反激型开关电源电路课程设计之欧阳家百创编

反激型开关电源电路课程设计之欧阳家百创编
反激型开关电源电路课程设计之欧阳家百创编

欧阳家百创编

第一章设计的基本要求

欧阳家百(2021.03.07)

题目:反激型开关电源电路设计

(1)注意事项:

①学生也可以选择规定题目方向外的其它开关电源电路设计。

②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。首先要明确自己课程设计的设计内容。(2)主要技术数据

1、交流输入电压AC220V,波动±50%;

2、直流输出电压5V和12V;

3、输出电流1.5A和200mA;

4、输出纹波电压≤0.2V;

5、输入电压在±50%范围之间变化时,输出电压误差≤0.03V

(3)设计内容:

1、开关电源主电路的设计和参数选择

2、IGBT电流、电压额定的选择

3、开关电源驱动电路的设计

4、开关变压器设计

5、画出完整的主电路原理图和控制电路原理图

6、电路仿真分析和仿真结果

第二章主电路的原理

2.1 总体方案的确定

输入—EMI 滤波—整流(也就一般的AC/DC 类似全桥整流模块)—DC/DC 模块(全桥式DC —AC —高频变压器—高频滤波器—DC)—输出。系统可以划分为变压器部分、整流滤波部分和DC-DC 变换部分,以及负载部分,其中整流滤波和DC —DC 变换器构成开关稳压电源。整流电路是直流稳压电路电源的组成部分。整流电路输出波形中含有较多的纹波成分,所以通常在整流电路后接滤波电路以滤去整流输出电压的纹波。直流/直流转换电路,是整个开关稳压电源的核心部分。开关稳压电源的基本原理框图如图2.1所示。

图2.1开关稳压电源基本原理框图 2.2 反激型电路原理 反激型电路存在电流连续和电流断续两种工作模式,值得注意的是,反激型电路工作于电流连续模式时,其变压器磁芯的利用率会显著下降,因此实际使用中,通常避免该电路工作于电流连续模式。其电路原理图如图2.2所示。 图2.2 反激型电路原理图

工作过程:当S 导通时,电源电流流过变压器原边,增加,其变化为,

而副边由于二极管VD 的作用,为0,变压器磁心磁感应强度增加,变压器储能;当S 关断时,原边电流迅速降为0,副边电流在反激作用下迅速增大到最

EM I 滤 波 电

整流 滤波 电路 辅助 电路 反馈

电路

高 频 变 换 器 输 出 整 流 滤 波 控 制 电 路 L N +4-16 GND

大值,然后开始线性减小,其变化为,此时原边由于开关管的关断,电流为0,变压器磁心磁感应强度减小,变压器放能。

第三章器件的设计选型以及参数计算

3.1 EMI 滤波电路

开关电源以其效率高、体积小、输出稳定性好的优点而迅速发展起来。但是,由于开关电源工作过程中的高频率、 di/ dt 和高 du/ dt 使得电磁干扰问题非常突出。开关电源工作时,电磁干扰可分为两大类:共模干扰是载流体与大地之间的干扰,干扰大小和方向一致,存在于电源任何一相对大地、或中线对大地间,主要是由du/ dt 产生的,di/ dt 也产生一定的共模干扰。差模干扰是载流体之间的干扰,干扰大小相等,方向相反,其存在于电源相线与中线及相线与相线之间。典型的单相EMI电路如图3.1 所示。

图3.1 单相EMI滤波电路

其中共模电感L1和L2采取双线并绕的方式,电感量与EMI滤波器的额定电流I有关。需要指出,当额定电流较大时,共模扼流圈的线径也要相应增大,以便能承受较大的电流。此外,适当增加电感

量,可改善低频衰减特性。Cx电容采用薄膜电容器,容量范围大致是0.01μF—0.47μF,主要用来滤除差模干扰。Cy电容跨接在输出端,并将电容器的中点接地,能有效地抑制共模干扰。Cy亦可并联在输入端,仍选用陶瓷电容,容量范围是2200pF—0.1μF。为减

小漏电流,电容量不得超过0.1μF,并且电容器中点应与大地接通。

因此,最后选取个元件参数如下:

差模干扰抑制电容:Cx=0.2μF

共模干扰抑制电感:T=20mH

共模干扰抑制电容:Cy=0.1μF

3.2 整流滤波电路

在整流滤波环节采取的是单相桥式不可控整流滤波电路,其电路图如图3.2所示。

图3.2 单相桥式不可控整流滤波电路根据设计要求可知交流输入电压范围为110V—330V,单相桥式整流电路中,如果接有滤波电容且有负载时,输出电压一般设计为1.2倍的输入电压,滤波电容越大输出电压越高,反之越低;而在负载开路时,输出电压为交流输入电压的峰值,即倍的输入电压。这里我们以倍的输入电压来计算,则=156V—467V

二极管承受的最大压降为,所以选取二极管型号为IN4005,其最高反向峰值电压为600V。

滤波电容选用220μF的电解电容。

3.3 变压器

反激式变压器是反激开关电源的核心,它决定了反激变换器一系列的重要参数。

设计变压器已知参数:

输入电压:

两路输出电压和电流:,;

反馈电压和电流::,

输出功率

开关频率

首先应根据以下公式计算变压器的电压比:

式中,是开关工作时允许承受的最高电压,该电压值应低于所选开关器件的耐压值并留有一定裕量,是输入直流电压最大值,是变压器电压比。

根据设计要求可知交流输入电压值是220V,通过整流滤波输出的直流电压值为311V。由于有波动,输入的波动是±50%,所以

,取2倍的,故

取934。

由于有两路输出和一路反馈,所以变压器变比如下:

式中:—5V的输出,—12V的输出,—20V 的反馈

—原边与输出5V的匝数比。

—原边与输出12V的匝数比。

—原边与反馈20V的匝数比。

当输出电流最大、输入直流电压为最小值时开关的占空比达到最大,假设这时反激型电路刚好处于电流连续的临界工作模式,则根据下式可以计算出电路工作时的最大占空比

为:

取实际占空比为,计算的值,如下:

这里假定效率为?? March,则初级平均电流可由假定效率,输出总功率及最小总线电压算出。

一次侧峰值电流:

计算一次侧电感值:

选择所需铁芯时,使用法:

式中—磁芯窗口面积,单位为;

—磁芯截面积,单位为;

—磁芯工作磁感应强度,取 =0.3T;

—窗口有效使用系数,根据安全规定的要求和输出路数决定,一般为0.2~0.4,此处取0.4;

—电流密度,一般取??????Acm 。

则求得的的值为:

选择合适的磁芯,一般尽量选择窗口长宽之比较大的磁芯,这样磁芯的窗口有效使用系数较高,同时可以减小漏感,即确定选用CL????。??CL????的磁芯其具体数据为:

按如下公式计算原边匝数,

即取匝。

再根据原、副边的匝比关系可以求出副边的匝数。若求出的匝数不是整数,这时应该调整某些参数,使原、副边的匝数合适。

根据上述所求得的、、求二次侧匝数,

—输出为5V的二次侧匝数,取5

—输出为12V的二次侧匝数,取11

—反馈为20V的二次侧匝数,取18

为了避免磁芯饱和,应该在磁回路中加入一个适当的气隙,计算如下:

