角的三角函数值,其一般步骤: 这个是此章节的重点,只要理解这个定理,就不必记书上繁琐的公式 6、三角函数的两角和与差公式的推导过程,并逐渐推导二倍角公式,半角公式,万能公式,辅助角公式 四川去年高考题就是余弦两角和的公式推导 7、三角函数的定义域、值域,周期性、奇偶性、单调性、对称中心和对称轴、图像以及三角函数的变换

()k x ASin y Sinx y ++==?ω变化为怎样由 ? 振幅变化:Sinx y = ASinx y = 左右伸缩变化: x ASin y ω= 左右平移变化 )(?ω+=x ASin y 上下平移变化 k x ASin y ++=)(?ω ()a b Sin b a bCos aSin y =++=+=??αααtan , 22其中 补充知识点 1.常见三角不等式:(1)若(0,)2x π ∈,则sin tan x x x <<. (2) 若(0,)2x π ∈,则1sin cos 2x x <+≤. (3) |sin ||cos |1x x +≥. 2.三角形面积定理:111sin sin sin 222S ab C bc A ca B ===. 3.三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。基本的技巧有: (1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如 ()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--, 22 αβαβ++=?,()()222αββααβ+=---等),如(1)已知2tan()5 αβ+=,1tan()44πβ-=,那么tan()4 πα+的值是_____(答:322);(2)已知02πβαπ<<<<,且129cos()βα-=-,223 sin()αβ-=,求cos()αβ+的值(答:490729);(3)已知,αβ为锐角,sin ,cos x y αβ==,3cos()5 αβ+=-,则y 与x 的函数关系为______(答:23431(1)555 y x x x =--+<<) (2)三角函数名互化如(1)求值sin50(13tan10)+ (答:1);(2)已 知sin cos 21,tan()1cos 23 αααβα=-=--,求tan(2)βα-的值(答:18)

三角函数知识点归纳

三角函数 一、任意角、弧度制及任意角的三角函数 1.任意角 (1)角的概念的推广 ①按旋转方向不同分为正角、负角、零角. ?? ??? 正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 ②按终边位置不同分为象限角和轴线角. 角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<

三角函数基础知识(同名8879)

三角函数 基础知识整理 一.角的概念: 1.角的概念的推广 ⑴“旋转”形成角 一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到另一位置OB,就形成角α.旋转开始时的射线OA叫做角α的始边,旋转终止的射 线OB叫做角α的终边,射线的端点O叫做角α的顶点. ⑵.“正角”与“负角”“0角” ⑶意义:用“旋转”定义角之后,角的范围大大地扩大了,角的概念推广以后, 它包括任意大小的正角、负角和零角. 2.“象限角” 角的顶点合于坐标原点,角的始边合于x轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上, 则此角不属于任何一个象限) 3.终边相同的角

结论:所有与α终边相同的角连同α在内可以构成一个集合: { } Z k k S ∈?+==,360|ο αββ 即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和. 注意: (1)Z k ∈ (2)α是任意角; (3)0 360?k 与α之间是“+”号, 如:0 360?k -30°,应看成0 360?k +(-30°); (4)终边相同的角不一定相等,但相等的角,终边一定相同,终边相同的角有无数多个,它们相差360°的整数倍. 二. 弧度制: 1. 定义:长度等于半径长的弧所对的圆心角称为1弧度的角它的单位是rad 读作 弧度,这种用“弧度”做单位来度量角的制度叫做弧度制. 如下图,依次是1rad , 2rad , 3rad ,αrad 2.弧长公式:α?=r l 由公式:?= r l α α?=r l 比公式180r n l π=简单 即弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积 3.扇形面积公式 lR S 2 1 = 其中l 是扇形弧长,R 是圆的半径 o R S l

高中三角函数知识点总结(人教版)

