常见光缆结构图

常见光缆结构图
常见光缆结构图

GYTA 金属加强铝带铠装光缆结构图

松套管

GYTZA 铝带铠装低烟无卤阻燃光缆结构图

松套管

GYTS 金属加强钢带铠装光缆结构图

松套管

GYTZS 钢带铠装低烟无卤阻燃光缆结构图

松套管

GYXTW 中心管式(平行钢丝)光缆结构图 双面涂覆钢塑复合带

聚乙烯外护套

着色光纤

PBT 松套管

触变性纤膏

平行钢丝加强构件

GYXTW 中心管式低烟无卤阻燃光缆结构图

双面涂覆钢塑复合带

低烟无卤阻燃聚烯烃外护套

着色光纤

PBT 松套管

触变性纤膏

平行钢丝加强构件

GYFTY 非金属光缆结构图

松套管

非金属中心加强件

ADSS 全介质自承式光缆结构图

芳纶

聚乙烯/AT 外护套

聚乙烯内护套

PBT 松套管

触变性纤膏

FRP 非金属中心加强件

聚乙烯内护套

PBT 松套管

GYTA53双护套钢带铠装光缆结构图

聚乙烯外护套

双面涂覆皱纹钢塑复合带

PBT 松套管

GYTZA53低烟无卤阻燃双护套钢带铠装光缆结构图

双面涂覆皱纹钢塑复合带

聚乙烯内护套

PBT 松套管

GYTY53双护套钢带铠装光缆结构图

聚乙烯外护套

双面涂覆皱纹钢塑复合带

PBT 松套管

GYTZY53低烟无卤阻燃双护套钢带铠装光缆结构图

双面涂覆皱纹钢塑复合带

GYTC8S 8字型室外光缆结构图

松套管

GYXTC8 8字型室外光缆结构图

双面涂覆钢塑复合带

聚乙烯外护套

着色光纤

PBT 松套管

触变性纤膏

钢绞线

GJXFV 皮线(蝶形)光缆结构图

GYTA53+53三护套钢带铠装光缆结构图

松套管

GYTA-24B1光缆结构图

聚乙烯外护套

PBT 松套管

触变性纤膏

磷化钢丝中心加强件 阻水填充膏

着色光纤

双面涂覆铝塑复合带 填充绳

数据结构实验报告

数据结构实验报告 一.题目要求 1)编程实现二叉排序树,包括生成、插入,删除; 2)对二叉排序树进行先根、中根、和后根非递归遍历; 3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。 4)分别用二叉排序树和数组去存储一个班(50人以上)的成员信息(至少包括学号、姓名、成绩3项),对比查找效率,并说明在什么情况下二叉排序树效率高,为什么? 二.解决方案 对于前三个题目要求,我们用一个程序实现代码如下 #include #include #include #include "Stack.h"//栈的头文件,没有用上 typedefintElemType; //数据类型 typedefint Status; //返回值类型 //定义二叉树结构 typedefstructBiTNode{ ElemType data; //数据域 structBiTNode *lChild, *rChild;//左右子树域 }BiTNode, *BiTree; intInsertBST(BiTree&T,int key){//插入二叉树函数 if(T==NULL) { T = (BiTree)malloc(sizeof(BiTNode)); T->data=key; T->lChild=T->rChild=NULL; return 1; } else if(keydata){ InsertBST(T->lChild,key); } else if(key>T->data){ InsertBST(T->rChild,key); } else return 0; } BiTreeCreateBST(int a[],int n){//创建二叉树函数 BiTreebst=NULL; inti=0; while(i

光纤激光器原理

光纤激光器原理 光纤激光器主要由泵浦源,耦合器,掺稀土元素光纤,谐振腔等部件构成。泵浦源由一个或多个大功率激光二极管阵列构成,其发出的泵浦光经特殊的泵浦结构耦合入作为增益介质的掺稀土元素光纤,泵浦波长上的光子被掺杂光纤介质吸收,形成粒子数反转,受激发射的光波经谐振腔镜的反馈和振荡形成激光输出。 光纤激光器特点 光纤激光器以光纤作为波导介质,耦合效率高,易形成高功率密度,散热效果好,无需庞大的制冷系统,具有高转换效率,低阈值, 光纤激光器原理图1: 峰值功率:脉冲激光器,顾名思义,它输出的激光是一个一个脉

冲,每单个脉冲有一个持续时间,比如说10 ns(纳秒),一般称作单个脉冲宽度,或单个脉冲持续时间,我们用t 表示。这种激光器可以发出一连串脉冲,比如,1 秒钟发出10 个脉冲,或者有的就发出一个脉冲。这时,我们就说脉冲重复(频)率前者为10,后者为1,那么,1 秒钟发出10 个脉冲,它的脉冲重复周期为0.1 秒,而1 秒钟发出1 个脉冲,那么,它的脉冲重复周期为1 秒,我们用T 表示这个脉冲重复周期。 如果单个脉冲的能量为E,那么E/T 称作脉冲激光器的平均功率,这是在一个周期内的平均值。例如, E = 50 mJ(毫焦),T = 0.1 秒,那么,平均功率P平均= 50 mJ/0.1 s = 500 mW。 如果用 E 除以t,即有激光输出的这段时间内的功率,一般称作峰值功率(peak power),例如,在前面的例子中E = 50 mJ, t = 10 ns, P峰值= 50 ×10^(-3)/[10×10^(-9)] = 5×10^6 W = 5 MW(兆瓦),由于脉冲宽度t 很小,它的峰值功率很大。 脉冲能量E=1mj 脉宽t=100ns 重复频率20-80K 脉冲持续时间T=1s/2k=?秒 平均功率P=E/T=0.001J/0.00005s=20W P峰值功率=E/t 激光的分类: 激光按波段分,可分为可见光、红外、紫外、X光、多波长可调谐,目前工业用红外及紫外激光。例如CO2激光器10.64um红外