绕线的选择由设计方案可知在变压器上有三部分绕组,输入绕组电流,由=3.95A/mm2 可

得绕线的截面积为

第一路输出绕组电流,

第二路输出绕组电流,

第三路反馈绕组电流,

本次设计采用AWG导线,AWG导线的相关数据如表3.3 所示

表3.3 AWG导线规格表

AWG裸线截面积圆密耳电阻重量

型号cir-milΩ/cm gm/cm

21 4.116812.3418.90.03757

22 3.243640.1531.40.02965

23 2.588510.86660.02372

24 2.047404842.10.01884

25 1.623320.310620.01498

26 1.28252.613450.01185

27 1.021201.51687.60.00945 280.8046158.82142.70.00747 290.647127.72664.30.00602 300.50671003402.20.00472

欧阳家百创编

根据表1结合所计算出来的导线截面积,选择导线型号,结果如下:

输入绕组选用AWG-29;5V输出绕组绕组选用AWG-21;12V输出绕组选用AWG-30;反馈绕组选用AWG-35。

最后考虑各方面影响因素,变压器绕制采用操作工艺相对简单的

“三明治”式绕法,即初级绕组先绕一半,再绕次级绕组,绕后再将初级绕组剩余的匝数绕完,最后将次级绕组包裹在里面,这样漏感最

小。该方法是通过变压器绕制工艺设计,控制变压器的漏感,进而减小MOSFET的漏源极电压尖峰。

3.4 输出侧滤波电路

变压器输出侧电路如图3.4所示:

图3.4 输出滤波电路

计算输出滤波电容:根据要求输出纹波电压≤ 0.2V,即输出纹波电的峰峰值为0.2V,

可根据输出误差估算出:

为了更好的保证输出地波形使纹波减小到最小,保证供电质量,由图可知采用的是双滤波环节,二次滤波电容选择和选择C1一样的电容。这里选取电容值为220μF。

选择二极管VD:输出整流二极管

,,故选取IN5391型二极管

同理由以上计算第二路输出12V,200mA的电容、电感值及二极管。

这里选取电容值为47μF。

输出整流二极管,,故选取IN4001型二极管

3.5功率IGBT及其控制电路

功率MOSFET的选择

忽略变压器漏感尖峰电压,功率MOSFET的最小电压应力为:

考虑到变压器漏感产生的尖峰电压,并留有裕量,取VDSS为1200V的管子,选用APT90GF100JN。

控制电路采用UC3842芯片控制开关器件的开通与关断。

UC3842是采用峰值电流模式控制的集成PWM控制器,专门用于构成正激型和反激型等开关电源的控制电路。

UC3842 为双列 8 脚单端输出的它激式开关电源驱动集成电路。其管脚功能如图3.5.1所示:

图3.5.1 UC3844的引脚图

该芯片虽然只有8个管脚,但是却有两个闭环控制回路,一个为内部误差放大器所构成的电压闭环控制回路,它将输出电压反馈到第2管脚,同2.5V基准电压比较,形成误差电压。另一个为内部电流感应比较器所构成的电流闭环控制回路,变压器初级绕组中的电流在反馈电阻Rs上产生的压降,通过第3脚,与误差电压进行比较,调节PWM波的占空比。这两个控制回路都是在固定频率下工作的。

其内部电路包括振荡器、误差放大器、电流取样比较器、PWM锁存电路、5VC基准电源、欠压锁定电路、图腾柱输出电路、输出电路等,其内部结构如图3.5.2所示

1脚为补偿端,该管脚为误差放大器的输出,外接RC网络对误差放大器的频率响应进行补偿。

2脚为电压反馈端,取样电压加在误差放大器的反相输入端,与2.5V的基准电压进行比较,产生误差电压。

图3.5.2 UC3842的内部结构

3脚为电流检测输入脚,外接电流检测电阻,将流过初级绕组上的电流实时反馈到控制器,当3脚电压等于或高于1V时,电流检测比较器输出高电平,

复位PWM 锁存器,从而关闭输出脉冲,起到过流保护作用。

4脚外接定时RC网络,用以确定振荡器的工作频率,其频率通过式确定。

5脚是地,是控制电路和电源的公共地。

6脚为输出端,采用图腾柱式输出,最大峰值电流为1A,能直接驱动功率MOSFET的栅极。

7脚为集成电路的正电源,其开启电压为16V,关闭阀值为10V。一旦芯片开始工作,该芯片就能在10-16V之间波动的电源供电条件下正常工作,6V的差值电压可有效地防止电路在给定工作电压附近振荡。当开关电源通电瞬间,高压直流电通过一个大阻值的电阻降压供给UC3844,当7脚的电压大于16V 时,芯片立即启动,此时启动电流小于1mA,此时无输出,6脚输出正脉冲,使变压器也启动工作,变压器一路输出绕组专门给UC3844供电,以保持芯片继续正常工作,此时的工作电流约为15mA。在第7脚设有一个34V的齐纳管稳压管,用于保证其内部电路绝对工作在34V以下,防止高压可能带来的损坏。

8脚为基准电压输出,产生精确的+5V基准电压,并具有一定的带载能力,带载能力可达50mA。通常我们通过测量该脚是否有稳定的+5V输出来判断该IC是否正常工作。

振荡器的振荡频率由外接的电阻和电容决定,而外接电容同时还决定死区时间长短。死区时间、开关频率同选取开关频率和电容的关系如下所示:

死区时间,频率。

死区时间,开关频率,

求得,。

这里选用40nF的瓷片电容,则电阻值计算为

3.6 反馈电路

反馈电路的基准电压使用的是TL431,其参数如下:

a.最大输入电压为 37V;

b.最大工作电流 150mA;

c.内基准电压为 2.5V;

d.输出电压范围为 2.5—30V 满足电路要求。

电压反馈电路的原理图如图3.6所示

图3.6 电压反馈电路原理图

输出电压通过集成稳压器TL431和光电耦合器反馈到UC3842的①脚,调节R1、R2的分压比可设定和调节输出电压,达到较高的稳压精度。如果输出电压Uo 升高,则集成稳压器TL431的阴极到阳极的电流增

大,使光电耦合器输出的三极管电流增大,即

UC3842①脚对地的分流变大,UC3842的输出脉宽相应变窄,输出电压Uo减小。同样, 如果输出电压Uo 减小,则可通过反馈调节使之升高。

R1、R2 的值都取1.5kΩ,在TL431的K极得到一个2.5V的基准电压,输出电压变

化时,加在光耦合器上的电压发生变化,反馈到

UC3842 的电压也发生变化,通过调节占空比便可调节输出的变化。

光电耦合部分电流放大系数传输比(CTR)通常用直流电流传输比来表示。当输出电压保持恒定时,它等于直流输出电流Ic与直流输

入电流If的百分比,即CTR=IC/ IF×100%。

选用光耦合器4N25,其CTR=20%,直流输入电流 IF=50mA

可以求得

一、EMI滤波电路

4.3滤波输出波形(60Hz干扰)