高中三角函数总结 1.任意角的三角函数定义: 设α为任意一个角,点),(y x P 是该角终边上的任意一点(异于原点),),(y x P 到原点的距离为22y x r += ,则: )(tan ),(cos ),(sin y x x y x r x y r y ?=== 正负看正负看正负看ααα 2.特殊角三角函数值: 3.同角三角函数公式: αααααααααα αtan 1 cot ,sin 1csc ,cos 1sec 1cos sin ,cos sin tan 22= ===+= 4.三角函数诱导公式: (1))(;tan )2tan(,cos )2cos( ,sin )2sin(Z k k k k ∈=+=+=+απααπααπα (2);tan )tan(,cos )cos(,sin )sin(απααπααπα=+-=+-=+ (3);tan )tan(,cos )cos(,sin )sin(αααααα-=-=--=- (函数名称不变,符号看象限) (4);cot )2 tan(,sin )2cos(,cos )2sin(απ ααπααπ α-=+-=+=+ (5);cot )2 tan(,sin )2cos(,cos )2sin( ααπ ααπααπ =-=-=- (正余互换,符号看象限) 注意:tan 的值,总为sin/cos ,便于记忆; 5.三角函数两角诱导公式:

(1)和差公式 βαβαβαsin cos cos sin )sin(±=±βαβαβαsin sin cos cos )cos( =± β αβ αβαtan tan 1tan tan )tan( ±= ± (2)倍角公式 令上面的βα=可得:αααcos sin 2)2sin(= α αααα2222sin 211cos 2sin cos )2cos(-=-=-= α α α2tan 1tan 2)2tan(-= 6.正弦定理: △ABC 中三边分别为c b a ,,,外接圆半径为R ,则有: R C c B b A a 2sin sin sin === 7.余弦定理: △ABC 中三边分别为c b a ,,,则有:ab c b a C 2cos 2 22-+= 8.面积公式: △ABC 中三边分别为c b a ,,,面积为S ,则有:)(sin 2 1 两边与夹角正弦值C ab S = 9.三角函数图象:

三角函数及解三角形知识点总结

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异 于原点),它与原点的距离 是0r =>,那么sin ,cos y x r r αα== , ()tan ,0y x x α=≠ 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 2.三角函数在各象限的符号:(一全二正弦,三切四余弦) + + - + - + - - - + + - sin αcos αtan α 3.同角三角函数的基本关系式: (1)平方关系:2 2221 sin cos 1,1tan cos αααα +=+= (2)商数关系:sin tan cos α αα = (用于切化弦) ※平方关系一般为隐含条件,直接运用。注意“1”的代换 4.三角函数的诱导公式

诱导公式(把角写成 απ ±2 k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)?????=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)?????-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ?? ???=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)?????-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)???????=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)??? ????-=+=+α απααπsin )2cos(cos )2sin( 5.特殊角的三角函数值

必修四第一章三角函数-知识点及练习-讲义

-- 高一数学下必修四第一章三角函数 ?? ??? 正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<

-- 6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l r α=. 7、弧度制与角度制的换算公式:2360π=,1180π = ,180157.3π??=≈ ??? . 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+, 211 22 S lr r α==. 9、设α是一个任意大小的角,α的终边上任意一点P 的坐 标是(),x y ,它与原点的距离是 () 0r r =>,则sin y r α= ,cos x r α=,()tan 0y x x α=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 12、同角三角函数的基本关系:()2 2 1sin cos 1αα+= ()2222sin 1cos ,cos 1sin αααα=-=-;() sin 2tan cos α αα = sin sin tan cos ,cos tan αααααα? ?== ?? ?. 13、三角函数的诱导公式: ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.

高中数学三角函数知识点及试题总结

高考三角函数 1.特殊角的三角函数值: 2.角度制与弧度制的互化:,23600π= ,1800π= 3.弧长及扇形面积公式 弧长公式:r l .α= 扇形面积公式:S=r l .2 1 α----是圆心角且为弧度制。 r-----是扇形半径 4.任意角的三角函数 设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α= r y 余弦cos α=r x 正切tan α=x y (2)各象限的符号: sin α cos α tan α x y + O — — + x y O — + + — + y O — + + —

5.同角三角函数的基本关系: (1)平方关系:s in 2α+ cos 2α=1。(2)商数关系:α α cos sin =tan α (z k k ∈+≠ ,2 ππ α) 6.诱导公式:记忆口诀:2 k παα±把的三角函数化为的三角函数,概括为:奇变偶不变,符号 看象限。 ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. 口诀:函数名称不变,符号看象限. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ??? . ()6sin cos 2παα??+= ???,cos sin 2παα??+=- ??? . 口诀:正弦与余弦互换,符号看象限. 7正弦函数、余弦函数和正切函数的图象与性质

相关文档
最新文档