数据结构实验十一:图实验

一,实验题目 实验十一:图实验 采用邻接表存储有向图,设计算法判断任意两个顶点间手否存在路径。 二,问题分析 本程序要求采用邻接表存储有向图,设计算法判断任意两个顶点间手否存在路径,完成这些操作需要解决的关键问题是:用邻接表的形式存储有向图并输出该邻接表。用一个函数实现判断任意两点间是否存在路径。 1,数据的输入形式和输入值的范围:输入的图的结点均为整型。 2,结果的输出形式:输出的是两结点间是否存在路径的情况。 3,测试数据:输入的图的结点个数为:4 输入的图的边得个数为:3 边的信息为:1 2,2 3,3 1 三,概要设计 (1)为了实现上述程序的功能,需要: A,用邻接表的方式构建图 B,深度优先遍历该图的结点 C,判断任意两结点间是否存在路径 (2)本程序包含6个函数: a,主函数main() b,用邻接表建立图函数create_adjlistgraph() c,深度优先搜索遍历函数dfs() d,初始化遍历数组并判断有无通路函数dfs_trave() e,输出邻接表函数print() f,释放邻接表结点空间函数freealgraph() 各函数间关系如右图所示: 四,详细设计 (1)邻接表中的结点类型定义:

typedef struct arcnode{ int adjvex; arcnode *nextarc; }arcnode; (2)邻接表中头结点的类型定义: typedef struct{ char vexdata; arcnode *firstarc; }adjlist; (3)邻接表类型定义: typedef struct{ adjlist vextices[max]; int vexnum,arcnum; }algraph; (4)深度优先搜索遍历函数伪代码: int dfs(algraph *alg,int i,int n){ arcnode *p; visited[i]=1; p=alg->vextices[i].firstarc; while(p!=NULL) { if(visited[p->adjvex]==0){ if(p->adjvex==n) {flag=1; } dfs(alg,p->adjvex,n); if(flag==1) return 1; } p=p->nextarc; } return 0; } (5)初始化遍历数组并判断有无通路函数伪代码: void dfs_trave(algraph *alg,int x,int y){ int i; for(i=0;i<=alg->vexnum;i++) visited[i]=0; dfs(alg,x,y); } 五,源代码 #include "stdio.h" #include "stdlib.h" #include "malloc.h" #define max 100 typedef struct arcnode{ //定义邻接表中的结点类型 int adjvex; //定点信息 arcnode *nextarc; //指向下一个结点的指针nextarc }arcnode; typedef struct{ //定义邻接表中头结点的类型 char vexdata; //头结点的序号 arcnode *firstarc; //定义一个arcnode型指针指向头结点所对应的下一个结点}adjlist; typedef struct{ //定义邻接表类型 adjlist vextices[max]; //定义表头结点数组

光缆的种类与结构

2.5 光缆的种类与结构 光缆是多根光纤或光纤束制成的符合光学、机械和环境特性的结构体。光缆的结构直接影响通信系统的传输质量。不同结构和性能的光缆在工程施工、维护中的操作方式也不相同,因此必须了解光缆的结构、性能,才能确保光缆的正常使用寿命。 2.5.1 光缆的种类 光缆的种类很多,其分类的方法就更多,下面介绍一些常用的分类方法。 1、按传输性能、距离和用途分类。可分为长途光缆、市话光缆、海底光缆和用户光缆。 2、按光纤的种类分类。可分为多模光缆、单模光缆。 3、按光纤套塑方法分类。可分为紧套光缆、松套光缆、束管式光缆和带状多芯单元光缆。 4、按光纤芯数多少分类。可分为单芯光缆、双芯光缆、四芯光缆、六芯光缆、八芯光缆、十二芯光缆和二十四芯光缆等。 5、按加强件配置方法分类 光缆可分为中心加强构件光缆(如层绞式光缆、骨架式光缆等)、分散加强构件光缆(如束管两侧加强光缆和扁平光缆)、护层加强构件光缆(如束管钢丝铠装光缆)和PE外护层加一定数量的细钢丝的PE细钢丝综合外护层光缆。 6、按敷设方式分类。光缆可分为管道光缆、直埋光缆、架空光缆和水底光缆。 7、按护层材料性质分类。光缆可分为聚乙烯护层普通光缆、聚氯乙烯护层阻燃光缆和尼龙防蚁防鼠光缆。 8、按传输导体、介质状况分类。光缆可分为无金属光缆、普通光缆和综合光缆。 9、按结构方式分类 光缆可分为扁平结构光缆、层绞式结构光缆、骨架式结构光缆、铠装结构光缆(包括单、双层铠装)和高密度用户光缆等。 10、常用通信光缆按使用环境可分为 (1)室(野)外光缆——用于室外直埋、管道、槽道、隧道、架空及水下敷设的光缆。 (2)软光缆——具有优良的曲挠性能的可移动光缆。 (3)室(局)光缆——适用于室布放的光缆。 (4)设备光缆——用于设备布放的光缆。 (5)海底光缆——用于跨海洋敷设的光缆。 (6)特种光缆——除上述几类之外,作特殊用途的光缆 2.5.2 光缆的型号 光缆型号由它的型式代号和规格代号构成,中间用一短横线分开。 1、光缆型式由五个部分组成,如图2.11所示。