如果输入有高频电压干扰,通过EMI滤波电路其将会被滤掉,结果输出波形仍是50Hz的交流正弦电压波。

二、整流电路

其仿真电路如图4.4 所示:

图4.4 整流电路

整流后输出直流电压波形如图4.5所示:

图4.5 整流输出直流电压波形

输入为220V的交流电,整流输出

,输出波形符合计算值结果。

三、反激型电路

其仿真电路如图4.6 所示:

图4.6 反激型电路

其中使用到VPULSE其参数含义如下所示:

V1 —起始电压

V2 —脉冲电压

PW —脉冲宽度

TD —延迟时间

TR —上升时间

TF —下降时间

输出5V的仿真图如图4.7所示:

图4.7 输出5V直流波形

输出12V的仿真图如图4.8所示:

图4.8 输出12V直流波形

四、控制电路

其仿真电路如图4.9 所示:

图4.9 UC3842控制电路图

其UC3842输出端电压波形如图4.10所示

图4.10 UC3842输出端电压波形

五、反馈电路

其仿真电路如图4.11 所示:

图4.11 反馈电路

本电路采取311V直流电作为电源,变压器由两个电感和K元件组成,MOSFET由Sbreak元件代替,Sbreak无开关损耗,因此被用在理论仿真中非常合适。Sbreak右侧的1kΩ电阻消耗Sbreak关断后一次侧电感的储能,电路中增加了负反馈,用以稳定输出电压,输出电压波形见图 4.12,可以看出输出电压是稳定的5V左右。

图4.12 带有反馈的输出电压波形

反馈电路采取采样电压和固定频率的单极性三角波比较的方式,当三角波高于输出采样电压时TABLE元件输出高电压,当三角波低于输出采样电压

时TABLE元件输出低电压。当输出采样电压升高时,TABLE元件输出的电压占空比减小,此电压加在Sbreak上,控制其开断,使输出电压降低,从而达到稳定输出电压的作用。

三角波的输出电压波形如图4.13所示:

图4.13 三角波的输出电压波形

第五章结论和心得体会

长达两周时间的课程设计悄然结束了,这次的课程设计不仅运用到了自己所学习到的关于开关电源的知识,也培养了自己如何去整体把握和完成一件事情。在设计过程中,与同学分工设计,和同学们相互探讨,相互学习。

课设是非常需要耐心和付出许多精力的,在这个过程中我们把所学的理论知识与实践相结合,又提高了自己的实际动手的能力和独立思考的能力。作为一名电气专业的大三学生, 我觉得做开关电源课程设计是十分有意义且有必要的。在本次课程设计的过程中,我感触最深的是为了找到自己想要的资料而在网络和书籍上进行大量的查阅了。另外,在这次课程设计中,我也学会了仿真软件ORCAD的使用,虽然过去从接触过这一软件,但短短两周的时间却让我对它强大的仿真能力有了较大的认识。

这次的课程设计是我们专业课程知识综合应用的实践训练,这是我们迈向社会,从事职业工作前一个必不少的过程。通过这次课程设计,我深深体会到学

会脚踏实地迈开每一步,就是为明天能稳健地在社会大潮中奔跑打下坚实的基础。

同时我认为我们的工作是一个团队的工作,团队需要个人,个人也离不开团队,必须发扬团结协作的精神。某个人的离群都可能导致导致整项工作的失败。实习中只有一个人知道原理是远远不够的,必须让每个人都知道,否则一个人的错误,就有可能导致整个工作失败。团结协作是我们实习成功的一项非常重要的保证。而这次实习也正好锻炼我们这一点,这也是非常宝贵的。

对我而言,知识上的收获重要,精神上的丰收更加可喜。挫折是一份财富,经历是一份拥有。这次实习必将成为我人生旅途上一个非常美好的回忆!

附录总电路图

参考文献

1.杨旭等开关电源技术机械工业出版社 2004.3

2.张占松蔡宣三开关电源的原理与设计电子工业出版社1998

3.吕征宇,陈国柱,钱照明开关电源中传导差模EMI 的抑制方法浙江省电源学会第七届学术学位论文集

4.张占松高频开关稳压电源(第一版)广东科技出版社 1992

5.王英剑常敏慧何希才新型开关电源实用技术电子工业出版社 1999.4

6.王志强开关电源设计(第二版) 电子工业出版社2005

7. Jai P Agrawal. Power Electronic System Theory and Design. Prentice Hall,2011

开关电源实验报告

开关电源实验报告 一开关电源原理 如下图30W开关电源电路图所示,市电先经过由电容CX1和滤波电感LF1A组成的滤波电路后,再经过型号为KBP210的整流桥BD1和C1组成的整流电路,输出直流电。直流电又经过由UC3842和2N60等元器件组成的高频逆变电路后,变成高频的交流电,经高频变压器输出为低电压的高频交流电。高频交流经肖基特二极管SR1060后变为脉动的直流电,最后经滤波电容和滤波电感变为我们想要的直流电输出。

MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。(2)输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 (3)整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。

1.2功率变换电路 (1)MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。(2)常见的原理图: (3)工作原理 R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。

开关电源课程设计报告

现代电源技术课程实践报告 院系:物理与电气工程学院 班级:电气自动化一班 姓名: 李向伟 学号: 111101007 指导老师:苗风东

一、设计要求 (1)输入电压:AC220±10%V (2)输出电压: 12V (3)输出功率:12W (4)开关频率: 80kHz 二、反激稳压电源的工作原理

图2-1 反激稳压电源的电路图 三、 反激电路主电路设计 (1)(1)Np Vdc Ton Vo Tr Nsm -=+ (3-1) 1. 反激变压器主电路工作原理 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM 模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM

模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计. 1)工作过程: S 开通后,VD 处于断态,W1绕组的电流线性增长,电感储能增加; S 关断后,W1绕组的电流被切断,变压器中的磁场能量通过W2绕组和VD 向输出端释放。 反激电路的工作模式: 反激电路的理想化波形 S u S i S i V D t o t o ff t t t t U i O O O O 反激电路原理图

相关开关电源原理及电路图

相关开关电源原理及电路图 2012-06-03 17:39:37 来源:21IC 关键字:开关电源电路图 什么是开关电源?所谓开关电源,故名思议,就是这里有一扇门,一开门电源就通过,一关门电源就停止通过,那么什么是门呢,开关电源里有的采用可控硅,有的采用开关管,这两个元器件性能差不多,都是靠基极、(开关管)控制极(可控硅)上加上脉冲信号来完成导通和截止的,脉冲信号正半周到来,控制极上电压升高,开关管或可控硅就导通,由220V整流、滤波后输出的300V电压就导通,通过开关变压器传到次级,再通过变压比将电压升高或降低,供各个电路工作。振荡脉冲负半周到来,电源调整管的基极、或可控硅的控制极电压低于原来的设置电压,电源调整管截止,300V电源被关断,开关变压器次级没电压,这时各电路所需的工作电压,就靠次级本路整流后的滤波电容放电来维持。待到下一个脉冲的周期正半周信号到来时,重复上一个过程。这个开关变压器就叫高频变压器,因为他的工作频率高于50HZ低频。那么推动开关管或可控硅的脉冲如何获得呢,这就需要有个振荡电路产生,我们知道,晶体三极管有个特性,就是基极对发射极电压是0.65-0.7V是放大状态,0.7V以上就是饱和导通状态,-0.1V- -0.3V就工作在振荡状态,那么其工作点调好后,就靠较深的负反馈来产生负压,使振荡管起振,振荡管的频率由基极上的电容充放电的时间长短来决定,振荡频率高输出脉冲幅度就大,反之就小,这就决定了电源调整管的输出电压的大小。那么变压器次级输出的工作电压如何稳压呢,一般是在开关变压器上,单绕一组线圈,在其上端获得的电压经过整流滤波后,作为基准电压,然后通过光电耦合器,将这个基准电压返回振荡管的基极,来调整震荡频率的高低,如果变压器次级电压升高,本取样线圈输出的电压也升高,通过光电耦合器获得的正反馈电压也升高,这个电压加到振荡管基极上,就使振荡频率降低,起到了稳定次级输出电压的稳定,太细的工作情况就不必细讲了,也没必要了解的那么细的,这样大功率的电压由开关变压器传递,并与后级隔开,返回的取样电压由光耦传递也与后级隔开,所以前级的市电电压,是与后级分离的,这就叫冷板,是安全的,变压器前的电源是独立的,这就叫开关电源。 图开关电源原理图1

开关电源设计报告

1开关电源主电路设计 1.1主电路拓扑结构选择 由于本设计的要求为输入电压176-264 V 交流电,输出为24V 直流电,因此中间需要将输入侧的交流电转换为直流电,考虑采用两级电路。前级电路可以选用含电容滤波的单相不可控整流电路对电能进行转换,后级由隔离型全桥Buck 电路构成。总体要求是先将AC176-264V 整流滤波,然后再经过BUCK 电路稳压到24V 。考虑到变换器最大负输出功率为1000W ,因此需采用功率级较高的Buck 电路类型,且必须保证工作在CCM 工作状态下,因此综合考虑,本文采用全桥隔离型Buck 变换器。其主电路拓扑结构如下图所示: 图1-1 主电路拓扑结构 1.2开关电源电路稳态分析 下面将对全桥隔离型BUCK 变换器进行稳态分析,主要是推导前级输出电压g V 与后级输出电压V 之间的关系,为主电路参数的设计提供参考。将前级输出电压g V 代替前级电路,作为后级电路的输入,且后级BUCK 变换器工作在CCM 模式,BUCK 电路中的变压器可以用等效电路代替。 由于全桥隔离型BUCK 变换器中变压器二次侧存在两个引出端,使得后级BUCK 电路的工作频率等同于前级二倍的工作频率,如图1-1所示。在S T 2的工作时间内,总共可分为四种开关阶段,其具体分析过程如下: 1) 当S DT t <<0时,此时1Q 、4Q 和5D 导通,其等效电路图如图1-2所示。

i () t R v i ‘ 图1-2 在S DT t <<0时等效电路 g nv v =s (1-1) v nv v g -L = (1-2) R v i i /-C = (1-3) 2) 当S S T t DT <<时,此时1Q ~4Q 全部关断,6D 和5D 导通,其等效电路图如图1-3 所示。此时前级输出g V 为0,假设磁化电流为0,则流过6D 和5D 电流相等,均为L i 2 1 。。 i () t R i ‘ 图1-3 在S S T t DT <<时等效电路 0=s v (1-4) v v -L = (1-5) R v i i /-C = (1-6) 3) 当S S T D t T )( +1<<时,此时2Q 、3Q 和6D 导通,其等效电路图如图1-2所示。

300w开关电源设计(图纸)

TND313/D Rev 3, Sep-11 High-Efficiency 305 W ATX Reference Design Documentation Package ? 2011 ON Semiconductor.

Disclaimer: ON Semiconductor is providing this reference design documentation package “AS IS” and the recipient assumes all risk associated with the use and/or commercialization of this design package. No licenses to ON Semiconductor’s or any third party’s Intellectual Property is conveyed by the transfer of this documentation. This reference design documentation package is provided only to assist the customers in evaluation and feasibility assessment of the reference design. The design intent is to demonstrate that efficiencies beyond 80% are achievable cost effectively utilizing ON Semiconductor provided ICs and discrete components in conjunction with other inexpensive components. It is expected that users may make further refinements to meet specific performance goals.

开关电源课程设计

电气与电子信息工程学院 《电力电子装置设计与制作课程设计报告》 课设名称:开关直流升压电源(BOOST)设计 专业名称:电气工程及其自动化 班级: 学号: 姓名: 指导教师: 课设时间: 课设地点: 电气与电子信息工程学院

《电力电子装置设计与制作》课程设计任务 书 学生姓名:专业班级: 指导教师:工作部门: 一、课程设计题目: 开关直流升压电源(BOOST)设计 二、课程设计内容 根据题目选择合适的输入输出电压进行电路设计,在Protel或OrCAD软件上进行原理图绘制;满足设计要求后,再进行硬件制作和调试。如实验结果不满足要求,则修改设计,直到满足要求为止。 题目:开关直流升压电源(BOOST)设计 主要技术指标: 1)输入交流电压220V(可省略此环节)。 2)输入直流电压在11-12V之间。 3)输出直流电压17V,输出电压纹波小于2%。 4)输出电流1A。 5)采用脉宽调制PWM电路控制。 目录

摘要 (5) 第一章方案选择和方案论证 (7) 1.系统方案设计 (7) 2.方案论证 (7) 第二章主电路计算和器件选择 (8) 1.设计要求 (8) 2.选择开关管的频率 (8) 3.占空比计算 (8) 4.电感的计算(按D=35.29%) (8) 5.电容的计算 (8) 6.电感峰值电流的计算(按D=35.29%) (8) 7.开关管的选择 (8) 8.开关损耗的计算(按D=35.29%) (9) 9.二极管的选择 (9) 10.电阻的计算 (9) 第三章系统功能及原理 (10) 1.系统功能 (10) 2. boost电路工作原理 (10) 第四章各模块的功能和原理 (13) 1. TL494工作原理 (13) 2. 开关频率的计算 (13) 第五章 MATLAB仿真 (15) 1.仿真原理图 (15) 2.仿真结果 (15) 3.仿真结果分析 (16) 第六章实验结果以及分析 (17) 1.实验结果 (17) 2.结果分析 (17) 第七章硬件电路 (18) 1.焊接电路主电路图 (18) 2.焊接电路控制电路图 (18)