数据结构实验---图的储存与遍历

数据结构实验---图的储存与遍历

学号: 姓名: 实验日期: 2016.1.7 实验名称: 图的存贮与遍历 一、实验目的 掌握图这种复杂的非线性结构的邻接矩阵和邻接表的存储表示,以及在此两种常用存储方式下深度优先遍历(DFS)和广度优先遍历(BFS)操作的实现。 二、实验内容与实验步骤 题目1:对以邻接矩阵为存储结构的图进行DFS 和BFS 遍历 问题描述:以邻接矩阵为图的存储结构,实现图的DFS 和BFS 遍历。 基本要求:建立一个图的邻接矩阵表示,输出顶点的一种DFS 和BFS 序列。 测试数据:如图所示 题目2:对以邻接表为存储结构的图进行DFS 和BFS 遍历 问题描述:以邻接表为图的存储结构,实现图的DFS 和BFS 遍历。 基本要求:建立一个图的邻接表存贮,输出顶点的一种DFS 和BFS 序列。 测试数据:如图所示 V0 V1 V2 V3 V4 三、附录: 在此贴上调试好的程序。 #include #include #include V0 V1 V4 V3 V2 ??? ? ??? ? ????????=010000000101010 1000100010A 1 0 1 0 3 3 4

#define M 100 typedef struct node { char vex[M][2]; int edge[M ][ M ]; int n,e; }Graph; int visited[M]; Graph *Create_Graph() { Graph *GA; int i,j,k,w; GA=(Graph*)malloc(sizeof(Graph)); printf ("请输入矩阵的顶点数和边数(用逗号隔开):\n"); scanf("%d,%d",&GA->n,&GA->e); printf ("请输入矩阵顶点信息:\n"); for(i = 0;in;i++) scanf("%s",&(GA->vex[i][0]),&(GA->vex[i][1])); for (i = 0;in;i++) for (j = 0;jn;j++) GA->edge[i][j] = 0; for (k = 0;ke;k++) { printf ("请输入第%d条边的顶点位置(i,j)和权值(用逗号隔开):",k+1); scanf ("%d,%d,%d",&i,&j,&w); GA->edge[i][j] = w; } return(GA); } void dfs(Graph *GA, int v) { int i; printf("%c%c\n",GA->vex[v][0],GA->vex[v][1]); visited[v]=1;

调Q光纤激光器结构示意图和MOPA光纤激光器结构示意图.

调Q光纤激光器和普通的调Q激光器一样,都是在激光谐振腔内插入Q开关器件,通过周期性改变腔损耗,实现调Q激光脉冲输出。Q开关是被广泛采用的产生短脉冲的激光技术之一。 现状: 调Q光纤激光器在许多领域都有着广泛应用,大功率是调Q光纤激光器的一个发展方向。全光纤化也是调Q光纤激光器发展的一个重要趋势,人们陆续研发出一些全光纤的Q开光来代替传统的声光与电光调制器,大大地降低了激光器的插入损失。 用于光纤激光器的调Q技术大致可以分为光纤型调;和非光纤型调Q两类。非光纤型调Q有光调Q、电光调Q、机械转镜调Q和可饱和吸收体调Q等。 非光纤型调Q: 1.声光调Q激光器:

2.电光调Q激光器:

3.可饱和吸收体调Q激光器: 光纤型调Q装置 光纤型调Q装置有光纤迈克尔逊干涉仪调Q、光纤马赫

一曾特尔干涉仪调Q和光纤中的受激布里渊散射(SBS)调Q光纤激光器等。下面介绍混合调Q和脉冲泵浦受激布里渊散射混合调Q光纤激光器。 混合调Q光纤激光器 如图所示 得到了峰值功率3.7KW,脉宽2m的脉冲激光输出。 实验中选用掺钕双包层光纤作增益介质,光纤长7.2m,纤芯直径5.1um,数值孔径0.12。内包层为矩形结构,截面尺寸150um*75um。 泵源为800nm、3w激光二极管,有60%的泵光祸合到内包层中。 系统由一个全反镜和一个二向色镜构成驻波谐振腔。在双包层光 纤的输出端接几米长的单模光纤,实现调Q ,得到纳秒量级的激光脉冲。在腔内插人一声光调制器(AQM),使激光脉冲重复频率在6.6KHz-16.4KHZ范围内可调。 脉冲泵浦和受激布里渊散射混合调Q : 在线形腔双包层光纤激光器中,用脉冲泵浦和SBS混合调Q 。 如图所示

数据结构实验报告图实验

邻接矩阵的实现 1. 实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现2. 实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历3.设计与编码MGraph.h #ifndef MGraph_H #define MGraph_H const int MaxSize = 10; template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; }

int vertexNum, arcNum; }; #endif MGraph.cpp #include using namespace std; #include "MGraph.h" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e) { int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0; for(k = 0; k < arcNum; k++) { cout << "Please enter two vertexs number of edge: " cin >> i >> j; arc[i][j] = 1; arc[j][i] = 1; } }

花的结构和解剖

(五)花的解剖结构 典型的被子植物的一朵花是由花萼、花冠、雄蕊和雌蕊组成的。 具有上述4部分的花称为完全花,如桃、梅等;缺少其中一部分的花称为不完全花,如桑、榉等。从进化角度来分析,花实际上是一种适应于生殖的变态短枝,而花萼、花冠、雄蕊和雌蕊是变态的叶。 1.花梗和花托 花梗(柄)是花与茎的连接部分,主要起支持和输导作用。花梗的顶端是着生花的花托。花托的形状因植物种类的不同而各式各样,如玉兰的花托呈圆锥形,蔷薇花托呈杯状等等。 2.花被 花被是花萼和花冠的总称。 (1)花萼 位于花的外侧,通常由几个萼片组成。有些植物具有两轮花萼,最外轮的为副萼,如木槿、扶桑等。花萼随花脱落的称为早落萼,如桃、梅等;花萼在果实成熟时仍存留的称为宿存萼,如石榴、柿子等。各萼片完全分离的称离萼,如玉兰、毛茛等;花萼连为一体的称合萼,如石竹等。 (2)花冠 位于花萼内侧,由若干花瓣组成,排列为一轮或数轮,对花蕊有保护作用。由于花瓣中含有色素并能分泌芳香油与蜜汁,所以花冠颜色艳丽,具有芳香,能招引昆虫,起到传粉作用。 花冠的类型 A—十字形花冠;B—蝶形花冠;C—管状花冠;D一舌状花冠; E—唇形花冠;F—有距花冠;G一喇叭状花冠;H—漏斗状花冠 (A、B为离瓣花;C~H为合瓣花) l一柱头;2—花柱;3—花药;4一花冠; 5一花丝;6一冠毛;7—胚珠;8一子房 花冠形态因植物种类的不同而千姿百态,按花瓣离合程度,花冠可分为离瓣花冠与合瓣花冠两类(如上图所示)。①离瓣花冠:花瓣基部彼此完全分离,这种花冠称为离瓣花冠,常见有以下几种: 蔷薇型花冠:由5个(或5的倍数)分离的花瓣排列成,如桃、梨等。 十字型花冠:由4个花瓣十字型排列组成,如二月兰、桂竹香等。 ②合瓣花冠:花瓣全部或基部合生的花冠称为合瓣花冠,常见有以下几种:

数据结构实验

实验1 (C语言补充实验) 有顺序表A和B,其元素值均按从小到大的升序排列,要求将它们合并成一 个顺序表C,且C的元素也是从小到大的升序排列。 #include main() { intn,m,i=0,j=0,k=0,a[5],b[5],c[10];/* 必须设个m做为数组的输入的计数器,不能用i ,不然进行到while 时i 直接为5*/ for(m=0;m<=4;m++)scanf("%d",&a[m]);// 输入数组a for(m=0;m<=4;m++)scanf("%d",&b[m]);// 输入数组b while(i<5&&j<5) {if(a[i]b[j]){c[k]=b[j];k++;j++;} else{c[k]=a[i];k++;i++;j++;}// 使输入的两组数组中相同的数只输出一 个 } if(i<5) for(n=i;n<5;n++) {c[k]=a[n];k++;} elseif(j<5) for(n=j;n<5;n++) {c[k]=b[n];k++;} for(i=0;i

求A QB #include main() { inti,j,k=0,a[5],b[5],c[5];//A=a[5],B=b[5],A n B=c[5] for(i=0;i<5;i++)scanf("%d",&a[i]);// 输入a 数组 for(i=0;i<5;i++)scanf("%d",&b[i]);〃输入b 数组 for(i=0;i<5;i++) {for(j=0;j<5;j++) if(a[i]==b[j]){c[k]=a[i];k++;}// 当有元素重复时,只取一个放入 c 中} for(i=0;i #defineN4 main() { inti,j,m,k,a[N+1];//k 为最后输出数组的长度变量

常见40种光缆型号图文详解

常见40种光缆型号图文详解 GYTA型光缆 GYTA(金属加强构件、松套层绞填充式、铝-聚乙烯粘结护套通信用室外光缆)光缆的结构是将单模或多模光纤套入由高模量的塑料做成的内填充防水化合物松套管中。缆芯的中心是一根金属加强芯,对于某些芯数的光缆来说,金属加强芯外还挤包一层聚乙烯(PE)。松套管(和填充绳)围绕中心加强芯绞合成紧凑和圆形的缆芯,缆芯内的缝隙充以阻水化合物。铝塑复合带纵包后挤塑聚乙烯护套。 ▲结构示意图 特点 ●精确控制光纤的余长保证了光缆具有很好的抗拉性能和温度特性 ●PBT松套管材料具有良好的耐水解性能,管内充以特种油膏,对光纤进行保护 ●PE护套具有良好的抗太阳辐射性能 ●光滑的外护套使光缆在安装中可以有更小的摩擦系数 ●采用下列措施来确保光缆的防水性能:松套管内填充特种防水化合物;完全缆芯填充;铝塑复合带防潮层 ●铝带侧压指标没有钢带好,但防潮隔锈效果优于钢带,GYTA用于穿管时寿命长。 使用范围: 架空、管道 GYTS型光缆 GYTS(金属加强构件、松套层绞填充式、钢-聚乙烯粘结护套通信用室外光缆)光缆的结构是将单模或多模光纤套入由高模量的塑料做成的内填充防水化合物松套管中。缆芯的中心是一根金属加强芯,对于某些芯数的光缆来说,金属加强芯外还挤包一层聚乙烯(PE)。松套管(和填充绳)围绕中心加强芯绞合成紧凑和圆形的缆芯,缆芯内的缝隙充以阻水化合物。钢塑复合带纵包后挤塑聚乙烯护套。