PI开关电源电路设计

PI开关电源设计指引 (发布日期:2011-11) 1范围 本标准描述了开关电源电路硬件控制的实现方法,一般开关电源电路设计者在使用不同型号的开关电源控制IC及不同的开关电源电路方案时可以此为参考,更快、更好地完成特定功能的硬件设计。希望本标准能对硬件可靠性的提升有所帮助。 本标准适用于PI开关电源电路的设计。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 7725 房间空气调节器 GB/T 15184 按能力批准评定质量的电子设备用开关电源变压器分规范 GB/T 14714 微小型计算机系统设备用开关电源通用技术条件 QMK-J33.242 开关变压器设计指引 3硬件接口定义及相关原理图 3.1控制芯片型号——TinySwitch-III系列离线开关IC(TNY276~TNY279); 3.2管脚功能说明如下: EN/UV脚:输入使能信号和输入线电压欠压检测。 1、EN功能:在正常工作时,通过此引脚可以控制功率MOSFET的开关,当从此引脚拉出的 电流大于115μA,MOSFET被关断。当此引脚拉出的电流小于75μA时,MOSFET重新开启。 2、UV功能:在EN/UV引脚和DC电压间连接一个外部电阻可以用来感测输入电压的欠压情况。 如果没有外部电阻连接到此引脚,TinySwitch-III可检测出这情况并禁止输入电压欠压保护功能。 BP/M脚:旁路/多功能控制脚。 1、旁路:一个外部旁路电容连接到这个引脚,用于生成内部5.85 V的供电电源。 2、外部限流点设定:根据所使用电容的容值选择电流限流值。 3、关断功能:在输入掉电时,当流入旁路引脚的电流超过I SD时关断器件,直到BP/M电压下降 到4.9 V之下。还可将一个稳压管从BP/M引脚连接到偏置绕组供电端实现输出过压保护。 D脚:旁路电容充电引脚,同时也是内部功率MOSEFT的漏极(D极)。 S脚:内置功率MOSEFT的源极(S极),同时也是开关电源控制电路的参考点。 3.3参考设计原理图

模电课程设计—开关电源

《模拟电子线路》 课程设计报告 题目:基于TL3842的升压电路设计班级:12电信本2 学号:1111111111 姓名:XXX 同组成员:姚X阳、严X涛 指导教师:X琼、X文X 2014年6月25日

目录 1 课程设计目的 (1) 2 题目描述和要求 (1) 3 电路设计 (1) 3.1 系统设计思路 (1) 3.2 Boost电路结构分析 (3) 3.3 推导与计算 (5) 4 LTspice仿真 (6) 5 电路焊接与调试 (8) 5.1 元件清单 (8) 5.2 电路焊接 (9) 5.3 电路测试 (9) 6 总结 (12) 7 指导教师意见 (13) 参考文献 (13)

基于TL3842的升压电路 1 课程设计目的 模拟电子线路课程设计是对自身的模拟电子线路知识的一个检验,基础知识扎实与否很大程度决定了设计出来的产品效果,若出现问题可运用所学过的知识进行判断修改,具体目的如下。 (1)加强对模拟电路知识的运用。 (2)学习Proteus、LTspice等仿真软件的使用。 (3)会运用LTspice工具对所做出的理论设计进行模拟仿真测试,进一步完善理论设计。 (4)通过查阅元件手册和文献资料,熟悉常用电子器件的类型和特性,并掌握合理选用元器件的原则,找到最合适电路的元器件。 (5)熟悉电子仪器的正确使用方法,能够分析实验中出现的正常或不正常现象(或数据)独立解决调试中所发生的意外问题。 (6)学会撰写课程设计报告。 2 题目描述和要求 开关电源是一种效率高、功耗小、稳定性可靠性高的电源,相比线性稳压电源有点明显,因此与时俱进,我们小组决定做开关电源,具体描述如下。(1)课程设计题目:利用TL3842制作一个BOOST DC-DC变换器,即升压式开关电源。 (2)课程设计要求:输入直流电压Vmin=18V,Vmax=30V。输入稳定的36V直流电压,并且纹波电压V<10mV。 3 电路设计 3.1 系统设计思路 在实际应用中经常会涉及到升压电路的设计,对于较大的功率输出,如70W 以上的DC/DC升压电路,由于专用升压芯片内部开关管的限制,难于做到大功率升压变换,而且芯片的价格昂贵,在实际应用时受到很大限制。考虑到Boost升压结构外接开关管选择余地很大,选择合适的控制芯片,便可设计出大功率输出的

开关电源实验报告

开关电源实验报告 一、开关电源电路图及清单 1.1 60W-12V开关电源电路图 图1-1 开关电源电路原理1.2.60W-12V开关电源电清单

二、开关电源介绍 开关电源大致由主电路、控制电路、检测电路、辅助电源四大部份组成。开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,通讯设备,视听产品,安防监控,LED 灯袋,电脑机箱,数码产品和仪器类等领域。它是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源的发展方向是高频、高可靠、低耗、低噪声、抗干扰和模块化。由于开关电源轻、小、薄的关键技术是高频化,因此国外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是改善二次整流器件的损耗,并在功率铁氧体材料上加大科技创新,以提高在高频率和较大磁通密度(Bs)下获得高的磁性能,而电容器的小型化也是一项关键技术。SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。开关电源的高频化就必然对传统的PWM开关技术进行创新,实现ZVS、ZCS的软开关技术已成为开关电源的主流技术,并大幅提高了开关电源的工作效率。对于高可靠性指标,美国的开关电源生产商通过降低运行电流,降低结温等措施以减少器件的应力,使得产品的可靠性大大提高。 模块化是开关电源发展的总体趋势,可以采用模块化电源组成分布式电源系统,可以设计成N+1冗余电源系统,并实现并联方式的容量扩展。针对开关电源运行噪声大这一缺点,若单独追求高频化其噪声也必将随着增大,而采用部分谐振转换电路技术,在理论上即可实现高频化又可降低噪声,但部分谐振转换技术的实际应用仍存在着技术问题,故仍需在这一领域开展大量的工作,以使得该项技术得以实用化。电力电子技术的不断创新,使开关电源产业有着广阔的发展前景。要加快我国开关电源产业的发展速度,就必须走技术创新之路,走出有中国

电气自动化+PWM型开关电源电路设计

1 引言 当今社会,时代在进步,人们的生活水平不断提高,越来越离不开电力电子产品电力电子设备与人们的工作、生活的关系日益密切,当然任何电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 1.1 什么是开关电源 电子电源是对公用电网或某种电能进行变换和控制,并向各种用电负载提供优质电能的供电设备。它可分为线性电源和开关电源两种。应用大功率半导体器件,在一个电路中运行于“开关状态”,按一定规律控制开关,对电能进行处理变换而构成的电源,被称为“开关电源”。在实际应用中同时具备三个条件的电源可称之为开关电源,这三个条件就是:开关(电路中的电力电子器件工作在开关状态而不是线性状态)、高频(电路中的电力电子器件工作在高频而不是接近工频的低频)和直流(电源输出是 直流而不是交流)。广义地说,凡用半导体功率器件作为开关,将一种电源形态转变成另一形态的主电路都叫做开关变换电路;转变时用自动控制闭环稳定输出并有保护环 节的则称开关电源。 1.2 开关电源基本工作原理 开关电源以半导体开关器件的启闭为基本原理,即通过控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。开关电源一般由脉冲宽度调制(PWM)或者脉冲频率调制方式(PFM)控制IC和外部电路构成。 开关电源有PWM调制、FWM调制和混合调制,这里选用PWM调制。PWM型开关电源的换能电路是将输入的直流电压转换成脉冲电压,再将脉冲电压转换成直流电压输出。 图1-1 PWM型开关电源原理框图