▲结构示意图 特点: ●精确控制光纤的余长保证了光缆具有很好的抗拉性能和温度特性 ●PBT松套管材料具有良好的耐水解性能,管内充以特种油膏,对光纤进行保护 ●钢-聚乙烯护套具有优良的抗压性能 ●光滑的外护套使光缆在安装中可以有更小的摩擦系数 ●PE护套具有良好的抗太阳辐射性能 ●采用下列措施来确保光缆的防水性能:松套管内填充特种防水化合物;完全缆芯填充、钢塑复合带防潮层。 使用范围: 直埋 GYTY53型光缆 GYTY53(金属加强构件、松套层绞填充式、聚乙烯护套、纵包皱纹钢带铠装、聚乙烯套通信用室外光缆)光缆的结构是将单模或多模光纤套入由高模量的塑料做成的内填充防水化合物松套管中。缆芯的中心是一根金属加强芯,对于某些芯数的光缆来说,金属加强芯外还挤包一层聚乙烯(PE)。松套管(和填充绳)围绕中心加强芯绞合成紧凑和圆形的缆芯,缆芯内的缝隙充以阻水化合物。缆芯外挤一层聚乙烯内护套,双面涂塑钢带纵包后挤塑聚乙烯护套。 ▲结构示意图 特点: ●精确控制光纤的余长保证了光缆具有很好的抗拉性能和温度特性 ●PBT松套管材料具有良好的耐水解性能,管内充以特种油膏,对光纤进行保护 ●具有优良的抗压性 ●光滑的外护套使光缆在安装中可以有更小的摩擦系数 ●采用下列措施来确保光缆的防水性能:松套管内填充特种防水化合物;完全缆芯填充;涂塑钢带防潮层 使用范围: 直埋 GYTA53型光缆 GYTA53(金属加强构件、松套层绞填充式、铝-聚乙烯粘结护套、纵包皱纹钢带铠装、聚乙烯套通信用室外光缆)光缆的结构是将单模或多模光纤套入由高模量的塑料做成的内填充防水化合物松套管中。缆芯的中心是一根金属加强芯,对于某些芯数的光缆来说,金属加强芯外还挤包一层聚乙烯(PE)。松套管(和填充绳)围绕中心加强芯绞合成紧凑和圆形的缆芯,缆芯内的缝隙充以阻水化合物。涂塑铝带纵包后挤一层聚乙烯内护套,双面涂塑钢带纵包后挤塑聚乙烯护套。

数据结构实验报告图实验

图实验 一,邻接矩阵的实现 1.实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现 2.实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历 3.设计与编码 #ifndef MGraph_H #define MGraph_H const int MaxSize = 10; template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ } void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; int vertexNum, arcNum; }; #endif #include using namespace std; #include "" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e) { int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0;

光缆的种类与结构

光缆的种类与结构 光缆是多根光纤或光纤束制成的符合光学、机械和环境特性的结构体。光缆的结构直接影响通信系统的传输质量。不同结构和性能的光缆在工程施工、维护中的操作方式也不相同,因此必须了解光缆的结构、性能,才能确保光缆的正常使用寿命。 2.5.1 光缆的种类 光缆的种类很多,其分类的方法就更多,下面介绍一些常用的分类方法。 1、按传输性能、距离和用途分类。可分为长途光缆、市话光缆、海底光缆和用户光缆。 2、按光纤的种类分类。可分为多模光缆、单模光缆。 3、按光纤套塑方法分类。可分为紧套光缆、松套光缆、束管式光缆和带状多芯单元光缆。 4、按光纤芯数多少分类。可分为单芯光缆、双芯光缆、四芯光缆、六芯光缆、八芯光缆、十二芯光缆和二十四芯光缆等。 5、按加强件配置方法分类 光缆可分为中心加强构件光缆(如层绞式光缆、骨架式光缆等)、分散加强构件光缆(如束管两侧加强光缆和扁平光缆)、护层加强构件光缆(如束管钢丝铠装光缆)和PE外护层加一定数量的细钢丝的PE细钢丝综合外护层光缆。 6、按敷设方式分类。光缆可分为管道光缆、直埋光缆、架空光缆和水底光缆。 7、按护层材料性质分类。光缆可分为聚乙烯护层普通光缆、聚氯乙烯护层阻燃光缆和尼龙防蚁防鼠光缆。 8、按传输导体、介质状况分类。光缆可分为无金属光缆、普通光缆和综合光缆。 9、按结构方式分类 光缆可分为扁平结构光缆、层绞式结构光缆、骨架式结构光缆、铠装结构光缆(包括单、双层铠装)和高密度用户光缆等。 10、常用通信光缆按使用环境可分为 (1)室(野)外光缆——用于室外直埋、管道、槽道、隧道、架空及水下敷设的光缆。 (2)软光缆——具有优良的曲挠性能的可移动光缆。 (3)室(局)内光缆——适用于室内布放的光缆。 (4)设备内光缆——用于设备内布放的光缆。 (5)海底光缆——用于跨海洋敷设的光缆。 (6)特种光缆——除上述几类之外,作特殊用途的光缆 光缆的型号 光缆型号由它的型式代号和规格代号构成,中间用一短横线分开。 1、光缆型式由五个部分组成,如图所示。

数据结构图实验报告

数据结构教程 上机实验报告 实验七、图算法上机实现 一、实验目的: 1.了解熟知图的定义和图的基本术语,掌握图的几种存储结构。 2.掌握邻接矩阵和邻接表定义及特点,并通过实例解析掌握邻接 矩阵和邻接表的类型定义。 3.掌握图的遍历的定义、复杂性分析及应用,并掌握图的遍历方 法及其基本思想。 二、实验内容: 1.建立无向图的邻接矩阵 2.图的深度优先搜索 3.图的广度优先搜索 三、实验步骤及结果: 1.建立无向图的邻接矩阵: 1)源代码: #include "" #include "" #define MAXSIZE 30 typedef struct

{ char vertex[MAXSIZE]; ertex=i; irstedge=NULL; irstedge; irstedge=p; p=(EdgeNode*)malloc(sizeof(EdgeNode)); p->adjvex=i; irstedge; irstedge=p; } } int visited[MAXSIZE]; ertex); irstedge;

ertex=i; irstedge=NULL; irstedge;irstedge=p; p=(EdgeNode *)malloc(sizeof(EdgeNode)); p->adjvex=i; irstedge; irstedge=p; } } typedef struct node { int data; struct node *next; }QNode; ertex); irstedge;ertex); //输出这个邻接边结点的顶点信息 visited[p->adjvex]=1; //置该邻接边结点为访问过标志 In_LQueue(Q,p->adjvex); //将该邻接边结点送人队Q }

光纤激光器原理与特性详解

光纤激光器原理与特性详解 一、简介 光纤激光器,英文名称为Fiber Laser,是一种以掺稀土元素的玻璃光纤为增益介质来产生激光输出的装置。光纤激光器可在光纤放大器的基础上进行开发,由于光纤激光器中光纤纤芯很细,因此在泵浦光作用下,光纤内部功率密度高,使得激光能级出现“粒子数反转”现象,在此基础上,再通过正反馈回路构成谐振腔,便可在输出处形成激光振荡。

二、结构 光纤激光器的结构类似于传统的固体激光器、气体激光器,主要由泵浦源、增益介质、谐振腔三大部分构成,如下图所示。其中,泵浦源一般为高功率的半导体激光器,增益介质为掺稀土元素的玻璃光纤,谐振腔由耦合器或光纤光栅等构成。 三、原理 在上图中,由泵浦源发出的泵浦光通过一面反射镜耦合进入增益介质中,由于增益介质为掺稀土元素光纤,因此泵浦光被吸收,吸收了光子能量的稀土离子发生能级跃迁并实现粒子数反转,反转后的粒子经

过谐振腔,由激发态跃迁回基态,释放能量,并形成稳定的激光输出。 四、特点 特点一:由于光纤纤芯直径小,在纤芯内容易形成高功率密度,因此光纤激光器具有较高的转换效率、较低的阙值、较高的增益、较窄的线宽、且可方便高效的实现与当前光纤通信系统的连接。 特点二:由于光纤具有很好的柔绕性,因此光纤激光器具有小巧灵活、结构紧凑、性价比较高、且更易于系统的集成的特点。 特点三:与传统的固体激光器、气体激光器相比,光纤激光器的能量转换效率较高、结构较紧凑、可靠性高、且适合大批量的生产。 特点四:与半导体激光器相比,光纤激光器的单色性较好、调制时可产生较小的啁啾和畸变、且与光纤的耦合损耗较小。

和半导体激光器相比,光纤激光器的优越性主要体现在:光纤激光器是波导式结构,可容强泵浦,具有高增益、转换效率高、阈值低、输出光束质量好、线宽窄、结构简单、可靠性高等特性,易于实现和光纤的耦合。 我们可以从不同的角度对光纤激光器进行分类,如根据光纤激光器的谐振腔采用的结构可以将其分为Fabry-Perot腔和环行腔两大类。也可根据输出波长数目将其分为单波长和多波长等。 对于不同类型光纤激光器的特性主要应考虑以下几点: (1)阈值应越低越好; (2)输出功率与抽运光功率的线性要好; (3)输出偏振态; (4)模式结构; (5)能量转换效率;

花的解剖结构详解

花的解剖结构 典型的被子植物的一朵花是由花萼、花冠、雄蕊和雌蕊组成的。 具有上述4部分的花称为完全花,如桃、梅等;缺少其中一部分的花称为不完全花,如桑、榉等。从进化角度来分析,花实际上是一种适应于生殖的变态短枝,而花萼、花冠、雄蕊和雌蕊是变态的叶。 1.花梗和花托 花梗(柄)是花与茎的连接部分,主要起支持和输导作用。花梗的顶端是着生花的花托。花托的形状因植物种类的不同而各式各样,如玉兰的花托呈圆锥形,蔷薇花托呈杯状等等。 2.花被 花被是花萼和花冠的总称。 (1)花萼 位于花的外侧,通常由几个萼片组成。有些植物具有两轮花萼,最外轮的为副萼,如木槿、扶桑等。花萼随花脱落的称为早落萼,如桃、梅等;花萼在果实成熟时仍存留的称为宿存萼,如石榴、柿子等。各萼片完全分离的称离萼,如玉兰、毛茛等;花萼连为一体的称合萼,如石竹等。 (2)花冠 位于花萼内侧,由若干花瓣组成,排列为一轮或数轮,对花蕊有保护作用。由于花瓣中含有色素并能分泌芳香油与蜜汁,所以花冠颜色艳丽,具有芳香,能招引昆虫,起到传粉作用。 花冠的类型 A—十字形花冠;B—蝶形花冠;C—管状花冠;D一舌状花冠; E—唇形花冠;F—有距花冠;G一喇叭状花冠;H—漏斗状花冠 (A、B为离瓣花;C~H为合瓣花) l一柱头;2—花柱;3—花药;4一花冠; 5一花丝;6一冠毛;7—胚珠;8一子房 花冠形态因植物种类的不同而千姿百态,按花瓣离合程度,花冠可分为离瓣花冠与合瓣花冠两类(如上图所示)。①离瓣花冠:花瓣基部彼此完全分离,这种花冠称为离瓣花冠,常见有以下几种: 蔷薇型花冠:由5个(或5的倍数)分离的花瓣排列成,如桃、梨等。 十字型花冠:由4个花瓣十字型排列组成,如二月兰、桂竹香等。 ②合瓣花冠:花瓣全部或基部合生的花冠称为合瓣花冠,常见有以下几种:

国标光缆命名顺序编制表.