开关电源防雷电路设计1

防雷电路开关电源防雷电路设计方案上网时间: 2010-08-30防雷电路开关电源防雷电路设计方案 雷击浪涌分析 最常见的电子设备危害不是由于直接雷击引起的,而是由于雷击发生时在电源和通讯线路中感应的电流浪涌引起的。一方面由于电子设备内部结构高度集成化(VLSI芯片),从而造成设备耐压、耐过电流的水平下降,对雷电(包括感应雷及操作过电压浪涌)的承受能力下降,另一方面由于信号来源路径增多,系统较以前更容易遭受雷电波侵入。浪涌电压可以从电源线或信号线等途径窜入电脑设备,我们就这两方面分别讨论: 1)电源浪涌 电源浪涌并不仅源于雷击,当电力系统出现短路故障、投切大负荷时都会产生电源浪涌,电网绵延千里,不论是雷击还是线路浪涌发生的几率都很高。当距你几百公里的远方发生了雷击时,雷击浪涌通过电网光速传输,经过变电站等衰减,到你的电脑时可能仍然有上千伏,这个高压很短,只有几十到几百个微秒,或者不足以烧毁电脑,但是对于电脑内部的半导体元件却有很大的损害,正象旧音响的杂音比新的要大是因为内部元件受到损害一样,随着这些损害的加深,电脑也逐渐变的越来越不稳定,或有可能造成您重要数据的丢失。 美国GE公司测定一般家庭、饭店、公寓等低压配电线(110V)在10000小时(约一年零两个月)内在线间发生的超出原工作电压一倍以上的浪涌电压次数达到800余次,其中超过1000V 的就有300余次。这样的浪涌电压完全有可能一次性将电子设备损坏。 2)信号系统浪涌 信号系统浪涌电压的主要来源是感应雷击、电磁干扰、无线电干扰和静电干扰。金属物体(如电话线)受到这些干扰信号的影响,会使传输中的数据产生误码,影响传输的准确性和传输速率。排除这些干扰将会改善网络的传输状况。 基于以上的技术缺陷和状况,本文根据实际使用设计了一种基于压敏电阻和陶瓷气体放电管的单相并联式抗雷击浪涌的开关电源电路。 防雷击浪涌电路的设计 本文所设计的是一种基于压敏电阻和陶瓷气体放电管的单相并联式抗雷击浪涌电路,并将其应用到仪表的开关电源上。整个电路包括防雷电路和开关电源电路,其中防雷电路采用3个压敏电阻和一个陶瓷气体放电管组成复合式对称电路,共模、差摸全保护。与经典的开关电源电路组成防雷仪表的电源电路,采用压敏电阻并联,延长使用寿命,在压敏电阻短路失效后与开关电源电路分离,不会引起失火。 为了实现上述目的所采取的设计方案是:将压敏电阻和陶瓷气体放电管的单相并联式抗雷击浪涌电路应用到仪表的电源上。主要分为防雷电路部分和开关电源电路部分,电路简单,采用复合式对称电路,共模、差摸全保护,可以不分L、N端连接。使压敏电阻RV1位于贴片整流模块前端分别与电源L、N并联,主要来钳位L、N线间电压,压敏电阻RV0、RV2与陶瓷气体放电管FD1串联后接地,RV0与FD1串联主要是泄放L线上感应雷击浪涌电流,RV2与FD1串联主要是泄放由信号口串人24V参考电位上的能量,RV0、RV2短路失效后,FD1可将其与电源电路分离,不会导致失火现象。 RV1前端线路上串联了一个线绕电阻,当此RV1短路失效时,线绕电阻可起到保险丝的作用,将短路电路断开,压敏电阻属电压钳位型保护器件,其钳位电压点即压敏电阻参数选择相对比较重要(选压敏电压高一点的,通流量大一些的更安全、耐用,故障率低);根据通流容量要求选择外形尺寸和封装形式,本电路中采用561k-10D的压敏电阻与陶瓷气体放电

开关电源课程设计

目录 前言 (1) 第一章开关电源技术课程设计任务书 (2) 第二章主电路原理设计 (7) 第三章开关变压器设计 (9) 第四章主要元器件的选型 (16) 第五章电路仿真及结果 (23) 总结 参考文献 附表一 附表二

前言 电源装置是电力电子技术应用的一个重要领域,其中高频开关式直流稳压电源由于具有效率高、体积小和重量轻等突出优点,获得了广泛的应用。开关电源的控制电路可以分为电压控制型和电流控制型,前者是一个单闭环电压控制系统,系统响应慢,很难达到较高的线形调整率精度,后者,较电压控制型有不可比拟的优点。 UC3842是由Unitrode公司开发的新型控制器件,是国内应用比较广泛的一种电流控制型脉宽调制器。所谓电流型脉宽调制器是按反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈电流的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环、电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是比较理想的新型的控制器闭。

第一章开关电源技术课程设计任务书 一、课程设计的目的 通过开关电源技术的课程设计达到以下几个目的: 1、培养学生文献检索的能力,特别是如何利用Internet检索需要的文 献资料。 2、培养学生综合分析问题、发现问题和解决问题的能力。 3、培养学生运用知识的能力和工程设计的能力。 4、培养学生运用仿真工具的能力和方法。 5、提高学生课程设计报告撰写水平。 二、课程设计的要求 一、题目 题目:反激型开关电源电路设计 注意事项: ①学生也可以选择规定题目方向外的其它开关电源电路设计。 ②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。首先要明确自己课程设计的设计内容。 设计装置(或电路)的主要技术数据

开关电源电路详解

FS1: 由变压器计算得到Iin值,以此Iin值可知使用公司共享料2A/250V,设计时亦须考虑Pin(max)时的Iin是否会超过保险丝的额定值。 TR1(热敏电阻):

电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用SCK053(3A/5Ω),若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power上)。 VDR1(突波吸收器): 当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC输入端(Fuse之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。 CY1,CY2(Y-Cap): Y-Cap一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap ,AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路蛭蠪G所以使用Y2-Cap,Y-Cap 会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin公司标准为750uA max)。 CX1(X-Cap)、RX1: X-Cap为防制EMI零件,EMI可分为Conduction及Radiation两部分,Conduction 规范一般可分为: FCC Part 15J Class B 、CISPR 22(EN55022) Class B 两种,FCC 测试频率在450K~30MHz,CISPR 22测试频率在150K~30MHz,Conduction可在厂内以频谱分析仪验证,Radiation 则必须到实验室验证,X-Cap 一般对低频段(150K ~ 数M之间)的EMI防制有效,一般而言X-Cap愈大,EMI防制效果愈好(但

简易开关电源设计报告

四川教育学院应用电子设计报告 课程名称:Protel99 电路设计系部:物理与电子技术系专业班级:应用电子技术0901 学生姓名:x x x 学号: 指导教师: 完成时间:

开关电源电路设计报告 一. 设计要求: 直流稳定电源主要包括线性稳定电源和开关型稳定电源,由于开关稳压电源的优点是体积小,重量轻,稳定可靠,适用性强,故选择设计可调开关稳压电源,其具体设计要求如下: (1).所选元器件和电路必须达到在一定范围内输出电压连续可调,输出电压U0=+6V —— +9V连续可调,输出额定电流为500mA; (2).输出电压应能够适应所带负载的启动性能,且输出电压短路时,对各元器件不会产生影响; (3).电路还必须简单可靠,有过流保护电路,能够输出足够大的电流。 二.方案选择及电路的工作原理 方案一: 首先用一个桥式整流电路将输入的交流电压变成直流电压,然后经过电容滤波,然后在经过一个NPN型三级管Q1调整管,最后整过电路形成一个通路,达到最终的效果。 方案二: 开关电源同其它电子装置一样,短路是最严重的故障,短路保护是否可靠,是影响开关电源可靠性的重要因素。IGBT(绝缘栅双极型晶体管)兼有场效

应晶体管输入阻抗高、驱动功率小和双极型晶体管电压、电流容量大及管压降低的特点,是目前中、大功率开关电源最普遍使用的电力电子开关器件[6]。IGBT能够承受的短路时间取决于它的饱和压降和短路电流的大小,一般仅为几μs至几十μs。短路电流过大不仅使短路承受时间缩短,而且使关断时电流下降率过大,由于漏感及引线电感的存在,导致IGBT集电极过电压,该过电压可使IGBT锁定失效,同时高的过电压会使IGBT击穿。因此,当出现短路过流时,必须采取有效的保护措施。 为了实现IGBT的短路保护,则必须进行过流检测。适用IGBT过流检测的方法,通常是采用霍尔电流传感器直接检测IGBT的电流Ic,然后与设定的阈值比较,用比较器的输出去控制驱动信号的关断;或者采用间接电压法,检测过流时IGBT的电压降Vce,因为管压降含有短路电流信息,过流时Vce增大,且基本上为线性关系,检测过流时的Vce并与设定的阈值进行比较,比较器的输出控制驱动电路的关断。 在短路电流出现时,为了避免关断电流的过大形成过电压,导致IGBT 锁定无效和损坏,以及为了降低电磁干扰,通常采用软降栅压和软关断综合保护技术。 在设计降栅压保护电路时,要正确选择降栅压幅度和速度,如果降栅压幅度大(比如7.5V),降栅压速度不要太快,一般可采用2μs下降时间的软降栅压,由于降栅压幅度大,集电极电流已经较小,在故障状态封锁栅极可快些,不必采用软关断;如果降栅压幅度较小(比如5V以下),降栅速度可快些,而封锁栅压的速度必须慢,即采用软关断,以避免过电压发生。 为了使电源在短路故障状态不中断工作,又能避免在原工作频率下连续进行短路保护产生热积累而造成IGBT损坏,采用降栅压保护即可不必在一次短路保护立即封锁电路,而使工作频率降低(比如1Hz左右),形成间歇“打嗝”的保护方法,故障消除后即恢复正常工作。下面是几种IGBT短路保护的实用电路及工作原理。 利用IGBT的Vce设计过流保护电路

单端正激式开关电源-主电路设计

摘要:电源是各种电子设备不可或缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠工作。目前,开关电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代传统技术制造的相控稳压电源,并广泛应用于电子设备中。 本设计的单端正激式开关电源是一种间接直流变流技术,本设计以正激电路为主体,采用以TOPSwitch系列开关电源集成芯片TOP244Y为核心的脉宽调制电路实现交-直-交-直变流,输出稳压稳频的直流电。 关键词开关电源;正激电路;变压器;脉宽调制; ABSTRACT Power is an indispensable part of electronic equipment, its performance directly related to electronic equipment technical indicators and safe work can. At present, switching power supply for has the advantages of small size, light weight, high efficiency, low calorific value and stable performance advantages and replace traditional technology of phased manostat, and widely used in electronic equipment. The design of the single straight separate-excited switching power supply is a kind of indirect dc converter technology, this design was adopted for the main circuit, induced by TOPSwitch series of switch power integration chip TOP244Y as the core of the pulse width modulation circuit implementation delivered straight into - - - the voltage output variable flow straight, dc frequency stability. KEY WORDS Switching power supply;Is induced circuit;Transformer;Pulse width modulation 目录 前言 (1) 1. 开关电源的发展及趋势 (2)

课程设计_可调直流稳压电源

电子科学与技术专业课程设计 目录 一、设计目的作用 (1) 二、设计要求 (1) 2.1 直流稳压电源的种类及选用 (1) 2.2 稳压电源的技术指标及对稳压电源的要求 (2) 2.3 串联型直流稳压电源的设计要求 (2) 三、设计的具体实现 (2) 3.1 系统概述 (2) 3.2 单元电路设计与分析 (4) 3.2.1 降压电路 (5) 3.2.2 整流电路 (5) 3.2.3 滤波电路 (7) 3.2.4 稳压电路 (9) 3.3 元件电路参数计算 (10) 3.4 改进方案 (11) 3.5 电路主要测试数据 (12) 四、总结 (12) 五、附录 (12)

六、参考文献 (14)

设计要求 2.1 直流稳压电源的种类及选用 直流稳定电源按习惯可分为化学电源、线性稳定电源和开关型稳定电源,它们又分别具有各种不同类型: (1)化学电源:平常所用的干电池、铅酸蓄电池、镍镉、镍氢、锂离子电池均属于这一类,各有其优缺点。随着科学技术的发展,又产生了智能化电池;在充电电池材料方面,美国研制员发现锰的一种碘化物,用它可以制造出便宜、小巧、放电时间,多次充电后仍保持性能良好的环保型充电电池。 (2)线性稳压电源:线性稳定电源有一个共同的特点就是它的功率器件调整管工作在线性区,靠调整管之间的电压降来稳定输出。由于调整管静态损耗大,需要安装一个很大的散热器给它散热,而且由于变压器工作在工频(50Hz)上,所以重量较大。该类电源优点是稳定性高,纹波小,可靠性高,易做成多路,输出连续可调的成品;缺点是体积大、较笨重、效率相对较低。 (3)开关型直流稳压电源:电路型式主要有单端反激式,单端正激式、半桥式、推挽式和全桥式。它和线性电源的根本区别在于它变压器不工作在工频而是工作在几十千赫兹到几兆赫兹,功能管不是工作在饱和及截止区即开关状态,开关电源因此而得名。开关电源的优点是体积小,重量轻,稳定可靠;缺点相 对于线性电源来说纹波较大(一般≤1% V ) (P P o-,好的可做到十几mV P P- 或更小)。 它的功率可自几瓦-几千瓦均有产品。 2.2 稳压电源的技术指标及对稳压电源的要求 (1)稳定性好 当输入电压Usr(整流、滤波的输出电压)在规定范围内变动时,输出电压Usc的变化应该很小一般要求。由输入电压变化而引起输出电压变化的程度,称为稳定度指标,常用稳压系数S来表示:S的大小,反映一个稳压电源克服输入电压变化的能力。在同样的输入电压变化条件下,S越小,输出电压的变化越小, 电源的稳定度越高。通常S约为10-2~10-4。 (2)输出电阻小 负载变化时(从空载到满载),输出电压Usc,应基本保持不变。稳压电源这方面的性能可用输出电阻表征。输出电阻(又叫等效内阻)用rn表示,它等于输出电压变化量和负载电流变化量之比。rn反映负载变动时,输出电压维持恒定的能力,rn越小,则Ifz 变化时输出电压的变化也越小。性能优良的稳压