国标光缆命名顺序编制表 1 型号的组成 1.1 型号组成的内容 型号由型式、规格和特殊性能标识(可缺省)三大部分组成。 1.2 型号组成的格式化见图1。型式代号、规格代号和特殊性能标识(可缺省)之间应空一 个格。 图1 型号组成的格式 2 型号的组成内容、代号及含义 2.1 型式 2.1.1 型式的组成和格式 型式由五个部分组成,各部分均用代号表示,如图2所示。其中结构特征指缆芯结构和光缆派生结构特征。 图2 光缆型式的构成 2.1.2 分类的代号及含义 2.1.2.1 总则 光缆按适用场合分为室外、室内和室内外等几大类,每一大类下面还细分成小类。 当现有分类代号不能满足新型光缆命名需要时,应在相应代号后面增加新字母以方便表达。加入的数字符应符合下列规定:

——应使用一个带下划线的英文字母; ——使用的字符应与下面相应的同一大类列出的字符不重复; ——应尽量采用与新分类名称相关的词汇的拼音或英文的首字母。 2.1.2.2 室外型 GY——通信用室(野)外光缆 GYW——通信用微型室外光缆 GYC——通信用气吹布放微型室外光缆 GYL——通信用室外路面微槽敷设光缆 GYP——通信用室外防鼠啮排水管道光缆 2.1.2.3 室内型 GJ——通信用室(局)内光缆 GJC——通信用气吹布放微型室内光缆 GJX——蝶形引放光缆 2.1.2.4 室内外型 GJY——通信用室内外光缆 GJYX——室内外蝶形引放光缆 2.1.2.5 其它类型 GH——通信用海底光缆 GM——通信用移动式光缆 GS——通信用设备光缆 GT——通信用特殊光缆 2.1.3 加强构件的代号及含义 加强构件指护套以内或嵌入护套中用于增强光缆抗拉力的构件。 当遇到以下代号不能准确表达光缆的加强构件特征时,应增加新字符以方便表达。新字符应符合下 列规定: ——应使用一个带下划线的英文字母; ——使用的字符应与下面列出的字符不重复; ——应尽量采用与新构件特征相关的词汇的拼音或英文的首字母。 加强构件的代号及含义如下:

数据结构实验—图实验报告

精品文档数据结构 实 验 报 告

目的要求 1.掌握图的存储思想及其存储实现。 2.掌握图的深度、广度优先遍历算法思想及其程序实现。 3.掌握图的常见应用算法的思想及其程序实现。 实验内容 1.键盘输入数据,建立一个有向图的邻接表。 2.输出该邻接表。 3.在有向图的邻接表的基础上计算各顶点的度,并输出。 4.以有向图的邻接表为基础实现输出它的拓扑排序序列。 5.采用邻接表存储实现无向图的深度优先递归遍历。 6.采用邻接表存储实现无向图的广度优先遍历。 7.在主函数中设计一个简单的菜单,分别调试上述算法。 源程序: 主程序的头文件:队列 #include #include #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define OVERFLOW -2 typedef int QElemType; typedef struct QNode{ //队的操作 QElemType data; struct QNode *next; }QNode,*QueuePtr; typedef struct { QueuePtr front; QueuePtr rear; }LinkQueue; void InitQueue(LinkQueue &Q){ //初始化队列 Q.front =Q.rear =(QueuePtr)malloc(sizeof(QNode)); if(!Q.front) exit(OVERFLOW); //存储分配失败 Q.front ->next =NULL; } int EnQueue(LinkQueue &Q,QElemType e) //插入元素e为Q的新的队尾元素{ QueuePtr p; p=(QueuePtr)malloc(sizeof(QNode)); if(!p) exit(OVERFLOW); p->data=e;

花的结构示意图

花的结构示意图 基本结构(以桃花为例) 教师组织学生观察花的外形,然后指导学生按要求逐步解剖并观察花的各部分结构。(一)观察花的外形 教师结合挂图,指导学生参照课本上“花的基本结构图”,有步骤地观察以下内容: 1.花柄:它的颜色、着生的部位。想一想它有什么作用。 2.花托:它的形状、颜色。想一想它的作用。 3.花萼:由萼片组成。数一数萼片的数目,着生在哪里。 4.花冠:由花瓣组成。注意它的颜色和数目。 完成上述观察,由一位同学归纳小结,然后教师再作补充性讲述,指出: 花柄紫红色,一端着生在茎上,另一端连接着花朵。它支撑着花朵,使它展放在空间。顺着花柄往上看,可看到略为膨大,呈杯状,紫红色的部分,这是花托,花的各部分着生在花托