开关电源课程设计

太原理工大学课程设计任务书

指导教师签名:日期:

前言 随着电力电子技术的发展,开关电源的应用越来越广泛。反激式开关电源以其设计简单,体积小巧等优势,广泛应用于小功率场合。开关电源以其小型、轻量和高效率的特点,被广泛地应用于各种电气设备和系统中,其性能的优劣直接关系到整个系统功能的实现。开关稳压电源有多种类型,其中单端反激式开关电源由于具有线路简单,所需要的元器件少,能够提供多路隔离输出等优点而广泛应用于小功率电源领域。 本论文根据输入电压经EMI滤波设计整流桥,再与直流变压器开关管构成反激电路。通过输出反馈经UC3842控制占空比,从而使输出电压稳定。反激电路中开关管开通原边线圈储存能量,副边不导通。原边关断时,线圈储存的能量通过互感向负载提供能量。输出电压反馈由TL431和光耦构成,当输出稳定时,有一个稳定的电流;当输出电压增大时,TL431分流增加,发光二极管亮度改变,使三级管电流改变,致使开关管控制导通占空比改变,从而使输出电压减小。另外,芯片UC3842引脚接一电流反馈,通过控制分压值实现截流保护,防止输出过电流。 设计中,直流变压器的设计是重点,需要计算其原边电感,原副边匝数,铁芯的选择,根据这些参数构造电路图,计算各电容电阻值及二极管承受的反压,选择合适的型号。 论文先介绍了开关电源及反激式开关电源,然后介绍器件选型,再分部分介绍主电路、控制电路和保护电路,最后附表为选择时参数参考表和总电路图。

目录 前言 第一章开关电源概述 (1) 1.1开关电源综述 (1) 1.2反激式开关电源介绍 (2) 第二章总体方案的确定 (2) 2.1总体设计思路及框图 (2) 2.2仿真原理图 (3) 第三章具体电路设计 (5) 3.1EMI滤波电路 (5) 3.2整流滤波电路设计 (6) 3.3 高频变压器的设计 (7) 3.4控制反馈电路的设计 (15) 3.5保护电路的设计 (17) 3.6输出侧滤波电路设计 (18) 第四章电路仿真与结果 (19) 4.1 EMI滤波电路 (19) 4.2整流电路 (21) 4.3反激型电路 (22) 4.4反馈电路 (23) 4.5总电路 (24)

开关电源软启动电路设计

开关电源软启动电路设计 1 简介 开关电源的输入电路大都采用整流加电容滤波电路。在输入电路合闸瞬间,由于电容器上的初始电压为零会形成很大的瞬时冲击电流如图1所示,特别是大功率开关电源,其输入采用较大容量的滤波电容器,其冲击电流可达100A以上。在电源接通瞬间如此大的冲击电流幅值,往往会导致输入熔断器烧断,有时甚至将合闸开关的触点烧坏,轻者也会使空气开关合不上闸,上述原因均会造成开关电源无法正常投入。为此几乎所有的开关电源在其输入电路设置的防止冲击电流的软起动电路,以保证开关电源正常而可靠的运行。 2 常用软起动电路 2.1 采用功率热敏电阻电路 热敏电阻防冲击电流电路如图2所示。它利用热敏电阻的Rt的负温度系数特性,在电源接通瞬间,热敏电阻的阻值较大,达到限制冲击电流的作用;当热敏电阻流过较大电流时,电阻发热而使其阻值变小,电路处于正常工作状态。采用热敏电阻防止冲击电流一般适用于小功率开关电源,由于热敏电阻的热惯性,重新恢复高阻需要时间,故对于电源断电后又需要很快接通的情况,有时起不到限流作用。

2.2 采用SCR-R电路 该电路如图3所示。在电源瞬时接通时,输入电压经整流桥VD1-VD4和限流电阻R对电容器C充电。当电容器C充电到约80%的额定电压时,逆变器正常工作,经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R,开关电源处于正常运行状态。 这种限流电路存在如下问题:当电源瞬时断电后,由于电容器C上的电压不能突变,其上仍有断电前的充电电压,逆变器可能还处于工作状态,保持晶闸管继续导通,此时若马上重新接通输入电源,会同样起不到防止冲击电流的作用。 2.3 具有断电检测的SCR-R电路 该电路如图4所示。它是图3的改进型电路,VD5、VD6、VT1、RB、CB组成瞬时断电检测电路,时间常数RBCB的选 取应稍大于半个周期,当输入发生瞬间断电时,检测电路得到的检测信号,关闭逆变器功率开关管VT2的驱动信号,使逆变器停止工作,同时切断晶闸管SCR的门极触发信号,确保电源重新接通时防止冲击电流。 2.4 继电器K1与电阻R构成的电路 该电路原理图如图5所示。电源接通时,输入电压经限流电阻R1对滤波电容器C1充电,同时辅助是电源Vcc经电阻R2对并接于继电器K1线包的电容器C2充电,当C2上的充电电压达到继电器的动作电压时,K1动作,旁路限流电阻

电力电子课程设计心得-单端反激式输出开关电源设计【模版】

电力电子技术课程设计报告

单端反激式单路输出开关电源 一、设计任务及要求 本课程设计要求根据所提供的元器件设计并制作一个小功率的单端反激式开关电源。我们设计的反激式开关电源的输入是180V,输出是10V。要求画出必要的设计电路图,进行必要的电路参数计算,完成电路的焊接任务,并具有1A的带负载能力以及过流保护功能。 二、设计原理及思路 1、反激变换器工作原理 假设变压器和其他元器件均为理想元器件,稳态工作下: (1)当有源开关Q导通时,变压器原边电流增加,会产生上正下负的感应电动势,从而在副边产生下正上负的感应电动势,无源开关VD1因反偏而截止,输出由电容C向负载提供能量,而原边则从电源吸收电能,储存于磁路中。 (2)当有源开关Q截止时,由于变压器磁路中的磁通不能突变,所以在原边会感应出上负下正的感应电动势,而在副边会感应出上正下负的感应电动势,故VD1正偏而导通,此时磁路中的存储的能量转到副边,并经二极管VD1向负载供电,同时补充滤波电容C在前一阶段所损失的能量。输出滤波电容除了在开关Q导通时给负载提供能量外,还用来限制输出电压上的开关频率纹波分量,使之远小于稳态的直流输出电压。 U o 图 1 反激变换器的原理图 反激变换器的工作过程大致可以看做是原边储能和副边放电两个阶段。原边电流和副边电流在这两个阶段中分别起到励磁电流的作用。如果在下一次Q导通之前,副边已将磁路的储能放光,即副边电流变为零,则称变换器运行于断续电流模式(DCM),反之,则在副边还没有将磁路的储能放光,即在副边电流没有变为零之前,Q又导通,则称变换器运行于连续电流模式(CCM)。通常反激变换器多设计为断续电流模式(DCM)下。

相关文档
最新文档