上。在花托的边缘上着生有萼片,共5片,它们组成了花萼。在花萼的内侧有花瓣,粉红色,5片,它们组成花冠。花萼和花冠合称花被。 (二)解剖并观察花的结构 结合挂图,教师指导学生依次解剖花,观察其内部结构,并将花的各部分粘贴在白纸上制成标本。 1.用镊子将萼片摘下,并粘贴在白纸上。 2.用镊子将花瓣摘下,依次粘贴在白纸上。 3.观察雄蕊:摘去萼片、花瓣后,露出雄蕊和雌蕊于它们合称为花蕊。先观察雄蕊,注意下列几个问题: (1)桃花的雄蕊有多少枚。每一朵都一样吗? (2)每枚雄蕊由哪两部分组成,各有什么作用。 (3)取一张白纸放在桌子上,将雄蕊的花药在纸上来回摩擦,能看到有黄色粉末散落吗?这是什么? (4)观察完成后,用镊子摘下部分雄蕊,粘贴在白纸上。 4.观察雌蕊:摘去全部雄蕊,这时在花托的顶部只剩下1枚雌蕊了。 (1)观察雌蕊由哪三部分组成。 (2)同桌的两位同学互相配合,用刀片分别将子房作横切和纵切。然后用放大镜观察横、纵切面,注意看看有几个胚珠。 完成上述观察后,组织同学讨论归纳花的结构。花的主要结构是什么?接着教师进行总结性讲述,指出:花蕊是花的主要部分,它包括雄蕊和雌蕊。雄蕊由花丝和花药组成,花药里有花粉。雌蕊由柱头、花柱、子房三部分组成。子房里有胚珠(桃花只有一个胚珠)。花开放后,花粉落到柱头上,经过一系列复杂变化,子房发育成果实,胚珠发育成种子(这些变化今后再研究)。由此看来,只有花蕊与结出果实、种子有关,所以它是花的主要部分。 二、花的其他结构 有些植物的花(如桃花)除了上述的基本结构外,还有其他一些结构,例如蜜腺。 用放大镜观察子房的基部,看到有小突起,这叫做蜜腺。蜂蜜采集的花蜜就是由蜜腺产生的: 有些植物的花,能散发出芳香的气味,它是花瓣里的一些细胞分泌出来的物质。这些物质容易挥发成气体,从而使花散发出香气。人们利用它可制取香精,如玫瑰花、桂花。

光纤激光器简介

目录 第一章、激光基础 第二章、激光器 第三章、光纤的特性 第四章、光纤激光器 第五章、实验室激光器型号及操作安全

第一章激光基础 1.1什么是激光? 激光在我国最初被称为“莱赛”,即英语“Laser”的译音,而“Laser”是“Light amplification by stimulated emission of radiation”的缩写。意为“辐射的受激发射光放大”,大约在1964年,根据钱学森院士的建议,改名为“激光”。激光是通过人工方式,用光或者放电等强能量激发特定的物质而产生的光。 激光的四大特性:高亮度、高单色性、高方向性、高相干性。具有高亮度的激光束经过透镜聚焦后,能在焦点附近产生数千度乃至上万度的高温,这就使其能够加工几乎所有材料。由于激光的单色性极高,从而保证了光束能精确地聚焦到焦点上,得到很高的功率密度。 1.2激光产生的基本理论 1.2.1原子能级和辐射跃迁 按照玻尔的氢原子理论,绕原子核高速旋转的电子具有一系列不连续的轨道,这些轨道称为能级,如图1-1。 图1-1 原子能级图

当电子在不同的能级时,原子系统的能量是不相同的,能量最低的能级称为基态。当电子由于外界的作用从较低的能级跃迁到较高的能级时,原子的能量增 图1-2 电子跃迁图 加,从外界吸收能量。反之,电子从较高能级跃迁到较低能级时,向外界发出能量。在这个过程中,若原子吸收或发出的能量是光能(辐射能),则称此过程为辐射跃迁。发出或吸收的光的频率满足普朗克公式(hv=E2-E1)。 1.2.2受激吸收、自发辐射、和受激辐射 受激吸收:处于低能级上的原子,吸收外来能量后跃迁到高能级,则称之为受激吸收。 自发辐射:由于物质有趋于最低能量的本能,处于高能级上的原子总是要自发跃迁到低能级上去,如果跃迁中发出光子,则这个过程称为自发辐射。

光分配网ODN中光缆的组网结构

光分配网(ODN)中光缆的组网结构 摘要: ODN中的光缆线路从业务汇聚点到用户一般要分成主干、配线、引入、入户多个光缆段落,本文介绍了各段落光缆的组网结构及用户光缆与用户接入点的含义。 ODN中的光缆线路从业务汇聚点到用户一般要分成主干、配线、引入、入户多个光缆段落,如图1所示。这些光缆段落叠加在一个平面(通信管道或通信杆路)上,从而构成了一个复杂的网络。 图1 光分配网(ODN)中光链路的分段组成图 一、主干段 主干段指从业务汇聚点到主干光缆交接箱(以下简称“光交”)、以及主干光交间的光缆段落。光交是光缆的接口设备,可对进入箱体内的光缆纤芯接续、分歧和调度。主干光缆线路的组网结构可以是环形、也可能是树形。无论是环形还是树形,每个主干光交内都有部分(或全部)纤芯可直达业务汇聚点(局端),所以,主干光交也叫一级光交。主干光缆线路的组网结构如图2所示。

图2 主干光缆线路组网结构图 二、配线段 配线段指从主干光交到配线光交、以及配线光交间的光缆段落。配线光缆线路的组网结构可以是树形、链型和环形。配线光交一般服务于微网格(见图3中光交所在的彩色区块,图3为上图2的右下角区域),如小区、商务楼宇等;配线光交也被称为小区光交、楼宇接入光交。

图3 配线光缆线路的组网结构图 配线光交成端的纤芯只能直达主干光交,若要连接到业务汇聚点必须要通过主干光交跳纤,所以,配线光交也叫二级光交。 有的专家认为可以把小区光交、楼宇接入光交上联到就近的配线光交(二级),如图4所示,这样会导致ODN光链路全程衰耗的增加,笔者建议,ODN光链路中光交的级别越少越好,不宜超过2级。

相关文档
最新文档